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ABSTRACT

We introduce the Blashke Decomposition Network (BDN), a novel neural network
architecture for analyzing continuous real-valued or complex-valued 1-D and 2-D
signals - data types that existing architectures, such as transformers or recurrent
networks, are not designed to model. These signals are common in medicine, biol-
ogy, and other scientific domains, yet their analytic structure is often underutilized
in machine learning. Our approach is based on the Blaschke decomposition, which
“unwinds” a signal into a sequence of factors determined by its roots - the points
in the complex unit disk where the analytic continuation of the signal vanishes. By
iteratively peeling off these factors, the decomposition isolates oscillatory compo-
nents of the signal and produces a compact representation. BDNs are trained to
predict these roots directly, and we show that they provide powerful and inter-
pretable representations for downstream tasks. We first design the architecture for
1-D signals and then extend it to 2-D using a wedge-based factorization, enabling
the same framework to handle images and other spatially varying signals. Experi-
ments on sensor-derived biomedical data, including electrocardiograms and phase
holographic microscopy, show that BDNs achieve strong predictive performance
while using fewer parameters than transformers, convolutional, or recurrent net-
works. Our code is available at: https://anonymous.4open.science/r/BDN-5603

1 INTRODUCTION

In the rapidly evolving landscape of neural networks, established paradigms have shown break-
through performance on specific datatypes including convolutional neural networks (CNNs) for im-
ages, recurrent neural networks for discrete sequences (LeCun et al., 2015)(RNNs) (Hermans &
Schrauwen, 2013; Cho et al., 2014), and transformer-based models for language (Vaswani et al.,
2017). By contrast, continuous-valued oscillatory signals - ubiquitous in scientific and biomedical
domains - have received far less architectural attention. These signals often exhibit phase modula-
tion, and switch between periodic and aperiodic regimes, properties that are not naturally handled
by existing discrete-sequence models. While most practitioners still use discrete-sequence models
like LSTMs or transformers for these types of signals, there is currently no canonical architecture
with inductive biases tailored to their analytic structure. Examples include electrocardiogram (ECG)
recordings, gravitational waveforms, and phase microscopy, all of which exhibit oscillatory structure
with varying phase, amplitude, and frequency content.

To address these challenges, we introduce the Blaschke Decomposition Network (BDN), a new
network architecture rooted in principles from complex and harmonic analysis. BDNs make use of
the Blaschke unwinding series, which unwinds a signal step by step. At each stage, a root of the an-
alytic continuation inside the unit disk is factored out, leaving a simpler residual to be decomposed
further. This creates a product–sum structure: the signal is expressed as a weighted sum of products
of Blaschke factors, where the factors are determined by the signal’s roots and the weights by associ-
ated coefficients. Unlike Fourier or wavelet decompositions, which expand signals in terms of fixed
basis functions, the Blaschke decomposition adapts to the signal itself. The representation is there-
fore compact, interpretable, and tied directly to the geometry of the signal’s analytic continuation,
with roots encoding oscillatory behavior and coefficients that weight their contribution.

BDNs turn the unwinding series into a fully differentiable neural framework by representing a sig-
nal as a truncated product–sum expansion, where each layer corresponds to factoring out a new
Blaschke product. In this setup, the network learns both the roots, which capture oscillatory struc-
ture, and the coefficients, which weight their contribution. A learnable masking mechanism adap-
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Figure 1: We propose Blaschke decomposition networks (BDNs) as a canonical architecture to
model signals, especially complex-valued signals.

tively selects which roots are included in each factor. Stacking these layers produces a hierarchical,
multi-resolution representation: coarse oscillatory structure is captured in the early stages, while
finer details emerge in later ones. The result is an end-to-end trainable network that encodes signals
directly through their learned root structure.

Finally, we extend the Blashke decomposition framework to 2-D signals through a wedge-based
factorization. Here, the unit disk is partitioned into angular sectors, and Blaschke roots are assigned
within each wedge to model oriented, scale-dependent features. This construction naturally gener-
alizes the Blaschke decomposition from one-dimensional Hardy spaces to two dimensions (Rudin,
1969; 1980), enabling BDNs to capture spatial structure in images and microscopy data with the
same principled root-based representation.

We evaluate BDN on both synthetic and real-world datasets. On synthetic signals composed of
combinations of low- and high-frequency components, BDN learns root representations that sepa-
rate these components cleanly. Using the learned roots as features, a simple classifier achieves near
perfect accuracy in classifying the signal. Applied to electrocardiogram (ECG) data from the PTB-
XL dataset (Wagner et al., 2020), BDN outperforms strong baselines including recurrent and trans-
former models, with higher sensitivity and specificity across multiple cardiac conditions. Beyond
1-D signals, we extend BDN to 2-D via the wedge factorization and test it on a digital holographic
microscopy dataset of single-cell images. Here, BDN achieves the best classification accuracy across
all three cell states - alive, apoptotic, and necroptotic - surpassing Fourier, wavelet, convolutional
models. Together, these results highlight that BDN provides not only compact and interpretable
representations through its learned roots, but also consistently strong predictive performance across
a range of biomedical signal modalities.

In summary, the contributions of this work are threefold: (1) we introduce BDN, a new neural
architecture that learns the Blaschke unwinding series for efficient and interpretable function repre-
sentation; (2) we demonstrate that BDN captures complex dynamics more compactly than existing
models, particularly high-frequency behaviors; and (3) we show that the internal learned compo-
nents (roots and coefficients) serve as useful representations for classification and other downstream
tasks. We validate these claims through a series of experiments on synthetic signals and real-world
datasets.

2 BACKGROUND

In complex analysis, Blaschke products allow one to construct analytic functions on the unit disc
B(z) with zeros at some specified points {an}∞n=1. They are employed in the canonical factorization
theorem, which separates functions in Hardy spaces into distinct inner and outer components. The
unwinding series, which leverages Blaschke products to represent 2π-periodic real-valued signals,
provides a powerful method for capturing harmonic components and decomposing signals. Together,
these constructs offer a robust framework for analyzing and representing complex-valued functions.

2.1 BLASCHKE PRODUCTS AND HARDY SPACES

Blaschke products are instrumental in constructing analytic tools within Hardy spaces. A key com-
ponent of these products is the Blaschke factor, which serves as the foundation for developing the
Malmquist-Takenaka (MT) orthonormal bases in Hardy space. Through phase unwinding, these
bases can be further adapted to form MT bases that align closely with the underlying signal prop-
erties. Additionally, the dynamics and composition of Blaschke products facilitate deeper insights
into function structures, enabling enhanced representation and decomposition techniques.
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Analysis on the unit disk A Blaschke product is an analytic function defined on the unit disk
D = {z ∈ C : |z| < 1} of the form

B(z) = zm
N∏

n=1

|an|
an

an − z

1− ānz
= zm

N∏
n=1

ban
(z), (1)

where m is a non-negative integer and {an} ⊂ D \ {0} is a sequence of points such that
∑∞

n=1(1−
|an|) < ∞. Note that by construction, B(z) is zero at each of the an and also has a zero at the origin
with mulitplicity m (unless m = 0). Each term ba(z) is called a Blaschke factor associated with the
zero a. For a ̸= 0, the factor is given by ba(z) =

|a|
a

a−z
1−āz , while for a = 0 we adopt the convention

b0(z) = z. A zero of multiplicity m at the origin therefore contributes a factor zm to the product.

The Hardy space Hp(D), with 1 ≤ p < ∞, consists of all analytic functions f on the unit disk D

satisfying ∥f∥Hp(D) := sup0<r<1

(
1
2π

∫ 2π

0
|f(reiθ)|p dθ

)1/p
< ∞. When p = ∞, the Hardy norm

is defined as ∥f∥H∞(D) := supz∈D |f(z)| < ∞.

Analysis on the upper half plane Let {an}n≥0 be a sequence (finite or not) of complex numbers
with positive imaginary parts ℑan and such that∑

n≥0

ℑan
1 + |an|2

< ∞.

The corresponding Blaschke product is B(z) =
∏

n≥0
|1+a2

n|
1+a2

n

z−an

z−ān
, where, 0/0 is defined to be

equal to 1 (which appears when an = i). The factors |1+a2
n|

1+a2
n

ensure the convergence of this product
when there are infinitely many zeros.

Note that Hp(D) can be identified with the set of Lp functions on the torus T = ∂D whose Fourier
coefficients of negative order are equal to zero. We will alternate between analysis on the disk, and
the parallel theory for analytic functions on the upper half plane H = {x + iy | y > 0}. The space
of analytic functions f on H such that

sup
y>0

∥f(·+ iy)∥Lp(R) < ∞

is denoted by Hp(R). These functions have boundary values in Lp(R) when p ≥ 1.

2.2 THE UNWINDING SERIES

The unwinding series (Nahon, 2000; Coifman & Steinerberger, 2017; Coifman et al., 2017) is a
construction for analyzing complex signals which may be derived using the canonical factorization
theorem stated below.

Theorem 1 (Canonical Factorization Theorem (Farnham, 2020)). Let F ∈ Hp(D) and F ̸= 0.
Then F may be factored as:

F = B · F1, (2)

where B(z) is a Blaschke product accounting for the zeros of F in D, F1(z) ∈ Hp(D) is a function
with no roots in D, and ∥F∥Hp = ∥F1∥Hp .

To understand this theorem, we note that restricted to the boundary of the unit disk, |B(z)| = 1,
which implies that |F1(z)| = |F (z)| and gives rise to the analogy that B is the “frequency” of the
signal F while F1 is its “amplitude”.

To construct the unwinding series, we first write

F (z) = F (0) +
(
F (z)− F (0)

)
. (3)

Then, since the second term, F (z)− F (0), has at least one root at the origin, it admits a non-trivial
Blaschke factorization, as presented in Theorem 1. Therefore, we may iteratively apply Theorem 1
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Figure 2: Graphical illustration of Blaschke unwinding process.

to write

F (z) = F (0) + (F (z)− F (0))

= F (0) +B1(z)F1(z)

= F (0) +B1(z)(F1(0) + (F1(z)− F1(0)))

= F (0) + F1(0)B1(z) + F2(0)B1(z)B2(z) + F3(0)B1(z)B2(z)B3(z) . . .

= F (0) +
∑
k≥1

Fk(0)

k∏
j=1

Bj(z).

(4)

This iterative process is visualized in Figure 2. The result, referred to as the unwinding series, is an
orthogonal expansion for a function F ∈ Hp(D) based on the idea that, in the repeated factorizations
Fk(z)−Fk(0) = Bk+1 ·Fk+1, each function Fk+1 is “simpler” than the corresponding Fk because
the winding number around the origin decreases. The phase of B is considered as the primary object
of study due to its expressive capabilities. As evidence of the expressive power of the Blaschke
products, it was noted in Coifman & Peyri that each Blaschke term can be expressed as B(z) =
exp(2iθ(z)), where θ is the phase for the function B. We present this formally as the following
proposition. For a proof, please see Appendix A.1.

Proposition 1. Let {an}1≤n≤N be a sequence of complex numbers in the upper half-plane, i.e.,
an = αn + iβn where αn, βn ∈ R and βn > 0. Then the Blaschke product on the line

N∏
n=1

z − an
z − ān

= exp(2iθ(z)), (5)

where θ(z) =
∑N

n=1 σ(
z−αn

βn
), σ(z) = arctan(x) + π/2.

This phase is equivalent to the construction of a standard neuron in a neural network where σ is
taken to be the activation function of the neuron, each αn is a bias term and each βn is a weight.
This connection with neural networks demonstrates the versatility and expressivity of the method
for generating highly complex functional representations.

Traditionally, the Blaschke decomposition is accomplished through the use of the deterministic al-
gorithm of Guido and Mary Weiss (Weiss & Weiss, 1962). This series converges exponentially as
observed in Nahon (2000); Coifman & Peyrière (2021) and has stability under white noise (Coifman
et al., 2017).

From Proposition 1 and Eq. 4, the finite unwinding series can be expressed as

f̂(z) = ℜ(F (z)); F (z) =

L∑
ℓ=1

cl

ℓ∏
k=1

Bk(z); Bk(z) = exp(2iθk(z)). (6)

The convergence of Eq. (6) is provided in Theorem 2. For a proof, please see, Appendix A.1.

Theorem 2 (Convergence, Nahon (2000)). For all f ∈ H2(D) and ε > 0 there exists {Bk}1≤k≤L

and {cl}1≤l≤L ∈ C such that, if L is sufficiently large, the approximation in Eq. (6) satisfies∥∥∥f(z)− f̂(z)
∥∥∥
2
< ε.
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Figure 3: A. Learning Weierstrass function f using 3-layer BDN: f̂ = Real(F ); F = c0 + c1B1 +
· · ·+ c3B1B2B3. B. Comparison of the predicted and ground truth zeros (roots) in the unit disk.

3 BLASCHKE DECOMPOSITION NETWORK (BDN)

3.1 BDN ARCHITECTURE

To present our full BDN architecture, which also handles signals in higher dimensions, we begin
with the one dimensional case, establishing it as the fundamental building block of the network. We
then extend this foundation to two dimensional case, demonstrating how the wedge decomposition
can be utilized to learn signals in higher dimensions.

BDN as Univariate Functions The BDN architecture is capable of approximating both real- or
complex-valued analytic functions. In the case where the target function F is complex-valued, BDN
approximates F via a truncated unwinding series modeled after Eqn. 4:

FL = c0 + c1B1 + c2B1B2 + . . .+ ckB1B2 . . . Bk + ...+ cLB1B2 . . . BL =

L∑
k=0

Pk, (7)

where the Bk are learnable Blaschke products with at most Nk roots, and ck are learnable co-
efficients, analogues to the “frequency” and “amplitude” of a signal. We interpret each of these
unwindings, i.e., factorizations BkFk, as a layer of our network. In the case where the target is a
real-valued function f , we first learn a complex-valued function F as in Eq. 7 and then take the real
part, i.e., we set f = ℜ(f). We note that each term Pk = ck

∏k
j=1 Bj aims to represent the target

function F at progressively finer levels of detail, analogous to the multi-resolution representations
derived from wavelet transforms (Jawerth & Sweldens, 1994). The parameter L in Eq. (7), which
controls the number of terms, can be chosen to be large to ensure a high degree of resolution or
chosen to be small for computational efficiency.

The architecture of BDN is defined as follows. For each layer k, we first parameterize the phase
via θ(z) =

∑N
n=1 σ(

z−αn

βn
) where σ(z) = arctan(x) + π/2. Taking the exponential of this phase,

exp (2iθ(z)), yields a Blaschke product Bk. Each Bk is then incorporated into the recursive con-
struction of Eq. (6) together with an additional set of scalar parameters {ck}Lk=0. The model param-
eters are optimized by minimizing the objective

Lreconstruction =

∥∥∥∥∥f −
L∑

ℓ=1

cℓ

ℓ∏
k=1

Bk

∥∥∥∥∥
2

which produces both the roots {rn : rn = αn + βni}n and coefficients {ck}k that best approxi-
mate the target function f . Figure 3A illustrates the progressive approximation of the Weierstrass
function, f(x) =

∑∞
n=0 0.5

10 cos(310πx), via a 3-layer BDN. As the layer index k increases, each
component Pk contributes successively finer-scale details to the signal. Figure 3B compares the
learned zeros (roots) with the ground-truth ones, highlighting BDN’s ability to faithfully capture
structure through Blaschke roots.
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Figure 4: Learned components and masks of the function f = sin(4x)+0.3 sin(40x) using a 2-layer
BDN. In the first layer, 25 out of 50 roots are selected via the learned mask to form P1, and in the
second layer, 194 out of 400 roots are selected to form P2.

Mask Learning for Root Selections In each layer k of BDN, the optimal number of roots needed
to approximate the k-th component of the function is not known in advance. Rather than fixing this
number as a hyperparameter, which can be both problem-dependent and costly to tune, we introduce
a learnable binary mask to automatically select the most relevant roots for each layer. Specifically,
the component function θk is defined as:

θk(x) =

Nk∑
n=1

χn · σ
(
x− αn

βn

)
(8)

where χn (= 0 or 1) is the learnable mask that determines whether the n-th root contributes to
the approximation. This mechanism allows the network to adaptively choose how many and which
roots to use, effectively pruning unnecessary components and reducing overfitting. As a result,
the model remains robust across different choices of Nk, the maximum number of roots allowed
per layer, and can efficiently allocate capacity where it is most needed. Figure 4 illustrates a two-
layer BDN approximating a signal composed of two distinct frequency components, along with the
learned masks used to select the appropriate number of roots in each layer. The network accurately
captures the corresponding frequency content and coefficients at each scale, resulting in a near-
perfect reconstruction of the original signal.

Computational Complexity The BDN architecture is organized into L layers of the unwinding
series. At layer l, the model learns l Blaschke products, and each product contains P learnable
Blaschke factors. Thus the total number of learnable factors across all layers is

∑L
l=1 l · P =

P · L(L+1)
2 = O(L2P ). Since each factor is parameterized by a root and a coefficient, the overall

parameter count scales quadratically with depth L and linearly with number of factors P . This
product-sum structure allows BDN to capture increasingly fine-scale behavior while keeping the
parameter growth controlled.

3.2 WEDGE DECOMPOSITION FOR IMAGE REPRESENTATIONS

Extending Blaschke decomposition from one-dimensional signals to images requires capturing
structure along both spatial dimensions. To this end, we introduce a wedge decomposition, which
partitions the complex unit disk into angular sectors (wedges) and assigns Blaschke roots within
each wedge to model oriented, scale-dependent features. Formally, let D = {z ∈ C : |z| < 1}
denote the unit disk, and divide it into M disjoint wedges

Wm = {z ∈ D : θm ≤ arg(z) < θm+1}, m = 1, . . . ,M, (9)

with angular boundaries 0 = θ1 < θ2 < · · · < θM+1 = 2π. For an image channel I : R2 → R,
we first construct its analytic extension F : D → C using the complexification procedure (Hilbert
transform followed by Poisson extension; see Appendix A.2). This step maps the spatial domain of
the image into the unit disk, producing an analytic function that can be factorized using Blaschke
products. In modalities such as digital holographic microscopy (DHM), however, the reconstructed
hologram is already complex-valued, so the wedge decomposition can be applied directly to the
phase image. Within each wedge Wm, we learn Blaschke factors

Bm(z) =

Nm∏
n=1

|am,n|
am,n

am,n − z

1− ām,nz
, am,n ∈ Wm, (10)
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where Nm is the maximum number of roots allowed in wedge Wm. Analogous to mask learning for
root selection in the univariate case, we introduce a gating variable χm,n ∈ {0, 1} to select the most
relevant roots. The full wedge-decomposed Blaschke representation is then

F (z) ≈
L∑

ℓ=0

cℓ

ℓ∏
k=1

(
M∏

m=1

Nm∏
n=1

Bm,n(z)χm,n

)
. (11)

Intuitively, roots near the origin correspond to coarse-scale isotropic features, while roots closer
to the boundary encode fine-scale oscillations. By distributing roots across angular wedges, the
network learns oriented features (such as edges and textures) at multiple scales. This is analogous
to steerable filters in CNNs, but here the decomposition arises directly from the analytic structure of
Hardy space functions.

4 RESULTS

4.1 BLASCHKE ROOTS FOR 1-D SIGNAL CLASSIFICATION

We demonstrate how the roots learned by BDN during training can be used as features for classifica-
tion tasks on both synthetic and ECG signals, highlighting the method’s versatility across different
data modalities. In each case, BDN is used to fit the signals, and the extracted roots serve as input
features for separate classifiers.

Toy Signals We construct synthetic signals using combinations of first-tier and second-tier fre-
quencies, defined as

fk,j(x) = sin(kπx) + 0.5 sin(10jπx) + p,

where k ∈ {1, . . . , 5}, j ∈ {1, . . . , 5}, and p ∼ N (0, 0.1) is Gaussian noise. This yields 25 distinct
classes, corresponding to all combinations of first- and second-tier frequencies. Each signal is fitted
using a two-layer BDN of size [24, 256]. Figure 5 illustrates the learned BDN roots in the com-

Figure 5: Learned roots of functions using BDN. Two layers with identical hyperparameters are
used across all functions.

plex plane for four signals (without noise) that share identical first-tier and second-tier frequency
components. Across different functions and layers, the roots consistently locate in similar loca-
tions, suggesting that the BDN learns a stable and distinctive representation for common frequency
structures. A three-layer MLP classifier trained on the extracted roots achieves 99% accuracy for
first-tier frequencies, 99.9% for second-tier frequencies, and 95.5% when classifying all 25 combi-
nations jointly.

ECG Signals We use the PTB-XL dataset (Wagner et al., 2020), which contains 21,837 10-second
12-lead ECG recordings from 18,885 patients, each annotated by up to two cardiologists. The dataset
includes normal ECGs and four types of abnormalities for multi-label classification of cardiovascular
diseases: AD (Normal, 42.4%), MI (Myocardial Infarction, 25.6%), STTC (ST/T changes, 24.5%),
CD (Conduction Disturbance, 22.9%), and HYP (Hypertrophy, 12.4%). Following the paradigm of
Narotamo et al. (2024), we used only three leads (I, II, and V2) which provide complementary views
of the heart’s electrical activity across different planes: Lead I captures the horizontal plane between
the arms, Lead II captures the inferior axis from right arm to left leg, and Lead V2 records anterior

7
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chest activity. Using this setup, 17,111 recordings were used for training, 2,156 for validation, and
2,163 for testing, reflecting the class imbalance with AD as the largest and HYP as the smallest
category. For each subject, a three-layer, one-input (time), three-output (three leads) BDN is fitted
to their ECG signals. The roots extracted from BDN are then used as features for a three-layer MLP
classifier for multi-class classification.

Table 1: Classification results obtained with different models. The best results are highlighted in
bold and second best are underlined. Spec, Sens, and G-Mean denote specificity, sensitivity, and the
geometric mean of these two values, respectively.

Models MI STTC CD HYP AD Total G-Mean
Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec

GRU (Cho et al., 2014) 84.81 78.82 83.37 83.96 78.71 86.31 72.24 71.74 77.11 87.20 79.67 81.04 80.35
LSTM (Hochreiter & Schmidhuber, 1997) 73.60 85.90 82.79 84.39 82.12 78.68 76.81 65.63 68.24 90.80 75.42 80.09 77.72
BiGRU (Narotamo et al., 2024) 79.20 82.24 82.41 83.78 80.12 87.93 76.43 67.05 76.89 88.16 78.95 81.07 80.00
BiLSTM (Narotamo et al., 2024) 78.84 82.17 84.89 80.79 78.71 87.33 71.10 70.05 75.68 87.12 78.18 80.87 79.51
CNN+GRU (Narotamo et al., 2024) 72.88 78.88 84.13 75.30 67.47 83.78 66.54 70.63 69.55 86.16 72.33 78.35 75.28
CNN+LSTM (Narotamo et al., 2024) 71.61 77.70 88.15 71.95 68.67 84.98 63.50 68.84 73.38 84.88 74.04 77.06 75.53
GRUAtt (Narotamo et al., 2024) 83.72 80.50 80.88 86.16 76.71 85.89 78.33 63.53 69.11 89.44 76.55 80.15 78.33
ECGTransForm (El-Ghaish & Eldele, 2024) 77.84 62.65 88.46 75.84 71.66 88.38 69.88 71.22 78.59 84.73 77.29 76.56 77.14
BDN+MLP (ours) 85.26 81.42 87.29 85.73 85.98 88.71 80.04 75.62 74.22 89.55 82.56 84.20 83.37

To assess model performance, we computed several standard metrics. Sensitivity (or recall) mea-
sures the ability of the model to correctly identify positive cases of each disease and is defined as
Sens = TP/(TP +FN), where TP and FN are the numbers of true positives and false negatives,
respectively. Specificity quantifies the ability to correctly identify negative cases (healthy subjects)
and is given by Spec = TN/(TN + FP ), where TN and FP are the numbers of true negatives
and false positives. The geometric mean (G-Mean) combines sensitivity and specificity to provide
a balanced measure across classes, ensuring that under-represented classes are not overshadowed
by dominant ones: G-Mean =

√
Sens × Spec. Decision thresholds for the sigmoid outputs were

optimized individually for each disease based on the highest G-Mean on the validation set, and the
epoch with the lowest validation loss was used to extract the final results.

Table 1 summarizes the comparison between our model and the state-of-the-art models from (Naro-
tamo et al., 2024), reporting Sens, Spec, and G-Mean for each class. Our method consistently out-
perform existing state of the art models, demonstrating the versatility of the learned representation
from BDN.

4.2 BLASCHKE ROOTS FOR HOLOGRAPHIC MICROSCOPY CLASSIFICATION

Next we tested BDN on a Digital Holographic Microscopy (DHM) dataset. DHM provides a label-
free and quantitative imaging modality by recording the interference pattern between a reference
beam and the light scattered by biological specimens. The dataset introduced in Verduijn et al.
(2021) consists of single-cell holograms of L929 fibroblast cells in three different states: alive (un-
treated), apoptotic (cells undergoing programmed cell death, e.g. in tissue homeostasis and cancer
therapy), and necroptotic (cells undergoing a distinct form of regulated necrosis, often linked to
inflammation and immune responses). Being able to discriminate these states is biologically im-
portant because apoptosis and necroptosis can look similar under a microscope but have very dif-
ferent implications for disease and treatment. Unlike traditional fluorescence assays, which require
chemical labels that perturb the cells, DHM provides a non-invasive alternative that can scale to
high-throughput drug screening and mechanistic studies of cell death.

The dataset contains 10,780 alive, 49,991 apoptotic, and 9,840 necroptotic single-cell holograms,
with approximately 70,000 additional cells held out for evaluation. To prevent class imbalance
during training, we randomly subsampled each class to match the size of the smallest class. We
compared BDN against several baselines representative of classical and deep learning approaches.
Fourier features were obtained by computing the 2D Fourier transform of each hologram, flattening
the log-magnitude spectrum, and classifying with a multilayer perceptron (MLP). Wavelet features
were extracted using a two-dimensional discrete wavelet transform (Daubechies-4 wavelet, three
levels of decomposition). The resulting approximation and detail coefficients were concatenated
into a fixed-length vector and classified with an MLP. As a deep learning baseline, we trained a
ConvNet consisting of three convolutional layers (each followed by batch normalization and ReLU),
a max pooling layer, and two fully connected layers. We also trained a convolutional autoencoder on

8
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Table 2: Classification accuracy (%) on holographic microscopy dataset. Mean and standard devia-
tion are computed across five runs. Best results in bold, second-best underlined.

Model Alive Apoptotic Necroptotic

Fourier+MLP 78.5 ± 0.7 75.2 ± 0.6 79.1 ± 0.8
Wavelet+MLP 89.7 ± 0.6 83.7 ± 0.6 92.4 ± 0.4
ConvNet 82.1 ± 0.6 78.4 ± 0.5 84.2 ± 0.7
ConvAE+MLP 84.8 ± 0.5 80.2 ± 0.6 87.1 ± 0.5
VGG-19 (finetuned) 87.7 ± 0.3 81.6 ± 0.4 88.9 ± 0.3
BDN+MLP (ours) 92.3 ± 0.4 88.2 ± 0.5 95.6 ± 0.3

the DHM dataset - the encoder comprised three convolutional layers with stride-2 downsampling,
reducing each 66 × 66 hologram to a 128-dimensional latent vector, which was then fed into an
MLP for classification. Finally, we evaluated VGG-19, which we fine-tuned in the same manner as
described in Verduijn et al. (2021). For BDN, we applied a three-layer analytic factorization to each
hologram and passed the extracted roots to a lightweight MLP classifier.

As shown in Table 2, BDN achieves the best performance across all three cell states, with particularly
strong improvements for apoptotic cells, which are the most difficult to classify. On average, BDN
reaches over 90% accuracy with low variance across training runs, outperforming both feature-based
and deep learning baselines.

5 RELATED WORK

Deep learning has often drawn on classical signal processing to model oscillatory or multiscale
structure. Scattering networks (Mallat, 2012) use wavelet cascades to build stable multiresolution
features, while Fourier neural operators (Li et al., 2021) and other spectral methods (Kovachki
et al., 2023) employ frequency-domain transforms to learn dynamics in physical systems. These
approaches, however, rely on fixed bases and offer limited interpretability. A parallel line of work
investigates complex-valued neural networks (Trabelsi et al., 2018), enabling phase-aware model-
ing but typically without analytic guarantees or structured decompositions. Our work differs from
these by integrating the Blaschke unwinding series into a differentiable, learnable architecture. This
design provides a principled frequency-domain factorization that adapts to data while yielding inter-
pretable parameters, offering a new paradigm for modeling oscillatory signals and high-frequency
dynamics.

6 DISCUSSION AND CONCLUSION

We have introduced the Blaschke Decomposition Network (BDN), a neural architecture that embeds
principles from complex analysis into deep learning. By learning Blaschke roots and coefficients,
BDN provides a structured frequency-domain decomposition that is both compact and interpretable.
This approach enables efficient modeling of highly oscillatory signals, surpassing conventional ar-
chitectures in tasks such as reconstruction and classification.

Beyond performance, the learned roots act as frequency selectors, analogous to the way biological
sensory systems respond selectively to frequency bands in auditory or visual stimuli. This con-
nection suggests opportunities for interdisciplinary research linking analytic decompositions, neural
coding, and theories of hierarchical abstraction in neuroscience.

Going forward, several extensions are promising. One direction is to replace the discrete attention
over Blaschke roots with a continuous, differentiable distribution, potentially improving gradient
flow and generalization. Another is to extend BDN to handle spatially varying or spatiotemporal
inputs, such as images and video, where localized oscillatory patterns play a key role. More broadly,
BDN opens a pathway toward architectures explicitly designed for oscillatory and periodic data,
offering both practical advantages and theoretical insight into frequency-based representations in
machine learning.

9
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A THEORY

A.1 PROOFS

Proposition 2. Let {an}1≤n≤N be a sequence of complex numbers in the upper half-plane, i.e.,
an = αn + iβn where αn, βn ∈ R and βn > 0. Then the Blaschke product on the line

N∏
n=1

z − an
z − ān

= exp(2iθ(z)), (12)

where θ(z) =
∑N

n=1 σ(
z−αn

βn
), σ(z) = arctan(z) + π/2.

Proof. Since arctan(z) = 1
2i ln

i−z
i+z , we have that

exp

[
2i

N∑
n=1

σ

(
z − αn

βn

)]
= exp

[
2i

N∑
n=1

(
1

2i
ln

i− (z − αn)/βn

i+ (x− αn)/βn
+

π

2

)]

=

N∏
n=1

(−1) · i− (z − αn)/βn

i+ (z − αn)/βn

=

N∏
n=1

z − (αn + βni)

z − (αn − βni)

=

N∏
n=1

z − an
x− ān

.

Theorem 3 (Convergence). Let f ∈ H2(D). For any ε > 0, there exists a sequence of Blaschke
products {Bk}1≤k≤L and coefficients {cl}1≤l≤L ∈ C such that the approximation in Eq. (6) satis-
fies ∥∥∥f(z)− f̂(z)

∥∥∥
2
< ε.

Proof. We will now prove that the approximation is an orthonormal decomposition and the conver-
gence in norm of the residual goes to zero. Following the lead of Nahon (2000), we note that on the
unit circle T, the scalar product of two terms of f ’s decomposition, B1B2 . . . Bp and B1B2 . . . Bn,
n > p is:

⟨B1B2 . . . Bp, B1B2 . . . Bn⟩ =
∮
T
(B1B2 . . . Bp)(B1B2 . . . Bn)dµ,

where dµ = dz
z is the measure derived by indentifying T with [0, 2π] and writing z = eiθ.

Since |Bk(z)| = 1 when |z| = 1, this yields

⟨B1B2 . . . Bp, B1B2 . . . Bn⟩ =
1

2πi

∮
T
Bp+1 . . . Bn

dz

z
.

Since the Bk are analytic on D, this implies

⟨B1B2 . . . Bp, B1B2 . . . Bn⟩ = 0

and so the terms {B1B2 . . . Bn}Ln=1 are orthogonal. Since

⟨B1B2 . . . Bn, B1B2 . . . Bn⟩ =
1

2πi

∮
T
|B1 . . . Bn|2

dz

z
= 1,

this implies
∥B1B2 . . . Bn∥2 = 1,
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thus normal. Therefore we have the orthonormality of the series. We now evaluate the residual part
of the decomposition. The residual

∥f(z)− f̂(z)∥2 = ∥cL+1

L+1∏
k=1

Bk(z)∥2

for some cL+1. We have shown before the orthogonality of the decomposition it means that we can
apply the Pythagorean theorem:

∥f∥22 =

L∑
l=0

|cl|2 +

∥∥∥∥∥cL+1

L+1∏
k=1

Bk(z)

∥∥∥∥∥
2

2

=

L∑
l=0

|cl|2 + |cL+1|2.

Hence for any ϵ > 0, there must exist c0, c1, ..., cL such that ∥f∥22 −
∑L

l=0 |cl|2 < ϵ.

A.2 COMPLEXIFICATION OF A REAL SIGNAL

A bridge between analysis in Hardy Spaces and signal processing is given by the Hilbert transform
and analytic projection using the Poisson kernel. A given input signal is assumed to be a 2π periodic
function given by s : [0, 2π] → R where we further assume s ∈ L2([0, 2π]) and also identify
periodic functions with functions on the unit circle T. The circular Hilbert transform is a singular
integral transform of s denoted by Hs and is given by:

Hs(θ) :=
1

2π
p.v.

∫ 2π

0

s(t) cot

(
θ − t

2

)
dt, (13)

where p.v. indicates that integral is defined in the principal-value sense (to avoid the singularity at
θ = t).

The Gabor complexification of a real signal s is a complex-valued function f ∈ L2(T) given by:

fs(e
iθ) = s(θ) + iHs(θ). (14)

f has a real component that agrees with s and additionally satisfies f ∈ L2(T). It is known that
there exists a unique analytic extension of f to D which is achieved through circular convolution
against the Poisson kernel Pr(θ) defined by:

Pr(θ) :=
1− r2

1− 2r cos(θ) + r2
. (15)

The extension to the unit disk, Fs, is thus given by:

Fs(re
iθ) :=

1

2π

∫ 2π

0

Pr(θ − t)fs(e
it)dt, 0 ≤ r < 1. (16)

This extension is analytic in D and agrees a.e. on ∂D = T. This extension ensures that F ∈ H2(D),
making it amenable to the techniques discussed above.

A.3 EXTENSION TO MULTI-INPUT AND MULTI-OUTPUT MAPPINGS

The current BDN, as formulated in Eq. (7), is designed primarily for univariate functions and lacks
the ability to adapt to the multi-input and multi-output scenarios. To this, we incorporate an atten-
tion mechanism applied to the phase parameter via

Θk(z⃗) = θk(z⃗)Ak, (17)

where θk(z⃗) ∈ C1×din is the din-dimensional input phase and Ak ∈ Rdin,dout is an column normal-
ized attention matrix corresponding to each Blaschke factor k. Here, Θk(z⃗) ∈ C1,dout represents the
phase after the attention mechanism. Consequently, the weighting phases θ enhance the expressive-
ness of the BDN by enabling it to learn weighted combinations of input dimensions tailored to each

13
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output, thus accommodating the inherently multivariate nature of the target function. Hence, using
Eq. (6) and (17), the BDN architecture formulation for the mapping case can be expressed as

f̂(z⃗) = ℜ(F (z⃗)); F (z⃗) =

L∑
ℓ=1

cl

ℓ∏
k=1

Bk(z⃗) where Bk(z⃗) = exp(2iΘk(z⃗)). (18)

The convergence property of BDN extends naturally from univariate function learning to multi-
input, multi-output mappings by incorporating an attention mechanism. Specifically, we consider
each output component fq ∈ Hp(∂Bn), for q ∈ {1, 2, . . . , dout}, to admit a Blaschke unwinding
series representation, where ∂Bn := {z ∈ Cn : |z| = 1} denotes the boundary of the n-dimensional
unit ball. This generalization relies on the mathematical foundation provided by the factorization
theorems for Hardy spaces in several complex variables (Coifman et al., 1976).
Theorem 4 (Coifman et al. (1976)). Given F in H1(∂Bn), there are Gk, Hk ∈ H1(∂Bn) such that

F =

∞∑
k=1

GkHk.

B FUNCTION LEARNING

Univariate Functions We demonstrate how BDN effectively disentangles signal components
through a learned unwinding series. Figure S1 shows an example of this series for the trigono-
metric polynomial f = sin(2x) + 0.6 sin(20x) + 0.2 sin(200x). The first term in the unwinding
series isolates the primary oscillation, capturing the largest amplitude in the signal. Specifically, c1
represents the dominant component, with its average modulus value centered around 1, while the
phase of P1 varies with a period of π corresponding to sin(2x). This structure makes it easy to
interpret the main oscillatory feature of the signal. The second term of the unwinding series reveals
the finer oscillatory detail: P2 oscillates with a shorter period of approximately π/10 while c2 has
a modulus value centered around 0.6, corresponding to the minor contribution from 0.6 sin(20x).
The third terms reveals the finest oscillatory detail: P3 oscillates with a period of approximately
π/100 while c3 has a modulus value centered around 0.2, corresponding to the least contribution
from 0.2 sin(200x). This interpretability, enabled by the unwinding series structure in BDN, allows
us to break down complex signals into meaningful, analyzable components, providing insights into
the underlying harmonic structure of the data.

Figure S1: Learned unwinding components of the function f(x) = sin(2x) + 0.6 sin(20x) +
0.2 sin(200x) using a 3-layer BDN. The partial sums Fi (i = 1, 2, 3) progressively approximate
the target function at increasing levels of detail, while the corresponding Blaschke products Pi cap-
ture the frequency components at each scale. BDN successfully reconstructs the original function
with accurate coefficients and frequency components.

C IMPLEMENTATION DETAILS

Blaschke Product The Blaschke products form the core of the BDN architecture, making their sta-
bility crucial during both the forward and backward passes. However, using the original formulation

14
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Figure S2: Comparison of univariate functions approximation using MLP, KAN, and BDN. BDN
provides a closer fit to the ground truth function.

of the Blaschke product, as defined in Section 2, introduces numerical challenges. Specifically, the
multiplicative nature of the product operator can lead to underflow and overflow issues, especially
when handling values close to zero or very large magnitudes. These numerical instabilities impact
the training dynamics and hinder effective gradient propagation. To address numerical instabilities,
we reformulate the Blaschke product using Proposition 1, where the phase θ is computed as a sum
before converting it into the complex domain with the Euler formula. This approach avoids the
underflow and overflow issues associated with the original product form. Summing terms is numer-
ically more stable than multiplying, and the Euler transformation preserves the complex structure
of the Blaschke product without amplifying extreme values, enabling stable forward and backward
passes in the BDN model.

Mask Learning for Root Selection A key feature of the BDN architecture is its ability to adap-
tively select relevant Blaschke roots for signal representation. Each root in a BDN layer is associ-
ated with a learnable gating parameter which determines whether the corresponding root contributes
to the output. To achieve differentiable selection, we employ a binary gating mechanism using a
straight-through estimator (STE), where the forward pass applies a hard threshold to activate or
deactivate a root, while the backward pass allows gradient flow as if the selection were continuous.
Optionally, a Gumbel-Sigmoid relaxation can be used to introduce stochasticity in the root selection,
enabling exploration during training. This mechanism allows the network to automatically identify
and focus on the most informative components of the signal, effectively performing a form of mask
learning over the root sections. The selected roots are then summed (or multiplied in the complex
domain) to form the Blaschke product, providing a sparse yet expressive representation that captures
the essential dynamics of the input signals.

Parallelizing BDN BDN can achieve computational efficiency in distributed systems, as each Bk

can be computed independently. This parallelism enables significant speed-up by allowing concur-
rent processing of components across multiple nodes.

C.1 APPLICATION IN PHYSICS

Instantaneous Frequency of Gravitational Wave We extend the application of the Blaschke
Decomposition Network (BDN) to the domain of gravitational wave modeling, with the goal of
accurately capturing the intricate structure of gravitational waveforms. The BDN’s inherent ability
to represent complex analytic functions makes it particularly well-suited for this task. In addition to
waveform reconstruction, we use the learned complex representation to compute the Instantaneous
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Figure S3: Image reconstruction task on images (128 × 128 pixels). Each Fi represents stages of
the image learning process during the iterative Blaschke unwinding. Higher Peak Signal-to-Noise
Ratio (PSNR) values indicate better reconstruction quality.

Frequency (IF): a time-resolved feature that provides insight into the evolving frequency content of
the signal.

Our experiments focus on the gravitational-wave event GW150914, the first direct observation of a
binary black hole merger by the two detectors of the Advanced Laser Interferometer Gravitational-
Wave Observatory (LIGO). The event was observed independently at the Hanford (H1) and Liv-
ingston (L1) sites, and its astrophysical origin has been extensively verified (Abbott et al., 2016).
Each detector recorded a signal lasting 0.21 seconds, sampled at a high rate of 16,384 Hz, resulting in
a finely resolved time series. The data are publicly available through the LIGO Open Science Center
(https://losc.ligo.org/events/GW150914/), which also provides detailed documen-
tation regarding the signal acquisition process and physical interpretation.

Because the gravitational wave signals are real-valued, we employ the Hilbert transform to construct
their complex analytic extensions. Given a signal s : [0, 2π] → R satisfying suitable regularity
conditions, the Hilbert transform H(s) allows us to define a corresponding analytic signal sc ∈
Hp(D), where the real part matches s on the boundary ∂D. Specifically, we define:

sc(ei·) = s(·) + iH(s(·)),
where H denotes the Hilbert transform (see Appendix A.2 for details). An important advantage

Figure S4: Ground Truth and BDN approximation to the complex gravitational wave signal for real,
imaginary part instantaneous phase and IF.

of the BDN architecture is its theoretical ability to represent any analytic function—a property not
shared by conventional models such as MLPs or KANs. To train the BDN on complex-valued
data, we define a loss function that separately penalizes reconstruction errors in both the real and
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imaginary parts:

L(y, ŷc) = L(ℜ(yc),ℜ(ŷc)) + L(ℑ(yc),ℑ(ŷc)),
where yc is the complex ground truth and ŷc is the BDN prediction.

Once a complex signal sc(t) has been learned, we compute its Instantaneous Frequency as:

IF (sc(t)) =
d Phase(sc(t))

dt
, with Phase(sc(t)) = arctan

(
ℑ(sc(t))
ℜ(sc(t))

)
.

This formulation provides a window into the signal’s dynamic frequency content—critical for ana-
lyzing gravitational waveforms that evolve rapidly in time due to the underlying astrophysical dy-
namics.

In our implementation, we used a 10-layer BDN architecture with a parameter setting of Λ = 500,
optimized using the momentum-based optimizer proposed in Goyal (2017). As shown in Figure S4,
the BDN model produces a highly accurate reconstruction of the complexified GW150914 signal,
closely matching both the real and imaginary components. These results highlight the strength of
BDN in learning smooth, oscillatory, and analytically structured signals. Its ability to recover the IF
dynamics directly from data—without relying on explicit time-frequency transforms—demonstrates
its utility as a tool for interpretable, data-driven analysis of gravitational wave events.

We further investigate the BDN’s capacity for frequency analysis using synthetic chirp signals in
Appendix C.2.

C.2 FREQUENCY ANALYSIS

In Section C.1, we examine BDN’s capability to learn analytical signals and extract meaningful
frequency information through the phase component θ learned by the network. To validate the
accuracy of BDN’s instantaneous frequency predictions, we conduct experiments using a complex
chirp signal defined as Chirp(x) = sin(2π(1 + 20x)x), with its analytical representation obtained
through the Hilbert transform. As demonstrated in Figure S5, BDN accurately learns the analytical
signal of the chirp function and precisely captures its increasing frequency pattern, as evidenced by
the instantaneous frequency analysis.

This capability represents a significant advancement in signal processing applications. Unlike tradi-
tional methods that often require multiple preprocessing steps or face limitations with non-stationary
signals, BDN provides a unified framework for simultaneously learning the signal representation
and extracting frequency information. This integration is particularly valuable in real-world appli-
cations such as fault detection in rotating machinery, where varying frequency patterns can indicate
equipment deterioration, or in biomedical signal processing, where frequency variations in ECG or
EEG signals can reveal crucial diagnostic information. Furthermore, BDN’s ability to handle non-
stationary signals makes it especially suitable for analyzing complex phenomena in fields ranging
from seismic data analysis to speech recognition, where traditional Fourier-based methods may fall
short due to their inherent limitations with time-varying frequencies.

C.3 IMAGE CONSTRUCTION INTERPRETATION

Figure S6 illusrates how a trained BDN allocates its capacity across spatial scale and orientation.

Radial position → spatial scale A single Blaschke factor is determined by its complex root ζ =
r eiθ inside the unit disc. Writing the factor in the form Bζ(z) = eiϕ z−ζ

1−ζ̄z
, one finds that the

dominant Fourier component of argBζ has wavelength proportional to (1 − r)−1. The network
learns roots with increasing modulus: B1 and B2 (top-left of the figure) have r ≪ 1, so their phase
varies slowly; from B3 onwards the roots migrate towards the boundary, and the isophase stripes
tighten until B12 oscillates every few pixels. The ordering produced by SGD therefore tracks a
low-to-high frequency progression predicted by the theory.

Angular position → orientation The argument θ of the root rotates the stripe pattern. BDN dis-
tributes the roots almost uniformly on the circle, producing a bank of direction-selective responses.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure S5: Ground Truth and BDN approximation to a complex Chirp wave signal for real, imagi-
nary part instantaneous phase and IF.

Figure S6: Phase maps of the first twelve Blaschke factors learned by BDN (three complex channels
per factor) and the corresponding cumulative spatial filters Fk =

∏k
j=1 Bj . Columns are indexed

by the factor order k = 1, . . . , 12; rows 1–3 show argBk in grayscale (black = −π, white = π), the
last row shows ℜFk in colour.

Across the three complex channels the orientations are staggered, supplying the phase-shifted com-
ponents required for steerable reconstruction. This behaviour mirrors the analytic steering property
∂θ argBζ = ℑ

[
(1− ζz̄)−2z

]
.

Multiplicative stacking The coloured patches show the cumulative product Fk. Early filters
(F1, F2) appear noise-like because the phase of a single low-frequency factor carries no oriented
structure in its real part. As factors accumulate, their phases add and their magnitudes multiply,
causing edges of compatible orientation and scale to reinforce. From F6 onwards one can discern
the outline of the underlying cat; by F12 a high-resolution template has emerged. The model thus
synthesizes a receptive field in a coarse-to-fine, orientation-diverse manner without ever using addi-
tive skip connections - the hierarchy arises solely from the algebra of Blaschke products.
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