Under review as a conference paper at ICLR 2026

FAST INTENT CLASSIFICATION FOR LLLM ROUTING
VIA STATISTICAL ANALYSIS OF REPRESENTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Intent classification in Large Language Models (LLMs) involves categorizing user
prompts into predefined classes. For instance, given a user prompt, the system
must determine whether it primarily concerns mathematics, coding, or general
text processing. Such classification enables routing prompts to specialized models
optimized for specific domains, improving both accuracy and computational effi-
ciency. In this work, we introduce two lightweight, training-free methods based on
statistical analysis of internal model representations and systematically compare
them against baseline training-based approaches from the literature. Our methods
analyze the distribution of key statistical metrics extracted from hidden features,
enabling intent inference during the initial forward pass with minimal computa-
tional overhead. Through comprehensive empirical evaluation, we demonstrate
that our training-free methods successfully classify prompts across varying levels
of granularity—from high level distinctions (mathematics vs. coding vs. natural
language) to fine-grained ones (e.g. Java vs. Python, etc). Our results provide
a systematic characterization of scenarios where training-free methods are most
useful, and identify cases where training-based approaches remain necessary, of-
fering a practical guidance for deployment in production LLM systems.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse tasks
including mathematical reasoning (Wei et al., [2022} [Yao et al., [2023}; |Gao et al.l 2023) and code
generation (Li et al. [2022; |Guo et al.| [2024; Zhu et al., 2024). While many LLMs are trained for
general purpose tasks (Radford et al., 2019; Raffel et al., 2020), current state-of-the-art is moving
towards a routing approach where an intent classifier is used to detect user intent and then send the
prompt to a specific model (OpenAl, 2025} Bocklisch et al., 2017; Bunk et al.| 2020; |Arora et al.|
2024). This has the benefit of improving inference efficiency of production-scale LLM systems.
Approaches to intent classification either rely on LLM calls, which is prone to hallucination (Bang
et al., [2023; Banerjee et al.l [2025)), or on dedicated classification models, which requires extensive
training data and computational resources |Larson et al.| (2019); |Chen et al.| (2019). Both introduce
considerable inference latency and lack robust uncertainty quantification for routing decisions.

In this work, we introduce two training-free methods for intent classification, VecStat and NormStat,
that operate entirely in the prefill phase with negligible extra cost. The motivation is the observation
that different prompt types (mathematics, coding, general text, etc.) induce distinct activation distri-
butions. Specifically, VecStat and NormStat represent two levels of statistical compression: VecStat
preserves directional information but induces higher storage and calibration cost, while NormStat
aggregates radial evidence and enjoys minimal memory consumption. Theoretical analysis fur-
ther clarifies this trade-off: VecStat is preferable when class differences are primarily directional,
whereas NormStat suffices—and is more memory-efficient—for isotropic-scale separation (coarse-
grained classification tasks) thanks to the dimension-free calibration complexity.

Beyond computational efficiency relative to direct LLM calls, a key benefit of statistical meth-
ods is uncertainty quantification. With a one-line softmax normalization, statistical methods yield
well-calibrated class probabilities, including on mixed-intent prompts; In contrast, we show that a
training-based method using MLP head (inspired from sentence-classification pipelines (Casanueva
et al., 2020; Jiang et al., |2024)) typically requires post-hoc calibration (e.g., temperature scaling)

Under review as a conference paper at ICLR 2026

Method FLOPs Overhead Memory Overhead Extendability of New Classes Uncertainty Quantification
NormStat O(Td) Oo(m) Compute new baselines Works well

VecStat O(Td) O(md) Compute new baselines Works well

MLP O(hd) O(hd) Retrain a new MLP head Possible but needs extra calibration
LLM Call Q(Td?) ~ Extend via prompt engineering X

Table 1: Comparison of classifiers. T: prompt length; d: hidden width; m: # classes; h: MLP hidden size.

to avoid overconfidence (Guo et al. [2017). When classes change, our methods also support rapid,
incremental updates by simply appending new class statistics, avoiding any retraining. Table[I|com-
pares these methods by compute, memory, extendability, and uncertainty quantification.

We conduct extensive empirical analysis to compare the performance of VecStat and NormStat
against the training-based MLP classifier applied at the LLM’s final projection layer. We apply
these methods to LLMs ranging from 1B to 32B parameters and evaluate intent classification at
both coarse-grained and fine-grained levels across seven benchmark datasets. The empirical results
reveal that there is no one-fits-all model for intent classification. On the one hand, NormStat ex-
cels at coarse-grained intent classification with minimal computational and storage overhead, while
VecStat handles both coarse-grained and fine-grained tasks but requires additional storage overhead.
On the other hand, training-based methods typically achieve higher accuracy on hard tasks, yet
they suffer from overconfidence in predictions, limiting their ability to provide reliable uncertainty
quantification and making them vulnerable to ambiguous prompts. Our contributions are:

e We introduce NormStat and VecStat, two training-free statistical methods that perform intent
classification directly within the LLM prefill phase, requiring O(7'd) additional computation
compared to ©(T'd?) forward pass cost, enabling deployment with negligible latency overhead.

* We provide theoretical analysis showing when each method excels: VecStat performs best when
prompt types differ in feature directions, while NormStat is optimal when they differ in overall
magnitude, with NormStat requiring fewer calibration samples to achieve comparable accuracy.

* We validate our methods across seven LLMs (1B-32B parameters) on both coarse-grained and
fine-grained intent classification tasks, demonstrating that statistical methods provide superior
uncertainty quantification for mixed-intent prompts compared to overconfident training-based
approaches, while achieving competitive accuracy with minimal computational overhead. Fur-
thermore, we show that statistics from early layers—available during the early prefill stage—are
sufficient for accurate routing without a full forward pass, reducing serving-time computation.

1.1 RELATED WORK

Task Classification Intent classification maps a user prompt to a predefined label. Classical ap-
proaches either (i) train supervised classifiers over tokenized utterances (e.g., CNNs) to produce
a distribution over intents (Hashemu et al., 2016; |Goo et al., 2018; [He et al., [2019), or (ii) fine-
tune contextual encoders, particularly BERT-based models, where hidden states feed specialized
intent classification heads, often jointly trained with slot filling tasks (Chen et al., |2019; [Bocklisch
et al., 2017 [Bunk et al.| 2020). In modern LLM-based systems, intent classification serves as a
critical routing mechanism that allows the selection of appropriate downstream tools and models,
enforces guardrails and fallback policies, and optimizes inference cost and latency (Souha et al.,
2023} |Arora et al} [2024). The predominant approach involves direct LLM inference through sev-
eral key techniques (Liu et al [2023; Rodriguez et al., [2024; [Wang et al., 2023} |Arora et al.| 2024;
Hong et al.| 2024} Wei et al.,2022). However, the computational expense of LLM inference at scale
has motivated hybrid architectures that combine fast, lightweight classifiers (including PEFT-tuned
encoders) with LLMs through uncertainty-aware routing mechanisms. These systems employ con-
fidence thresholding, entropy-based measures, or learned routing policies to reserve expensive LLM
calls for ambiguous cases where simpler models exhibit high uncertainty (Liu et al., 20225 2024)).

LLMs as text encoder Recent advances in LLMs have prompted researchers to explore their use
as text encoders. An interesting approach is embedding extraction where existing methods typically
operate on the last layer outputs through three strategies: using the last token embedding (Ma et al.,
2024} |[Neelakantan et al., [2022; Wang et al.| 2024; Meng et al.| 2024} Jiang et al.l [2024), averaging
across all token embeddings (Muennighoff, 2022; Muennighoff et al., [2024; BehnamGhader et al.,

Under review as a conference paper at ICLR 2026

2024), or employing trainable modules (Lee et al. [2024; [Tang & Yang| 2024)). Interested readers
can refer to (Tao et al.;,2024;|Nie et al.|[2024) for a more detailed review on this topic. In contrast to
these approaches, this work addresses user-intent classification for routing where both accuracy and
computational efficiency are primary considerations. Our method utilizes prefill-time outputs from
general-purpose LLMs without modification or additional training. By leveraging computational
intermediates already produced during LLM prefill phase, this approach avoids the storage overhead
of maintaining a dedicated billion-parameter model for intent classification.

Neural Feature Analysis Our approach extracts representations Wz, where W is a pretrained
weight matrix and z is model’s hidden state. This design is motivated by two lines of research.
First, linear probes effectively extract semantic information from transformer representations (Alain
& Bengio, |2016; |Hewitt & Manning| 2019)), with sparse autoencoder studies suggesting that many
concepts are captured by a small number of sparse features in the activation space (Cunningham
et al.| 2024; |Gao et al.| 2024). Superposition theory provides theoretical grounding, explaining
how features remain recoverable through linear projections (Elhage et al., 2022). Second, activa-
tion steering research demonstrates that intent-related behaviors can be manipulated through linear
interventions in the representation space (Turner et al.| 2023} Panickssery et al., [2023)). Finally, ac-
tivations Wz were successfully used in |[Hayou et al.| (2025) to determine target module for LoRA
finetuning, showing that activation capture data signal.

2 METHODOLOGY

In Large Language Models, prefill refers to the first forward pass of the user prompt. During this
time, KV-cache is filled for autoregressive decoding (Shazeer, 2019; |Ainslie et al.| 2023} |[Chang
et al. 2024; |Aguirre et al.| 2025} Jie et al., 2025) and gets updated for each token generation. In
the prefill, we already compute the prompt’s first forward pass to build keys/values; adding a light
classifier there adds low cost but could provide a strong signal to route the prompt if needed: simple
prompts remains on a small, cheap model; math/code/reasoning prompts routed to a larger or spe-
cialized model. Making this decision before the first generated token avoids wasting computation
on the mismatched model. This is even more important if routing is customized for each user.

Modern LLM serving imposes a lightweight constraint on any prefill-time intent classifier used for
routing: (i) the classifier’s extra computation must be negligible compared to a single forward pass,
and (ii) per-prompt memory and persistent storage must be negligible. Concretely, for a prompt of
length T, a forward pass cost ©(T'd>)[1_-] computation in any given layer with hidden dimension d; a
lightweight classifier should at most add o(T'd?) cost, ideally O(T'd). Likewise, per-request state
must be O(1)-0(d) floats (not O(T'd)), and per-class baselines must be O(1)-O(d) numbers. More
details are provided later in the paper.

In the following, we introduce a training-free approach to intent classification, based on a statistical
analysis of hidden features in LLMs, and satisfies the computational constraints above.

2.1 A STATISTICAL APPROACH TO INTENT CLASSIFICATION

Consider an LLM with weight modules M = {W;, W5, ..., W}, for some p > 1. The weights
modules M represent all available weight matrices in the model, across layer index and module
type. We will abuse the notation and use W, to refer to both the module and its weight matrix.

Let x = (x¢)1<¢<7 be a prompt of T" tokens. For each weight module W7, let (ys,¢), ., denote
the output features in module W,. For instance, (ye,;) 1<t<7 could be the output of a Query head, or

the projection layer in an MLP block. Each ., is a d-dimensional vector given by vy, = Wiz,
where d is the output dimension in module W, and z; + is the input to that module for token ¢.

Intent classification. We aim to classify the prompt x into one of the classes Cy,Cy, ..., Cyy,
where m > 2. For instance, a binary classification where C1 is mathematics and C is coding. For

"The forward pass cost is ©(T'd*> + T2d). In the regime d > T, the T'd* term dominates, so we drop the
T2d term and write the cost as ©(T'd?); retaining 7 d does not affect our conclusions.

Under review as a conference paper at ICLR 2026

each module W,, we compute lightweight summary statistics from the features {y,;}7_; and com-
pare them to per-class baselines: (i) for each class C;, precompute the same statistics on calibration
data at the same module Wy; (ii) for the incoming prompt, compute the statistics at W, and measure
similarity to each baseline; (iii) predict the class C; with the highest similarity.

Several statistics are considered, such as the mean and covariance of {y,,}7_;, to capture geometric
information about the hidden features. Estimating the mean requires O(7'd) calculations while
the covariance requires O(7'd?). Therefore, using covariance is not computationally efficient in
inference setting, since it violates the O(7T'd) condition above. However, we consider a weaker
variant where we only estimate coordinate-wise variance (diagonal of the covariance matrix). We
call this method VecStat, which relies on coordinate-wise mean and variance for classification. We
also introduce a lighter weight method called NormStat, which relies solely on the norm statistic
across all tokens and coordinates.

In the following, we present the two methods in the single-layer case. When multiple layers are
used, we aggregate similarity scores across ¢ by averaging.

Vector Statistic (VecStat): calculate coordinate-wise token means and second moments tokens
T

T
1 d 1 d
Svec = T ;:1 Yy € RY, Qvec = T_1 § (yt — Svec) © (yt — Svec) € R (N

t=1

Norm Statistic (NormStat): summarize each y; through a the norm ||y || and aggregate across tokens
to obtain the statistics

Lol L (Il
Snorm:* : GR, norm — 5 4 (:
T2 g €8 Q=72

2
- Snorm) € R (2)

With both methods, we use closed-form Gaussian KL divergence (3)) and (6) to measure the similar-
ity between prompt and classes’ statistics. Intuitively, this acts as a proxy for the true KL-divergence
between distributions which is prohibitively expensive to compute. Across models and datasets, we
observed that the radial token features ||y,.¢|| /+/d are Gaussian-like for fixed ¢ (Fig. , and similar
observations hold for the coordinates of y;.

These two choices form a statistical compression ladder: Vec-
Stat keeps per-coordinate first and second moments, while Norm-

Stat compresses all coordinates to a single radial information per 1
token and then to its mean/variance across tokens. §
The rest of this section develops this story rigorously: (i) we prove § e
when each is statistically preferable using a simplified Gaussian set- = g
ting, and (ii) we connect those guarantees to compute, memory, and 10
calibration costs. All the proofs are deferred to Appendix [B} 1

! ! ! !
2.0 2.5 3.0 3.5 4.0
Value

2.2 INTUITIVE ANALYSIS IN A GAUSSIAN SETTING

Intuitively, VecStat retains more information about feature distri-

bution than NormStat because it tracks coordinate-wise statistics Fjgure 1: Per-token query-
instead of a single statistic for each module. To understand the dif- [orm distributions across
ference between these two methods, we consider a Gaussian set- |ayers, Histograms ~ of
ting with diagonal covariance and study regimes where NormStat is {lyeell/ \/a}T for repre-
competitive with VecStat, in which case NormStat is preferred for sentative 1 aygsl 0. Shapes
computational efficiency. Additional analysis is in Appendix [A] are close 1o Gau.ssian with

layer-dependent mean/vari-
ance, which supports a 1D
Gaussian proxy for NormStat.

Setting and notation. Here we study general features (y;)1<t<7
(not necessarily representations in an LLM). For each baseline class
ke{l,...,m}andtokens t = 1,...,T, assume that

Y | ko~ N(ug, Bi) € RY, independently across t, 3)

2One could estimate an empirical KL without summaries, but doing so robustly at inference time is pro-
hibitively expensive in both compute and memory.

Under review as a conference paper at ICLR 2026

where, ¥y, = Diag(o? ,...,0} ;) is a diagonal covariance matrix.

NormsStat observes only the norm {||y:||} and is invariant to rotations of the features; it cannot detect
separation that lives in direction. In contrast, VecStat retains per-coordinate first/second moments
and is therefore rotation-sensitive. In an isotropic-scale setting (equal means, spherical covariances
with different variance), the optimal likelihood ratio reduces to a monotone function of the total
radial sum), [|y4||%, so NormStat is already Bayes-optimal. But in a directional setting (equal
covariance, equal mean norms, different mean directions), every radius-only rule is blind, whereas
a coordinate-aware test achieves exponentially small error in 7'. The next theorem formalizes this.

Theorem 1. [NormStat vs VecStat] Assume a binary classification k € {1, 2} with uniform prior.

1. Directional regime (NormStatx, VecStatv'). Assume $1 = Yo = 021y, ||| = ||p2
and jiy # po. Then any classifier whose decision depends only on the norms {||y:||} 1,
has Bayes error 1/2. Moreover, the likelihood-ratio test achieves error probability

7. T . 17 She s — pl2) 2 07
Prll £ 8) < oxp (< sl —lP) where Br) = {7 (et 74

>

2. Isotropic-scale regime (NormStatv', VecStat ties). Assume (11 = po = 0 and ¥y, = U,f[d
with o1 # 09. Then the Log-Likelihood Ratio is a strictly monotone function of the radial
statistic Rp = Zz;l llyel|?; hence every Bayes-optimal test depends only on Ry, and
adding coordinate-wise information cannot improve its Bayes risk.

Theorem (1] isolates two extremes, whereas real prompts generally result in a mix between these
extremes. An example is the following: assume y; are i.i.d. from a sign-mixture with s; € {£1},

ye ~ TN (4, 0215) + (1 — 0N (—p, 0%1a), v :=E[s;] = 27 — 1,
where 1 € R4, € (0, 1). Hence,

E[Svec) =1t ElQuec) = 0*la+ (1 =)@ p, E[Snorm] = Ellge| = Fp,0?),
where F(p1,02) depends only on (u,02). For NormStat, since norms are even, the distribution of
ly¢|| is invariant under the £y mixture. Consequently, the distributions of Syorm and Qperm do not
depend on 7. As ™ — %, the advantage of VecStat over NormStat shrinks; at 7 = %, the mean
component Sy, cancels, and VecStat effectively reduces to its second—moment part, aligning with
the radial evidence summarized by NormStat. Away from %, S,.. provides a clear benefit.

Calibration Cost. An important aspect of statistical methods is sample complexity, or more
specifically, the convergence rate in the number of samples. This provides an estimate of the to-
tal number of calibration samples needed to create the classes k € {1,2,...,m}. The next theorem
show the calibration advantage of NormStat over VecStat.

Theorem 2 (Calibration cost). Fix a class k. Let y1,...,yn -~ N (g, Xx) in RY, where N is the
number of calibration samples drawn for this class. Let ¢ = E|||y1|] and define ji, = N~! ZZ\; Yi,
and §=N-1 Zivzl d=2||y;||. Then, for any & € (0, 1), with probability at least 1 — 6, we have:

. . ~ log(1/0
1. NormStat (dimension-free): |G — q| < 1/ %.

2. VecStat (dimension-dependent): ||ji;, — pll2 < 4/ %ﬂ/é).

Considering just the statistics (i and ¢, to obtain an estimation error of order €, one needs N =
Q(e2) for g and N = Q(de=?) for fi, showing the computational advantage of NormStat over
VecStat. This is particularly important in data scarce regimes with few samples for each class. We
discuss this in more details in the next section.

Theorem [I|and Theorem [2] compare our methods from two different angles: (i) expressivity, where
VecStat has an edge if directional information is important, otherwise NormStatties with VecStat,
(ii) calibration cost, where NormStat has an edge with fewer calibration samples needed to reach
a given error level. A third important angle is storage/memory cost: while both methods have
similar classification cost (O(T'd) per module), NormStat uses O(B) scalars and O(B) scoring
FLOPs, while VecStat uses O(Bd) numbers and O(Bd) scoring FLOPs—so for large B or tight
memory/latency budgets, NormStat has an advantage.

Under review as a conference paper at ICLR 2026

2.3 TRAINING-BASED INTENT CLASSIFICATION

For a comprehensive empirical study, we consider an intent classifier based on a trained head on
top of frozen LLM features. We use the last Transformer block and write y¢- ; € R? for its token
features (t = 1,...,T"). Inspired by prompt/sentence classification pipelines (e.g., (Ma et al., 2024;
Wang et al.,|2024; Meng et al., [2024))), we build a single prompt-level vector in two ways:

T

1 *

AVEMLP: 2o = o > yea =580 €RY Tail-MLP: zip o=y 7 € RY.
t=1

Given z € {zavg, Ztail }, We train a two-layer MLP with hidden width h with cross entropy loss.

Since Zavg OT Ztail is produced during prefill, the incremental latency is a single MLP forward pass.

Compute/memory and deployment. Per token, the head adds O(dh + hm) FLOPs and stores
O(dh + hm) parameters, with m < d in our setting. Post-hoc calibration (e.g., temperature scaling
on a held-out split) yields better-calibrated confidences for routing. Because the head is small, per-
user heads are feasible; however, unlike NormStat/VecStat, adding a new baseline class expands the
output layer and typically requires retraining or incremental fine-tuning. Empirically, Avg-MLP is
more stable for long prompts, while Tail-MLP can capture end-of-prompt cues.

3 EXPERIMENTS

In this section, we evaluate the effectiveness of NormStat, VecStat, Avg-MLP and Tail-MLP across
multiple LLMs and classification datasetsﬂ Comprehensive experimental details can be found in Ap-
pendix [C] and additional experimental results are presented in Appendix

3.1 EXPERIMENTAL SETUP

Classification granularities We consider two levels of granularity. Level-1 addresses coarse-
grained classification across three domains: general text, mathematics, and code. Level-2 tests
fine-grained separation within each domain: identifying programming languages, mathematical sub-
fields, natural languages. For Level-1 calibration, we use representative datasets: MMLU European
History (Hendrycks et al., |2021ajb) for general text, GSM8K (Cobbe et al.| 2021) for mathematics,
and Magicoder (Wei et al., [2023) for code. We test on MMLU US History for general text, GSM8K
and MATHS500 (Lightman et al., |2023)) for mathematics (in-distribution and out-of-distribution re-
spectively), and Magicoder and HumanEval (Chen et al., 2021) for code (in/out of distribution).
Level-2 experiments utilize domain-specific subsets: Magicoder for programming language identi-
fication, Competition Math (Hendrycks et al., [2021c)) for mathematical subfield classification, and
the Aya dataset (Singh et al., 2024) for natural language identification, with each dataset split be-
tween calibration and test sets. For more details, please refer to Appendix [C.1]

Method and LLM selection We compare five classification methods: our methods NormStat
and VecStat, with VecStat evaluated using both cosine similarity (VecStat:Cos) and KL divergence
(VecStat:KL), and training-based baselines Avg-MLP) and (Tail-MLP). Training-based methods use
the same calibration data for training to ensure fair comparison. All calibration prompts are truncated
to 512 tokens, with training-free methods probing all projection modules across LLMs. We evaluate
on seven pretrained LLMs from the Qwen3 and Llama families, spanning 1B to 32B parameters and
including both base and instruction-tuned variants, providing comprehensive coverage across model
scales and training paradigms. See Appendix [C.3]for more details on the selected LLMs.

Evaluation Metrics We compute accuracy on each test dataset independently, where each dataset
contains samples from a single ground-truth class. This approach ensures our evaluation is not
biased by varying dataset sizes across classes. For Level-2 classification, we report mean accuracy
across all classes within each task due to space constraints. This mean accuracy corresponds to
the balanced accuracy metric, providing equal weight to each class regardless of test set size and
effectively handling the natural class imbalance among test datasets. All experiments use three
random seeds, and we report mean performance with standard deviation.

3Source code is provided in the supplemental materials

Under review as a conference paper at ICLR 2026

Table 2: Classification accuracy across five methods on level-1 and level-2 classification granularities. Level-
1 reports per-dataset accuracy for coarse-grained domain classification (general text, math, code). Level-2
reports average accuracy across classes within each domain: programming languages, mathematical subfields,
and natural languages. Qwen3-32B natural language results are omitted due to computational constraints.

Model Method Level-1 Level-2
gsm8k humaneval ~ magicoder ~ math500 mmlu_history code math natural language
Avg-MLP 99.97+0.04 99.80+035 99.99+002 78.33+167 100.00+0.00 99.96+001 76.77+027 99.93+0.02
Tail-MLP 100.00+000 100.00+000 99.97+002 99.00+0.00 100.00+0.00 99.59+002 72.12+027 99.87+0.05
Qwen3-1.7B NormStat:KL ~ 97.35+0.00 70.12+0561 99.27+0.11 76.60+0.20 100.00+0.00 57.79+073 38.39+056 89.77+025
o VecStat: KL 100.00+000 99.39+000 99.97+003 88.33x030 100.00=+0.00 99.24+012 48.36+0.64 99.20+0.08
VecStat:Cos 100.00+000 98.78+000 99.97+003 92.26+0.11 100.00+0.00 99.08+0.16 52.74+067 99.57+0.02
Avg-MLP 100.00+£000 100.00+000 99.99x001 64.331833 99.84+028 99.97+001 70.20+072 99.91+0.04
Tail-MLP 99.95+004 100.00+000 99.97+003 98.93+0.42 99.35+1.13 99.47+007 69.01+1.11 99.83+0.07
Llama-3.2-1B NormStat:KL ~ 99.49+0.09 90.85+000 96.39+020 83.40+0.00 92.48-+0.57 49.22+073 31.27+054 86.53+1.33
o VecStat: KL 100.00+000 99.39+000 99.98+002 78.80+0.12 100.00+0.00 98.99+0.10 47.67+089 99.19+0.08
VecStat:Cos 100.00+000 99.39+000 99.97x002 77.60+020 100.00+000 98.71x012 51.47+073 99.72+0.01
Avg-MLP 99.42+0.74 99.59+035 99.99+002 77.27+11.02 100.00+0.00 99.97+001 79.10+048 99.92-+0.01
Tail-MLP 99.82+0.12 98.58+246 99.98+002 81.20+972 100.00=+0.00 99.67+001 75.76+068 99.88+0.04
Qwen3-8B NormStat:KL ~ 85.14+035 10.37+106 99.85+006 92.93+0.12 99.51+049 56.39+069 33.25+092 90.09=+0.40
VecStat:KL 99.95+0.04 99.59+035 99.99x002 92.20+0.00 100.00=+0.00 99.23+0.00 49.99+1.12 99.20+0.08
VecStat:Cos 100.00+000 95.73+0.61 99.98+003 94.20+0.00 100.00+0.00 99.34+000 54.75+063 99.68+0.03
Avg-MLP 95.88+331 100.00+000 99.99+001 86.87+522 100.00+0.00 99.97+001 78.67+0.67
Tail-MLP 99.39+000 100.00+000 99.98+000 96.80+0.40 99.02:+0.49 98.41+000 74.07+115
Qwen3-32B NormStat:KL ~ 97.93+0.04 24.59+035 99.78+006 97.93x0.2 100.00+0.00 57.03+043 35.14+025 -

VecStat:KL 100.00+000 99.39+000 99.98+003 96.60+0.00 100.00+0.00 99.53+007 53.16+052
VecStat:Cos 100.00+000 98.17+000 99.98+003 96.80+035 100.00=+0.00 99.61+006 56.70+088

3.2 EMPIRICAL RESULTS

Table [2| reports classification results at both granularity levels for five methods on four representa-
tive LLMs, while Table [3] provides detailed per-class accuracy for level-2 programming language
classification. Results for all seven LLMs are reported in Appendix (level-1) and [D.2] (level-2).

Level-1 classification performance Across coarse-grained intent classification, all methods
achieve strong performance on in-distribution test sets. The effectiveness of NormStat, despite using
only radial statistics, demonstrates itself as a computational- and memory-efficient approach when
the classes are different enough. Surprisingly, NormStat outperforms all other methods in some
cases (e.g. Qwen3-32B evaluated on math500). VecStat achieves marginally higher accuracies
than NormStat in most cases, however, this improvement comes at increased computational cost.
Training-based methods perform comparably to VecStat, with no approach consistently dominating
across datasets. Out-of-distribution generalization varies substantially, as evidenced by the perfor-
mance difference between GSM8K and MATHS500 for mathematics tasks, suggesting that different
methods might capture distinct aspects of domain characteristics.

Level-2 classification performance Fine-grained classification within domains reveals clear per-
formance stratification across methods. For programming language identification, VecStat maintains
near-perfect accuracy while NormStat shows substantial degradation, aligning with our theoretical
prediction that directional information becomes critical for within-domain discrimination. As de-
tailed in Table[3] this performance gap remains consistent across all nine programming languages.
Mathematical subfield classification proves most challenging for training-free methods, with both
NormStat and VecStat falling short of training-based approaches. This gap suggests that effec-
tive discrimination among mathematical topics requires non-linear transformations better captured
through supervised training signals. In contrast, natural language identification demonstrates strong
performance across all methods, with VecStat achieving near-perfect accuracy, likely due to distinct
linguistic features being well-separated in the LLM’s hidden representation space.

Distance metric comparison The cosine distance variant of VecStat consistently outperforms its
KL divergence counterpart, particularly in Level-2 tasks. This may suggest that the independence
assumption across feature dimensions inherent in the diagonal covariance formulation may discard
correlational information present in the true feature distributions. On the contrary, angular separation
between prompt and baseline statistics offers a more robust measure that captures directionality.

Under review as a conference paper at ICLR 2026

Table 3: Level-2 programming language classification results for Qwen3-8B and Qwen3-32B. Values represent
per-class accuracy across nine programming languages from the Magicoder.

Model Method cpp csharp java php python rust shell swift typescript
Avg-MLP 99.95+005 100.00+000 100.00£000 99.96+006 99.91+001 100.00+000 100.00+000 100.00+000 99.94:+0.03

Tail-MLP 99.61+016 99.69x0.18 99.47+012 100.00+000 99.39+022 99.53+0.10 99.92:+0.14 99.75+007 99.61x0.10

Qwen3-8B NormStat:KL ~ 47.37+094 38.26+128 27.59+065 60.14+127 67.73+054 63.05+043 91.51+060 62.54+125 49.28+084
N VecStat: KL 99.09+011 98.58+042 97.78+009 99.78+022 99.01+004 99.81x000 99.76+0.00 99.91+000 99.38+020
VecStat:Cos 98.90+024 98.96+038 98.49-+0.03 99.85+013 99.13x012 99.55+0.07 100.00+000 99.81+0.12 99.35+0.19

Avg-MLP 99.91+003 99.98+004 100.00+000 99.96+006 99.91+003 99.97+006 100.00+000 100.00+000 99.96:+0.04

Tail-MLP 98.01+041 97.27x095 97.99+0.53 98.77+022 98.26x021 99.21+0.06 98.97+0.60 98.71+048 98.50+0.07

NormStat:KL ~ 53.57+094 36.94+138 25474143 59.47+051 61.66+140 67.63+054 89.29+071 69.35+119 49.84+1.08
VecStat:KL 99.01x011 99.35x034 98.72+003 99.89x011 99.29+006 99.90+005 100.00+000 99.85+009 99.75x0.16
VecStat:Cos 99.18+014 99.53=0.19 99.01=+0.10 99.89+0.11 99.50+004 99.81+0.13 100.00+000 99.87+012 99.72+0.09

(a) NormStat (b) VecStat (c) Tail-MLP (d) Avg-MLP

Qwen3-32B

B Math
N Text
I Code

Figure 2: Uncertainty quantification results on a mixed-intent prompt on Qwen-1.7B-Base.

3.3 CASE STUDY ON AMBIGUOUS PROMPTS

We examine classification uncertainty of different methods when encountering ambiguous prompts
with mixed intents. We concatenate programming and mathematical content into a single prompt and
analyze the resulting prediction distributions across all three level-1 categories. For NormStat and
VecStat, we form probabilities via a softmax over negative distances p; exp(—d;/ 7'), and rescale
distances with a problem-scale constant 7 = O(distance) before the softmax (in our experiments,
7 = 10). This temperature-like scaling yields meaningful confidence estimates with essentially zero
extra cost. In contrast, the training-based approaches (Avg-MLP and Tail-MLP) take the softmax
of MLP logits; these probabilities are not calibrated by default, and obtaining reliable uncertainty
quantification requires an explicit post-hoc calibration step (e.g., temperature scaling learned on a

validation set) 2017), which we do not apply here.

Both VecStat and NormStat (Fig. |Zka)—(b)) produce well-calibrated distributions that reflect the
prompt’s mixed nature—assigning substantial mass to both math and code while down-weighting
text. In contrast, the training-based methods (Fig.2Jc)—(d)) are overconfident, placing essentially all
mass on a single class despite mixed content. This failure stems from discriminative training on clean
data yielding overly sharp decision boundaries that are poorly calibrated for out-of-distribution,
noisy inputs. While such predictions can score well on clean test sets, they produce misleading un-
certainty in deployment scenarios where mixed-intent prompts naturally occur (see Appendix [D.3).

3.4 EFFECT OF NUMBER OF PROBED LAYERS AND PROMPT LENGTH

Number of probed layers Fig.[3|visualizes the impact of number of probed layers (counted from
the first layer) on level-1 accuracy. VecStat demonstrates a robust performance regardless of layer
count, indicating that early layers capture sufficient statistical information for intent classification
without requiring information from deeper layers. In contrast, NormStat exhibits dataset-dependent
behavior: performance degrades with additional layers on humaneval but improves on math500,
though both achieve competitive accuracy using only the first 12 layers out of 28. These findings
have important practical implications for deployment efficiency. Since accurate classification is
achievable using only the initial layers’ statistics—computed during the early stages of prefill—
routing can be performed without completing a full forward pass, substantially saving computation
costs when prompts are redirected to different LLMs. See Appendix [D.4]for additional results.

Maximum prompt length Fig.] examines the impact of sequence length on classification accu-
racy for Qwen3-1.7B. The results reveal distinct patterns in prompt length sensitivity across different
statistical methods. VecStat demonstrates remarkable stability, maintaining near-optimal accuracy
across all sequence lengths from 32 to 512 tokens for both datasets. This robustness indicates that

Under review as a conference paper at ICLR 2026

—s— NormStat:KL VecStat:KL —m— VecStat:Cos === NormStat:KL VecStat:KL === VecStat:Cos
humaneval math500 humaneval mmlu_history
2 ~ 100 [y p— P L LT D———
3100 1 me S - - a="
S " - S -
= \A —. < 80 jp— ,/
H] - /
£ = 60 - 7
Z 80 g s ’
2 [— ‘2 40 ’ e
i \A — A/ :: //
] /‘—"" g 20 i
= 60 ¥ = g
4 8 12 16 20 24 28 4 8 12 16 20 24 28 32 64 128 256 512 32 64 128 256 512
Number of Layers Number of Layers Maximum Prompt Length Maximum Prompt Length

Figure 3: Effect of the number of layers on level-1 Figure 4: Effect of the maximum prompt length on
classification accuracy for Qwen3-1.7B. level-1 classification for Qwen3-1.7B.

coordinate-wise statistics capture sufficient discriminative information even from truncated prompts,
enabling potential deployment optimizations through reduced sequence lengths (64-128 tokens) that
could significantly improve throughput without compromising intent classification performance.
NormsStat is more sensitive to prompt length, with accuracy improving substantially as length in-
creases and plateauing at approximately 128 tokens. The strong correlation between prompt length
and accuracy for radial statistics suggests that accumulating sufficient statistical evidence requires
slightly longer contextual windows. More detailed results are presented in Appendix [D.6|

3.5 CALIBRATION ANALYSIS

To validate Theorem 2] we compare the empirical and theoretical convergence rates of NormStat and
VecStat on the MagiCoder dataset and present the result in Fig.[5] We vary the calibration sample
size from 512 to 32768 and conduct multiple runs with different seeds. Our results demonstrate
strong empirical match with the theoretical bounds. Both methods show O (N ~°-5) rate for the mean
error, following the predicted theoretical curves. Notably, NormStat attains much lower absolute
errors, which is consistent with its dimension-free bound, whereas VecStat sits higher due to its
dimension-dependent bounds. Calibration results for other LLMs are deferred to Appendix [D.5]

0.0016

—e— Empirical 100
+1std
-~ VecStat bound O(V(d/N))

—— Empirical —— Empirical

~== NormStat O(N"{-0.5}) -== VecStat O(N~{-0.5})

0.0012

8 0.0010

< 0.0008

Mean Error

3
= 0.0006

Mean Error (VecStat)
g

Mean Error (VecStat)

0.0004

0.0002

G 5000 10000 15000 20000 25000 30000 16 167 G 5000 10000 15000 20000 25000 30000 160 167
Sample Size N Sample Size N Sample Size N Sample Size N

(a) NormStat (b) VecStat

Figure 5: Calibration convergence analysis for Qwen3-8B on the MagiCoder dataset. Each subplot shows
both linear and log-log scales comparing empirical results with theoretical bounds.

4 CONCLUSION

We presented prefill-time, training-free intent classifiers—NormStat and VecStat—that provide fast,
uncertainty-aware routing with O(7T'd) FLOPs overhead, and compared them with two training-
based methods (Avg-MLP, Tail-MLP). Our theory pinpoints when each statistic is preferable: Vec-
Stat is more accurate in directional regimes where class differences reside in feature orientation,
while NormStat is Bayes-optimal in isotropic-scale regimes and enjoys dimension-free calibration
cost. Empirically, across 1B—32B LLMs and both coarse- and fine-grained settings, VecStat attains
near-perfect accuracy on fine-grained tasks, whereas NormStat delivers competitive coarse-grained
accuracy with the smallest memory/latency footprint. Accurate uncertainty estimates can be ob-
tained for both statistical methods at essentially no extra cost, in contrast to MLP heads that typically
require post-hoc calibration. Practically, NormStat is most useful in low-latency settings with fre-
quently updated routers; VecStat is useful when a more fine-grained routing is needed; and learned
MLP head is useful for cases where marginal accuracy gains justify calibration and maintenance.
Finally, we empirically show that early-layer statistics are informative, enabling early-exit routing
that saves compute by deciding before a full pass completes.

Under review as a conference paper at ICLR 2026

STATEMENT OF AUTHORS

ETHICS STATEMENT

We adhere to the ICLR Code of Ethics. Our study does not involve human subjects, personally
identifiable information, or sensitive attributes; all datasets are publicly available under permissive
licenses, and we follow their terms of use. We neither collect new data nor perform any form of user
profiling, re-identification, or demographic inference. We evaluate and report results using standard,
publicly accepted protocols, and we avoid releasing models or artifacts that are reasonably likely to
enable harmful applications. We disclose computing resources and consider environmental impact
in our experiments; no conflicts of interest or external sponsorships influenced the work. The authors
take full responsibility for the integrity and accuracy of the content.

REPRODUCIBILITY STATEMENT

We provide runnable code in the supplementary materials. The full codebase will be released as
open-source after the review process. All experimental settings—including dataset specifications,
preprocessing steps, training/evaluation pipelines, and exact hyperparameters—are documented in
the appendix for complete reproducibility.

THE USE OF LARGE LANGUAGE MODELS

We used LLMs solely as general-purpose assistive tools. For writing, we employed OpenAI’s GPT-
5 to polish language in sentence level—improving clarity, grammar, and style—without generating
scientific claims, interpreting results, or drafting sections de novo. For coding, we used the Cursor
IDE’s built-in autocomplete to suggest boilerplate and minor edits; all coding/writing logic was
authored, reviewed, and verified by the authors. The research ideas, experimental design, and overall
manuscript structure were conceived and developed by the authors without any LLM involvement.
The authors take full responsibility for the content.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Maia Aguirre, Ariane Méndez, Arantza Del Pozo, Maria Inés Torres, and Manuel Torralbo. Fine-
tuning medium-scale llms for joint intent classification and slot filling: A data-efficient and cost-
effective solution for smes. In Proceedings of the 3 1st International Conference on Computational
Linguistics: Industry Track, pp. 251-262, 2025.

Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrén, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier
probes. arXiv preprint arXiv:1610.01644, 2016.

Gaurav Arora, Shreya Jain, and Srujana Merugu. Intent detection in the age of llms. arXiv preprint
arXiv:2410.01627, 2024.

Sourav Banerjee, Ayushi Agarwal, and Saloni Singla. LIms will always hallucinate, and we need to
live with this. In Intelligent Systems Conference, pp. 624—648. Springer, 2025.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia,
Ziwei Ji, Tiezheng Yu, Willy Chung, et al. A multitask, multilingual, multimodal evaluation of
chatgpt on reasoning, hallucination, and interactivity. arXiv preprint arXiv:2302.04023, 2023.

Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Chapa-
dos, and Siva Reddy. LIm2vec: Large language models are secretly powerful text encoders. arXiv
preprint arXiv:2404.05961, 2024.

Tom Bocklisch, Joey Faulkner, Nick Pawlowski, and Alan Nichol. Rasa: Open source language
understanding and dialogue management. arXiv preprint arXiv:1712.05181, 2017.

Tanja Bunk, Daksh Varshneya, Vladimir Vlasov, and Alan Nichol. Diet: Lightweight language
understanding for dialogue systems. arXiv preprint arXiv:2004.09936, 2020.

Inigo Casanueva, Tadas Temcinas, Daniela Gerz, Matthew Henderson, and Ivan Vulié. Efficient
intent detection with dual sentence encoders. arXiv preprint arXiv:2003.04807, 2020.

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang,
Ning-Chi Huang, Luis Ceze, Mohamed S Abdelfattah, and Kai-Chiang Wu. Palu: Compressing
kv-cache with low-rank projection. arXiv preprint arXiv:2407.21118, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021.

Qian Chen, Zhu Zhuo, and Wen Wang. Bert for joint intent classification and slot filling. arXiv
preprint arXiv:1902.10909, 2019.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Henry Cunningham, Ryan Huben, et al Sparse autoencoders find highly
interpretable features in language models. In ICLR, 2024. URL
https://proceedings.iclr.cc/paper_files/paper/2024/file/
1falabllf4bd5f94b2ec20e794dbfa3b-Paper-Conference.pdf.

11

https://proceedings.iclr.cc/paper_files/paper/2024/file/1fa1ab11f4bd5f94b2ec20e794dbfa3b-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2024/file/1fa1ab11f4bd5f94b2ec20e794dbfa3b-Paper-Conference.pdf

Under review as a conference paper at ICLR 2026

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv—2407, 2024.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposi-
tion. arXiv preprint arXiv:2209.10652, 2022.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders, 2024. URL https:
//cdn.openai.com/papers/sparse—autoencoders.pdfl

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764-10799. PMLR, 2023.

Chih-Wen Goo, Guang Gao, Yun-Kai Hsu, Chih-Li Huo, Tsung-Chieh Chen, Keng-Wei Hsu, and
Yun-Nung Chen. Slot-gated modeling for joint slot filling and intent prediction. In Proceedings
of the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 753-757, 2018.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pp. 1321-1330. PMLR, 2017.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming—
the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Homa B Hashemi, Amir Asiaee, and Reiner Kraft. Query intent detection using convolutional
neural networks. In International conference on web search and data mining, workshop on query
understanding, volume 23, 2016.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Plop: Precise lora placement for efficient finetuning of
large models, 2025. URL https://arxiv.org/abs/2506.20629.

Changai He, Sibao Chen, Shilei Huang, Jian Zhang, and Xiao Song. Using convolutional neural
network with bert for intent determination. In 2019 International Conference on Asian Language
Processing (IALP), pp. 65-70. IEEE, 2019.

Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob
Steinhardt. Aligning ai with shared human values. Proceedings of the International Conference
on Learning Representations (ICLR), 2021a.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2021b.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021c.

John Hewitt and Christopher D Manning. A structural probe for finding syntax in word representa-
tions. In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Pa-
pers), pp. 4129-4138, 2019.

Taesuk Hong, Youbin Ahn, Dongkyu Lee, Joongbo Shin, Seungpil Won, Janghoon Han, Stan-
ley Jungkyu Choi, and Jungyun Seo. Exploring the use of natural language descriptions of intents
for large language models in zero-shot intent classification. In Proceedings of the 25th Annual
Meeting of the Special Interest Group on Discourse and Dialogue, pp. 458-465, 2024.

Ting Jiang, Shaohan Huang, Zhongzhi Luan, Deqing Wang, and Fuzhen Zhuang. Scaling sentence
embeddings with large language models. In EMNLP (Findings), pp. 3182-3196, 2024. URL
https://aclanthology.org/2024.findings-emnlp.181.

12

https://cdn.openai.com/papers/sparse-autoencoders.pdf
https://cdn.openai.com/papers/sparse-autoencoders.pdf
https://arxiv.org/abs/2506.20629
https://aclanthology.org/2024.findings-emnlp.181

Under review as a conference paper at ICLR 2026

Shibo Jie, Yehui Tang, Kai Han, Zhi-Hong Deng, and Jing Han. Specache: Speculative key-value
caching for efficient generation of llms. arXiv preprint arXiv:2503.16163, 2025.

Stefan Larson, Anish Mahendran, Joseph J Peper, Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K Kummerfeld, Kevin Leach, Michael A Laurenzano, Lingjia Tang, et al. An evaluation
dataset for intent classification and out-of-scope prediction. arXiv preprint arXiv:1909.02027,
2019.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catan-
zaro, and Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding
models. arXiv preprint arXiv:2405.17428, 2024.

Erich Leo Lehmann and George Casella. Theory of point estimation. Springer, 1998.

Erich Leo Lehmann and Henry Scheffé. Completeness, similar regions, and unbiased estimation-
part i. In Selected works of EL Lehmann, pp. 233-268. Springer, 2011.

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,
Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Mario
gaéko, Gunjan Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Can-
wen Xu, Nicolas Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément
Delangue, Théo Matussiere, Lysandre Debut, Stas Bekman, Pierric Cistac, Thibault Goehringer,
Victor Mustar, Francois Lagunas, Alexander Rush, and Thomas Wolf. Datasets: A community
library for natural language processing. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, pp. 175-184, Online and
Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics.
URLhttps://aclanthology.org/2021.emnlp-demo.21.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092-1097, 2022.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Haokun Liu, Derek Tam, Mohammed Mugeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950-1965, 2022.

Junhua Liu, Yong Keat Tan, Bin Fu, and Kwan Hui Lim. Balancing accuracy and efficiency in
multi-turn intent classification for llm-powered dialog systems in production. arXiv preprint
arXiv:2411.12307, 2024.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
cessing. ACM computing surveys, 55(9):1-35, 2023.

Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and Jimmy Lin. Fine-tuning llama for multi-stage
text retrieval. In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 2421-2425, 2024.

Rui Meng, Ye Liu, Shafig Rayhan Joty, Caiming Xiong, Yingbo Zhou, and Semih Yavuz.
Sfrembedding-mistral: enhance text retrieval with transfer learning. Salesforce AI Research Blog,
3:6, 2024.

Niklas Muennighoff. Sgpt: Gpt sentence embeddings for semantic search. arXiv preprint
arXiv:2202.08904, 2022.

Niklas Muennighoff, SU Hongjin, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh,

and Douwe Kiela. Generative representational instruction tuning. In The Thirteenth International
Conference on Learning Representations, 2024.

13

https://aclanthology.org/2021.emnlp-demo.21

Under review as a conference paper at ICLR 2026

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry Tworek, Qim-
ing Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy, et al. Text and code embeddings by
contrastive pre-training. arXiv preprint arXiv:2201.10005, 2022.

Zhijie Nie, Zhangchi Feng, Mingxin Li, Cunwang Zhang, Yanzhao Zhang, Dingkun Long, and
Richong Zhang. When text embedding meets large language model: a comprehensive survey.
arXiv preprint arXiv:2412.09165, 2024.

OpenAlL Gpt-5 system card. 2025. URL https://cdn.openai.com/
gpt-5-system-card.pdf.

Nina Panickssery, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt
Turner. Steering llama 2 via contrastive activation addition. arXiv preprint arXiv:2312.06681,
2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020.

Juan A Rodriguez, Nicholas Botzer, David Vazquez, Christopher Pal, Marco Pedersoli, and Is-
sam Laradji. Intentgpt: Few-shot intent discovery with large language models. arXiv preprint
arXiv:2411.10670, 2024.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Shivalika Singh, Freddie Vargus, Daniel Dsouza, Borje F. Karlsson, Abinaya Mahendiran, Wei-Yin
Ko, Herumb Shandilya, Jay Patel, Deividas Mataciunas, Laura OMahony, Mike Zhang, Ramith
Hettiarachchi, Joseph Wilson, Marina Machado, Luisa Souza Moura, Dominik Krzemifski,
Hakimeh Fadaei, Irem Ergiin, Ifeoma Okoh, Aisha Alaagib, Oshan Mudannayake, Zaid Alyafeai,
Vu Minh Chien, Sebastian Ruder, Surya Guthikonda, Emad A. Alghamdi, Sebastian Gehrmann,
Niklas Muennighoff, Max Bartolo, Julia Kreutzer, Ahmet Ustiin, Marzieh Fadaee, and Sara
Hooker. Aya dataset: An open-access collection for multilingual instruction tuning, 2024.

Adnane Souha, Charaf Ouaddi, Lamya Benaddi, and Abdeslam Jakimi. Pre-trained models for
intent classification in chatbot: Comparative study and critical analysis. In 2023 6th international
conference on advanced communication technologies and networking (CommNet), pp. 1-6. IEEE,

2023.

Yixuan Tang and Yi Yang. Pooling and attention: What are effective designs for llm-based embed-
ding models? arXiv preprint arXiv:2409.02727, 2024.

Chongyang Tao, Tao Shen, Shen Gao, Junshuo Zhang, Zhen Li, Kai Hua, Wenpeng Hu, Zhengwei
Tao, and Shuai Ma. Llms are also effective embedding models: An in-depth overview. arXiv
preprint arXiv:2412.12591, 2024.

Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell, Juan J Vazquez, Ulisse Mini, and
Monte MacDiarmid. Activation addition: Steering language models without optimization. arXiv
e-prints, pp. arXiv—2308, 2023.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improv-
ing text embeddings with large language models. In ACL (1), pp. 11897-11916, 2024. URL
https://doi.org/10.18653/v1/2024.acl-1long.642.

Zhigiang Wang, Yiran Pang, and Yanbin Lin. Large language models are zero-shot text classifiers.
arXiv preprint arXiv:2312.01044, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

14

https://cdn.openai.com/gpt-5-system-card.pdf
https://cdn.openai.com/gpt-5-system-card.pdf
https://doi.org/10.18653/v1/2024.acl-long.642

Under review as a conference paper at ICLR 2026

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empowering
code generation with oss-instruct. arXiv preprint arXiv:2312.02120, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809-11822, 2023.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

15

Under review as a conference paper at ICLR 2026

A ADDITIONAL THEORETICAL ANALYSIS

A.1 TwoO ENDPOINTS ON THE COMPRESSION LADDER

For each class k € [m], per-class baselines are computed at the same module W, on calibration data.
We compare the two methods in terms of FLOPs and memory.

VecStat. Method 1: Compute (Syec, Qvec) as in (I). With per-class parameters (ug, Xp =
Diag(aj ;... ,07 4)). The log-likelihood ratio (LLR) between classes i and j is

p(Y) T Zd: log Ot Queem = tiamSveem + 1 Quecm = Htiam Sveesm + ,,L;m]
- 2 2)
J

0g
pj(Y) m=1 j,m U?,m O-Jz'»m
4)
which is equivalently the average of coordinate-wise Gaussian KLs (since Xy, is diagonal):
d d o2 2 2
j,m Ui,m + (.uzm - ,ujﬂn)
ZKL(:U’ZWM zm)"N(M]m7 jm Z 10g jz 0_2 _1 .
m=1 n=1 ,m J,m
(5)
Method 2: Using S, classify via
<SV6C7 ,U/k:> 2
COSk(Svem Mk) To . b= arg max CoSg (Svem ,U/k:)
[Svecllll 2]l k€[m]

Costs: Per-token compute: ©(d). Prompt-state: O(d). Baseline storage: O(md) numbers. (If only
cosine scoring is used, (). need not be stored.)

NormStat. Method: Compute (Spom, Qnorm) as in (2), then compare (Syorm, @norm) to per-class
baselines (s k, 0’37k) via a 1D Gaussian KL:

o0 | Onit (Hai = pay)®
KL(N(ux,i7aﬁ,i)\w(uw,aﬁ,j))_ log —5 + —=* . 1. (6)

T, J.t,j

Cost. Per-token compute: ©(d). Prompt-state: O(1). Baseline storage: O(m) scalars.

A.2 SUFFICIENCY

We establish the minimal sufficiency of (Syec, @vec) for the diagonal-Gaussian model, which is
a classical result, see (Lehmann & Casellal |1998; [Lehmann & Scheffé] 2011). Intuitively, a suf-
ficient statistic is a lossless compression for inference about the unknown class/parameters: once
(Svecs @vec) is known, the raw sample Y contains no further information. Minimal sufficiency
means no additional compression is possible without losing information—every other sufficient
statistic is a measurable function of (Syec, Qvec)-

Lemma 1. Under (3) with diagonal Xy, the pair (Syec, Qvec) is a minimal sufficient statistic for
the family {N (u1., Xx)®T}, and the class LLR [@) depends on the data only through (Syec, Qvec)-

The proof is provided in Appendix [B]
B PROOFS

B.1 PROOF oF LEMMA[I]
Proof of Lemmall} LetY = (y1,...,yr) € RT*? Foraclass k, let

Ok = (1ths Or1s- - k) Yy = Diag(03 1, - - -, 07 4)-

16

Under review as a conference paper at ICLR 2026

Define the token-wise sums

(yt © yt) eR?,

T
=1

T
S::ZyteRd, Q=
t=1

t

and write S,,, = Zthl Yt,m> Qm = Zthl yfym for coordinates m = 1,...,d. These relate to the
averaged statistics in (1)) as follows:

S = TSvec: Q = (T -]-)Qvec + T(Svec © Svec)

Since (minimal) sufficiency is invariant under invertible reparameterizations of the statistic, we may
work with (S, Q) and translate back to (Syec, Qvec) via the identities above.

Sufficiency. By (3), y: are i.i.d. with density

d
1 1 m m 2
. oo (-2 % (y L "\
(2m)d/2 [[—10km 2 Ok,

Hence the joint density of Y under class & is

1 1 s N (Yeom — fm)?
o, (V) = exp [—= Yt.m — Hkm)”

Doy (y) =

=1 m=1 Ok.m
1 1 1A Qo — 2t m S + T},
— (2)Td/Q . P T exXp _5 Z 0_2 > .
Q Hm:l Uk,m m=1 k.
=h(Y) =g, (5,Q)

Thus py, (Y) = h(Y) go, (S, Q). By the Neyman—Fisher factorization theorem, (.5, @) is sufficient
for 6y, and hence (Syec, Qvec) is sufficient by the invertible mapping above.

Minimality. Using the Lehmann—Scheffé characterization: a statistic 7(Y") is minimal sufficient iff
for any Y, Y the likelihood ratio py(Y")/pg(Y”) is free of 6 if and only if T(Y') = T'(Y”). For our
family,

po(Y) _ (1 i (Qm—%)—mm(sm—%))

2 o2
m=1 m

If (S,Q) = (5’,Q’) then this ratio equals 1, hence is parameter—free. Conversely, if for some m
either S,,, # S!, or Q,, # Q',, the exponent depends on i, (when S, # S’) or on o2, (when
Qm # Q..); thus the ratio cannot be constant in 6.

Moreover, for classes ¢ and j, subtracting the two log-likelihoods above yields

d 2 2 2
,LY 1 Oi'm 7r—21', S, +T P.m -2 'mS7n,+T im
logp():_72 T'log — +Ql Mmgm Him _ Om H1,2 o)
Pj (Y) 2 —1 Uj,m Ui,m aj:m

which is exactly and depends on Y only through (S,Q), and equivalently only through
(Svecs @vec) via the identities at the start of the proof.

This establishes that (Syec, Qvec) is minimal sufficient and that the LLR depends on the sample only
through this pair.

O

B.2 PROOF OF THEOREM[I]

Proof of Theorem([l] Directional regime: Since ||p1]| = ||p2||, there exists an orthogonal matrix
U with Upy = pg. Y ~ N(u1,0%1,) then UY ~ N (ug2,021y) and |[UY || = ||Y]|. Thus for
each t, ||y:|| | ¥ = 1 and ||y;|| | kK = 2 have the same distribution, and by independence the vectors
(lyeIDE; | k = 1 and (||y]|)Z.; | & = 2 are identically distributed. With a uniform prior, any
decision rule that depends only on {||y:||} has the same acceptance probability under both classes,
so its Bayes error is 1/2.

17

Under review as a conference paper at ICLR 2026

For the log-likelihood ratio test (LRT), the log-likelihood ratio for two Gaussians with common
covariance 021 is
T T 9 9
A(ylzT) = ﬁ <Svccv H1 — :u2> - T‘_Q(HIUJH - HN’QH)

With equal priors the LRT accepts k = 1iff A > 0. Under || 1]| = ||u12]|, the constant term vanishes
and the decision reduces to the sign of (Syec, 11 — H2), i.e., to k above.
. 0_2
Let u = (p1 — p2) /|| — p2l| and Z == (Syec, u). Since Syec | & ~ N (pix, % 1q) and |Jul| = 1,
o’ 1 1
21N (G, G)+ o) = Bl =l) = s = el

Hence, by symmetry,

Pr (l%(ylzT) =+ k) =

k 20

- T
onz<0) = o -2 VT) <o (= i - pal?).
where ® is the standard normal CDF and the last step uses ®(—z) < e=*"/2 for z > 0.
Isotropic-scale regime. Let ¢4(- ;m,) denote the d-variate Gaussian density. For k& € {1, 2}, the
Jjoint density of y1.7 under class k is pi (y1.7) = Hthl da (yt; 0, U,%Id) .

With p11 = pe = 0, X, = 0214, and Ry = 23:1 l|ly¢]|?, one can calculate the log-likelihood ratio

T
p1(y1.T) ba(ys;0,080y) dT . o5 1 (L1)
log —2—2 = log———" " = 2 = —_Jog—~2+—-—|—=——= | Rp.
® p2(yier) ; alyi0,031s) 2 ot 2\o2 o7)""

The right-hand side is an affine (hence strictly monotone when o1 # o3) function of Ry. By the

Neyman—Pearson lemma, any Bayes—optimal test is a threshold on R, so purely radial statistics
are sufficient for optimality and coordinate-wise additions cannot lower the Bayes risk. O

B.3 PROOF OF THEOREM[Z]

Theorem 3. Fixaclass k. Letyy,...,yn i~y N (g, X1 in R, where N is the number of calibra-
tion samples drawn for this class. Define

1 1
iy D i 45 g D Ml = (%l
1= 1=

- ; T R g ~0 1NN s N2 s
For coordinate variances, write o, ; == (3x)j; and 03, ; = 5 > i (Yij — fk,j)% 7 =1,....d.
Then:

1. NormStat (dimension-free). For q = ||y||?, one has

Elq] = sl + Te(S4), Var(g) = 2Te(S3) + 417 Shpur.

By Bernstein’s inequality for sub-exponential variables, for all § € (0, 1),

Var(g) log(1/9)
N

Normalizing by d makes the bound O(+/log(1/0)/N), i.e. dimension-free.

1g—aql < with probability at least 1 — §.

2. VecStat (dimension-dependent). With probability at least 1 — 6,
d +log(1/9) ~
— N mjax ’U,%d — U,%J‘ < C’Qafnax —N

for absolute constants C1,Cs. To keep LLR plug-in error small of order €, one needs
N = Q(d/e},) for mean accuracy in by and N = Q(log d/€2) for variances in lo.

1
Hﬂk - Mk||2 S Clamax Og(d/é)

18

Under review as a conference paper at ICLR 2026

Proof of Theorem[2} NormStat: Denote ¢; = ||y;||* and Z; == ¢; — E[g], so that § — E[g] =

% Zfil Z;. For y; ~ N (ur,Xg), the centered quadratic form Z; obeys the Hanson—Wright tail

bound: there exist absolute constants ¢, co > 0 such that for all ¢ > 0,
, t? t
Pr(|Z| >t) < 2exp {— €1 min (Var@)’ Bﬂ) (N

where Var(q) = 2 Tr(X2)+4 p)) Skpk, B = || Sk llop+ || 2% ||?. From (7), the Z; are i.i.d. mean-zero
sub-exponential. A standard Bernstein inequality for sums of independent sub-exponential variables
then yields, for some absolute ¢ > 0 and all £ > 0,

1 2
PI'(N;ZZ Zt) §2€Xp |:—CN min <\far(q>’ B>:| .

Choosing ¢ < Var(q)/B and inverting the tail gives, for any ¢ € (0, 1),
Var(q) log(2/4)
~ N

Since under bounded eigenvalues Var(q) = ©(d), dividing by d yields |1g — YE[q]| < /82,
which is dimension-free.

VecStat: Let z; := 221/2(% — pg) ~ N(0,1;). Then

/ 1 N 1

. 1/2

b — pe = 2y, < E Zz) NN(O, Ek->~
]\71,:1 N

Hence, HZI;I/ (e —) ||3 ~ +X3. Recall the standard Laurent-Massart inequalities: for any
x>0,

with probability at least 1 — 4.

Pr (XZ —d>2Vdr + 2m> <e™®, Pr (d 3> 2\/@) <ot ®
Applying (8) with 2 = log(1/4) and scaling by 1/N yields, with probability > 1 — 4,

12—)l <\ 3 (d-+ 2/ o(175) + 2108(1/2)).

Multiplying by ||Ei/2||op = Omax and using va + b < v/a + Vb gives

d +log(1/3)
N b

”ﬂk - /u'k||2 < C10max

for an absolute constant C; > 0.

C EXPERIMENT DETAILS

C.1 DATASET COMPOSITION AND PROCESSING STRATEGIES

Table 4: Datasets composition for level-1 classification.

Category Calibration Data # Calibration Samples Classification Data # Classification Samples
General Text MMLU (European History) 165 MMLU (US History) 204
GSMSK 1,319
Math GSM8K 2,000 MATHS500 500
. Magicoder 5,000
Code Magicoder 2,000 HumanEval 164

We evaluate our lightweight intent classification methods across two hierarchical granularities. Our
experimental protocol consists of two stages: calibration and classification. During calibration, we
compute per-class baseline statistics (NormStat or VecStat) from calibration data passed through
pretrained LLMs. During classification, we compute the same statistics for test prompts and assign
labels based on the minimum KL divergence (or cosine distance) between the prompt’s statistics and
the calibrated per-class baselines.

19

Under review as a conference paper at ICLR 2026

Table 5: Datasets composition for level-2 classification.

Task Data Source Classes # Calibration Samples # Classification Samples
per Class per Class
Code Magicoder C++, C#, Java, PHP, Python, Rust, 2000 5000
Shell, Swift, TypeScript
Math Competition Math ~ Algebra, Counting & Probability, 800 3000

Geometry, Intermediate Algebra,
Number Theory, Prealgebra,
Precalculus

Natural Language Aya Sinhala, Tamil, English, Moroccan 512 3000
Arabic, Japanese

Classification granularities We consider the following classification granularities:

* Level-1 Classification evaluates coarse-grained categorization into three primary domains: gen-
eral text, mathematics, and code. This level represents the typical routing scenario where
prompts are directed to specialized models based on broad task categories.

* Level-2 Classification examines fine-grained discrimination within each domain. We evalu-
ate three distinct tasks: (i) programming language identification across nine languages in code
prompts, (ii) mathematical subfield classification across seven topics, and (iii) natural language
identification across five linguistically diverse languages.

Datasets and evaluation = Table] and Table [5] present the complete dataset composition. For
Level-1 classification, we calibrate using domain-representative datasets: MMLU European History
for general text (165 samples), GSMS8K for math (2,000 samples), and Magicoder for code (2,000
samples). Classification evaluation employs both in-distribution and out-of-distribution datasets to
assess generalization. Specifically, we evaluate general text on MMLU US History, mathemat-
ics on GSMSK (in-distribution) and MATHS500 (out-of-distribution), and code on Magicoder (in-
distribution) and HumanEval (out-of-distribution).

For Level-2 classification, we maintain consistent calibration sizes where feasible: 2,000 samples
per programming language, 800 samples per mathematical subfield, and 512 samples per natural
language. Classification sets contain up to 5,000 samples per programming language and 3,000
samples per category for mathematics and natural languages, subject to dataset availability. We also
provide more details on the datasets used in Appendix [C.2}

C.2 DATASETS

We employ seven benchmark datasets spanning general text, mathematics, and code domains to
evaluate intent classification performance at both granularity levels.

* General Text Datasets. For Level-1 evaluation, we utilize MMLU (Hendrycks et al.,2021afb)),
a comprehensive benchmark of multiple-choice questions across 57 subjects. We construct cal-
ibration data using the High School European History subset and evaluate on the High School
US History subset, using question-choice pairs as input. For Level-2 language classification, we
employ the Aya dataset (Singh et al.l |2024), which contains human-annotated prompts across
65 languages. We select five linguistically diverse languages as specified in Table [5]and use the
input field for classification.

* Mathematics Datasets. We employ three mathematics benchmarks for comprehensive evalu-
ation. GSM8K (Cobbe et al.,|2021) provides grade-school word problems requiring multi-step
reasoning, from which we sample 2,000 calibration instances and use the complete test set for
Level-1 classification. MATHS00 (Lightman et al., 2023) serves as an out-of-distribution test
set containing 500 problems from the MATH benchmark. For Level-2 domain-specific clas-
sification, Competition Math (Hendrycks et al.| |2021c) provides problems from mathematics
competitions spanning seven mathematical subfields including algebra, geometry, and number
theory. We use the problem field as model input for Level-2 domain-specific classification.

* Code Datasets. Magicoder (Wei et al., [2023) forms our primary code classification resource,
containing solutions across multiple programming languages. We utilize the solution field as

20

Under review as a conference paper at ICLR 2026

model input for both Level-1 general code classification and Level-2 language-specific classi-
fication tasks, focusing on 9 mainstream programming languages as detailed in Table 5§} Hu-
manEval (Chen et al., 2021) provides 164 function-level programming problems, where we use
the prompt field containing function signatures and docstrings as model input, serving as an
out-of-distribution test set for Level-1 classification.

All datasets are publicly available through HuggingFace Datasets (Lhoest et al., |2021). The exact
sampling strategies and train-test splits follow the specifications in Table 4] and Table [5] with test
samples capped at the minimum of specified counts and available data.

C.3 SELECTED LLMS

We evaluate our approach on 7 pretrained large language models spanning 1B to 32B parameters,
encompassing both base and instruction-tuned variants. This selection provides comprehensive cov-
erage across model scales and training stages. We consider the following two LLM families:

* Qwen family (Yang et al. 2025): We evaluate four models from the Qwen3 series. The
instruction-tuned variants include Qwen3-1.7B (28 layers), Qwen3-4B (36 layers), Qwen3-8B
(36 layers), and Qwen3-32B (64 layers), each post-trained with supervised fine-tuning and rein-
forcement learning from human feedback (RLHF). Additionally, we include Qwen3-1.7B-Base
to assess performance on pretrained models without alignment. For all Qwen3 evaluations, we
switch on non-thinking mode to ensure consistent comparison across models.

* Llama family (Dubey et al.,|[2024): We evaluate Llama-3.2-1B (16 layers) and its instruction-
tuned counterpart Llama-3.2-1B-Instruct. The instruction-tuned variant underwent supervised
fine-tuning and RLHF to better align with human preferences.

This benchmark model selection enables systematic evaluation across three critical dimensions:
model scale (from 1B to 32B parameters), training paradigm (pretrained-only versus post-
trained), and architectural diversity (Qwen and Llama families). The substantial range in model
sizes—spanning over an order of magnitude in parameters—allows us to rigorously test whether our
method can effectively operate across vastly different computational scales and model capacities.
The comparison between base and aligned models reveals how post-training procedures affect our
method’s performance, demonstrating whether it remains equally effective for both pretrained and
instruction-tuned models.

C.4 MORE IMPLEMENTATION DETAILS
To stabilize training, we normalize input features and weight matrices through the following process:

1. Input Normalization: The input tensor z is normalized to unit norm for stability:
z

Znormalized = W .
2

2. Weight Normalization: The weight matrix W is normalized using its Frobenius norm:
w
Whormalized = W

3. Activation Computation: The normalized input is multiplied by the normalized weight

matrix:
T
Wz = Zhormalized * Wnormalized'

The statistics for NormStat and VecStat are computed from W z. Note that this is likely suboptimal;

in a production-scale implementation we should read Wz directly from the module’s output rather
than recomputing it.

C.5 PSEUDO-ALGORITHM

Our task inference approach follows the following steps:

21

Under review as a conference paper at ICLR 2026

Algorithm 1 Intent Classification with NormStat or VecStat

Require: Input prompt x, baseline scores {S7,5s,...,S,,} for tasks Cq,Cs, ..., Cy,, distance
function “dist” (NormStat: KL; VecStat: KL or cosine similarity)
Ensure: Predicted task T},q and confidence scores
Compute statistic scores .S, from input x
for each task C; do
Compute distance d; = dist(.S,, S;)
end for
Chpred = argming, d;

exp(—(d;—d)/T) i ifica-
= exp(—(d; D)/ 7) (used for uncertainty quantifica

SANES AN ol e

Compute probabilities via softmax: p; =

tion, d is the average, 7 is the temperature)
7: return Cpred, {P1,D2,---,Pm}

C.6 HARDWARE AND SOFTWARE ENVIRONMENT

We conducted experiments on two computational platforms based on model scales. For models up
to 4B parameters, we utilized an NVIDIA L40S GPU with 48GB of memory. For larger models
(Qwen3-8B and Qwen3-32B), experiments were performed on an NVIDIA Grace Hopper GH200
superchip, featuring a Grace ARM 72-core CPU with 120GB RAM and a NVIDIA H100 GPU with

96GB of memory. All experiments are implemented using Python 3.12.0 and PyTorch 2.7.0 with
CUDA 12.6.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ADDITIONAL RESULTS FOR LEVEL-1 CLASSIFICATION.

Please refer to Table

D.2 ADDTIONAL RESULTS FOR LEVEL-2 EXPERIMENTS

For programming languages, please refer to Table[7] For math, please refer to Table[§] For natural
languages, refer to Table[9]

D.3 CASE STUDY
Fig. [6] presents the mixed-intent prompt used in Section constructed by concatenating code
content with mathematical content. We also evaluated the reverse concatenation order (mathematics

followed by code), with results shown in Fig. The uncertainty quantification patterns remain
consistent across both prompt orderings.

D.4 THE EFFECT OF THE NUMBER OF LAYERS CONSIDERED

See Fig.[§]

D.5 CALIBRATION CONVERGENCE ANALYSIS

See Fig.[0]

D.6 THE EFFECT OF THE MAXIMUM PROMPT LENGTH

See Fig.

22

Under review as a conference paper at ICLR 2026

Table 6: Level-1 classification results for all seven LLMs.

Model Method gsm8k humaneval magicoder math500 mmlu_history
Avg-MLP 99.97+0.04 99.80=+0.35 99.99+002 78.33+1.67 100.00+0.00
Tail-MLP 100.00+000 100.00+000 99.97+0.02 99.00+0.00 100.00+0.00
Qwen3-1.7B NormStat:KL ~ 97.35+0.00 70.12+0.61 99.27+0.11 76.60+0.20 100.00+0.00
VecStat: KL 100.00+000 99.39+0.00 99.97+0.03 88.33+0.30 100.00+0.00
VecStat:Cos 100.00+000 98.78+0.00 99.97+0.03 92.26+0.11 100.00+0.00
Avg-MLP 78.09+31.54 99.80+035 100.00+000 40.60+19.91 100.00-£0.00
Tail-MLP 100.00+0.00 84.55+26.76 99.87+0.18 99.00-+0.00 100.00+0.00
Qwen3-1.7B-Base NormStat:KL ~ 79.71+0.29 82.93+0.00 99.71+0.03 88.47+0.12 100.00=+0.00
VecStat:KL 40.46-+0.10 100.00+000 100.00+0.0 49.06+0.95 100.00+0.00
VecStat:Cos 99.84+0.00 99.39+0.00 99.98+0.02 92.30+039 100.00+0.00
Avg-MLP 100.00+000 100.00+0.00 99.99+0.01 64.33+833 99.84+0.28
Tail-MLP 99.95+0.04 100.00+£000 99.97+0.03 98.93+042 99.35+1.13
Llama-3.2-1B NormStat:KL ~ 99.49+0.09 90.8540.00 96.39+0.20 83.40+0.00 92.48+0.57
’ VecStat:KL 100.00+000 99.39+0.00 99.98+0.02 78.80+0.12 100.00+0.00
VecStat:Cos 100.00+000 99.39+0.00 99.97+0.02 77.60+0.20 100.00+0.00
Avg-MLP 100.00+000 99.59+035 99.99+0.02 72.4042.91 100.00+0.00
Tail-MLP 100.00+0.00 100.00+000 99.89+0.05 94.53+042 100.00+0.00
Llama-3.2-1B-Instruct NormStat:KL ~ 100.00+0.00 65.24+0.00 97.21+021 96.20+0.00 98.53+0.00
’ VecStat:KL 100.00+000 99.39+0.00 99.96+0.01 87.87+0.11 100.00+0.00
VecStat:Cos 100.00+000 99.39+0.00 99.97+0.03 85.60+0.00 100.00+0.00
Avg-MLP 99.954+000 100.00+000 99.9940.01 79.27+439 100.0040.00
Tail-MLP 100.00+000 100.00+000 99.96-+0.02 92.27+1.17 100.00+0.00
Qwen3-4B NormStat:KL ~ 96.36+0.00 35.57+035 99.84+0.03 89.40+0.00 99.84+0.28
VecStat:KL 99.97+0.04 100.00+000 99.99-+0.02 91.73+023 100.00+0.00
VecStat:Cos 100.00+000 96.34+0.00 99.97+0.03 93.40+0.20 100.00+0.00
Avg-MLP 99.42+074 99.59+035 99.99+002 77.27+11.02 100.00+0.00
Tail-MLP 99.82+0.12 98.58+2.46 99.98+0.02 81.20+9.72 100.00+0.00
Qwen3-8B NormStat:KL ~ 85.14+035 10.37+1.06 99.85+0.06 92.93+0.12 99.51+049
VecStat: KL 99.95+0.04 99.59+0.35 99.99+0.02 92.20+0.00 100.00+0.00
VecStat:Cos 100.00+000 95.73+0.61 99.98+0.03 94.20+0.00 100.00+0.00
Avg-MLP 95.88+331 100.00+000 99.99-+0.01 86.87+5.22 100.00-t0.00
Tail-MLP 99.39-+0.00 100.00+000 99.98+0.00 96.80+0.40 99.02+0.49
Qwen3-32B NormStat:KL ~ 97.93+0.04 24.59+0.35 99.78+0.06 97.93+0.12 100.00+0.00
VecStat:KL. 100.004+000 99.39+0.00 99.98-+0.03 96.60-+0.00 100.00+0.00
VecStat:Cos 100.00+000 98.17+0.00 99.98+0.03 96.80+035 100.00+0.00

23

Under review as a conference paper at ICLR 2026

Table 7: Level-2 programming language classification results for all seven LLMs. Values represent per-
language accuracy across nine programming languages from the Magicoder dataset.

Model Method cpp csharp java php python rust shell swift typescript
Avg-MLP 99.97+003 100.00+000 100.00+000 99.96+006 99.89+001 100.00+000 99.92+014 100.00+000 99.94+007
Tail-MLP 99.54£009 99.57+0.06 99.41:026 99.89+011 99.35+027 99.32+017 99.92:x0.14 99.81+007 99.52+003
Qwen3-1.7B NormStat:KL ~ 53.18+060 53.17x196 40.39+0.63 57.35+197 60.17+089 58.07+055 88.73+1.67 59.47+x088 49.59+034

VecStat:KL 98.83+018 98.98+039 98.21+0.15 99.81+023 99.06+009 99.68+0.14 99.52-+0.00 99.81+0.12 99.26+020
VecStat:Cos 98.51+019 98.78x037 97.79+0.19 99.85+017 99.06+014 99.35+0.15 99.84-0.14 99.55+011 99.02+029

Avg-MLP 99.97+003 99.96:+004 99.97+003 100.00+000 99.89+005s 100.00+000 99.92+014 100.00+0.00 99.96+0.04
Tail-MLP 99.28+019 99.37x019 99.23x0.12 99.96x006 99.25+014 9927019 99.841027 99.75x014 99.50+003
NormStat:KL ~ 47.76+01s 43.75+118 36.92+0.96 60.44+113 56.03+0s2 54.88+078 88.33+242 57.85+125 51.20+025
VecStat:KL 98.29+013 98.37x053 97.00:£021 99.66+0.11 98.63+009 99.45+0.12 99.68-0.14 99.64+012 99.17+0.19
VecStat:Cos 98.27+017 98.23x050 96.91+005 99.63+017 98.84+009 99.47+013 99.68+014 99.58+007 98.54x030

Avg-MLP 99.97+003 99.98:+0.04 99.97+0.05 99.96+006 99.91+002 100.00+000 100.00+£000 100.00+000 99.94+0.03
Tail-MLP 99.21+024 99.08+0.16 99.41+0.10 99.85+017 99.25+026 99.21+032 99.84-+027 99.75+000 99.58+0.11
NormStat:KL ~ 44.23+137 39.54+226 35.09+1.07 49.25+160 38.65+071 54.91+078 90.95+1.56 55.63+12¢ 34.67+181
VecStat:KL 98.77+019 98.37x043 97.14+007 99.63+017 98.66+021 99.79+003 99.84+027 99.73x018 99.02+025
VecStat:Cos 98.53+012 97.78+025 96.34-+0.09 99.52+028 98.86+018 99.48+0.15 99.60-+0.14 99.49+025 98.81+036

Avg-MLP 99.95+£005 9998004 99.97+003 99.96x006 99.91x001 100.00£000 99.92+014 100.00+000 99.99+0.03
Tail-MLP 99.07+039 99.23x0.15 99.12+040 99.55+022 99.27+011 99.00+049 99.84+027 99.70+0.16 99.64+004
NormStat:KL 41341145 45.89+057 33.32+151 45234225 46.42+132 55.80+067 89.76+252 57.64+072 34.05+220
VecStat:KL 98.56x019 97.58x019 97.25+013 99.70x017 98.87+016 99.66+00s 99.841027 99.62+014 99.02+027
VecStat:Cos 98.56+019 97.46+034 96.85+023 99.78+019 99.00+013 99.37x0.10 99.84+027 99.64+014 98.87+032

Qwen3-1.7B-Base

Llama-3.2-1B

Llama-3.2-1B-Instruct

Avg-MLP 99.97+003 99.94x000 100.00x000 99.96+006 99.89+001 100.00x000 100.00+000 100.00+000 99.94+003

Tail-MLP 99.37+011 99.53x0.13 99.46:£0.03 99.81+013 99.48+002 99.35+027 99.84-£027 99.73+014 99.66+007

Qwen3-4B NormStat:KL ~ 54.55+104 40.86+1.39 35.45+028 56.26+068 69.71+104 68.76+065 93.10+133 T217+120 48.70+032
" VecStat:KL 99.26+008 98.60+038 97.95+0.12 99.74x026 99.07+009 99.82+003 99.76-0.00 99.87+0.12 99.30+0.19
VecStat:Cos 98.92:+009 98.86+0.44 98.18-+005 99.89+019 99.13+008 99.53+0.10 99.84-+0.14 99.79+013 99.26+023

Avg-MLP 99.95+005 100.00+000 100.00+000 99.96+006 99914001 100.00:000 100.00+000 100.00+000 99.94:0.03

Tail-MLP 99.61016 99.69+0.18 99.47+012 100.00£000 99.39+022 99.53x0.10 99.92:+0.14 99.75+007 99.61+0.10

Qwen3-8B NormStat:KL ~ 47.37+094 38.26+1.28 27.59+0.65 60.14+127 67.73+054 63.05+043 91.51+0.60 62.54+125 49.28+084
VecStat:KL 99.09+011 98.58+042 97.78+0.09 99.78+022 99.01+004 99.81+000 99.76-+0.00 99.91+000 99.38+020

VecStat:Cos 98.90:£024 98.96x038 98.49-£0.03 99.85+013 99.13+012 99.55+007 100.00+000 99.81+012 99.35+0.19

Avg-MLP 99914003 99.98+004 100.00+000 99.96+006 99.91+003 99.97+00s 100.00+000 100.00+0.00 99.96+0.04

Tail-MLP 98.01£041 97.27x095 97.99+053 98.77x022 98.26+021 9921006 98.97x060 98.71x04s 98.50+0.07

Qwen3-32B NormStat:KL ~ 53.57+094 36.94+138 25.47+1.43 59.47+057 61.66+140 67.63+054 89.29+071 69.35+119 49.84+108

VecStat:KL 99.01+011 99.35+034 98.72:+003 99.89+011 99.29+006 99.90+005 100.00+000 99.85+009 99.75+0.16
VecStat:Cos 99.18+014 99.53x019 99.01x010 99.89x011 99.50+004 99.81x013 100.00x000 99.87x012 99.72x009

Table 8: Level-2 mathematical subfield classification results for all seven LLMs. Values represent per-subfield
accuracy across seven mathematical subfields from the Competition Math dataset.

Model Method Algebra Counting & Probability =~ Geometry Intermediate Algebra Number Theory Prealgebra Precalculus
Avg-MLP 71.78+5.57 79.48-+191 89.98+3.46 79.33+3.96 84.02+2.56 50.00-+2.20 82.79+3.37

Qwen3-1.7B Tail-MLP 65.79:+3.55 76.10£424 84.88+4.43 71.86:+6.02 82.32:+3.80 50.31+259 73.58+430
NormStat:KL ~ 23.67+127 37.83+065 48.15+4.09 58.75+108 65.46:+1.25 0.97+028 33.88+1.02

VecStat:KL 33.29+139 53.71+200 35.88+328 81.88+0.58 86.26+0.62 1.46+005 46.07+182

VecStat:Cos 57.66:0.70 61.50+2.16 36.07+337 73.58+083 86.92:+038 2224032 51.22+161

Avg-MLP 67.96+183 79.55+067 90.53+055 83.93+234 84.02+262 48.85+2.19 83.47+346

Qwen3-1.7B-Base Tail-MLP 70.97+448 80.97+2.25 90.89+1.14 7449423 81.50+6.42 51.93+7.96 78.25+255
o NormStat:KL ~ 23.35+0.70 37.23+212 47.36:+420 56.65+130 58.84+238 5.67+217 34.82+082
VecStat:KL 39.48-+328 50.86:+1.72 35.88+337 81.31+065 88.12:+0.58 1.52+052 46.41+124

VecStat:Cos 61.24-£090 62.62:+231 36.00+3.55 73.46:£080 88.18-£028 2.66+0.67 53.59+082

Avg-MLP 57.99+6.53 75134542 86.22+437 75.94+4.00 78.43+0.09 41.67+538 76.02+1.42

Llama-3.2-1B Tail-MLP 58.38+4ss8 78.35+240 91.20£128 74.44357 77.454821 36.26£471 67.01£555
) NormStat:KL ~ 19.46+3.91 16.33+1.35 38.07+298 37.01+3.60 80.24+255 0.05+0.05 27.71+173
VecStat:KL 34.57+092 50.34+192 38.19+430 76.13+097 84.89+0.59 1.38+012 48.17+266

VecStat:Cos 44.71+078 59.48+226 44.63+573 72.65+035 83.96+1.19 2.30+032 52.57+092

Avg-MLP 64.88-+£4.97 78.95+1.01 86.76+4.30 76.82:+5.70 85.39+043 45274258 84.35+2.00

Llama-3.2-1B-Instruct Tail-MLP 73.63£407 79.48£2.60 88.71+203 78.02+253 83.58+0.16 51.28+311 83.47+184
NormStat:KL ~ 4.38+324 11.69+157 36.13+3.19 37.34+324 84.40+1.00 0.26+0.12 27.98+439

VecStat:KL 40.03+262 45.09+150 35.88+346 74.32+149 88.67+043 1.25+0.14 46.75+234

VecStat:Cos 53.20+1.76 59.85£180 36.79+4.02 72.72£104 86.59+0.19 1.78+0.00 5217154

Avg-MLP 73.52:+154 79.63+4.68 89.80+2.86 79.16:+1.48 80.84-+0.78 51.23+388 84.62+294

Tail-MLP 68.98-£9.23 82.47+1.96 82.70+237 67.84+£726 81.55+351 46.89+430 79.95+150

Qwen3-4B NormStat:KL ~ 19.57+3.97 17.15+091 42.26+3.41 47.00+2.72 76.79+2.63 0.60-+0.25 34.28+1.70
- VecStat:KL 29.80-+3.56 51.99:+130 35.824337 82.31+115 89.00-£0.28 1.36+005 54.81+3.00
VecStat:Cos 62.24:£2.09 61.72+203 36.13+3.19 73.89+124 88.83+033 1.96+0.08 53.59+132

Avg-MLP 73.94+163 82.70+0.98 87.13+0.56 81.00+3.61 86.59+4.35 52.95+524 89.36+042

Tail-MLP 68.43+1381 80.52+2.03 89.92+1.91 73.87+6.12 82.92+555 53.58+064 81.10+5.72

Qwen3-8B NormStat:KL 21.01+635 19.03+1.50 40.19+356 46.38+091 73454422 0.73+059 31.98+131
VecStat:KL 36.23+3.18 51.24+117 35.88+3.28 81.00+1.60 88.89+047 1.52+012 55.15+327

VecStat:Cos 64.46:£1.45 61.95+187 36.25+3.19 74.13:+095 89.33+033 2.06+0.40 55.08+1.08

Avg-MLP 73.25+4.75 77.83+289 89.01+3.74 84.14+327 81.88+2.64 57924422 86.65+3.02

Tail-MLP 66.70-£8.95 78.43£202 88.52+4.65 79.61+3 74.06£11.10 50.57+1068 80.62+330

Qwen3-32B NormStat:KL ~ 31.99+202 21.72x085 40.56+3.48 44.61£114 75.53+256 0.13x005 31.44x147
- VecStat:KL 55.76x111 58.50£2.04 35.94+328 77.80£1.04 89.87x034 1.46+0.12 5278059
VecStat:Cos 71.16+046 64.42+2.16 37.04+320 73.32+082 89.49+087 3.00+0.72 58.47+131

24

Under review as a conference paper at ICLR 2026

Table 9: Level-2 natural language classification results for all seven LLMs. Values represent per-language
accuracy across five natural languages from the Aya dataset.

Model Method English Japanese Moroccan Arabic Sinhala Tamil
Avg-MLP 99.74+012 99.99+0.02 99.97+0.03 99.99+002 99.94+0.04
Tail-MLP 99.4940.15 100.00-£0.00 99.97+0.03 99.93+006 99.94+0.10
Qwen3-1.7B NormStat:KL ~ 82.26+139 81.42+081 85.78+0.86 99.87+0.12 99.52+0.12
’ VecStat:KL 96.27+034 99.83+0.03 99.97+0.00 99.99+002 99.93+0.06
VecStat:Cos 98.09+0.10 99.82+0.05 99.9940.02 99.99+002 99.94+0.04
Avg-MLP 99.64+0.15 100.00+0.00 99.94-+0.04 99.99+002 99.96+0.02
Tail-MLP 99.67+0.12 100.00+0.00 99.97+0.03 99.98+002 99.87+0.03
Qwen3-1.7B-Base NormStat:KL. ~ 82.58+1.88 83.08+1.35 73.59+0.57 99.83+000 98.43+0.17
VecStat:KL 97.41+0.13 99.84+0.05 99.97+0.03 99.99+002 99.93+0.06
VecStat:Cos 98.46+0.13 99.83+0.09 100.00+0.00 99.99+002 99.94+0.04
Avg-MLP 99.63+021 100.00-+0.00 99.97+0.03 99.99+002 99.9640.02
Tail-MLP 99.60+0.18 100.00+0.00 99.9740.03 99.87+000 99.71+0.28
Llama-3.2-1B NormStat:KL ~ 77.26+6.21 57.3643.14 98.56+0.11 99.67+020 99.82+0.19
VecStat:KL 96.12+039 99.92+0.02 99.9640.02 100.00+000 99.96+0.02
VecStat:Cos 98.76+007 99.98+0.02 99.9640.02 99.99+002 99.94+0.04
Avg-MLP 99.72+010 99.99+0.02 99.94+0.04 99.99+002 99.97+0.03
Tail-MLP 99.58+0.15 100.00-0.00 99.96+0.02 99.94+007 99.82+0.20
Llama-3.2-1B-Instruct NormStat:KL ~ 79.47+507 42.79+2.16 98.54+0.18 99.86+0.13 99.86+0.07
’ VecStat:KL 96.04+039 99.84+0.13 99.98+0.02 99.99+002 99.96+0.02
VecStat:Cos 98.59+0.12 99.98+0.02 99.94+0.04 99.99+002 99.94+0.04
Avg-MLP 99.71+0.10 100.00+0.00 99.94-+0.04 99.99+002 99.96+0.02
Tail-MLP 99.60+0.15 100.00+0.00 99.9740.03 99.99+002 99.99+0.02
Qwen3-4B NormStat:KL. ~ 84.60+034 90.29+1.27 90.53+0.61 99.84+007 99.11+0.54
VecStat:KL 93.99+082 99.77+0.09 100.00+0.00 99.99+002 99.93+0.06
VecStat:Cos 97.734+012 99.88+0.10 100.00+0.00 99.99+002 99.94+0.04
Avg-MLP 99.70+006 100.00+0.00 99.94+0.04 99.99+002 99.97+0.00
Tail-MLP 99.53+0.15 100.00+0.00 99.9740.03 99.99+002 99.92+0.08
Qwen3-8B NormStat:KL ~ 85.06+085 92.03+1.32 76.7640.77 99.92+004 96.69+2.25
VecStat:KL 96.27+038 99.82+0.05 100.00-+0.00 100.00+0.00 99.93+0.06
VecStat:Cos 98.66+0.13 99.83+0.09 100.00-+0.00 99.99+002 99.94+0.04
Avg-MLP 0.00+0.00 0.00+0.00 0.00+0.00 100.00+0.00 0.00+0.00
Tail-MLP 0.00+0.00 0.00-+0.00 0.00+0.00 100.00+000 0.00-0.00
Qwen3-32B NormStat:KL. ~ 97.43+0.07 0.00-+0.00 0.00+0.00 0.01+0.02 0.00-+0.00
VecStat:KL 97.57+0.10 0.00-£0.00 0.00+0.00 0.00+0.00 0.00-£0.00
VecStat:Cos 97.57+0.10 0.00+0.00 0.00-+0.00 0.00-£0.00 0.00+0.00

25

Under review as a conference paper at ICLR 2026

Code+Math

““static func calcWidth(text: String) -> CGFloat {
let constants = StoreSortBaseCell.Constants()
let textWidth = HelperManager.textWidth(text, font: constants.titleLabelFont)
return constants.horizontalSpace
+ textWidth
+ constants.spaceBetweenStarAndTitleLabel

+ constants.starlmageViewSize

i Bets paratorAndI View

+ constants.verticalSeparatorWidth

i paceBet: paratorA View

+ constants.dropDownButtonWidth
+ constants.horizontalSpace
i

In the solution, the ‘calcWidth" function takes the input text and calculates the width based on the provided constants and helper function. It first
initializes the constants and then uses the "textWidth" helper function to calculate the width of the input text. Finally, it computes the total width based
on the constants and returns the result as a floating-point number.

-Jame will turn 27 in 5 years. In 8 years his cousin will be 5 years younger than twice his age. How many years separate the age of the two now?

Figure 6: Mixed-intent prompt example combining Swift code (width calculation function) and a mathematical
problem used for uncertainty quantification analysis.

(a) NormStat (b) VecStat (c) Tail-MLP (d) Avg-MLP

I Math
N Text
I Code

Figure 7: Uncertainty quantification results on mixed-intent prompt with reversed concatenation order (math-
ematical contents followed by code contents) on Qwen3-1.7B-Base.

NormStat:KL —=— VecStat:KL —=— VecStat:Cos
gsm8k humaneval magicoder math500 mmlu_history
1007 x n ———i—————i—

e ~ p———

< — *

g 80 _ "

E \A A_._—A/‘_‘/

; 60 -

=

4 % 12 16 20 24 284 8 12 16 20 24 284 & 12 16 20 24 284 § 12 16 20 24 284 & 12 16 20 24 28
Number of Layers Number of Layers Number of Layers Number of Layers Number of Layers

Figure 8: Effect of the number of layers on level-1 classification accuracy for Qwen3-1.7B.

26

Under review as a conference paper at ICLR 2026

100
- "~ Empirical — Empirical
000200 ~— e ~ o - o Empi
&1 o =1 --- VecStat N (V(d/N) -=- VecStat O(N"~
0.00175 -~ Normstat bound O(v(log(1/5)N) 10 -~ NormStat O(N~{-0.5}) fecstat bound O(V(d/N) fecstat O(N™{-0.5})
000150 Cos N
N . 50 5
5 5 8 g
8 000125 g 15 £
g g H &
< 0.00100 H < <
§ § Soa g
= 0.00075 = = =
0.00050 02 10
0.00025 1074
000000
0 5000 10000 15000 20000 25000 30000 10° 10¢ o 5000 10000 15000 20000 25000 30000 10° 0t
Sample Size N Sample Size N Sample Size N Sample Size N
10°
— — —+ Empirical = Empircal
ooous o Empes 0 S i
0.00150 == NormStat bound O(v(log(1/6)/N)) 107 == NormStat O(N~{-0.5}) ~r= Vecstat bound O(vtdiNI) Zoo VecStst OIN~(05H)
5 5 506 =
g ooonzs 5 5 5
g g & &
& 0.00100{ & = =
c ! c < <
g s Soa 8
S oooors g
= = = =
000050
02 10
0.00025 10
000000
0 5000 10000 15000 20000 25000 30000 10° 10° 0 5000 10000 15000 20000 25000 30000 10° 0t
Sample Size N Sample Size N sample Size N Sample Size N
0.0014 e.7 —e— Empirical —e— Empirical
—— Emprcal —— Empirica
+1std 10 15t 06 i s
0.0012 e o aSE3E B GGV SS/ST e NomStht O~ L0531 -~ Vecstat bound O(V(d/N)) -=- VecStat O(N~{-0.5})
_ 00010 N L05 .
§ 8 2 2
& 0.0008 & &4 5
E c = <
£ £ H H
S o006 g £03 =
0.0004 02 10
0.0002 10 01
o 5000 10000 15000 20000 25000 30000 10° 10% 0 5000 10000 15000 20000 25000 30000 10° 0t
Sample Size N Sample Size N Sample Size N Sample Size N
07 -
0.0014- —e— Empirical —e— Empirical Empirical - Empmca
1st0 103 150 o6 i . B e
00012 mulil U NN S e O~ T05h ~-- Vecstat bound O(V(diN) - Vecstat ON~£-0.5))
0.0010- 5 05 5
8 5 g 2
§ oo £ G os &
H 5 ® ©
£ 0.0006 g Sos g
s = = =
0.0004 02 10t
0.0002 104 01
o 5000 10000 15000 20000 25000 30000 107 0 5000 10000 15000 20000 25000 30000 10° 0*

10*
Sample Size N Sample Size N

(g) Qwen3-1.7B (NormStat)

bt
Sample Size N Sample Size N

(h) Qwen3-1.7B (VecStat)

Figure 9: Calibration convergence analysis for different models and methods on the MagiCoder dataset. Each
subplot shows both linear and log-log scales comparing empirical results with theoretical bounds. Norm-
Stat (norm method) uses dimension-free bounds while VecStat (projection method) uses dimension-dependent
bounds.

27

Under review as a conference paper at ICLR 2026

Mean Accuracy (%) Mean Accuracy (%) Mean Accuracy (%)

Mean Accuracy (%)

M oE 2 ® o
g8 85 8 g8 8

s
8

»
]

S
3

=
3

40

20

—— NormStat:KL

—+— VecStat:KL

—=— VecStat:Cos

gsm8k humaneval magicoder math500 mmlu_history
——— o e I p— . . — p—— = -
-_/' —. — -
\‘\‘ o3
/‘/
327 64 138 256 512 32 64 138 256 si2 32 64 138 256 si2 32 64 128 256 si2 32 64 138 256 512
(a) Qwen3-1.7B
— = = = 2 = — = -
T p—
A\A A—i
—
\'\-_-
-\'\-_-_-
2 64 13 2% si2 32 4 138 256 si2 32 64 138 256 si2 32 64 138 256 512 32 64 138 256 502
(b) Qwen3-1.7B-Base
5 — —_—
——— r — — —
N —— — —
/ ———
327 64 138 236 512 32 64 138 256 512 32 64 128 256 si2 32 64 128 256 s12 32 64 18 256 512
(c) Llama-3.2-1B
—_—— - =
e &
327 64 138 236 512 32 64 138 256 512 32 64 128 256 si2 32 64 128 256 512 32 64 138 256 512

Maximum Sequence Length

Maximum Sequence Length

Maximum Sequence Length

(d) Llama-3.2-1B-Instruct

Maximum Sequence Length

Maximum Sequence Length

Figure 10: Effect of the maximum prompt length on level-1 classification accuracy for Qwen3-1.7B (a),
Qwen3-1.7B-Base (b), Llama-3.2-1B (c), and Llama-3.2-1B-Instruct (d)..

28

	Introduction
	Related Work

	Methodology
	A Statistical Approach to Intent Classification
	Intuitive Analysis in a Gaussian Setting
	Training-based Intent Classification

	Experiments
	Experimental Setup
	Empirical Results
	Case study on ambiguous prompts
	Effect of number of probed layers and prompt length
	Calibration Analysis

	Conclusion
	Additional Theoretical Analysis
	Two endpoints on the compression ladder
	Sufficiency

	Proofs
	Proof of lemma:sufficiency
	Proof of thm:radial-vs-coord
	Proof of thm:calibration

	Experiment details
	Dataset composition and processing strategies
	Datasets
	Selected LLMs
	More Implementation Details
	Pseudo-Algorithm
	Hardware and software environment

	Additional Experimental Results
	Additional Results for Level-1 Classification.
	Addtional Results for Level-2 Experiments
	Case Study
	The effect of the number of layers considered
	Calibration Convergence Analysis
	The effect of the maximum prompt length

