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ABSTRACT

Intent classification in Large Language Models (LLMs) involves categorizing user
prompts into predefined classes. For instance, given a user prompt, the system
must determine whether it primarily concerns mathematics, coding, or general
text processing. Such classification enables routing prompts to specialized models
optimized for specific domains, improving both accuracy and computational effi-
ciency. In this work, we introduce two lightweight, training-free methods based on
statistical analysis of internal model representations and systematically compare
them against baseline training-based approaches from the literature. Our methods
analyze the distribution of key statistical metrics extracted from hidden features,
enabling intent inference during the initial forward pass with minimal computa-
tional overhead. Through comprehensive empirical evaluation, we demonstrate
that our training-free methods successfully classify prompts across varying levels
of granularity—from high level distinctions (mathematics vs. coding vs. natural
language) to fine-grained ones (e.g. Java vs. Python, etc). Our results provide
a systematic characterization of scenarios where training-free methods are most
useful, and identify cases where training-based approaches remain necessary, of-
fering a practical guidance for deployment in production LLM systems.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse tasks
including mathematical reasoning (Wei et al., [2022} [Yao et al., [2023}; |Gao et al.l 2023) and code
generation (Li et al. [2022; |Guo et al.| [2024; Zhu et al., 2024). While many LLMs are trained for
general purpose tasks (Radford et al., 2019; Raffel et al., 2020), current state-of-the-art is moving
towards a routing approach where an intent classifier is used to detect user intent and then send the
prompt to a specific model (OpenAl, 2025} Bocklisch et al., 2017; Bunk et al.| 2020; |Arora et al.|
2024). This has the benefit of improving inference efficiency of production-scale LLM systems.
Approaches to intent classification either rely on LLM calls, which is prone to hallucination (Bang
et al., [2023; Banerjee et al.l [2025)), or on dedicated classification models, which requires extensive
training data and computational resources |Larson et al.| (2019); |Chen et al.| (2019). Both introduce
considerable inference latency and lack robust uncertainty quantification for routing decisions.

In this work, we introduce two training-free methods for intent classification, VecStat and NormStat,
that operate entirely in the prefill phase with negligible extra cost. The motivation is the observation
that different prompt types (mathematics, coding, general text, etc.) induce distinct activation distri-
butions. Specifically, VecStat and NormStat represent two levels of statistical compression: VecStat
preserves directional information but induces higher storage and calibration cost, while NormStat
aggregates radial evidence and enjoys minimal memory consumption. Theoretical analysis fur-
ther clarifies this trade-off: VecStat is preferable when class differences are primarily directional,
whereas NormStat suffices—and is more memory-efficient—for isotropic-scale separation (coarse-
grained classification tasks) thanks to the dimension-free calibration complexity.

Beyond computational efficiency relative to direct LLM calls, a key benefit of statistical meth-
ods is uncertainty quantification. With a one-line softmax normalization, statistical methods yield
well-calibrated class probabilities, including on mixed-intent prompts; In contrast, we show that a
training-based method using MLP head (inspired from sentence-classification pipelines (Casanueva
et al., 2020; Jiang et al., |2024)) typically requires post-hoc calibration (e.g., temperature scaling)
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Method FLOPs Overhead Memory Overhead Extendability of New Classes Uncertainty Quantification
NormStat O(Td) Oo(m) Compute new baselines Works well

VecStat O(Td) O(md) Compute new baselines Works well

MLP O(hd) O(hd) Retrain a new MLP head Possible but needs extra calibration
LLM Call Q(Td?) ~ Extend via prompt engineering X

Table 1: Comparison of classifiers. T: prompt length; d: hidden width; m: # classes; h: MLP hidden size.

to avoid overconfidence (Guo et al. [2017). When classes change, our methods also support rapid,
incremental updates by simply appending new class statistics, avoiding any retraining. Table[I|com-
pares these methods by compute, memory, extendability, and uncertainty quantification.

We conduct extensive empirical analysis to compare the performance of VecStat and NormStat
against the training-based MLP classifier applied at the LLM’s final projection layer. We apply
these methods to LLMs ranging from 1B to 32B parameters and evaluate intent classification at
both coarse-grained and fine-grained levels across seven benchmark datasets. The empirical results
reveal that there is no one-fits-all model for intent classification. On the one hand, NormStat ex-
cels at coarse-grained intent classification with minimal computational and storage overhead, while
VecStat handles both coarse-grained and fine-grained tasks but requires additional storage overhead.
On the other hand, training-based methods typically achieve higher accuracy on hard tasks, yet
they suffer from overconfidence in predictions, limiting their ability to provide reliable uncertainty
quantification and making them vulnerable to ambiguous prompts. Our contributions are:

e We introduce NormStat and VecStat, two training-free statistical methods that perform intent
classification directly within the LLM prefill phase, requiring O(7'd) additional computation
compared to ©(T'd?) forward pass cost, enabling deployment with negligible latency overhead.

* We provide theoretical analysis showing when each method excels: VecStat performs best when
prompt types differ in feature directions, while NormStat is optimal when they differ in overall
magnitude, with NormStat requiring fewer calibration samples to achieve comparable accuracy.

* We validate our methods across seven LLMs (1B-32B parameters) on both coarse-grained and
fine-grained intent classification tasks, demonstrating that statistical methods provide superior
uncertainty quantification for mixed-intent prompts compared to overconfident training-based
approaches, while achieving competitive accuracy with minimal computational overhead. Fur-
thermore, we show that statistics from early layers—available during the early prefill stage—are
sufficient for accurate routing without a full forward pass, reducing serving-time computation.

1.1 RELATED WORK

Task Classification Intent classification maps a user prompt to a predefined label. Classical ap-
proaches either (i) train supervised classifiers over tokenized utterances (e.g., CNNs) to produce
a distribution over intents (Hashemu et al., 2016; |Goo et al., 2018; [He et al., [2019), or (ii) fine-
tune contextual encoders, particularly BERT-based models, where hidden states feed specialized
intent classification heads, often jointly trained with slot filling tasks (Chen et al., |2019; [Bocklisch
et al., 2017 [Bunk et al.| 2020). In modern LLM-based systems, intent classification serves as a
critical routing mechanism that allows the selection of appropriate downstream tools and models,
enforces guardrails and fallback policies, and optimizes inference cost and latency (Souha et al.,
2023} |Arora et al} [2024). The predominant approach involves direct LLM inference through sev-
eral key techniques (Liu et al [2023; Rodriguez et al., [2024; [Wang et al., 2023} |Arora et al.| 2024;
Hong et al.| 2024} Wei et al.,2022). However, the computational expense of LLM inference at scale
has motivated hybrid architectures that combine fast, lightweight classifiers (including PEFT-tuned
encoders) with LLMs through uncertainty-aware routing mechanisms. These systems employ con-
fidence thresholding, entropy-based measures, or learned routing policies to reserve expensive LLM
calls for ambiguous cases where simpler models exhibit high uncertainty (Liu et al., 20225 2024)).

LLMs as text encoder Recent advances in LLMs have prompted researchers to explore their use
as text encoders. An interesting approach is embedding extraction where existing methods typically
operate on the last layer outputs through three strategies: using the last token embedding (Ma et al.,
2024} |[Neelakantan et al., [2022; Wang et al.| 2024; Meng et al.| 2024} Jiang et al.l [2024), averaging
across all token embeddings (Muennighoff, 2022; Muennighoff et al., [2024; BehnamGhader et al.,
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2024), or employing trainable modules (Lee et al. [2024; [Tang & Yang| 2024)). Interested readers
can refer to (Tao et al.;,2024;|Nie et al.|[2024) for a more detailed review on this topic. In contrast to
these approaches, this work addresses user-intent classification for routing where both accuracy and
computational efficiency are primary considerations. Our method utilizes prefill-time outputs from
general-purpose LLMs without modification or additional training. By leveraging computational
intermediates already produced during LLM prefill phase, this approach avoids the storage overhead
of maintaining a dedicated billion-parameter model for intent classification.

Neural Feature Analysis Our approach extracts representations Wz, where W is a pretrained
weight matrix and z is model’s hidden state. This design is motivated by two lines of research.
First, linear probes effectively extract semantic information from transformer representations (Alain
& Bengio, |2016; |Hewitt & Manning| 2019)), with sparse autoencoder studies suggesting that many
concepts are captured by a small number of sparse features in the activation space (Cunningham
et al.| 2024; |Gao et al.| 2024). Superposition theory provides theoretical grounding, explaining
how features remain recoverable through linear projections (Elhage et al., 2022). Second, activa-
tion steering research demonstrates that intent-related behaviors can be manipulated through linear
interventions in the representation space (Turner et al.| 2023} Panickssery et al., [2023)). Finally, ac-
tivations Wz were successfully used in |[Hayou et al.| (2025) to determine target module for LoRA
finetuning, showing that activation capture data signal.

2 METHODOLOGY

In Large Language Models, prefill refers to the first forward pass of the user prompt. During this
time, KV-cache is filled for autoregressive decoding (Shazeer, 2019; |Ainslie et al.| 2023} |[Chang
et al. 2024; |Aguirre et al.| 2025} Jie et al., 2025) and gets updated for each token generation. In
the prefill, we already compute the prompt’s first forward pass to build keys/values; adding a light
classifier there adds low cost but could provide a strong signal to route the prompt if needed: simple
prompts remains on a small, cheap model; math/code/reasoning prompts routed to a larger or spe-
cialized model. Making this decision before the first generated token avoids wasting computation
on the mismatched model. This is even more important if routing is customized for each user.

Modern LLM serving imposes a lightweight constraint on any prefill-time intent classifier used for
routing: (i) the classifier’s extra computation must be negligible compared to a single forward pass,
and (ii) per-prompt memory and persistent storage must be negligible. Concretely, for a prompt of
length T, a forward pass cost ©(T'd> )[1_-] computation in any given layer with hidden dimension d; a
lightweight classifier should at most add o(T'd?) cost, ideally O(T'd). Likewise, per-request state
must be O(1)-0(d) floats (not O(T'd)), and per-class baselines must be O(1)-O(d) numbers. More
details are provided later in the paper.

In the following, we introduce a training-free approach to intent classification, based on a statistical
analysis of hidden features in LLMs, and satisfies the computational constraints above.

2.1 A STATISTICAL APPROACH TO INTENT CLASSIFICATION

Consider an LLM with weight modules M = {W;, W5, ..., W}, for some p > 1. The weights
modules M represent all available weight matrices in the model, across layer index and module
type. We will abuse the notation and use W, to refer to both the module and its weight matrix.

Let x = (x¢)1<¢<7 be a prompt of T" tokens. For each weight module W7, let (ys,¢), ., denote
the output features in module W,. For instance, (ye,;) 1<t<7 could be the output of a Query head, or

the projection layer in an MLP block. Each ., is a d-dimensional vector given by vy, = Wiz,
where d is the output dimension in module W, and z; + is the input to that module for token ¢.

Intent classification. We aim to classify the prompt x into one of the classes Cy,Cy, ..., Cyy,
where m > 2. For instance, a binary classification where C1 is mathematics and C is coding. For

"The forward pass cost is ©(T'd*> + T2d). In the regime d > T, the T'd* term dominates, so we drop the
T2d term and write the cost as ©(T'd?); retaining 7 d does not affect our conclusions.
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each module W,, we compute lightweight summary statistics from the features {y,;}7_; and com-
pare them to per-class baselines: (i) for each class C;, precompute the same statistics on calibration
data at the same module Wy; (ii) for the incoming prompt, compute the statistics at W, and measure
similarity to each baseline; (iii) predict the class C; with the highest similarity.

Several statistics are considered, such as the mean and covariance of {y,,}7_;, to capture geometric
information about the hidden features. Estimating the mean requires O(7'd) calculations while
the covariance requires O(7'd?). Therefore, using covariance is not computationally efficient in
inference setting, since it violates the O(7T'd) condition above. However, we consider a weaker
variant where we only estimate coordinate-wise variance (diagonal of the covariance matrix). We
call this method VecStat, which relies on coordinate-wise mean and variance for classification. We
also introduce a lighter weight method called NormStat, which relies solely on the norm statistic
across all tokens and coordinates.

In the following, we present the two methods in the single-layer case. When multiple layers are
used, we aggregate similarity scores across ¢ by averaging.

Vector Statistic (VecStat): calculate coordinate-wise token means and second moments tokens
T

T
1 d 1 d
Svec = T ;:1 Yy € RY, Qvec = T_1 § (yt — Svec) © (yt — Svec) € R (N

t=1

Norm Statistic (NormStat): summarize each y; through a the norm ||y || and aggregate across tokens
to obtain the statistics

Lol L (Il
Snorm:* : GR, norm — 5 4 ( :
T2 g €8 Q=72

2
- Snorm) € R (2)

With both methods, we use closed-form Gaussian KL divergence (3)) and (6) to measure the similar-
ity between prompt and classes’ statistics. Intuitively, this acts as a proxy for the true KL-divergence
between distributions which is prohibitively expensive to compute. Across models and datasets, we
observed that the radial token features ||y,.¢|| /+/d are Gaussian-like for fixed ¢ (Fig. , and similar
observations hold for the coordinates of y;.

These two choices form a statistical compression ladder: Vec-
Stat keeps per-coordinate first and second moments, while Norm-

Stat compresses all coordinates to a single radial information per 1
token and then to its mean/variance across tokens. §
The rest of this section develops this story rigorously: (i) we prove  § e
when each is statistically preferable using a simplified Gaussian set- = g
ting, and (ii) we connect those guarantees to compute, memory, and 10
calibration costs. All the proofs are deferred to Appendix [B} 1

! ! ! !
2.0 2.5 3.0 3.5 4.0
Value

2.2 INTUITIVE ANALYSIS IN A GAUSSIAN SETTING

Intuitively, VecStat retains more information about feature distri-

bution than NormStat because it tracks coordinate-wise statistics  Fjgure 1: Per-token query-
instead of a single statistic for each module. To understand the dif- [orm  distributions across
ference between these two methods, we consider a Gaussian set- |ayers, Histograms ~ of
ting with diagonal covariance and study regimes where NormStat is {lyeell/ \/a}T for repre-
competitive with VecStat, in which case NormStat is preferred for sentative 1 aygsl 0. Shapes
computational efficiency. Additional analysis is in Appendix [A] are close 1o Gau.ssian with

layer-dependent mean/vari-
ance, which supports a 1D
Gaussian proxy for NormStat.

Setting and notation. Here we study general features (y;)1<t<7
(not necessarily representations in an LLM). For each baseline class
ke{l,...,m}andtokens t = 1,...,T, assume that

Y | ko~ N(ug, Bi) € RY, independently across t, 3)

2One could estimate an empirical KL without summaries, but doing so robustly at inference time is pro-
hibitively expensive in both compute and memory.
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where, ¥y, = Diag(o? ,...,0} ;) is a diagonal covariance matrix.

NormsStat observes only the norm {||y:||} and is invariant to rotations of the features; it cannot detect
separation that lives in direction. In contrast, VecStat retains per-coordinate first/second moments
and is therefore rotation-sensitive. In an isotropic-scale setting (equal means, spherical covariances
with different variance), the optimal likelihood ratio reduces to a monotone function of the total
radial sum ), [|y4||%, so NormStat is already Bayes-optimal. But in a directional setting (equal
covariance, equal mean norms, different mean directions), every radius-only rule is blind, whereas
a coordinate-aware test achieves exponentially small error in 7'. The next theorem formalizes this.

Theorem 1. [NormStat vs VecStat] Assume a binary classification k € {1, 2} with uniform prior.

1. Directional regime (NormStatx, VecStatv'). Assume $1 = Yo = 021y, ||| = ||p2
and jiy # po. Then any classifier whose decision depends only on the norms {||y:||} 1,
has Bayes error 1/2. Moreover, the likelihood-ratio test achieves error probability

7. T . 17 She s — pl2) 2 07
Prll £ 8) < oxp (< sl —lP ) where Br) = {7 (et 74

>

2. Isotropic-scale regime (NormStatv', VecStat ties). Assume (11 = po = 0 and ¥y, = U,f[d
with o1 # 09. Then the Log-Likelihood Ratio is a strictly monotone function of the radial
statistic Rp = Zz;l llyel|?; hence every Bayes-optimal test depends only on Ry, and
adding coordinate-wise information cannot improve its Bayes risk.

Theorem (1] isolates two extremes, whereas real prompts generally result in a mix between these
extremes. An example is the following: assume y; are i.i.d. from a sign-mixture with s; € {£1},

ye ~ TN (4, 0215) + (1 — 0N (—p, 0%1a), v :=E[s;] = 27 — 1,
where 1 € R4, € (0, 1). Hence,

E[Svec) =1t ElQuec) = 0*la+ (1 =)@ p,  E[Snorm] = Ellge| = Fp,0?),
where F(p1,02) depends only on (u,02). For NormStat, since norms are even, the distribution of
ly¢|| is invariant under the £y mixture. Consequently, the distributions of Syorm and Qperm do not
depend on 7. As ™ — %, the advantage of VecStat over NormStat shrinks; at 7 = %, the mean
component Sy, cancels, and VecStat effectively reduces to its second—moment part, aligning with
the radial evidence summarized by NormStat. Away from %, S,.. provides a clear benefit.

Calibration Cost. An important aspect of statistical methods is sample complexity, or more
specifically, the convergence rate in the number of samples. This provides an estimate of the to-
tal number of calibration samples needed to create the classes k € {1,2,...,m}. The next theorem
show the calibration advantage of NormStat over VecStat.

Theorem 2 (Calibration cost). Fix a class k. Let y1,...,yn -~ N (g, Xx) in RY, where N is the
number of calibration samples drawn for this class. Let ¢ = E|||y1|] and define ji, = N~! ZZ\; Yi,
and §=N-1 Zivzl d=2||y;||. Then, for any & € (0, 1), with probability at least 1 — 6, we have:

. . ~ log(1/0
1. NormStat (dimension-free): |G — q| < 1/ %.

2. VecStat (dimension-dependent): ||ji;, — pll2 < 4/ %ﬂ/é).

Considering just the statistics (i and ¢, to obtain an estimation error of order €, one needs N =
Q(e2) for g and N = Q(de=?) for fi, showing the computational advantage of NormStat over
VecStat. This is particularly important in data scarce regimes with few samples for each class. We
discuss this in more details in the next section.

Theorem [I|and Theorem [2] compare our methods from two different angles: (i) expressivity, where
VecStat has an edge if directional information is important, otherwise NormStatties with VecStat,
(ii) calibration cost, where NormStat has an edge with fewer calibration samples needed to reach
a given error level. A third important angle is storage/memory cost: while both methods have
similar classification cost (O(T'd) per module), NormStat uses O(B) scalars and O(B) scoring
FLOPs, while VecStat uses O(Bd) numbers and O(Bd) scoring FLOPs—so for large B or tight
memory/latency budgets, NormStat has an advantage.
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2.3  TRAINING-BASED INTENT CLASSIFICATION

For a comprehensive empirical study, we consider an intent classifier based on a trained head on
top of frozen LLM features. We use the last Transformer block and write y¢- ; € R? for its token
features (t = 1,...,T"). Inspired by prompt/sentence classification pipelines (e.g., (Ma et al., 2024;
Wang et al.,|2024; Meng et al., [2024))), we build a single prompt-level vector in two ways:

T

1 *

AVEMLP: 2o = o > yea =580 €RY Tail-MLP:  zip o=y 7 € RY.
t=1

Given z € {zavg, Ztail }, We train a two-layer MLP with hidden width h with cross entropy loss.

Since Zavg OT Ztail is produced during prefill, the incremental latency is a single MLP forward pass.

Compute/memory and deployment. Per token, the head adds O(dh + hm) FLOPs and stores
O(dh + hm) parameters, with m < d in our setting. Post-hoc calibration (e.g., temperature scaling
on a held-out split) yields better-calibrated confidences for routing. Because the head is small, per-
user heads are feasible; however, unlike NormStat/VecStat, adding a new baseline class expands the
output layer and typically requires retraining or incremental fine-tuning. Empirically, Avg-MLP is
more stable for long prompts, while Tail-MLP can capture end-of-prompt cues.

3  EXPERIMENTS

In this section, we evaluate the effectiveness of NormStat, VecStat, Avg-MLP and Tail-MLP across
multiple LLMs and classification datasetsﬂ Comprehensive experimental details can be found in Ap-
pendix [C] and additional experimental results are presented in Appendix

3.1 EXPERIMENTAL SETUP

Classification granularities We consider two levels of granularity. Level-1 addresses coarse-
grained classification across three domains: general text, mathematics, and code. Level-2 tests
fine-grained separation within each domain: identifying programming languages, mathematical sub-
fields, natural languages. For Level-1 calibration, we use representative datasets: MMLU European
History (Hendrycks et al., |2021ajb) for general text, GSM8K (Cobbe et al.| 2021) for mathematics,
and Magicoder (Wei et al., [2023) for code. We test on MMLU US History for general text, GSM8K
and MATHS500 (Lightman et al., |2023)) for mathematics (in-distribution and out-of-distribution re-
spectively), and Magicoder and HumanEval (Chen et al., 2021) for code (in/out of distribution).
Level-2 experiments utilize domain-specific subsets: Magicoder for programming language identi-
fication, Competition Math (Hendrycks et al., [2021c)) for mathematical subfield classification, and
the Aya dataset (Singh et al., 2024) for natural language identification, with each dataset split be-
tween calibration and test sets. For more details, please refer to Appendix [C.1]

Method and LLM selection We compare five classification methods: our methods NormStat
and VecStat, with VecStat evaluated using both cosine similarity (VecStat:Cos) and KL divergence
(VecStat:KL), and training-based baselines Avg-MLP) and (Tail-MLP). Training-based methods use
the same calibration data for training to ensure fair comparison. All calibration prompts are truncated
to 512 tokens, with training-free methods probing all projection modules across LLMs. We evaluate
on seven pretrained LLMs from the Qwen3 and Llama families, spanning 1B to 32B parameters and
including both base and instruction-tuned variants, providing comprehensive coverage across model
scales and training paradigms. See Appendix [C.3]for more details on the selected LLMs.

Evaluation Metrics We compute accuracy on each test dataset independently, where each dataset
contains samples from a single ground-truth class. This approach ensures our evaluation is not
biased by varying dataset sizes across classes. For Level-2 classification, we report mean accuracy
across all classes within each task due to space constraints. This mean accuracy corresponds to
the balanced accuracy metric, providing equal weight to each class regardless of test set size and
effectively handling the natural class imbalance among test datasets. All experiments use three
random seeds, and we report mean performance with standard deviation.

3Source code is provided in the supplemental materials
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Table 2: Classification accuracy across five methods on level-1 and level-2 classification granularities. Level-
1 reports per-dataset accuracy for coarse-grained domain classification (general text, math, code). Level-2
reports average accuracy across classes within each domain: programming languages, mathematical subfields,
and natural languages. Qwen3-32B natural language results are omitted due to computational constraints.

Model Method Level-1 Level-2
gsm8k humaneval ~ magicoder ~ math500 mmlu_history code math natural language
Avg-MLP 99.97+0.04 99.80+035  99.99+002  78.33+167 100.00+0.00 99.96+001  76.77+027 99.93+0.02
Tail-MLP 100.00+000  100.00+000  99.97+002  99.00+0.00 100.00+0.00 99.59+002  72.12+027 99.87+0.05
Qwen3-1.7B NormStat:KL ~ 97.35+0.00 70.12+0561 99.27+0.11  76.60+0.20 100.00+0.00 57.79+073  38.39+056 89.77+025
o VecStat: KL 100.00+000  99.39+000  99.97+003  88.33x030 100.00=+0.00 99.24+012  48.36+0.64 99.20+0.08
VecStat:Cos 100.00+000  98.78+000  99.97+003  92.26+0.11 100.00+0.00 99.08+0.16  52.74+067 99.57+0.02
Avg-MLP 100.00+£000  100.00+000  99.99x001  64.331833 99.84+028 99.97+001  70.20+072 99.91+0.04
Tail-MLP 99.95+004  100.00+000  99.97+003  98.93+0.42 99.35+1.13 99.47+007  69.01+1.11 99.83+0.07
Llama-3.2-1B NormStat:KL ~ 99.49+0.09 90.85+000  96.39+020  83.40+0.00 92.48-+0.57 49.22+073  31.27+054 86.53+1.33
o VecStat: KL 100.00+000  99.39+000  99.98+002  78.80+0.12 100.00+0.00 98.99+0.10  47.67+089 99.19+0.08
VecStat:Cos 100.00+000  99.39+000  99.97x002  77.60+020 100.00+000  98.71x012  51.47+073 99.72+0.01
Avg-MLP 99.42+0.74 99.59+035  99.99+002  77.27+11.02 100.00+0.00 99.97+001  79.10+048 99.92-+0.01
Tail-MLP 99.82+0.12 98.58+246  99.98+002  81.20+972 100.00=+0.00 99.67+001  75.76+068 99.88+0.04
Qwen3-8B NormStat:KL ~ 85.14+035 10.37+106  99.85+006  92.93+0.12 99.51+049 56.39+069  33.25+092 90.09=+0.40
VecStat:KL 99.95+0.04 99.59+035  99.99x002  92.20+0.00 100.00=+0.00 99.23+0.00  49.99+1.12 99.20+0.08
VecStat:Cos 100.00+000  95.73+0.61 99.98+003  94.20+0.00 100.00+0.00 99.34+000  54.75+063 99.68+0.03
Avg-MLP 95.88+331 100.00+000  99.99+001  86.87+522 100.00+0.00 99.97+001  78.67+0.67
Tail-MLP 99.39+000  100.00+000  99.98+000  96.80+0.40 99.02:+0.49 98.41+000  74.07+115
Qwen3-32B NormStat:KL ~ 97.93+0.04 24.59+035  99.78+006  97.93x0.2 100.00+0.00 57.03+043  35.14+025 -

VecStat:KL 100.00+000  99.39+000  99.98+003  96.60+0.00 100.00+0.00 99.53+007  53.16+052
VecStat:Cos 100.00+000  98.17+000  99.98+003  96.80+035 100.00=+0.00 99.61+006  56.70+088

3.2 EMPIRICAL RESULTS

Table [2| reports classification results at both granularity levels for five methods on four representa-
tive LLMs, while Table [3] provides detailed per-class accuracy for level-2 programming language
classification. Results for all seven LLMs are reported in Appendix (level-1) and [D.2] (level-2).

Level-1 classification performance Across coarse-grained intent classification, all methods
achieve strong performance on in-distribution test sets. The effectiveness of NormStat, despite using
only radial statistics, demonstrates itself as a computational- and memory-efficient approach when
the classes are different enough. Surprisingly, NormStat outperforms all other methods in some
cases (e.g. Qwen3-32B evaluated on math500). VecStat achieves marginally higher accuracies
than NormStat in most cases, however, this improvement comes at increased computational cost.
Training-based methods perform comparably to VecStat, with no approach consistently dominating
across datasets. Out-of-distribution generalization varies substantially, as evidenced by the perfor-
mance difference between GSM8K and MATHS500 for mathematics tasks, suggesting that different
methods might capture distinct aspects of domain characteristics.

Level-2 classification performance Fine-grained classification within domains reveals clear per-
formance stratification across methods. For programming language identification, VecStat maintains
near-perfect accuracy while NormStat shows substantial degradation, aligning with our theoretical
prediction that directional information becomes critical for within-domain discrimination. As de-
tailed in Table[3] this performance gap remains consistent across all nine programming languages.
Mathematical subfield classification proves most challenging for training-free methods, with both
NormStat and VecStat falling short of training-based approaches. This gap suggests that effec-
tive discrimination among mathematical topics requires non-linear transformations better captured
through supervised training signals. In contrast, natural language identification demonstrates strong
performance across all methods, with VecStat achieving near-perfect accuracy, likely due to distinct
linguistic features being well-separated in the LLM’s hidden representation space.

Distance metric comparison The cosine distance variant of VecStat consistently outperforms its
KL divergence counterpart, particularly in Level-2 tasks. This may suggest that the independence
assumption across feature dimensions inherent in the diagonal covariance formulation may discard
correlational information present in the true feature distributions. On the contrary, angular separation
between prompt and baseline statistics offers a more robust measure that captures directionality.
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Table 3: Level-2 programming language classification results for Qwen3-8B and Qwen3-32B. Values represent
per-class accuracy across nine programming languages from the Magicoder.

Model Method cpp csharp java php python rust shell swift typescript
Avg-MLP 99.95+005  100.00+000  100.00£000  99.96+006  99.91+001  100.00+000  100.00+000  100.00+000  99.94:+0.03

Tail-MLP 99.61+016  99.69x0.18 99.47+012  100.00+000  99.39+022  99.53+0.10 99.92:+0.14 99.75+007  99.61x0.10

Qwen3-8B NormStat:KL ~ 47.37+094  38.26+128 27.59+065 60.14+127  67.73+054  63.05+043 91.51+060 62.54+125  49.28+084
N VecStat: KL 99.09+011  98.58+042 97.78+009 99.78+022  99.01+004  99.81x000  99.76+0.00 99.91+000  99.38+020
VecStat:Cos 98.90+024  98.96+038 98.49-+0.03 99.85+013  99.13x012  99.55+0.07 100.00+000  99.81+0.12  99.35+0.19

Avg-MLP 99.91+003  99.98+004  100.00+000  99.96+006  99.91+003  99.97+006  100.00+000  100.00+000  99.96:+0.04

Tail-MLP 98.01+041  97.27x095 97.99+0.53 98.77+022  98.26x021  99.21+0.06 98.97+0.60 98.71+048  98.50+0.07

NormStat:KL ~ 53.57+094  36.94+138 25474143 59.47+051  61.66+140  67.63+054 89.29+071 69.35+119  49.84+1.08
VecStat:KL 99.01x011  99.35x034 98.72+003 99.89x011  99.29+006  99.90+005  100.00+000  99.85+009  99.75x0.16
VecStat:Cos 99.18+014  99.53=0.19 99.01=+0.10 99.89+0.11  99.50+004  99.81+0.13  100.00+000  99.87+012  99.72+0.09

(a) NormStat (b) VecStat (c) Tail-MLP (d) Avg-MLP

Qwen3-32B

B Math
N Text
I Code

Figure 2: Uncertainty quantification results on a mixed-intent prompt on Qwen-1.7B-Base.

3.3 CASE STUDY ON AMBIGUOUS PROMPTS

We examine classification uncertainty of different methods when encountering ambiguous prompts
with mixed intents. We concatenate programming and mathematical content into a single prompt and
analyze the resulting prediction distributions across all three level-1 categories. For NormStat and
VecStat, we form probabilities via a softmax over negative distances p; exp( —d;/ 7'), and rescale
distances with a problem-scale constant 7 = O(distance) before the softmax (in our experiments,
7 = 10). This temperature-like scaling yields meaningful confidence estimates with essentially zero
extra cost. In contrast, the training-based approaches (Avg-MLP and Tail-MLP) take the softmax
of MLP logits; these probabilities are not calibrated by default, and obtaining reliable uncertainty
quantification requires an explicit post-hoc calibration step (e.g., temperature scaling learned on a

validation set) 2017), which we do not apply here.

Both VecStat and NormStat (Fig. |Zka)—(b)) produce well-calibrated distributions that reflect the
prompt’s mixed nature—assigning substantial mass to both math and code while down-weighting
text. In contrast, the training-based methods (Fig.2Jc)—(d)) are overconfident, placing essentially all
mass on a single class despite mixed content. This failure stems from discriminative training on clean
data yielding overly sharp decision boundaries that are poorly calibrated for out-of-distribution,
noisy inputs. While such predictions can score well on clean test sets, they produce misleading un-
certainty in deployment scenarios where mixed-intent prompts naturally occur (see Appendix [D.3).

3.4 EFFECT OF NUMBER OF PROBED LAYERS AND PROMPT LENGTH

Number of probed layers  Fig.[3|visualizes the impact of number of probed layers (counted from
the first layer) on level-1 accuracy. VecStat demonstrates a robust performance regardless of layer
count, indicating that early layers capture sufficient statistical information for intent classification
without requiring information from deeper layers. In contrast, NormStat exhibits dataset-dependent
behavior: performance degrades with additional layers on humaneval but improves on math500,
though both achieve competitive accuracy using only the first 12 layers out of 28. These findings
have important practical implications for deployment efficiency. Since accurate classification is
achievable using only the initial layers’ statistics—computed during the early stages of prefill—
routing can be performed without completing a full forward pass, substantially saving computation
costs when prompts are redirected to different LLMs. See Appendix [D.4]for additional results.

Maximum prompt length  Fig. ] examines the impact of sequence length on classification accu-
racy for Qwen3-1.7B. The results reveal distinct patterns in prompt length sensitivity across different
statistical methods. VecStat demonstrates remarkable stability, maintaining near-optimal accuracy
across all sequence lengths from 32 to 512 tokens for both datasets. This robustness indicates that
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Figure 3: Effect of the number of layers on level-1 Figure 4: Effect of the maximum prompt length on
classification accuracy for Qwen3-1.7B. level-1 classification for Qwen3-1.7B.

coordinate-wise statistics capture sufficient discriminative information even from truncated prompts,
enabling potential deployment optimizations through reduced sequence lengths (64-128 tokens) that
could significantly improve throughput without compromising intent classification performance.
NormsStat is more sensitive to prompt length, with accuracy improving substantially as length in-
creases and plateauing at approximately 128 tokens. The strong correlation between prompt length
and accuracy for radial statistics suggests that accumulating sufficient statistical evidence requires
slightly longer contextual windows. More detailed results are presented in Appendix [D.6|

3.5 CALIBRATION ANALYSIS

To validate Theorem 2] we compare the empirical and theoretical convergence rates of NormStat and
VecStat on the MagiCoder dataset and present the result in Fig.[5] We vary the calibration sample
size from 512 to 32768 and conduct multiple runs with different seeds. Our results demonstrate
strong empirical match with the theoretical bounds. Both methods show O (N ~°-5) rate for the mean
error, following the predicted theoretical curves. Notably, NormStat attains much lower absolute
errors, which is consistent with its dimension-free bound, whereas VecStat sits higher due to its
dimension-dependent bounds. Calibration results for other LLMs are deferred to Appendix [D.5]

0.0016

—e— Empirical 100
+1std
-~ VecStat bound O(V(d/N))

—— Empirical —— Empirical

~== NormStat O(N"{-0.5}) -== VecStat O(N~{-0.5})

0.0012

8 0.0010

< 0.0008

Mean Error

3
= 0.0006

Mean Error (VecStat)
g
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0.0004

0.0002

G 5000 10000 15000 20000 25000 30000 16 167 G 5000 10000 15000 20000 25000 30000 160 167
Sample Size N Sample Size N Sample Size N Sample Size N

(a) NormStat (b) VecStat

Figure 5: Calibration convergence analysis for Qwen3-8B on the MagiCoder dataset. Each subplot shows
both linear and log-log scales comparing empirical results with theoretical bounds.

4 CONCLUSION

We presented prefill-time, training-free intent classifiers—NormStat and VecStat—that provide fast,
uncertainty-aware routing with O(7T'd) FLOPs overhead, and compared them with two training-
based methods (Avg-MLP, Tail-MLP). Our theory pinpoints when each statistic is preferable: Vec-
Stat is more accurate in directional regimes where class differences reside in feature orientation,
while NormStat is Bayes-optimal in isotropic-scale regimes and enjoys dimension-free calibration
cost. Empirically, across 1B—32B LLMs and both coarse- and fine-grained settings, VecStat attains
near-perfect accuracy on fine-grained tasks, whereas NormStat delivers competitive coarse-grained
accuracy with the smallest memory/latency footprint. Accurate uncertainty estimates can be ob-
tained for both statistical methods at essentially no extra cost, in contrast to MLP heads that typically
require post-hoc calibration. Practically, NormStat is most useful in low-latency settings with fre-
quently updated routers; VecStat is useful when a more fine-grained routing is needed; and learned
MLP head is useful for cases where marginal accuracy gains justify calibration and maintenance.
Finally, we empirically show that early-layer statistics are informative, enabling early-exit routing
that saves compute by deciding before a full pass completes.
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We provide runnable code in the supplementary materials. The full codebase will be released as
open-source after the review process. All experimental settings—including dataset specifications,
preprocessing steps, training/evaluation pipelines, and exact hyperparameters—are documented in
the appendix for complete reproducibility.

THE USE OF LARGE LANGUAGE MODELS

We used LLMs solely as general-purpose assistive tools. For writing, we employed OpenAI’s GPT-
5 to polish language in sentence level—improving clarity, grammar, and style—without generating
scientific claims, interpreting results, or drafting sections de novo. For coding, we used the Cursor
IDE’s built-in autocomplete to suggest boilerplate and minor edits; all coding/writing logic was
authored, reviewed, and verified by the authors. The research ideas, experimental design, and overall
manuscript structure were conceived and developed by the authors without any LLM involvement.
The authors take full responsibility for the content.
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A ADDITIONAL THEORETICAL ANALYSIS

A.1 TwoO ENDPOINTS ON THE COMPRESSION LADDER

For each class k € [m], per-class baselines are computed at the same module W, on calibration data.
We compare the two methods in terms of FLOPs and memory.

VecStat. Method 1: Compute (Syec, Qvec) as in (I). With per-class parameters (ug, Xp =
Diag(aj ;... ,07 4)). The log-likelihood ratio (LLR) between classes i and j is

p(Y) T Zd: log Ot Queem = tiamSveem + 1 Quecm = Htiam Sveesm + ,,L;m]
- 2 2 )
J

0g
pj(Y) m=1 j,m U?,m O-Jz'»m
4)
which is equivalently the average of coordinate-wise Gaussian KLs (since Xy, is diagonal):
d d o2 2 2
j,m Ui,m + (.uzm - ,ujﬂn)
ZKL( :U’ZWM zm)"N(M]m7 jm Z 10g jz 0_2 _1 .
m=1 n=1 ,m J,m
(5)
Method 2: Using S, classify via
<SV6C7 ,U/k:> 2
COSk(Svem Mk) To . b= arg max CoSg (Svem ,U/k:)
[ Svecllll 2]l k€[m]

Costs: Per-token compute: ©(d). Prompt-state: O(d). Baseline storage: O(md) numbers. (If only
cosine scoring is used, (). need not be stored.)

NormStat. Method: Compute (Spom, Qnorm) as in (2), then compare (Syorm, @norm) to per-class
baselines (s k, 0’37k) via a 1D Gaussian KL:

o0 | Onit (Hai = pay)®
KL(N(ux,i7aﬁ,i)\w(uw,aﬁ,j))_ log —5 + —=* . 1. (6)

T, J.t,j

Cost. Per-token compute: ©(d). Prompt-state: O(1). Baseline storage: O(m) scalars.

A.2 SUFFICIENCY

We establish the minimal sufficiency of (Syec, @vec) for the diagonal-Gaussian model, which is
a classical result, see (Lehmann & Casellal |1998; [Lehmann & Scheffé] 2011). Intuitively, a suf-
ficient statistic is a lossless compression for inference about the unknown class/parameters: once
(Svecs @vec) is known, the raw sample Y contains no further information. Minimal sufficiency
means no additional compression is possible without losing information—every other sufficient
statistic is a measurable function of (Syec, Qvec)-

Lemma 1. Under (3) with diagonal Xy, the pair (Syec, Qvec) is a minimal sufficient statistic for
the family {N (u1., Xx)®T}, and the class LLR [@) depends on the data only through (Syec, Qvec)-

The proof is provided in Appendix [B]
B PROOFS

B.1 PROOF oF LEMMA[I]
Proof of Lemmall} LetY = (y1,...,yr) € RT*? Foraclass k, let

Ok = (1ths Or1s- - k) Yy = Diag(03 1, - - -, 07 4)-
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Define the token-wise sums

(yt © yt) eR?,

T
=1

T
S::ZyteRd, Q=
t=1

t

and write S,,, = Zthl Yt,m> Qm = Zthl yfym for coordinates m = 1,...,d. These relate to the
averaged statistics in (1)) as follows:

S = TSvec: Q = (T - ]-)Qvec + T(Svec © Svec)

Since (minimal) sufficiency is invariant under invertible reparameterizations of the statistic, we may
work with (S, Q) and translate back to (Syec, Qvec) via the identities above.

Sufficiency. By (3), y: are i.i.d. with density

d
1 1 m m 2
. oo (-2 % (y L "\
(2m)d/2 [[—10km 2 Ok,

Hence the joint density of Y under class & is

1 1 s N (Yeom — fm)?
o, (V) = exp [ —= Yt.m — Hkm)”

Doy (y) =

=1 m=1 Ok.m
1 1 1A Qo — 2t m S + T},
— (2 )Td/Q . P T exXp _5 Z 0_2 > .
Q Hm:l Uk,m m=1 k.
=h(Y) =g, (5,Q)

Thus py, (Y) = h(Y) go, (S, Q). By the Neyman—Fisher factorization theorem, (.5, @) is sufficient
for 6y, and hence (Syec, Qvec) is sufficient by the invertible mapping above.

Minimality. Using the Lehmann—Scheffé characterization: a statistic 7(Y") is minimal sufficient iff
for any Y, Y the likelihood ratio py(Y")/pg(Y”) is free of 6 if and only if T(Y') = T'(Y”). For our
family,

po(Y) _ (1 i (Qm—%)—mm(sm—%))

2 o2
m=1 m

If (S,Q) = (5’,Q’) then this ratio equals 1, hence is parameter—free. Conversely, if for some m
either S,,, # S!, or Q,, # Q',, the exponent depends on i, (when S, # S’ ) or on o2, (when
Qm # Q..); thus the ratio cannot be constant in 6.

Moreover, for classes ¢ and j, subtracting the two log-likelihoods above yields

d 2 2 2
,LY 1 Oi'm 7r—21', S, +T P.m -2 'mS7n,+T im
logp( ):_72 T'log — +Ql Mmgm Him _ Om H1,2 o )
Pj (Y) 2 —1 Uj,m Ui,m aj:m

which is exactly and depends on Y only through (S,Q), and equivalently only through
(Svecs @vec) via the identities at the start of the proof.

This establishes that (Syec, Qvec) is minimal sufficient and that the LLR depends on the sample only
through this pair.

O

B.2 PROOF OF THEOREM[I]

Proof of Theorem([l] Directional regime: Since ||p1]| = ||p2||, there exists an orthogonal matrix
U with Upy = pg. Y ~ N(u1,0%1,) then UY ~ N (ug2,021y) and |[UY || = ||Y]|. Thus for
each t, ||y:|| | ¥ = 1 and ||y;|| | kK = 2 have the same distribution, and by independence the vectors
(lyeIDE; | k = 1 and (||y]|)Z.; | & = 2 are identically distributed. With a uniform prior, any
decision rule that depends only on {||y:||} has the same acceptance probability under both classes,
so its Bayes error is 1/2.
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For the log-likelihood ratio test (LRT), the log-likelihood ratio for two Gaussians with common
covariance 021 is
T T 9 9
A(ylzT) = ﬁ <Svccv H1 — :u2> - T‘_Q(HIUJH - HN’QH )

With equal priors the LRT accepts k = 1iff A > 0. Under || 1 ]| = ||u12]|, the constant term vanishes
and the decision reduces to the sign of (Syec, 11 — H2), i.e., to k above.
. 0_2
Let u = (p1 — p2) /|| — p2l| and Z == (Syec, u). Since Syec | & ~ N (pix, % 1q) and |Jul| = 1,
o’ 1 1
21N (G, G )+ o) = Bl =l ) = s = el

Hence, by symmetry,

Pr (l%(ylzT) =+ k) =

k 20

- T
onz<0) = o -2 VT) <o (= i - pal?).
where ® is the standard normal CDF and the last step uses ®(—z) < e=*"/2 for z > 0.
Isotropic-scale regime. Let ¢4( - ;m, ) denote the d-variate Gaussian density. For k& € {1, 2}, the
Jjoint density of y1.7 under class k is pi (y1.7) = Hthl da (yt; 0, U,%Id) .

With p11 = pe = 0, X, = 0214, and Ry = 23:1 l|ly¢]|?, one can calculate the log-likelihood ratio

T
p1(y1.T) ba(ys;0,080y)  dT . o5 1 ( L1 )
log —2—2 = log———" " = 2 = —_Jog—~2+—-—|—=——= | Rp.
® p2(yier) ; alyi0,031s) 2 ot 2\o2 o7)""

The right-hand side is an affine (hence strictly monotone when o1 # o3) function of Ry. By the

Neyman—Pearson lemma, any Bayes—optimal test is a threshold on R, so purely radial statistics
are sufficient for optimality and coordinate-wise additions cannot lower the Bayes risk. O

B.3 PROOF OF THEOREM[Z]

Theorem 3. Fixaclass k. Letyy,...,yn i~y N (g, X1 in R, where N is the number of calibra-
tion samples drawn for this class. Define

1 1
iy D i 45 g D Ml = (%l
1= 1=

- ; T R g ~0 1NN s N2 s
For coordinate variances, write o, ; == (3x)j; and 03, ; = 5 > i (Yij — fk,j)% 7 =1,....d.
Then:

1. NormStat (dimension-free). For q = ||y||?, one has

Elq] = sl + Te(S4),  Var(g) = 2Te(S3) + 417 Shpur.

By Bernstein’s inequality for sub-exponential variables, for all § € (0, 1),

Var(g) log(1/9)
N

Normalizing by d makes the bound O(+/log(1/0)/N), i.e. dimension-free.

1g—aql < with probability at least 1 — §.

2. VecStat (dimension-dependent). With probability at least 1 — 6,
d +log(1/9) ~
— N mjax ’U,%d — U,%J‘ < C’Qafnax —N

for absolute constants C1,Cs. To keep LLR plug-in error small of order €, one needs
N = Q(d/e},) for mean accuracy in by and N = Q(log d/€2) for variances in lo.

1
Hﬂk - Mk||2 S Clamax Og(d/é)
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Proof of Theorem[2} NormStat: Denote ¢; = ||y;||* and Z; == ¢; — E[g], so that § — E[g] =

% Zfil Z;. For y; ~ N (ur,Xg), the centered quadratic form Z; obeys the Hanson—Wright tail

bound: there exist absolute constants ¢, co > 0 such that for all ¢ > 0,
, t? t
Pr(|Z| >t) < 2exp {— €1 min (Var@)’ Bﬂ ) (N

where Var(q) = 2 Tr(X2)+4 p)) Skpk, B = || Sk llop+ || 2% ||?. From (7), the Z; are i.i.d. mean-zero
sub-exponential. A standard Bernstein inequality for sums of independent sub-exponential variables
then yields, for some absolute ¢ > 0 and all £ > 0,

1 2
PI'(N;ZZ Zt) §2€Xp |:—CN min <\far(q>’ B>:| .

Choosing ¢ < Var(q)/B and inverting the tail gives, for any ¢ € (0, 1),
Var(q) log(2/4)
~ N

Since under bounded eigenvalues Var(q) = ©(d), dividing by d yields |1g — YE[q]| < /82,
which is dimension-free.

VecStat: Let z; := 221/2(% — pg) ~ N(0,1;). Then

/ 1 N 1

. 1/2

b — pe = 2y, < E Zz) NN(O, Ek->~
]\71,:1 N

Hence, HZI;I/ (e — ) ||3 ~ +X3. Recall the standard Laurent-Massart inequalities: for any
x>0,

with probability at least 1 — 4.

Pr (XZ —d>2Vdr + 2m> <e™®, Pr (d 3> 2\/@) <ot ®
Applying (8) with 2 = log(1/4) and scaling by 1/N yields, with probability > 1 — 4,

12— )l <\ 3 (d-+ 2/ o(175) + 2108(1/2)).

Multiplying by ||Ei/2||op = Omax and using va + b < v/a + Vb gives

d +log(1/3)
N b

”ﬂk - /u'k||2 < C10max

for an absolute constant C; > 0.

C EXPERIMENT DETAILS

C.1 DATASET COMPOSITION AND PROCESSING STRATEGIES

Table 4: Datasets composition for level-1 classification.

Category Calibration Data # Calibration Samples Classification Data  # Classification Samples
General Text MMLU (European History) 165 MMLU (US History) 204
GSMSK 1,319
Math GSM8K 2,000 MATHS500 500
. Magicoder 5,000
Code Magicoder 2,000 HumanEval 164

We evaluate our lightweight intent classification methods across two hierarchical granularities. Our
experimental protocol consists of two stages: calibration and classification. During calibration, we
compute per-class baseline statistics (NormStat or VecStat) from calibration data passed through
pretrained LLMs. During classification, we compute the same statistics for test prompts and assign
labels based on the minimum KL divergence (or cosine distance) between the prompt’s statistics and
the calibrated per-class baselines.
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Table 5: Datasets composition for level-2 classification.

Task Data Source Classes # Calibration Samples # Classification Samples
per Class per Class
Code Magicoder C++, C#, Java, PHP, Python, Rust, 2000 5000
Shell, Swift, TypeScript
Math Competition Math ~ Algebra, Counting & Probability, 800 3000

Geometry, Intermediate Algebra,
Number Theory, Prealgebra,
Precalculus

Natural Language Aya Sinhala, Tamil, English, Moroccan 512 3000
Arabic, Japanese

Classification granularities We consider the following classification granularities:

* Level-1 Classification evaluates coarse-grained categorization into three primary domains: gen-
eral text, mathematics, and code. This level represents the typical routing scenario where
prompts are directed to specialized models based on broad task categories.

* Level-2 Classification examines fine-grained discrimination within each domain. We evalu-
ate three distinct tasks: (i) programming language identification across nine languages in code
prompts, (ii) mathematical subfield classification across seven topics, and (iii) natural language
identification across five linguistically diverse languages.

Datasets and evaluation = Table ] and Table [5] present the complete dataset composition. For
Level-1 classification, we calibrate using domain-representative datasets: MMLU European History
for general text (165 samples), GSMS8K for math (2,000 samples), and Magicoder for code (2,000
samples). Classification evaluation employs both in-distribution and out-of-distribution datasets to
assess generalization. Specifically, we evaluate general text on MMLU US History, mathemat-
ics on GSMSK (in-distribution) and MATHS500 (out-of-distribution), and code on Magicoder (in-
distribution) and HumanEval (out-of-distribution).

For Level-2 classification, we maintain consistent calibration sizes where feasible: 2,000 samples
per programming language, 800 samples per mathematical subfield, and 512 samples per natural
language. Classification sets contain up to 5,000 samples per programming language and 3,000
samples per category for mathematics and natural languages, subject to dataset availability. We also
provide more details on the datasets used in Appendix [C.2}

C.2 DATASETS

We employ seven benchmark datasets spanning general text, mathematics, and code domains to
evaluate intent classification performance at both granularity levels.

* General Text Datasets. For Level-1 evaluation, we utilize MMLU (Hendrycks et al.,2021afb)),
a comprehensive benchmark of multiple-choice questions across 57 subjects. We construct cal-
ibration data using the High School European History subset and evaluate on the High School
US History subset, using question-choice pairs as input. For Level-2 language classification, we
employ the Aya dataset (Singh et al.l |2024), which contains human-annotated prompts across
65 languages. We select five linguistically diverse languages as specified in Table [5]and use the
input field for classification.

* Mathematics Datasets. We employ three mathematics benchmarks for comprehensive evalu-
ation. GSM8K (Cobbe et al.,|2021) provides grade-school word problems requiring multi-step
reasoning, from which we sample 2,000 calibration instances and use the complete test set for
Level-1 classification. MATHS00 (Lightman et al., 2023) serves as an out-of-distribution test
set containing 500 problems from the MATH benchmark. For Level-2 domain-specific clas-
sification, Competition Math (Hendrycks et al.| |2021c) provides problems from mathematics
competitions spanning seven mathematical subfields including algebra, geometry, and number
theory. We use the problem field as model input for Level-2 domain-specific classification.

* Code Datasets. Magicoder (Wei et al., [2023) forms our primary code classification resource,
containing solutions across multiple programming languages. We utilize the solution field as
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model input for both Level-1 general code classification and Level-2 language-specific classi-
fication tasks, focusing on 9 mainstream programming languages as detailed in Table 5§} Hu-
manEval (Chen et al., 2021) provides 164 function-level programming problems, where we use
the prompt field containing function signatures and docstrings as model input, serving as an
out-of-distribution test set for Level-1 classification.

All datasets are publicly available through HuggingFace Datasets (Lhoest et al., |2021). The exact
sampling strategies and train-test splits follow the specifications in Table 4] and Table [5] with test
samples capped at the minimum of specified counts and available data.

C.3 SELECTED LLMS

We evaluate our approach on 7 pretrained large language models spanning 1B to 32B parameters,
encompassing both base and instruction-tuned variants. This selection provides comprehensive cov-
erage across model scales and training stages. We consider the following two LLM families:

* Qwen family (Yang et al. 2025): We evaluate four models from the Qwen3 series. The
instruction-tuned variants include Qwen3-1.7B (28 layers), Qwen3-4B (36 layers), Qwen3-8B
(36 layers), and Qwen3-32B (64 layers), each post-trained with supervised fine-tuning and rein-
forcement learning from human feedback (RLHF). Additionally, we include Qwen3-1.7B-Base
to assess performance on pretrained models without alignment. For all Qwen3 evaluations, we
switch on non-thinking mode to ensure consistent comparison across models.

* Llama family (Dubey et al.,|[2024): We evaluate Llama-3.2-1B (16 layers) and its instruction-
tuned counterpart Llama-3.2-1B-Instruct. The instruction-tuned variant underwent supervised
fine-tuning and RLHF to better align with human preferences.

This benchmark model selection enables systematic evaluation across three critical dimensions:
model scale (from 1B to 32B parameters), training paradigm (pretrained-only versus post-
trained), and architectural diversity (Qwen and Llama families). The substantial range in model
sizes—spanning over an order of magnitude in parameters—allows us to rigorously test whether our
method can effectively operate across vastly different computational scales and model capacities.
The comparison between base and aligned models reveals how post-training procedures affect our
method’s performance, demonstrating whether it remains equally effective for both pretrained and
instruction-tuned models.

C.4 MORE IMPLEMENTATION DETAILS
To stabilize training, we normalize input features and weight matrices through the following process:

1. Input Normalization: The input tensor z is normalized to unit norm for stability:
z

Znormalized = W .
2

2. Weight Normalization: The weight matrix W is normalized using its Frobenius norm:
w
Whormalized = W

3. Activation Computation: The normalized input is multiplied by the normalized weight

matrix:
T
Wz = Zhormalized * Wnormalized'

The statistics for NormStat and VecStat are computed from W z. Note that this is likely suboptimal;

in a production-scale implementation we should read Wz directly from the module’s output rather
than recomputing it.

C.5 PSEUDO-ALGORITHM

Our task inference approach follows the following steps:
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Algorithm 1 Intent Classification with NormStat or VecStat

Require: Input prompt x, baseline scores {S7,5s,...,S,,} for tasks Cq,Cs, ..., Cy,, distance
function “dist” (NormStat: KL; VecStat: KL or cosine similarity)
Ensure: Predicted task T},q and confidence scores
Compute statistic scores .S, from input x
for each task C; do
Compute distance d; = dist(.S,, S;)
end for
Chpred = argming, d;

exp(—(d;—d)/T) i ifica-
= exp(—(d; D)/ 7) (used for uncertainty quantifica

SANES AN ol e

Compute probabilities via softmax: p; =

tion, d is the average, 7 is the temperature)
7: return Cpred, {P1,D2,---,Pm}

C.6 HARDWARE AND SOFTWARE ENVIRONMENT

We conducted experiments on two computational platforms based on model scales. For models up
to 4B parameters, we utilized an NVIDIA L40S GPU with 48GB of memory. For larger models
(Qwen3-8B and Qwen3-32B), experiments were performed on an NVIDIA Grace Hopper GH200
superchip, featuring a Grace ARM 72-core CPU with 120GB RAM and a NVIDIA H100 GPU with

96GB of memory. All experiments are implemented using Python 3.12.0 and PyTorch 2.7.0 with
CUDA 12.6.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ADDITIONAL RESULTS FOR LEVEL-1 CLASSIFICATION.

Please refer to Table

D.2 ADDTIONAL RESULTS FOR LEVEL-2 EXPERIMENTS

For programming languages, please refer to Table[7] For math, please refer to Table[§] For natural
languages, refer to Table[9]

D.3 CASE STUDY
Fig. [6] presents the mixed-intent prompt used in Section constructed by concatenating code
content with mathematical content. We also evaluated the reverse concatenation order (mathematics

followed by code), with results shown in Fig. The uncertainty quantification patterns remain
consistent across both prompt orderings.

D.4 THE EFFECT OF THE NUMBER OF LAYERS CONSIDERED

See Fig.[§]

D.5 CALIBRATION CONVERGENCE ANALYSIS

See Fig.[0]

D.6 THE EFFECT OF THE MAXIMUM PROMPT LENGTH

See Fig.
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Table 6: Level-1 classification results for all seven LLMs.

Model Method gsm8k humaneval  magicoder math500 mmlu_history
Avg-MLP 99.97+0.04 99.80=+0.35 99.99+002  78.33+1.67 100.00+0.00
Tail-MLP 100.00+000  100.00+000  99.97+0.02 99.00+0.00 100.00+0.00
Qwen3-1.7B NormStat:KL ~ 97.35+0.00 70.12+0.61 99.27+0.11 76.60+0.20 100.00+0.00
VecStat: KL 100.00+000  99.39+0.00 99.97+0.03 88.33+0.30 100.00+0.00
VecStat:Cos 100.00+000  98.78+0.00 99.97+0.03 92.26+0.11 100.00+0.00
Avg-MLP 78.09+31.54  99.80+035  100.00+000  40.60+19.91 100.00-£0.00
Tail-MLP 100.00+0.00  84.55+26.76 99.87+0.18 99.00-+0.00 100.00+0.00
Qwen3-1.7B-Base NormStat:KL ~ 79.71+0.29 82.93+0.00 99.71+0.03 88.47+0.12 100.00=+0.00
VecStat:KL 40.46-+0.10 100.00+000  100.00+0.0 49.06+0.95 100.00+0.00
VecStat:Cos 99.84+0.00 99.39+0.00 99.98+0.02 92.30+039 100.00+0.00
Avg-MLP 100.00+000  100.00+0.00  99.99+0.01 64.33+833 99.84+0.28
Tail-MLP 99.95+0.04 100.00+£000  99.97+0.03 98.93+042 99.35+1.13
Llama-3.2-1B NormStat:KL ~ 99.49+0.09 90.8540.00 96.39+0.20 83.40+0.00 92.48+0.57
’ VecStat:KL 100.00+000  99.39+0.00 99.98+0.02 78.80+0.12 100.00+0.00
VecStat:Cos 100.00+000  99.39+0.00 99.97+0.02 77.60+0.20 100.00+0.00
Avg-MLP 100.00+000  99.59+035 99.99+0.02 72.4042.91 100.00+0.00
Tail-MLP 100.00+0.00  100.00+000  99.89+0.05 94.53+042 100.00+0.00
Llama-3.2-1B-Instruct NormStat:KL ~ 100.00+0.00  65.24+0.00 97.21+021 96.20+0.00 98.53+0.00
’ VecStat:KL 100.00+000  99.39+0.00 99.96+0.01 87.87+0.11 100.00+0.00
VecStat:Cos 100.00+000  99.39+0.00 99.97+0.03 85.60+0.00 100.00+0.00
Avg-MLP 99.954+000  100.00+000  99.9940.01 79.27+439 100.0040.00
Tail-MLP 100.00+000  100.00+000  99.96-+0.02 92.27+1.17 100.00+0.00
Qwen3-4B NormStat:KL ~ 96.36+0.00 35.57+035 99.84+0.03 89.40+0.00 99.84+0.28
VecStat:KL 99.97+0.04 100.00+000  99.99-+0.02 91.73+023 100.00+0.00
VecStat:Cos 100.00+000  96.34+0.00 99.97+0.03 93.40+0.20 100.00+0.00
Avg-MLP 99.42+074 99.59+035 99.99+002  77.27+11.02 100.00+0.00
Tail-MLP 99.82+0.12 98.58+2.46 99.98+0.02 81.20+9.72 100.00+0.00
Qwen3-8B NormStat:KL ~ 85.14+035 10.37+1.06 99.85+0.06 92.93+0.12 99.51+049
VecStat: KL 99.95+0.04 99.59+0.35 99.99+0.02 92.20+0.00 100.00+0.00
VecStat:Cos 100.00+000  95.73+0.61 99.98+0.03 94.20+0.00 100.00+0.00
Avg-MLP 95.88+331  100.00+000  99.99-+0.01 86.87+5.22 100.00-t0.00
Tail-MLP 99.39-+0.00 100.00+000  99.98+0.00 96.80+0.40 99.02+0.49
Qwen3-32B NormStat:KL ~ 97.93+0.04 24.59+0.35 99.78+0.06 97.93+0.12 100.00+0.00
VecStat:KL. 100.004+000  99.39+0.00 99.98-+0.03 96.60-+0.00 100.00+0.00
VecStat:Cos 100.00+000  98.17+0.00 99.98+0.03 96.80+035 100.00+0.00

23



Under review as a conference paper at ICLR 2026

Table 7: Level-2 programming language classification results for all seven LLMs. Values represent per-
language accuracy across nine programming languages from the Magicoder dataset.

Model Method cpp csharp java php python rust shell swift typescript
Avg-MLP 99.97+003  100.00+000  100.00+000  99.96+006  99.89+001  100.00+000  99.92+014  100.00+000  99.94+007
Tail-MLP 99.54£009  99.57+0.06 99.41:026 99.89+011  99.35+027  99.32+017 99.92:x0.14 99.81+007  99.52+003
Qwen3-1.7B NormStat:KL ~ 53.18+060  53.17x196  40.39+0.63 57.35+197  60.17+089  58.07+055 88.73+1.67 59.47+x088  49.59+034

VecStat:KL 98.83+018  98.98+039 98.21+0.15 99.81+023  99.06+009  99.68+0.14 99.52-+0.00 99.81+0.12  99.26+020
VecStat:Cos 98.51+019  98.78x037 97.79+0.19 99.85+017  99.06+014  99.35+0.15 99.84-0.14 99.55+011  99.02+029

Avg-MLP 99.97+003  99.96:+004 99.97+003  100.00+000 99.89+005s  100.00+000  99.92+014  100.00+0.00  99.96+0.04
Tail-MLP 99.28+019  99.37x019  99.23x0.12 99.96x006  99.25+014 9927019 99.841027 99.75x014  99.50+003
NormStat:KL ~ 47.76+01s  43.75+118 36.92+0.96 60.44+113  56.03+0s2  54.88+078 88.33+242 57.85+125  51.20+025
VecStat:KL 98.29+013  98.37x053 97.00:£021 99.66+0.11  98.63+009  99.45+0.12 99.68-0.14 99.64+012  99.17+0.19
VecStat:Cos 98.27+017  98.23x050  96.91+005 99.63+017  98.84+009  99.47+013  99.68+014  99.58+007  98.54x030

Avg-MLP 99.97+003  99.98:+0.04 99.97+0.05 99.96+006  99.91+002  100.00+000  100.00+£000  100.00+000  99.94+0.03
Tail-MLP 99.21+024  99.08+0.16 99.41+0.10 99.85+017  99.25+026  99.21+032 99.84-+027 99.75+000  99.58+0.11
NormStat:KL ~ 44.23+137  39.54+226 35.09+1.07 49.25+160  38.65+071  54.91+078 90.95+1.56 55.63+12¢  34.67+181
VecStat:KL 98.77+019  98.37x043  97.14+007 99.63+017  98.66+021  99.79+003  99.84+027 99.73x018  99.02+025
VecStat:Cos 98.53+012  97.78+025 96.34-+0.09 99.52+028  98.86+018  99.48+0.15 99.60-+0.14 99.49+025  98.81+036

Avg-MLP 99.95+£005 9998004  99.97+003  99.96x006  99.91x001  100.00£000  99.92+014  100.00+000  99.99+0.03
Tail-MLP 99.07+039  99.23x0.15 99.12+040 99.55+022  99.27+011  99.00+049 99.84+027 99.70+0.16  99.64+004
NormStat:KL 41341145 45.89+057 33.32+151 45234225 46.42+132  55.80+067 89.76+252 57.64+072  34.05+220
VecStat:KL 98.56x019  97.58x019  97.25+013 99.70x017  98.87+016  99.66+00s  99.841027 99.62+014  99.02+027
VecStat:Cos 98.56+019  97.46+034 96.85+023 99.78+019  99.00+013  99.37x0.10 99.84+027 99.64+014  98.87+032

Qwen3-1.7B-Base

Llama-3.2-1B

Llama-3.2-1B-Instruct

Avg-MLP 99.97+003  99.94x000  100.00x000  99.96+006  99.89+001  100.00x000  100.00+000  100.00+000  99.94+003

Tail-MLP 99.37+011  99.53x0.13 99.46:£0.03 99.81+013  99.48+002  99.35+027 99.84-£027 99.73+014  99.66+007

Qwen3-4B NormStat:KL ~ 54.55+104  40.86+1.39 35.45+028 56.26+068  69.71+104  68.76+065 93.10+133 T217+120  48.70+032
" VecStat:KL 99.26+008  98.60+038 97.95+0.12 99.74x026  99.07+009  99.82+003 99.76-0.00 99.87+0.12  99.30+0.19
VecStat:Cos 98.92:+009  98.86+0.44 98.18-+005 99.89+019  99.13+008  99.53+0.10 99.84-+0.14 99.79+013  99.26+023

Avg-MLP 99.95+005  100.00+000  100.00+000  99.96+006 99914001  100.00:000  100.00+000  100.00+000  99.94:0.03

Tail-MLP 99.61016  99.69+0.18 99.47+012  100.00£000  99.39+022  99.53x0.10 99.92:+0.14 99.75+007  99.61+0.10

Qwen3-8B NormStat:KL ~ 47.37+094  38.26+1.28 27.59+0.65 60.14+127  67.73+054  63.05+043 91.51+0.60 62.54+125  49.28+084
VecStat:KL 99.09+011  98.58+042 97.78+0.09 99.78+022  99.01+004  99.81+000 99.76-+0.00 99.91+000  99.38+020

VecStat:Cos 98.90:£024  98.96x038 98.49-£0.03 99.85+013  99.13+012  99.55+007  100.00+000  99.81+012  99.35+0.19

Avg-MLP 99914003  99.98+004  100.00+000  99.96+006  99.91+003  99.97+00s  100.00+000  100.00+0.00  99.96+0.04

Tail-MLP 98.01£041  97.27x095  97.99+053 98.77x022  98.26+021 9921006  98.97x060  98.71x04s  98.50+0.07

Qwen3-32B NormStat:KL ~ 53.57+094  36.94+138 25.47+1.43 59.47+057  61.66+140  67.63+054 89.29+071 69.35+119  49.84+108

VecStat:KL 99.01+011  99.35+034 98.72:+003 99.89+011  99.29+006  99.90+005  100.00+000  99.85+009  99.75+0.16
VecStat:Cos 99.18+014  99.53x019  99.01x010  99.89x011  99.50+004  99.81x013  100.00x000  99.87x012  99.72x009

Table 8: Level-2 mathematical subfield classification results for all seven LLMs. Values represent per-subfield
accuracy across seven mathematical subfields from the Competition Math dataset.

Model Method Algebra  Counting & Probability =~ Geometry Intermediate Algebra  Number Theory  Prealgebra  Precalculus
Avg-MLP 71.78+5.57 79.48-+191 89.98+3.46 79.33+3.96 84.02+2.56 50.00-+2.20 82.79+3.37

Qwen3-1.7B Tail-MLP 65.79:+3.55 76.10£424 84.88+4.43 71.86:+6.02 82.32:+3.80 50.31+259  73.58+430
NormStat:KL ~ 23.67+127 37.83+065 48.15+4.09 58.75+108 65.46:+1.25 0.97+028 33.88+1.02

VecStat:KL 33.29+139 53.71+200 35.88+328 81.88+0.58 86.26+0.62 1.46+005 46.07+182

VecStat:Cos 57.66:0.70 61.50+2.16 36.07+337 73.58+083 86.92:+038 2224032 51.22+161

Avg-MLP 67.96+183 79.55+067 90.53+055 83.93+234 84.02+262 48.85+2.19 83.47+346

Qwen3-1.7B-Base Tail-MLP 70.97+448 80.97+2.25 90.89+1.14 7449423 81.50+6.42 51.93+7.96 78.25+255
o NormStat:KL ~ 23.35+0.70 37.23+212 47.36:+420 56.65+130 58.84+238 5.67+217 34.82+082
VecStat:KL 39.48-+328 50.86:+1.72 35.88+337 81.31+065 88.12:+0.58 1.52+052 46.41+124

VecStat:Cos 61.24-£090 62.62:+231 36.00+3.55 73.46:£080 88.18-£028 2.66+0.67 53.59+082

Avg-MLP 57.99+6.53 75134542 86.22+437 75.94+4.00 78.43+0.09 41.67+538  76.02+1.42

Llama-3.2-1B Tail-MLP 58.38+4ss8 78.35+240 91.20£128 74.44357 77.454821 36.26£471 67.01£555
) NormStat:KL ~ 19.46+3.91 16.33+1.35 38.07+298 37.01+3.60 80.24+255 0.05+0.05 27.71+173
VecStat:KL 34.57+092 50.34+192 38.19+430 76.13+097 84.89+0.59 1.38+012 48.17+266

VecStat:Cos 44.71+078 59.48+226 44.63+573 72.65+035 83.96+1.19 2.30+032 52.57+092

Avg-MLP 64.88-+£4.97 78.95+1.01 86.76+4.30 76.82:+5.70 85.39+043 45274258 84.35+2.00

Llama-3.2-1B-Instruct Tail-MLP 73.63£407 79.48£2.60 88.71+203 78.02+253 83.58+0.16 51.28+311 83.47+184
NormStat:KL ~ 4.38+324 11.69+157 36.13+3.19 37.34+324 84.40+1.00 0.26+0.12 27.98+439

VecStat:KL 40.03+262 45.09+150 35.88+346 74.32+149 88.67+043 1.25+0.14 46.75+234

VecStat:Cos 53.20+1.76 59.85£180 36.79+4.02 72.72£104 86.59+0.19 1.78+0.00 5217154

Avg-MLP 73.52:+154 79.63+4.68 89.80+2.86 79.16:+1.48 80.84-+0.78 51.23+388 84.62+294

Tail-MLP 68.98-£9.23 82.47+1.96 82.70+237 67.84+£726 81.55+351 46.89+430  79.95+150

Qwen3-4B NormStat:KL ~ 19.57+3.97 17.15+091 42.26+3.41 47.00+2.72 76.79+2.63 0.60-+0.25 34.28+1.70
- VecStat:KL 29.80-+3.56 51.99:+130 35.824337 82.31+115 89.00-£0.28 1.36+005 54.81+3.00
VecStat:Cos 62.24:£2.09 61.72+203 36.13+3.19 73.89+124 88.83+033 1.96+0.08 53.59+132

Avg-MLP 73.94+163 82.70+0.98 87.13+0.56 81.00+3.61 86.59+4.35 52.95+524 89.36+042

Tail-MLP 68.43+1381 80.52+2.03 89.92+1.91 73.87+6.12 82.92+555 53.58+064 81.10+5.72

Qwen3-8B NormStat:KL  21.01+635 19.03+1.50 40.19+356 46.38+091 73454422 0.73+059 31.98+131
VecStat:KL 36.23+3.18 51.24+117 35.88+3.28 81.00+1.60 88.89+047 1.52+012 55.15+327

VecStat:Cos 64.46:£1.45 61.95+187 36.25+3.19 74.13:+095 89.33+033 2.06+0.40 55.08+1.08

Avg-MLP 73.25+4.75 77.83+289 89.01+3.74 84.14+327 81.88+2.64 57924422 86.65+3.02

Tail-MLP 66.70-£8.95 78.43£202 88.52+4.65 79.61+3 74.06£11.10 50.57+1068  80.62+330

Qwen3-32B NormStat:KL ~ 31.99+202 21.72x085 40.56+3.48 44.61£114 75.53+256 0.13x005 31.44x147
- VecStat:KL 55.76x111 58.50£2.04 35.94+328 77.80£1.04 89.87x034 1.46+0.12 5278059
VecStat:Cos 71.16+046 64.42+2.16 37.04+320 73.32+082 89.49+087 3.00+0.72 58.47+131
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Table 9: Level-2 natural language classification results for all seven LLMs. Values represent per-language
accuracy across five natural languages from the Aya dataset.

Model Method English Japanese Moroccan Arabic Sinhala Tamil
Avg-MLP 99.74+012  99.99+0.02 99.97+0.03 99.99+002  99.94+0.04
Tail-MLP 99.4940.15  100.00-£0.00 99.97+0.03 99.93+006  99.94+0.10
Qwen3-1.7B NormStat:KL ~ 82.26+139  81.42+081 85.78+0.86 99.87+0.12  99.52+0.12
’ VecStat:KL 96.27+034  99.83+0.03 99.97+0.00 99.99+002  99.93+0.06
VecStat:Cos 98.09+0.10  99.82+0.05 99.9940.02 99.99+002  99.94+0.04
Avg-MLP 99.64+0.15  100.00+0.00 99.94-+0.04 99.99+002  99.96+0.02
Tail-MLP 99.67+0.12  100.00+0.00 99.97+0.03 99.98+002  99.87+0.03
Qwen3-1.7B-Base NormStat:KL. ~ 82.58+1.88 83.08+1.35 73.59+0.57 99.83+000  98.43+0.17
VecStat:KL 97.41+0.13 99.84+0.05 99.97+0.03 99.99+002  99.93+0.06
VecStat:Cos 98.46+0.13 99.83+0.09 100.00+0.00 99.99+002  99.94+0.04
Avg-MLP 99.63+021  100.00-+0.00 99.97+0.03 99.99+002  99.9640.02
Tail-MLP 99.60+0.18  100.00+0.00 99.9740.03 99.87+000  99.71+0.28
Llama-3.2-1B NormStat:KL ~ 77.26+6.21 57.3643.14 98.56+0.11 99.67+020  99.82+0.19
VecStat:KL 96.12+039  99.92+0.02 99.9640.02 100.00+000  99.96+0.02
VecStat:Cos 98.76+007  99.98+0.02 99.9640.02 99.99+002  99.94+0.04
Avg-MLP 99.72+010  99.99+0.02 99.94+0.04 99.99+002  99.97+0.03
Tail-MLP 99.58+0.15  100.00-0.00 99.96+0.02 99.94+007  99.82+0.20
Llama-3.2-1B-Instruct NormStat:KL ~ 79.47+507  42.79+2.16 98.54+0.18 99.86+0.13  99.86+0.07
’ VecStat:KL 96.04+039  99.84+0.13 99.98+0.02 99.99+002  99.96+0.02
VecStat:Cos 98.59+0.12  99.98+0.02 99.94+0.04 99.99+002  99.94+0.04
Avg-MLP 99.71+0.10  100.00+0.00 99.94-+0.04 99.99+002  99.96+0.02
Tail-MLP 99.60+0.15  100.00+0.00 99.9740.03 99.99+002  99.99+0.02
Qwen3-4B NormStat:KL. ~ 84.60+034  90.29+1.27 90.53+0.61 99.84+007  99.11+0.54
VecStat:KL 93.99+082  99.77+0.09 100.00+0.00 99.99+002  99.93+0.06
VecStat:Cos 97.734+012  99.88+0.10 100.00+0.00 99.99+002  99.94+0.04
Avg-MLP 99.70+006  100.00+0.00 99.94+0.04 99.99+002  99.97+0.00
Tail-MLP 99.53+0.15  100.00+0.00 99.9740.03 99.99+002  99.92+0.08
Qwen3-8B NormStat:KL ~ 85.06+085  92.03+1.32 76.7640.77 99.92+004  96.69+2.25
VecStat:KL 96.27+038  99.82+0.05 100.00-+0.00 100.00+0.00  99.93+0.06
VecStat:Cos 98.66+0.13  99.83+0.09 100.00-+0.00 99.99+002  99.94+0.04
Avg-MLP 0.00+0.00 0.00+0.00 0.00+0.00 100.00+0.00  0.00+0.00
Tail-MLP 0.00+0.00 0.00-+0.00 0.00+0.00 100.00+000  0.00-0.00
Qwen3-32B NormStat:KL. ~ 97.43+0.07 0.00-+0.00 0.00+0.00 0.01+0.02 0.00-+0.00
VecStat:KL 97.57+0.10 0.00-£0.00 0.00+0.00 0.00+0.00 0.00-£0.00
VecStat:Cos 97.57+0.10 0.00+0.00 0.00-+0.00 0.00-£0.00 0.00+0.00
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Code+Math

““static func calcWidth(text: String) -> CGFloat {
let constants = StoreSortBaseCell.Constants()
let textWidth = HelperManager.textWidth(text, font: constants.titleLabelFont)
return constants.horizontalSpace
+ textWidth
+ constants.spaceBetweenStarAndTitleLabel

+ constants.starlmageViewSize

i Bets paratorAndI View

+ constants.verticalSeparatorWidth

i paceBet: paratorA View

+ constants.dropDownButtonWidth
+ constants.horizontalSpace
i

In the solution, the ‘calcWidth" function takes the input text and calculates the width based on the provided constants and helper function. It first
initializes the constants and then uses the "textWidth" helper function to calculate the width of the input text. Finally, it computes the total width based
on the constants and returns the result as a floating-point number.

-Jame will turn 27 in 5 years. In 8 years his cousin will be 5 years younger than twice his age. How many years separate the age of the two now?

Figure 6: Mixed-intent prompt example combining Swift code (width calculation function) and a mathematical
problem used for uncertainty quantification analysis.

(a) NormStat (b) VecStat (c) Tail-MLP (d) Avg-MLP

I Math
N Text
I Code

Figure 7: Uncertainty quantification results on mixed-intent prompt with reversed concatenation order (math-
ematical contents followed by code contents) on Qwen3-1.7B-Base.
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Figure 8: Effect of the number of layers on level-1 classification accuracy for Qwen3-1.7B.
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Figure 9: Calibration convergence analysis for different models and methods on the MagiCoder dataset. Each
subplot shows both linear and log-log scales comparing empirical results with theoretical bounds. Norm-
Stat (norm method) uses dimension-free bounds while VecStat (projection method) uses dimension-dependent
bounds.
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Figure 10: Effect of the maximum prompt length on level-1 classification accuracy for Qwen3-1.7B (a),
Qwen3-1.7B-Base (b), Llama-3.2-1B (c), and Llama-3.2-1B-Instruct (d)..
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