
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FAST INTENT CLASSIFICATION FOR LLM ROUTING
VIA STATISTICAL ANALYSIS OF REPRESENTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Intent classification in Large Language Models (LLMs) involves categorizing user
prompts into predefined classes. For instance, given a user prompt, the system
must determine whether it primarily concerns mathematics, coding, or general
text processing. Such classification enables routing prompts to specialized mod-
els optimized for specific domains, improving both accuracy and computational
efficiency. In this work, we conduct a systematic study comparing training-free
vs training-based approaches for intent classification. For this purpose, we intro-
duce two lightweight, training-free methods based on statistical analysis of inter-
nal model representations and compare them against MLP classifiers and linear
probes. The training-free methods use key statistical metrics from hidden fea-
tures, enabling intent inference during the initial forward pass with minimal over-
head. Our comprehensive empirical evaluation reveals that 1) both training-free
and training-based methods saturate easy benchmarks (mathematics vs. coding
vs. natural language), 2) Training-based classifiers have an advantage on harder
classification tasks (e.g. Java vs Python), and 3) Training-free methods are more
robust to out-of-distribution and ambiguous prompts.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse tasks
including mathematical reasoning (Wei et al., 2022; Yao et al., 2023; Gao et al., 2023) and code
generation (Li et al., 2022; Guo et al., 2024; Zhu et al., 2024). While many LLMs are trained for
general purpose tasks (Radford et al., 2019; Raffel et al., 2020), current state-of-the-art is moving
towards a routing approach where an intent classifier is used to detect user intent and then send
the prompt to a specific model (OpenAI, 2025; Bocklisch et al., 2017; Bunk et al., 2020; Arora
et al., 2024). This has the benefit of improving inference efficiency of production-scale LLM sys-
tems. Approaches to intent classification either rely on LLM calls, which is prone to hallucination
(Bang et al., 2023; Banerjee et al., 2025), or on dedicated classification models, which requires
extensive training data and computational resources Larson et al. (2019); Chen et al. (2019). In
this work, we conduct an empirical study to evaluate advantages and disadvantages of training-free
methods, as compared to training-based ones. For this purpose, we introduce two training-free,
methods for intent classification, VecStat and NormStat, that operate entirely in the prefill phase
with negligible extra cost. The motivation is the observation that different prompt types (mathe-
matics, coding, general text, etc.) induce distinct activation distributions. Specifically, VecStat and
NormStat represent two levels of statistical compression: VecStat preserves directional information
but induces higher storage and calibration cost, while NormStat aggregates radial evidence and en-
joys minimal memory consumption. Theoretical analysis further clarifies this trade-off: VecStat is
preferable when class differences are primarily directional, whereas NormStat suffices—and is more
memory-efficient—for isotropic-scale separation (coarse-grained classification tasks) thanks to the
dimension-free calibration complexity.

Beyond computational efficiency relative to direct LLM calls, a key benefit of statistical meth-
ods is uncertainty quantification. With a one-line softmax normalization, statistical methods yield
well-calibrated class probabilities, including on mixed-intent prompts; In contrast, we show that a
training-based method using MLP head (inspired from sentence-classification pipelines (Casanueva
et al., 2020; Jiang et al., 2024)) typically requires post-hoc calibration (e.g., temperature scaling)
to avoid overconfidence (Guo et al., 2017). When classes change, our methods also support rapid,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Method FLOPs Overhead Memory Overhead Extendability of New Classes Uncertainty Quantification
NormStat O(Td) O(m) Compute new baselines Works well
VecStat O(Td) O(md) Compute new baselines Works well
MLP O(hd) O(hd) Retrain a new MLP head Possible but needs extra calibration
LLM Call Ω(Td2) ∼ Extend via prompt engineering ×

Table 1: Comparison of classifiers. T : prompt length; d: hidden width; m: # classes; h: MLP hidden size.

incremental updates by simply appending new class statistics, avoiding any retraining. Table 1 com-
pares these methods by compute, memory, extendability, and uncertainty quantification.

Hereafter, we use the wording training-free vs training-based methods to refer to whether gradient
updates are needed. We conduct extensive empirical analysis to compare the performance of VecStat
and NormStat against the training-based MLP classifier applied at the LLM’s final projection layer.
The MLP head is trained on labeled data with Adam, whereas our statistical methods require no
gradient updates. We apply these methods to LLMs ranging from 1B to 32B parameters and evaluate
intent classification at both coarse-grained and fine-grained levels across seven benchmark datasets.
The empirical results reveal that there is no one-fits-all model for intent classification. On the one
hand, NormStat, VecStat, and MLP classifiers saturate easy benchmarks. On the other hand, MLP
classifiers typically achieve higher accuracy on hard tasks, yet they suffer from overconfidence in
predictions, limiting their ability to provide reliable predictions on ambiguous prompts, a scenario
where NormStat seems to outperform other methods. Our contributions are:

• We introduce NormStat and VecStat, two training-free statistical methods that perform intent
classification directly within the LLM prefill phase, requiring O(Td) additional computation
compared to Θ(Td2) forward pass cost, enabling deployment with negligible latency overhead.

• We provide theoretical analysis showing when each method excels: VecStat performs best when
prompt types differ in feature directions, while NormStat is optimal when they differ in overall
magnitude, with NormStat requiring fewer calibration samples to achieve comparable accuracy.

• We conduct a comprehensive empirical study across seven LLMs (1B-32B parameters) on both
coarse-grained and fine-grained intent classification tasks, comparing training-free methods vs
training-based ones. Our results reveal that both training-free and training-based methods excel
at easy tasks, saturating the benchmarks. Training-free methods provide superior uncertainty
quantification for mixed-intent prompts compared to training-based approaches, while training-
based methods are better at more fine-grained tasks.

1.1 RELATED WORK

Task Classification Intent classification maps a user prompt to a predefined label. Classical ap-
proaches either (i) train supervised classifiers over tokenized utterances (e.g., CNNs) to produce
a distribution over intents (Hashemi et al., 2016; Goo et al., 2018; He et al., 2019), or (ii) fine-
tune contextual encoders, particularly BERT-based models, where hidden states feed specialized
intent classification heads, often jointly trained with slot filling tasks (Chen et al., 2019; Bocklisch
et al., 2017; Bunk et al., 2020). In modern LLM-based systems, intent classification serves as a
critical routing mechanism that allows the selection of appropriate downstream tools and models,
enforces guardrails and fallback policies, and optimizes inference cost and latency (Souha et al.,
2023; Arora et al., 2024). The predominant approach involves direct LLM inference through several
key techniques (Liu et al., 2023; Rodriguez et al., 2024; Wang et al., 2023b; Arora et al., 2024;
Hong et al., 2024; Wei et al., 2022). However, the computational expense of LLM inference at scale
has motivated hybrid architectures that combine fast, lightweight classifiers (including PEFT-tuned
encoders) with LLMs through uncertainty-aware routing mechanisms. These systems employ con-
fidence thresholding, entropy-based measures, or learned routing policies to reserve expensive LLM
calls for ambiguous cases where simpler models exhibit high uncertainty (Liu et al., 2022; 2024).

LLMs as text encoder Recent advances in LLMs have prompted researchers to explore their use
as text encoders. An interesting approach is embedding extraction where existing methods typically
operate on the last layer outputs through three strategies: using the last token embedding (Ma et al.,
2024; Neelakantan et al., 2022; Wang et al., 2024; Meng et al., 2024; Jiang et al., 2024), averaging
across all token embeddings (Muennighoff, 2022; Muennighoff et al., 2024; BehnamGhader et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2024), or employing trainable modules (Lee et al., 2024; Tang & Yang, 2024). Interested readers
can refer to (Tao et al., 2024; Nie et al., 2024) for a more detailed review on this topic. In contrast to
these approaches, this work addresses user-intent classification for routing where both accuracy and
computational efficiency are primary considerations. Our method utilizes prefill-time outputs from
general-purpose LLMs without modification or additional training. By leveraging computational
intermediates already produced during LLM prefill phase, this approach avoids the storage overhead
of maintaining a dedicated billion-parameter model for intent classification.

Neural Feature Analysis Our approach extracts representations Wz, where W is a pretrained
weight matrix and z is model’s hidden state. This design is motivated by two lines of research.
First, linear probes effectively extract semantic information from transformer representations (Alain
& Bengio, 2016; Hewitt & Manning, 2019), with sparse autoencoder studies suggesting that many
concepts are captured by a small number of sparse features in the activation space (Cunningham
et al., 2024; Gao et al., 2024). Superposition theory provides theoretical grounding, explaining
how features remain recoverable through linear projections (Elhage et al., 2022). Second, activa-
tion steering research demonstrates that intent-related behaviors can be manipulated through linear
interventions in the representation space (Turner et al., 2023; Panickssery et al., 2023). Finally, ac-
tivations Wz were successfully used in Hayou et al. (2025) to determine target module for LoRA
finetuning, showing that activation capture data signal.

2 METHODOLOGY

In Large Language Models, prefill refers to the first forward pass of the user prompt. During this
time, KV-cache is filled for autoregressive decoding (Shazeer, 2019; Ainslie et al., 2023; Chang
et al., 2024; Aguirre et al., 2025; Jie et al., 2025) and gets updated for each token generation. In
the prefill, we already compute the prompt’s first forward pass to build keys/values; adding a light
classifier there adds low cost but could provide a strong signal to route the prompt if needed: simple
prompts remains on a small, cheap model; math/code/reasoning prompts routed to a larger or spe-
cialized model. Making this decision before the first generated token avoids wasting computation
on the mismatched model. This is even more important if routing is customized for each user.

Modern LLM serving imposes a lightweight constraint on any prefill-time intent classifier used for
routing: (i) the classifier’s extra computation must be negligible compared to a single forward pass,
and (ii) per-prompt memory and persistent storage must be negligible. Concretely, for a prompt of
length T , a forward pass cost Θ(Td2)1 computation in any given layer with hidden dimension d; a
lightweight classifier should at most add o(Td2) cost, ideally O(Td). Likewise, per-request state
must be O(1)–O(d) floats (not O(Td)), and per-class baselines must be O(1)–O(d) numbers. More
details are provided later in the paper.

In the following, we introduce a training-free approach to intent classification, based on a statistical
analysis of hidden features in LLMs, and satisfies the computational constraints above. Figure 1
summarizes the pipeline and contrasts between the two proposed methods VecStat with NormStat.
In general, our method (i) collects module features; (ii) computes summary statistics; (iii) compares
these statistics to per-class baselines via Gaussian KL (or cosine distance for VecStat); (iv) averages
distances over layers and applying a softmax over the negative distances to obtain class probabilities
and a routing decision.

2.1 A STATISTICAL APPROACH TO INTENT CLASSIFICATION

Consider an LLM with weight modules M = {W1,W2, . . . ,Wp}, for some p ≥ 1. The weights
modules M represent all available weight matrices in the model, across layer index and module
type. We will abuse the notation and use Wℓ to refer to both the module and its weight matrix.

Let x = (xt)1≤t≤T be a prompt of T tokens. For each weight module Wk, let (yℓ,t)1≤t≤T denote
the output features in module Wℓ. For instance, (yℓ,t)1≤t≤T could be the output of a Query head, or

1The forward pass cost is Θ(Td2 + T 2d). In the regime d > T , the Td2 term dominates, so we drop the
T 2d term and write the cost as Θ(Td2); retaining T 2d does not affect our conclusions.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

User prompt x = (xt)
T
t=1

At prefill stage

Collect module features yℓ,t = Wℓzℓ,t
for weight Wℓ at layers ℓ ∈ L, tokens t ∈ [T]

VecStat (coordinate-wise)

Svec = 1
T

∑T
t=1 yt ∈ Rd

Qvec = 1
T−1

∑T
t=1(yt − Svec) ⊙ (yt − Svec)

NormStat (radial)

Snorm = 1
T

∑T
t=1 ∥yt∥/

√
d

Qnorm = 1
T−1

∑T
t=1

(
∥yt∥/

√
d− Snorm

)2

Compare to statistics of per-class baselines
Compute distances di (cosine

similarity or diag-Gaussian KL)

Compare to statistics of per-class baselines
Compute distances di (1D Gaussian KL)

Aggregate over layers ℓ ∈ L
Compute average/weighted distances d̄i

Probabilities: pi ∝ exp
(
−d̄i/τ

)
, τ ≈ O(d̄i)

Route or decide: argmaxi pi

High Compression:
VecStat compresses prompt rep-
resentations into 2d scalars/layer.
Requires more samples for accurate
calibration.

Super-High Compression:
NormStat compresses prompt rep-
resentations into two scalars/per
layer. Requires fewer samples to
calibrate.

Figure 1: Flowchart of VecStat vs NormStat for prefill-time intent classification and routing.

the projection layer in an MLP block. Each yℓ,t is a d-dimensional vector given by yℓ,t = Wℓzℓ,t,
where d is the output dimension in module Wℓ, and zℓ,t is the input to that module for token t.

2.0 2.5 3.0 3.5 4.0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Value
La

ye
r

Figure 2: Per-token query-
norm distributions across
layers. Histograms of
{∥yℓ,t∥/

√
d}Tt=1 for repre-

sentative layers ℓ. Shapes are
close to Gaussian with layer-
dependent mean/variance, which
supports a 1D Gaussian proxy
for NormStat.

Intent classification. We aim to classify the prompt x into one of
the classes C1, C2, . . . , Cm, where m ≥ 2. For instance, a binary
classification where C1 is mathematics and C2 is coding. For each
module Wℓ, we compute lightweight summary statistics from the
features {yℓ,t}Tt=1 and compare them to per-class baselines: (i) for
each class Ci, precompute the same statistics on calibration data
at the same module Wℓ; (ii) for the incoming prompt, compute the
statistics at Wℓ and measure similarity to each baseline; (iii) predict
the class Ci with the highest similarity.

Several statistics are considered, such as the mean and covariance of
{yℓ,t}Tt=1, to capture geometric information about hidden features.
Estimating the mean requires O(Td) calculations while the covari-
ance requires O(Td2). Thus, using covariance is not computation-
ally efficient, since it violates the O(Td) condition above. However,
we consider a weaker variant where we only estimate coordinate-
wise variance (diagonal of the covariance matrix). We call this
method VecStat, which relies on coordinate-wise mean and vari-
ance for classification. We also introduce a lighter weight method
called NormStat, which relies solely on the norm statistic across all
tokens and coordinates.

In the following, we present the two methods in the single-layer
case. When multiple layers are used, we aggregate similarity scores across ℓ by averaging.

Vector Statistic (VecStat): calculate coordinate-wise token means and second moments tokens

Svec =
1

T

T∑

t=1

yt ∈ Rd, Qvec =
1

T − 1

T∑

t=1

(yt − Svec)⊙ (yt − Svec) ∈ Rd. (1)

Norm Statistic (NormStat): summarize each yt through a the norm ∥yt∥ and aggregate across tokens
to obtain the statistics

Snorm =
1

T

T∑

t=1

∥yt∥√
d

∈ R, Qnorm =
1

T − 1

T∑

t=1

(∥yt∥√
d

− Snorm

)2

∈ R. (2)

With both methods, we use closed-form Gaussian KL divergence (5) and (6) to measure the similar-
ity between prompt and classes’ statistics. Intuitively, this acts as a proxy for the true KL-divergence
between distributions which is prohibitively expensive to compute. Across models and datasets, we
observed that the radial token features ∥yℓ,t∥/

√
d are Gaussian-like for fixed ℓ (Fig. 2), and similar

observations hold for the coordinates of yt. 2

2One could estimate an empirical KL without summaries, but doing so robustly at inference time is pro-
hibitively expensive in both compute and memory.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

These two choices form a statistical compression ladder: VecStat keeps per-coordinate first and
second moments, while NormStat compresses all coordinates to a single radial information per
token and then to its mean/variance across tokens.

The rest of this section develops this story rigorously: (i) we prove when each is statistically prefer-
able using a simplified Gaussian setting, and (ii) we connect those guarantees to compute, memory,
and calibration costs. All the proofs are deferred to Appendix B.

2.2 INTUITIVE ANALYSIS IN A GAUSSIAN SETTING

Intuitively, VecStat retains more information about feature distribution than NormStat because it
tracks coordinate-wise statistics instead of a single statistic for each module. To understand the
difference between these two methods, we consider a Gaussian setting with diagonal covariance and
study regimes where NormStat is competitive with VecStat, in which case NormStat is preferred for
computational efficiency. Additional analysis is in Appendix A.

Setting and notation. Here we study general features (yt)1≤t≤T (not necessarily representations
in an LLM). For each baseline class k ∈ {1, . . . ,m} and tokens t = 1, . . . , T , assume that

yt | k ∼ N (µk, Σk) ⊂ Rd, independently across t, (3)

where, Σk = Diag(σ2
k,1, . . . , σ

2
k,d) is a diagonal covariance matrix.

NormStat observes only the norm {∥yt∥} and is invariant to rotations of the features; it cannot detect
separation that lives in direction. In contrast, VecStat retains per-coordinate first/second moments
and is therefore rotation-sensitive. In an isotropic-scale setting (equal means, spherical covariances
with different variance), the optimal likelihood ratio reduces to a monotone function of the total
radial sum

∑
t ∥yt∥2, so NormStat is already Bayes-optimal. But in a directional setting (equal

covariance, equal mean norms, different mean directions), every radius-only rule is blind, whereas
a coordinate-aware test achieves exponentially small error in T . The next theorem formalizes this.

Theorem 1. [NormStat vs VecStat] Assume a binary classification k ∈ {1, 2} with uniform prior.

1. Directional regime (NormStat×, VecStat✓). Assume Σ1 = Σ2 = σ2Id, ∥µ1∥ = ∥µ2∥,
and µ1 ̸= µ2. Then any classifier whose decision depends only on the norms {∥yt∥}Tt=1
has Bayes error 1/2. Moreover, the likelihood-ratio test achieves error probability

Pr(k̂ ̸= k) ≤ exp

(
− T

8σ2
∥µ1 − µ2∥2

)
, where k̂(y1:T) :=

{
1, ⟨Svec, µ1 − µ2⟩ ≥ 0,

2, otherwise.

2. Isotropic-scale regime (NormStat✓, VecStat ties). Assume µ1 = µ2 = 0 and Σk = σ2
kId

with σ1 ̸= σ2. Then the Log-Likelihood Ratio is a strictly monotone function of the radial
statistic RT :=

∑T
t=1 ∥yt∥2; hence every Bayes-optimal test depends only on RT , and

adding coordinate-wise information cannot improve its Bayes risk.

Theorem 1 isolates two extremes, whereas real prompts generally result in a mix between these
extremes. An example is the following: assume yt are i.i.d. from a sign–mixture with st ∈ {±1},

yt ∼ πN (+µ, σ2Id) + (1− π)N (−µ, σ2Id), γ := E[st] = 2π − 1,

where µ ∈ Rd, π ∈ (0, 1). Hence,

E[Svec] = γµ, E[Qvec] = σ21d + (1− γ2)µ⊙ µ, E[Snorm] = E∥yt∥ = F (µ, σ2),

where F (µ, σ2) depends only on (µ, σ2). For NormStat, since norms are even, the distribution of
∥yt∥ is invariant under the ±µ mixture. Consequently, the distributions of Snorm and Qnorm do not
depend on π. As π → 1

2 , the advantage of VecStat over NormStat shrinks; at π = 1
2 , the mean

component Svec cancels, and VecStat effectively reduces to its second–moment part, aligning with
the radial evidence summarized by NormStat. Away from 1

2 , Svec provides a clear benefit.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Calibration Cost. An important aspect of statistical methods is sample complexity, or more
specifically, the convergence rate in the number of samples. This provides an estimate of the to-
tal number of calibration samples needed to create the classes k ∈ {1, 2, . . . ,m}. The next theorem
show the calibration advantage of NormStat over VecStat.

Theorem 2 (Calibration cost). Fix a class k. Let y1, . . . , yN
i.i.d.∼ N (µk,Σk) in Rd, where N is the

number of calibration samples drawn for this class. Let q = E[∥y1∥] and define µ̂k = N−1
∑N

i=1 yi,

and q̂ = N−1
∑N

i=1 d
−1/2∥yi∥. Then, for any δ ∈ (0, 1), with probability at least 1−δ, we have:

1. NormStat (dimension-free): |q̂ − q| ≲
√

log(1/δ)
N .

2. VecStat (dimension-dependent): ∥µ̂k − µk∥2 ≲
√

d+log(1/δ)
N .

Considering just the statistics µ̂ and q̂, to obtain an estimation error of order ϵ, one needs N =
Ω(ϵ−2) for q̂ and N = Ω(dϵ−2) for µ̂, showing the computational advantage of NormStat over
VecStat. This is particularly important in data scarce regimes with few samples for each class. We
discuss this in more details in the next section.

Theorem 1 and Theorem 2 compare our methods from two different angles: (i) expressivity, where
VecStat has an edge if directional information is important, otherwise NormStatties with VecStat,
(ii) calibration cost, where NormStat has an edge with fewer calibration samples needed to reach
a given error level. A third important angle is storage/memory cost: while both methods have
similar classification cost (O(Td) per module), NormStat uses O(B) scalars and O(B) scoring
FLOPs, while VecStat uses O(Bd) numbers and O(Bd) scoring FLOPs—so for large B or tight
memory/latency budgets, NormStat has an advantage.

2.3 TRAINING-BASED INTENT CLASSIFICATION

For a comprehensive empirical study, we consider an intent classifier based on a trained head on
top of frozen LLM features. We use the last Transformer block and write yℓ⋆,t ∈ Rd for its token
features (t = 1, . . . , T). Inspired by prompt/sentence classification pipelines (e.g., (Ma et al., 2024;
Wang et al., 2024; Meng et al., 2024)), we build a single prompt-level vector in two ways:

Avg-MLP: zavg :=
1

T

T∑

t=1

yℓ⋆,t = S(ℓ⋆)
vec ∈ Rd, Tail-MLP: ztail := yℓ⋆,T ∈ Rd.

Given z ∈ {zavg, ztail}, we train a two-layer MLP with hidden width h with cross entropy loss.
Since zavg or ztail is produced during prefill, the incremental latency is a single MLP forward pass.
We also consider a simple linear probe variant that we call Avg-Linear where we use a simple
projection instead of MLP.

3 EXPERIMENTS

In this section, we evaluate the effectiveness of NormStat, VecStat, Avg-MLP, Tail-MLP, and Avg-
Linear across multiple LLMs and classification datasets.3 Comprehensive experimental details can
be found in Appendix C, and additional experimental results are presented in Appendix D. Our re-
sults provide a systematic comparison between training-free and training-based intent classification
methods, showing the advantages and disadvantages of each approach. For completeness, we also
compare with a method relying on direct LLM call for intent classification.

3.1 EXPERIMENTAL SETUP

Classification granularities We consider two levels of granularity. Level-1 addresses coarse-
grained classification across three domains: general text, mathematics, and code. Level-2 tests
fine-grained separation within each domain: identifying programming languages, mathematical sub-
fields, natural languages. For Level-1 calibration, we use representative datasets: MMLU European

3Source code is provided in the supplemental materials

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

History (Hendrycks et al., 2021a;b) for general text, GSM8K (Cobbe et al., 2021) for mathematics,
and Magicoder (Wei et al., 2023) for code. We test on MMLU US History for general text, GSM8K
and MATH500 (Lightman et al., 2023) for mathematics (in-distribution and out-of-distribution re-
spectively), and Magicoder and HumanEval (Chen et al., 2021) for code (in/out of distribution).
Level-2 experiments utilize domain-specific subsets: Magicoder for programming language identi-
fication, Competition Math (Hendrycks et al., 2021c) for mathematical subfield classification, and
the Aya dataset (Singh et al., 2024) for natural language identification, with each dataset split be-
tween calibration and test sets. For more details, please refer to Appendix C.1.

0 200 400 600 800 1000
Number of Intent Classification Classes

1.0e-03

0.01

0.10

1

10

100

1G

10G

St
or

ag
e

Si
ze

 (M
B

)

Qwen3-32B

Total MLP Storage (Weights + Training Data)
MLP Weights Storage
NormStat Storage

Figure 3: Storage simulation for intent clas-
sification on Qwen3-32B as the number of
classes increases to 1,000.

Method and LLM selection We compare five classi-
fication methods: NormStat, VecStat (with two variants:
cosine similarity, VecStat:Cos, and KL divergence, Vec-
Stat:KL), and training-based baselines Avg-MLP, Tail-
MLP, and Avg-Linear. Training-based methods use the
same calibration data for training to ensure fair com-
parison. We also benchmark LLM calls, where model
predicts intent directly from the prompt. We evaluate
both zero-shot and 3-shot in-context learning (ICL) set-
tings, with the 3-shot variant providing one example per
class (see Table 7). Our testing reveals that providing a
high-level overview of the intent classes in the prompt
is necessary for achieving a reasonable performance.4
All calibration prompts are truncated to 512 tokens, with
training-free methods probing all linear modules. We evaluate on Qwen3 and Llama families, span-
ning 1B to 32B scales, and base and instruction-tuned variants (see Appendix C.3 for more details).

Evaluation Metrics We compute accuracy on each test dataset independently, where each dataset
contains samples from a single ground-truth class. This approach ensures our evaluation is not
biased by varying dataset sizes across classes. For Level-2 classification, we report mean accuracy
across all classes within each task due to space constraints. This mean accuracy corresponds to
the balanced accuracy metric, providing equal weight to each class regardless of test set size and
effectively handling the natural class imbalance among test datasets. All experiments use three
random seeds, and we report mean performance with standard deviation.

Training/Calibration Cost Comparison. Both training-based and training-free methods add neg-
ligible latency to intent classification and their computational overhead is minimal compared to the
LLM prefill phase. The fundamental difference lies in how adaptable these methods are with evolv-
ing classification targets. When adding a new class, training-free methods maintain constant cost:
computing statistics for the new class data. On the contrary, training-based methods face a trade-
off: either (i) regenerate training embeddings for all classes (both existing and new) from scratch
to enable retraining—a process whose cost grows linearly with the total number of classes, or (ii)
cache all training embeddings to enable rapid retraining at the expense of storage. Fig. 3 quantifies
the storage implications of option (ii) for Qwen3-32B: as the number of classes gradually increases
to 1, 000, the total storage requirement reaches approximately 20GB (primarily for cached embed-
dings), although the MLP weights alone require only 6MB. By comparison, NormStat requires
only 1.7MB for the same 1, 000 classes—a difference of over an order of magnitude. As a result,
training-free methods are particularly well-suited for dynamic intent classification systems where
new classes are frequently added or removed.

3.2 EMPIRICAL RESULTS

Table 2 reports classification results at both granularity levels for five methods on four representa-
tive LLMs, while Table 3 provides detailed per-class accuracy for level-2 programming language
classification. Results for all seven LLMs are reported in Appendix D.1 (level-1) and D.2 (level-2).

4Due to the complexity of designing effective prompts for level-2 finer-grained distinctions, we evaluate
direct LLM inference only on Level-1 classification tasks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Classification accuracy across eight methods on level-1 and level-2 classification granularities. Level-
1 reports per-dataset accuracy for coarse-grained domain classification (general text, math, code). Level-2
reports average accuracy across classes within each domain: programming languages, mathematical subfields,
and natural languages. LLM Call results omitted for Llama-3.2-1B models (failed to produce valid outputs).

Model Method Level-1 Level-2

gsm8k humaneval magicoder math500 mmlu history code math natural language

Qwen3-1.7B

Avg-MLP 99.97±0.04 99.80±0.35 99.99±0.02 78.33±1.67 100.00±0.00 99.96±0.01 76.77±0.27 99.93±0.02

Tail-MLP 100.00±0.00 100.00±0.00 99.97±0.02 99.00±0.00 100.00±0.00 99.59±0.02 72.12±0.27 99.87±0.05

Avg-Linear 100.00±0.00 99.80±0.35 100.00±0.00 69.20±9.18 100.00±0.00 99.96±0.01 74.62±0.24 99.94±0.02

NormStat:KL 97.35±0.00 70.12±0.61 99.27±0.11 76.60±0.20 100.00±0.00 57.79±0.73 38.39±0.56 89.77±0.25

VecStat:KL 100.00±0.00 99.39±0.00 99.97±0.03 88.33±0.30 100.00±0.00 99.24±0.12 48.36±0.64 99.20±0.08

VecStat:Cos 100.00±0.00 98.78±0.00 99.97±0.03 92.26±0.11 100.00±0.00 99.08±0.16 52.74±0.67 99.57±0.02

LLM Call (0-shot) 90.60±0.00 0.00±0.00 81.03±0.39 59.40±0.00 4.41±0.00 -
LLM Call (3-shot) 64.54±0.88 33.54±3.23 85.71±0.26 80.87±1.10 58.17±3.93 -

Llama-3.2-1B

Avg-MLP 100.00±0.00 100.00±0.00 99.99±0.01 64.33±8.33 99.84±0.28 99.97±0.01 70.20±0.72 99.91±0.04

Tail-MLP 99.95±0.04 100.00±0.00 99.97±0.03 98.93±0.42 99.35±1.13 99.47±0.07 69.01±1.11 99.83±0.07

Avg-Linear 100.00±0.00 99.80±0.35 99.99±0.01 71.47±7.78 98.69±1.86 99.96±0.00 68.87±1.06 99.90±0.02

NormStat:KL 99.49±0.09 90.85±0.00 96.39±0.20 83.40±0.00 92.48±0.57 49.22±0.73 31.27±0.54 86.53±1.33

VecStat:KL 100.00±0.00 99.39±0.00 99.98±0.02 78.80±0.12 100.00±0.00 98.99±0.10 47.67±0.89 99.19±0.08

VecStat:Cos 100.00±0.00 99.39±0.00 99.97±0.02 77.60±0.20 100.00±0.00 98.71±0.12 51.47±0.73 99.72±0.01

Qwen3-8B

Avg-MLP 99.42±0.74 99.59±0.35 99.99±0.02 77.27±11.02 100.00±0.00 99.97±0.01 79.10±0.48 99.92±0.01

Tail-MLP 99.82±0.12 98.58±2.46 99.98±0.02 81.20±9.72 100.00±0.00 99.67±0.01 75.76±0.68 99.88±0.04

Avg-Linear 99.57±0.24 100.00±0.00 100.00±0.00 83.00±2.03 100.00±0.00 99.97±0.01 77.70±1.11 99.94±0.01

NormStat:KL 85.14±0.35 10.37±1.06 99.85±0.06 92.93±0.12 99.51±0.49 56.39±0.69 33.25±0.92 90.09±0.40

VecStat:KL 99.95±0.04 99.59±0.35 99.99±0.02 92.20±0.00 100.00±0.00 99.23±0.10 49.99±1.12 99.20±0.08

VecStat:Cos 100.00±0.00 95.73±0.61 99.98±0.03 94.20±0.00 100.00±0.00 99.34±0.09 54.75±0.63 99.68±0.03

LLM Call (0-shot) 99.67±0.04 100.00±0.00 99.42±0.07 99.60±0.00 99.67±0.28 -
LLM Call (3-shot) 99.14±0.18 97.15±0.35 99.43±0.07 99.87±0.12 99.51±0.49 -

Qwen3-32B

Avg-MLP 95.88±3.31 100.00±0.00 99.99±0.01 86.87±5.22 100.00±0.00 99.97±0.01 78.67±0.67 99.93±0.02

Tail-MLP 99.39±0.00 100.00±0.00 99.98±0.00 96.80±0.40 99.02±0.49 98.41±0.10 74.07±1.15 99.84±0.01

Avg-Linear 98.61±1.59 100.00±0.00 99.99±0.02 87.53±6.94 100.00±0.00 99.97±0.01 78.21±0.19 99.94±0.01

NormStat:KL 97.93±0.04 24.59±0.35 99.78±0.06 97.93±0.12 100.00±0.00 57.03±0.43 35.14±0.25 89.62±0.08

VecStat:KL 100.00±0.00 99.39±0.00 99.98±0.03 96.60±0.00 100.00±0.00 99.53±0.07 53.16±0.52 98.74±0.05

VecStat:Cos 100.00±0.00 98.17±0.00 99.98±0.03 96.80±0.35 100.00±0.00 99.61±0.06 56.70±0.88 99.58±0.02

LLM Call (0-shot) 86.91±0.29 100.00±0.00 98.69±0.06 96.27±0.42 100.00±0.00 -
LLM Call (3-shot) 97.80±0.20 100.00±0.00 98.87±0.05 99.80±0.20 100.00±0.00 -

Level-1 classification: All methods perform well. Across easy tasks, all methods achieve strong
in-distribution performance. The effectiveness of NormStat, despite using only radial statistics,
demonstrates itself as a computational- and memory-efficient approach when the classes are differ-
ent enough. Surprisingly, NormStat outperforms all other methods in some cases (e.g. Qwen3-32B
evaluated on math500). VecStat achieves marginally higher accuracies than NormStat in most cases.
Training-based methods perform comparably to VecStat, with no approach consistently dominating
across datasets. Avg-Linear performs comparably to Avg-MLP but with slightly lower accuracy,
consistent with the reduced expressiveness of a linear layer versus two-layer architecture. Direct
LLM inference shows improved classification accuracy with larger models and in-context learning,
though at the cost of substantially increased prompt length and careful prompt design to achieve a
reasonable performance. Notably, Llama-3.2-1B models fail to produce valid outputs even with in-
context examples, hence their results are omitted. Out-of-distribution generalization varies substan-
tially, as evidenced by the performance difference between GSM8K and MATH500 for mathemati-
cal tasks, suggesting that different methods might capture distinct aspects of domain characteristics.

Level-2 classification: Training-based methods win, VecStat remains competitive. Fine-
grained classification within domains reveals clear performance stratification across methods. For
programming language identification, VecStat maintains near-perfect accuracy while NormStat
shows substantial degradation, aligning with our theoretical prediction that directional information
becomes critical for within-domain discrimination. As detailed in Table 3, this performance gap
remains consistent across all nine programming languages. Mathematical subfield classification
proves most challenging for training-free methods, with both NormStat and VecStat falling short
of training-based approaches. This gap suggests that effective discrimination among mathemati-
cal topics requires non-linear transformations better captured through supervised training signals.
In contrast, natural language identification demonstrates strong performance across all methods,
with VecStat achieving near-perfect accuracy, likely due to distinct linguistic features being well-
separated in the LLM’s hidden representation space.

Distance metric comparison The cosine distance variant of VecStat consistently outperforms its
KL divergence counterpart, particularly in Level-2 tasks. This may suggest that angular separation
between prompt and baseline statistics offers a more robust measure that captures directionality.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Level-2 programming language classification results for Qwen3-8B and Qwen3-32B. Values represent
per-class accuracy across nine programming languages from the Magicoder.

Model Method cpp csharp java php python rust shell swift typescript

Qwen3-8B

Avg-MLP 99.95±0.05 100.00±0.00 100.00±0.00 99.96±0.06 99.91±0.01 100.00±0.00 100.00±0.00 100.00±0.00 99.94±0.03

Tail-MLP 99.61±0.16 99.69±0.18 99.47±0.12 100.00±0.00 99.39±0.22 99.53±0.10 99.92±0.14 99.75±0.07 99.61±0.10

Avg-Linear 99.97±0.03 100.00±0.00 100.00±0.00 99.96±0.06 99.91±0.03 100.00±0.00 100.00±0.00 100.00±0.00 99.93±0.03

NormStat:KL 47.37±0.94 38.26±1.28 27.59±0.65 60.14±1.27 67.73±0.54 63.05±0.43 91.51±0.60 62.54±1.25 49.28±0.84

VecStat:KL 99.09±0.11 98.58±0.42 97.78±0.09 99.78±0.22 99.01±0.04 99.81±0.00 99.76±0.00 99.91±0.09 99.38±0.20

VecStat:Cos 98.90±0.24 98.96±0.38 98.49±0.03 99.85±0.13 99.13±0.12 99.55±0.07 100.00±0.00 99.81±0.12 99.35±0.19

Qwen3-32B

Avg-MLP 99.91±0.03 99.98±0.04 100.00±0.00 99.96±0.06 99.91±0.03 99.97±0.06 100.00±0.00 100.00±0.00 99.96±0.04

Tail-MLP 98.01±0.41 97.27±0.95 97.99±0.53 98.77±0.22 98.26±0.21 99.21±0.06 98.97±0.60 98.71±0.48 98.50±0.07

Avg-Linear 99.91±0.03 99.98±0.04 100.00±0.00 99.96±0.06 99.92±0.00 99.97±0.06 100.00±0.00 100.00±0.00 99.96±0.04

NormStat:KL 53.57±0.94 36.94±1.38 25.47±1.43 59.47±0.57 61.66±1.40 67.63±0.54 89.29±0.71 69.35±1.19 49.84±1.08

VecStat:KL 99.01±0.11 99.35±0.34 98.72±0.03 99.89±0.11 99.29±0.06 99.90±0.05 100.00±0.00 99.85±0.09 99.75±0.16

VecStat:Cos 99.18±0.14 99.53±0.19 99.01±0.10 99.89±0.11 99.50±0.04 99.81±0.13 100.00±0.00 99.87±0.12 99.72±0.09

46.5%

10.8%

42.7%

(a) NormStat

47.7%

18.3%

34.0%

(b) VecStat

98.0%

1.8%

(c) Tail-MLP

100.0%

(d) Avg-MLP

Math
Text
Code

Figure 4: Uncertainty quantification results on a mixed-intent prompt on Qwen-1.7B-Base.

3.3 CASE STUDY ON AMBIGUOUS PROMPTS

We examine classification uncertainty of different methods when encountering ambiguous prompts
with unclear intents. We concatenate programming and mathematical content into a single prompt
and analyze the resulting prediction distributions across all three level-1 categories. For NormStat
and VecStat, we form probabilities via a softmax over negative distances pi ∝ exp

(
− di/τ

)
, and

rescale distances with a problem-scale constant τ = O(distance) before the softmax (in our ex-
periments, τ = 10). This temperature-like scaling yields meaningful confidence estimates with
essentially zero extra cost. In contrast, the training-based approaches (Avg-MLP and Tail-MLP)
take the softmax of MLP logits; these probabilities are not calibrated by default, and obtaining
reliable uncertainty quantification requires an explicit post-hoc calibration step (e.g., temperature
scaling learned on a validation set) (Guo et al., 2017), which we do not apply here. Both VecStat
and NormStat (Fig. 4(a)–(b)) produce well-calibrated distributions that reflect the prompt’s mixed
nature—assigning substantial mass to both math and code while down-weighting text. In contrast,
the training-based methods (Fig. 4(c)–(d)) are overconfident, placing essentially all mass on a single
class despite mixed content. This failure stems from discriminative training on clean data yield-
ing overly sharp decision boundaries that are poorly calibrated for out-of-distribution, noisy inputs.
While such predictions can score well on clean test sets, they produce misleading uncertainty in
deployment scenarios where mixed-intent prompts naturally occur (see Appendix D.3).

3.4 ROBUSTNESS TO ADVERSARIAL ATTACK

Table 4: Level-1 accuracy on clean
and adversarial MATH500 prompts for
Llama-3.2-1B-Instruct.

Method math500 adv math500

Tail-MLP 94.53±0.42 82.33±3.06

NormStat:KL 96.20±0.00 92.40±0.00

We evaluate robustness under adversarial rephrasing on
MATH500, with all methods calibrated or trained only on
clean data. (See Appendix D.7 for full results). As shown in
Table 4, every approach suffers a performance drop on adver-
sarial prompts, confirming that this attack meaningfully dis-
rupts intent cues. Among training-based methods, Tail-MLP is
notably robust, retaining most of its accuracy. Among training-
free approaches, NormStat is the most resilient, showing only
a modest drop. This aligns with the method design: NormStat relies on radial statistics that are
relatively invariant to directional perturbations induced by adversarial paraphrasing.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

4 8 12 16 20 24 28
Number of Layers

60

80

100
M

ea
n

A
cc

ur
ac

y
(%

)

humaneval

4 8 12 16 20 24 28
Number of Layers

math500

NormStat:KL VecStat:KL VecStat:Cos

Figure 5: Effect of the number of layers on level-
1 classification accuracy for Qwen3-1.7B.

32 64 128 256 512
Maximum Prompt Length

20

40

60

80

100

M
ea

n
A

cc
ur

ac
y

(%
)

humaneval

32 64 128 256 512
Maximum Prompt Length

mmlu_history

NormStat:KL VecStat:KL VecStat:Cos

Figure 6: Effect of the maximum prompt length
on level-1 classification for Qwen3-1.7B.

3.5 EFFECT OF NUMBER OF PROBED LAYERS AND PROMPT LENGTH

Number of probed layers In Fig. 5, VecStat demonstrates a robust performance regardless of
layer count, indicating that early layers capture sufficient statistical information for intent classi-
fication. In contrast, NormStat exhibits dataset-dependent behavior: performance degrades with
additional layers on humaneval but improves on math500, though both achieve competitive accu-
racy using only the first 12 layers out of 28. These findings imply that routing can be performed
without completing a full forward pass, substantially saving computation costs. See Appendix D.4
for additional results.

Maximum prompt length In Fig. 6, VecStat demonstrates remarkable stability, maintaining
near-optimal accuracy across all sequence lengths from 32 to 512. This robustness indicates that
coordinate-wise statistics capture sufficient discriminative information even from truncated prompts,
enabling potential deployment optimizations through reduced sequence lengths. NormStat is more
sensitive to prompt length, with accuracy improving substantially as length increases and plateauing
at approximately 128 tokens. More detailed results are presented in Appendix D.6.

3.6 CALIBRATION ANALYSIS

To validate Theorem 2, we compare the empirical and theoretical convergence rates of NormStat and
VecStat on the MagiCoder dataset and present the result in Fig. 7. We vary the calibration sample
size from 512 to 32768 and conduct multiple runs with different seeds. Our results demonstrate
strong empirical match with the theoretical bounds. Both methods show Õ(N−0.5) rate for the mean
error, following the predicted theoretical curves. Notably, NormStat attains much lower absolute
errors, which is consistent with its dimension-free bound, whereas VecStat sits higher due to its
dimension-dependent bounds. Calibration results for other LLMs are deferred to Appendix D.5.

0 5000 10000 15000 20000 25000 30000
Sample Size N

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

M
ea

n
Er

ro
r

Empirical
±1 std
NormStat bound O((log(1/)/N))

103 104

Sample Size N

10 4

10 3

M
ea

n
Er

ro
r

Empirical
±1 std
NormStat O(N^{-0.5})

(a) NormStat

0 5000 10000 15000 20000 25000 30000
Sample Size N

0.2

0.4

0.6

0.8

1.0

M
ea

n
Er

ro
r (

Ve
cS

ta
t)

Empirical
±1 std
VecStat bound O((d/N))

103 104

Sample Size N

10 1

100

M
ea

n
Er

ro
r (

Ve
cS

ta
t)

Empirical
±1 std
VecStat O(N^{-0.5})

(b) VecStat

Figure 7: Calibration convergence analysis for Qwen3-8B on the MagiCoder dataset. Each subplot shows
both linear and log-log scales comparing empirical results with theoretical bounds.

4 CONCLUSION

We conducted a comprehensive comparative study of training-free vs training-based intent classi-
fiers and showed that both approach excel at easy classification tasks (e.g. math vs code), while
training-free methods (NormStat and VecStat) provide fast, uncertainty-aware routing with mini-
mal overhead. Training-free methods are more robust to ambiguous prompts while training-based
classifiers (Avg-MLP, Tail-MLP) are better on more fine-grained classification tasks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

STATEMENT OF AUTHORS

ETHICS STATEMENT

We adhere to the ICLR Code of Ethics. Our study does not involve human subjects, personally
identifiable information, or sensitive attributes; all datasets are publicly available under permissive
licenses, and we follow their terms of use. We neither collect new data nor perform any form of user
profiling, re-identification, or demographic inference. We evaluate and report results using standard,
publicly accepted protocols, and we avoid releasing models or artifacts that are reasonably likely to
enable harmful applications. We disclose computing resources and consider environmental impact
in our experiments; no conflicts of interest or external sponsorships influenced the work. The authors
take full responsibility for the integrity and accuracy of the content.

REPRODUCIBILITY STATEMENT

We provide runnable code in the supplementary materials. The full codebase will be released as
open-source after the review process. All experimental settings—including dataset specifications,
preprocessing steps, training/evaluation pipelines, and exact hyperparameters—are documented in
the appendix for complete reproducibility.

THE USE OF LARGE LANGUAGE MODELS

We used LLMs solely as general-purpose assistive tools. For writing, we employed OpenAI’s GPT-
5 to polish language in sentence level—improving clarity, grammar, and style—without generating
scientific claims, interpreting results, or drafting sections de novo. For coding, we used the Cursor
IDE’s built-in autocomplete to suggest boilerplate and minor edits; all coding/writing logic was
authored, reviewed, and verified by the authors. The research ideas, experimental design, and overall
manuscript structure were conceived and developed by the authors without any LLM involvement.
The authors take full responsibility for the content.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

REFERENCES

Pranjal Aggarwal, Aman Madaan, Ankit Anand, Srividya Pranavi Potharaju, Swaroop Mishra, Pei
Zhou, Aditya Gupta, Dheeraj Rajagopal, Karthik Kappaganthu, Yiming Yang, et al. Automix:
Automatically mixing language models. arXiv preprint arXiv:2310.12963, 2023.

Maia Aguirre, Ariane Méndez, Arantza Del Pozo, Marı́a Inés Torres, and Manuel Torralbo. Fine-
tuning medium-scale llms for joint intent classification and slot filling: A data-efficient and cost-
effective solution for smes. In Proceedings of the 31st International Conference on Computational
Linguistics: Industry Track, pp. 251–262, 2025.

Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier
probes. arXiv preprint arXiv:1610.01644, 2016.

Gaurav Arora, Shreya Jain, and Srujana Merugu. Intent detection in the age of llms. arXiv preprint
arXiv:2410.01627, 2024.

Sourav Banerjee, Ayushi Agarwal, and Saloni Singla. Llms will always hallucinate, and we need to
live with this. In Intelligent Systems Conference, pp. 624–648. Springer, 2025.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia,
Ziwei Ji, Tiezheng Yu, Willy Chung, et al. A multitask, multilingual, multimodal evaluation of
chatgpt on reasoning, hallucination, and interactivity. arXiv preprint arXiv:2302.04023, 2023.

Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Chapa-
dos, and Siva Reddy. Llm2vec: Large language models are secretly powerful text encoders. arXiv
preprint arXiv:2404.05961, 2024.

Tom Bocklisch, Joey Faulkner, Nick Pawlowski, and Alan Nichol. Rasa: Open source language
understanding and dialogue management. arXiv preprint arXiv:1712.05181, 2017.

Tanja Bunk, Daksh Varshneya, Vladimir Vlasov, and Alan Nichol. Diet: Lightweight language
understanding for dialogue systems. arXiv preprint arXiv:2004.09936, 2020.

Iñigo Casanueva, Tadas Temčinas, Daniela Gerz, Matthew Henderson, and Ivan Vulić. Efficient
intent detection with dual sentence encoders. arXiv preprint arXiv:2003.04807, 2020.

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang,
Ning-Chi Huang, Luis Ceze, Mohamed S Abdelfattah, and Kai-Chiang Wu. Palu: Compressing
kv-cache with low-rank projection. arXiv preprint arXiv:2407.21118, 2024.

Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
reducing cost and improving performance. arXiv preprint arXiv:2305.05176, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021.

Qian Chen, Zhu Zhuo, and Wen Wang. Bert for joint intent classification and slot filling. arXiv
preprint arXiv:1902.10909, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Henry Cunningham, Ryan Huben, et al. Sparse autoencoders find highly
interpretable features in language models. In ICLR, 2024. URL
https://proceedings.iclr.cc/paper_files/paper/2024/file/
1fa1ab11f4bd5f94b2ec20e794dbfa3b-Paper-Conference.pdf.

Jasper Dekoninck, Maximilian Baader, and Martin Vechev. A unified approach to routing and cas-
cading for llms. arXiv preprint arXiv:2410.10347, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposi-
tion. arXiv preprint arXiv:2209.10652, 2022.

Tao Feng, Yanzhen Shen, and Jiaxuan You. Graphrouter: A graph-based router for llm selections.
arXiv preprint arXiv:2410.03834, 2024.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders, 2024. URL https:
//cdn.openai.com/papers/sparse-autoencoders.pdf.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Chih-Wen Goo, Guang Gao, Yun-Kai Hsu, Chih-Li Huo, Tsung-Chieh Chen, Keng-Wei Hsu, and
Yun-Nung Chen. Slot-gated modeling for joint slot filling and intent prediction. In Proceedings
of the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 753–757, 2018.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pp. 1321–1330. PMLR, 2017.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–
the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Surya Narayanan Hari and Matt Thomson. Tryage: Real-time, intelligent routing of user prompts to
large language models. arXiv preprint arXiv:2308.11601, 2023.

Homa B Hashemi, Amir Asiaee, and Reiner Kraft. Query intent detection using convolutional
neural networks. In International conference on web search and data mining, workshop on query
understanding, volume 23, 2016.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Plop: Precise lora placement for efficient finetuning of
large models, 2025. URL https://arxiv.org/abs/2506.20629.

Changai He, Sibao Chen, Shilei Huang, Jian Zhang, and Xiao Song. Using convolutional neural
network with bert for intent determination. In 2019 International Conference on Asian Language
Processing (IALP), pp. 65–70. IEEE, 2019.

Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob
Steinhardt. Aligning ai with shared human values. Proceedings of the International Conference
on Learning Representations (ICLR), 2021a.

13

https://proceedings.iclr.cc/paper_files/paper/2024/file/1fa1ab11f4bd5f94b2ec20e794dbfa3b-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2024/file/1fa1ab11f4bd5f94b2ec20e794dbfa3b-Paper-Conference.pdf
https://cdn.openai.com/papers/sparse-autoencoders.pdf
https://cdn.openai.com/papers/sparse-autoencoders.pdf
https://arxiv.org/abs/2506.20629

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2021b.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021c.

John Hewitt and Christopher D Manning. A structural probe for finding syntax in word representa-
tions. In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Pa-
pers), pp. 4129–4138, 2019.

Taesuk Hong, Youbin Ahn, Dongkyu Lee, Joongbo Shin, Seungpil Won, Janghoon Han, Stan-
ley Jungkyu Choi, and Jungyun Seo. Exploring the use of natural language descriptions of intents
for large language models in zero-shot intent classification. In Proceedings of the 25th Annual
Meeting of the Special Interest Group on Discourse and Dialogue, pp. 458–465, 2024.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. arXiv preprint arXiv:2306.02561, 2023.

Ting Jiang, Shaohan Huang, Zhongzhi Luan, Deqing Wang, and Fuzhen Zhuang. Scaling sentence
embeddings with large language models. In EMNLP (Findings), pp. 3182–3196, 2024. URL
https://aclanthology.org/2024.findings-emnlp.181.

Shibo Jie, Yehui Tang, Kai Han, Zhi-Hong Deng, and Jing Han. Specache: Speculative key-value
caching for efficient generation of llms. arXiv preprint arXiv:2503.16163, 2025.

Wittawat Jitkrittum, Harikrishna Narasimhan, Ankit Singh Rawat, Jeevesh Juneja, Congchao Wang,
Zifeng Wang, Alec Go, Chen-Yu Lee, Pradeep Shenoy, Rina Panigrahy, et al. Universal model
routing for efficient llm inference. arXiv preprint arXiv:2502.08773, 2025.

Stefan Larson, Anish Mahendran, Joseph J Peper, Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K Kummerfeld, Kevin Leach, Michael A Laurenzano, Lingjia Tang, et al. An evaluation
dataset for intent classification and out-of-scope prediction. arXiv preprint arXiv:1909.02027,
2019.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catan-
zaro, and Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding
models. arXiv preprint arXiv:2405.17428, 2024.

Erich Leo Lehmann and George Casella. Theory of point estimation. Springer, 1998.

Erich Leo Lehmann and Henry Scheffé. Completeness, similar regions, and unbiased estimation-
part i. In Selected works of EL Lehmann, pp. 233–268. Springer, 2011.

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,
Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Mario
Šaško, Gunjan Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Can-
wen Xu, Nicolas Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément
Delangue, Théo Matussière, Lysandre Debut, Stas Bekman, Pierric Cistac, Thibault Goehringer,
Victor Mustar, François Lagunas, Alexander Rush, and Thomas Wolf. Datasets: A community
library for natural language processing. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, pp. 175–184, Online and
Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics.
URL https://aclanthology.org/2021.emnlp-demo.21.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

14

https://aclanthology.org/2024.findings-emnlp.181
https://aclanthology.org/2021.emnlp-demo.21

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950–1965, 2022.

Junhua Liu, Yong Keat Tan, Bin Fu, and Kwan Hui Lim. Balancing accuracy and efficiency in
multi-turn intent classification for llm-powered dialog systems in production. arXiv preprint
arXiv:2411.12307, 2024.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
cessing. ACM computing surveys, 55(9):1–35, 2023.

Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and Jimmy Lin. Fine-tuning llama for multi-stage
text retrieval. In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 2421–2425, 2024.

Rui Meng, Ye Liu, Shafiq Rayhan Joty, Caiming Xiong, Yingbo Zhou, and Semih Yavuz.
Sfrembedding-mistral: enhance text retrieval with transfer learning. Salesforce AI Research Blog,
3:6, 2024.

Niklas Muennighoff. Sgpt: Gpt sentence embeddings for semantic search. arXiv preprint
arXiv:2202.08904, 2022.

Niklas Muennighoff, SU Hongjin, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh,
and Douwe Kiela. Generative representational instruction tuning. In The Thirteenth International
Conference on Learning Representations, 2024.

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry Tworek, Qim-
ing Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy, et al. Text and code embeddings by
contrastive pre-training. arXiv preprint arXiv:2201.10005, 2022.

Zhijie Nie, Zhangchi Feng, Mingxin Li, Cunwang Zhang, Yanzhao Zhang, Dingkun Long, and
Richong Zhang. When text embedding meets large language model: a comprehensive survey.
arXiv preprint arXiv:2412.09165, 2024.

OpenAI. Gpt-5 system card. 2025. URL https://cdn.openai.com/
gpt-5-system-card.pdf.

Nina Panickssery, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt
Turner. Steering llama 2 via contrastive activation addition. arXiv preprint arXiv:2312.06681,
2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Juan A Rodriguez, Nicholas Botzer, David Vazquez, Christopher Pal, Marco Pedersoli, and Is-
sam Laradji. Intentgpt: Few-shot intent discovery with large language models. arXiv preprint
arXiv:2411.10670, 2024.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Shivalika Singh, Freddie Vargus, Daniel Dsouza, Börje F. Karlsson, Abinaya Mahendiran, Wei-Yin
Ko, Herumb Shandilya, Jay Patel, Deividas Mataciunas, Laura OMahony, Mike Zhang, Ramith
Hettiarachchi, Joseph Wilson, Marina Machado, Luisa Souza Moura, Dominik Krzemiński,
Hakimeh Fadaei, Irem Ergün, Ifeoma Okoh, Aisha Alaagib, Oshan Mudannayake, Zaid Alyafeai,
Vu Minh Chien, Sebastian Ruder, Surya Guthikonda, Emad A. Alghamdi, Sebastian Gehrmann,
Niklas Muennighoff, Max Bartolo, Julia Kreutzer, Ahmet Üstün, Marzieh Fadaee, and Sara
Hooker. Aya dataset: An open-access collection for multilingual instruction tuning, 2024.

15

https://cdn.openai.com/gpt-5-system-card.pdf
https://cdn.openai.com/gpt-5-system-card.pdf

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Seamus Somerstep, Felipe Maia Polo, Allysson Flavio Melo de Oliveira, Prattyush Mangal, Mı́rian
Silva, Onkar Bhardwaj, Mikhail Yurochkin, and Subha Maity. Carrot: A cost aware rate optimal
router. arXiv preprint arXiv:2502.03261, 2025.

Adnane Souha, Charaf Ouaddi, Lamya Benaddi, and Abdeslam Jakimi. Pre-trained models for
intent classification in chatbot: Comparative study and critical analysis. In 2023 6th international
conference on advanced communication technologies and networking (CommNet), pp. 1–6. IEEE,
2023.

Dimitris Stripelis, Zijian Hu, Jipeng Zhang, Zhaozhuo Xu, Alay Dilipbhai Shah, Han Jin, Yuhang
Yao, Salman Avestimehr, and Chaoyang He. Tensoropera router: A multi-model router for effi-
cient llm inference. arXiv preprint arXiv:2408.12320, 2024.

Yixuan Tang and Yi Yang. Pooling and attention: What are effective designs for llm-based embed-
ding models? arXiv preprint arXiv:2409.02727, 2024.

Chongyang Tao, Tao Shen, Shen Gao, Junshuo Zhang, Zhen Li, Kai Hua, Wenpeng Hu, Zhengwei
Tao, and Shuai Ma. Llms are also effective embedding models: An in-depth overview. arXiv
preprint arXiv:2412.12591, 2024.

Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell, Juan J Vazquez, Ulisse Mini, and
Monte MacDiarmid. Activation addition: Steering language models without optimization. arXiv
e-prints, pp. arXiv–2308, 2023.

Hongyi Wang, Felipe Maia Polo, Yuekai Sun, Souvik Kundu, Eric Xing, and Mikhail Yurochkin.
Fusing models with complementary expertise. arXiv preprint arXiv:2310.01542, 2023a.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improv-
ing text embeddings with large language models. In ACL (1), pp. 11897–11916, 2024. URL
https://doi.org/10.18653/v1/2024.acl-long.642.

Zhiqiang Wang, Yiran Pang, and Yanbin Lin. Large language models are zero-shot text classifiers.
arXiv preprint arXiv:2312.01044, 2023b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empowering
code generation with oss-instruct. arXiv preprint arXiv:2312.02120, 2023.

Fangzhou Wu and Sandeep Silwal. Efficient training-free online routing for high-volume multi-llm
serving. arXiv preprint arXiv:2509.02718, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023.

Murong Yue, Jie Zhao, Min Zhang, Liang Du, and Ziyu Yao. Large language model cascades with
mixture of thoughts representations for cost-efficient reasoning. arXiv preprint arXiv:2310.03094,
2023.

Zesen Zhao, Shuowei Jin, and Z Morley Mao. Eagle: Efficient training-free router for multi-llm
inference. arXiv preprint arXiv:2409.15518, 2024.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

16

https://doi.org/10.18653/v1/2024.acl-long.642

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A ADDITIONAL THEORETICAL ANALYSIS

A.1 TWO ENDPOINTS ON THE COMPRESSION LADDER

For each class k ∈ [m], per-class baselines are computed at the same module Wℓ on calibration data.
We compare the two methods in terms of FLOPs and memory.

VecStat. Method 1: Compute (Svec, Qvec) as in (1). With per-class parameters (µk,Σk =
Diag(σ2

k,1, . . . , σ
2
k,d)). The log-likelihood ratio (LLR) between classes i and j is

log
pi(Y)

pj(Y)
= −T

2

d∑

m=1

[
log

σ2
i,m

σ2
j,m

+
Qvec,m − 2µi,mSvec,m + µ2

i,m

σ2
i,m

−
Qvec,m − 2µj,mSvec,m + µ2

j,m

σ2
j,m

]
,

(4)

which is equivalently the average of coordinate-wise Gaussian KLs (since Σk is diagonal):

d∑

m=1

KL
(
N (µi,m, σ2

i,m) ∥N (µj,m, σ2
j,m)

)
=

1

2

d∑

m=1

[
log

σ2
j,m

σ2
i,m

+
σ2
i,m + (µi,m − µj,m)2

σ2
j,m

− 1

]
.

(5)

Method 2: Using Svec, classify via

cosk(Svec, µk) =
⟨Svec, µk⟩
∥Svec∥∥µk∥

, b̂ = arg max
k∈[m]

cosk(Svec, µk).

Costs: Per-token compute: Θ(d). Prompt-state: O(d). Baseline storage: O(md) numbers. (If only
cosine scoring is used, Qvec need not be stored.)

NormStat. Method: Compute (Snorm, Qnorm) as in (2), then compare (Snorm, Qnorm) to per-class
baselines (µx,k, σ

2
x,k) via a 1D Gaussian KL:

KL
(
N (µx,i, σ

2
x,i)∥N (µx,j , σ

2
x,j)
)
=

1

2

[
log

σ2
x,j

σ2
x,i

+
σ2
x,i + (µx,i − µx,j)

2

σ2
x,j

− 1

]
. (6)

Cost. Per-token compute: Θ(d). Prompt-state: O(1). Baseline storage: O(m) scalars.

A.2 SUFFICIENCY

We establish the minimal sufficiency of (Svec, Qvec) for the diagonal–Gaussian model, which is
a classical result, see (Lehmann & Casella, 1998; Lehmann & Scheffé, 2011). Intuitively, a suf-
ficient statistic is a lossless compression for inference about the unknown class/parameters: once
(Svec, Qvec) is known, the raw sample Y contains no further information. Minimal sufficiency
means no additional compression is possible without losing information—every other sufficient
statistic is a measurable function of (Svec, Qvec).
Lemma 1. Under (3) with diagonal Σk, the pair (Svec, Qvec) is a minimal sufficient statistic for
the family {N (µk,Σk)

⊗T }, and the class LLR (4) depends on the data only through (Svec, Qvec).

The proof is provided in Appendix B.

B PROOFS

B.1 PROOF OF LEMMA 1

Proof of Lemma 1. Let Y := (y1, . . . , yT) ∈ RT×d. For a class k, let

θk = (µk, σ
2
k,1, . . . , σ

2
k,d), Σk = Diag(σ2

k,1, . . . , σ
2
k,d).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Define the token-wise sums

S :=

T∑

t=1

yt ∈ Rd, Q :=

T∑

t=1

(
yt ⊙ yt

)
∈ Rd,

and write Sm :=
∑T

t=1 yt,m, Qm :=
∑T

t=1 y
2
t,m for coordinates m = 1, . . . , d. These relate to the

averaged statistics in (1) as follows:

S = TSvec, Q = (T − 1)Qvec + T
(
Svec ⊙ Svec

)

Since (minimal) sufficiency is invariant under invertible reparameterizations of the statistic, we may
work with (S,Q) and translate back to (Svec, Qvec) via the identities above.

Sufficiency. By (3), yt are i.i.d. with density

pθk(y) =
1

(2π)d/2
∏d

m=1 σk,m

exp

(
−1

2

d∑

m=1

(ym − µk,m)2

σ2
k,m

)
.

Hence the joint density of Y under class k is

pθk(Y) =
1

(2π)Td/2
∏d

m=1 σ
T
k,m

exp

(
−1

2

T∑

t=1

d∑

m=1

(yt,m − µk,m)2

σ2
k,m

)

=
1

(2π)Td/2

︸ ︷︷ ︸
:=h(Y)

· 1
∏d

m=1 σ
T
k,m

exp

(
−1

2

d∑

m=1

Qm − 2µk,mSm + Tµ2
k,m

σ2
k,m

)

︸ ︷︷ ︸
:=gθk (S,Q)

.

Thus pθk(Y) = h(Y) gθk(S,Q). By the Neyman–Fisher factorization theorem, (S,Q) is sufficient
for θk, and hence (Svec, Qvec) is sufficient by the invertible mapping above.

Minimality. Using the Lehmann–Scheffé characterization: a statistic T (Y) is minimal sufficient iff
for any Y, Y ′ the likelihood ratio pθ(Y)/pθ(Y

′) is free of θ if and only if T (Y) = T (Y ′). For our
family,

pθ(Y)

pθ(Y ′)
= exp

(
−1

2

d∑

m=1

(Qm −Q′
m)− 2µm(Sm − S′

m)

σ2
m

)
.

If (S,Q) = (S′, Q′) then this ratio equals 1, hence is parameter–free. Conversely, if for some m
either Sm ̸= S′

m or Qm ̸= Q′
m, the exponent depends on µm (when Sm ̸= S′

m) or on σ2
m (when

Qm ̸= Q′
m); thus the ratio cannot be constant in θ.

Moreover, for classes i and j, subtracting the two log-likelihoods above yields

log
pi(Y)

pj(Y)
= −1

2

d∑

m=1

(
T log

σ2
i,m

σ2
j,m

+
Qm − 2µi,mSm + Tµ2

i,m

σ2
i,m

−
Qm − 2µj,mSm + Tµ2

j,m

σ2
j,m

)
,

which is exactly (4) and depends on Y only through (S,Q), and equivalently only through
(Svec, Qvec) via the identities at the start of the proof.

This establishes that (Svec, Qvec) is minimal sufficient and that the LLR depends on the sample only
through this pair.

B.2 PROOF OF THEOREM 1

Proof of Theorem 1. Directional regime: Since ∥µ1∥ = ∥µ2∥, there exists an orthogonal matrix
U with Uµ1 = µ2. If Y ∼ N (µ1, σ

2Id) then UY ∼ N (µ2, σ
2Id) and ∥UY ∥ = ∥Y ∥. Thus for

each t, ∥yt∥ | k = 1 and ∥yt∥ | k = 2 have the same distribution, and by independence the vectors
(∥yt∥)Tt=1 | k = 1 and (∥yt∥)Tt=1 | k = 2 are identically distributed. With a uniform prior, any
decision rule that depends only on {∥yt∥} has the same acceptance probability under both classes,
so its Bayes error is 1/2.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

For the log-likelihood ratio test (LRT), the log-likelihood ratio for two Gaussians with common
covariance σ2Id is

Λ(y1:T) =
T

σ2

〈
Svec, µ1 − µ2

〉
− T

2σ2

(
∥µ1∥2 − ∥µ2∥2

)
.

With equal priors the LRT accepts k = 1 iff Λ ≥ 0. Under ∥µ1∥ = ∥µ2∥, the constant term vanishes
and the decision reduces to the sign of ⟨Svec, µ1 − µ2⟩, i.e., to k̂ above.

Let u := (µ1 − µ2)/∥µ1 − µ2∥ and Z := ⟨Svec, u⟩. Since Svec | k ∼ N (µk,
σ2

T Id) and ∥u∥ = 1,

Z | k ∼ N
(
⟨µk, u⟩,

σ2

T

)
, ⟨µ1, u⟩ = 1

2∥µ1 − µ2∥, ⟨µ2, u⟩ = − 1
2∥µ1 − µ2∥.

Hence, by symmetry,

Pr
(
k̂(y1:T) ̸= k

)
= Pr

k=1
(Z < 0) = Φ

(
−∥µ1 − µ2∥

2σ

√
T

)
≤ exp

(
− T

8σ2
∥µ1 − µ2∥2

)
,

where Φ is the standard normal CDF and the last step uses Φ(−x) ≤ e−x2/2 for x ≥ 0.

Isotropic-scale regime. Let ϕd(· ;m,Σ) denote the d-variate Gaussian density. For k ∈ {1, 2}, the
joint density of y1:T under class k is pk(y1:T) :=

∏T
t=1 ϕd

(
yt; 0, σ

2
kId
)
.

With µ1 = µ2 = 0, Σk = σ2
kId, and RT =

∑T
t=1 ∥yt∥2, one can calculate the log-likelihood ratio

log
p1(y1:T)

p2(y1:T)
=

T∑

t=1

log
ϕd(yt; 0, σ

2
1Id)

ϕd(yt; 0, σ2
2Id)

=
dT

2
log

σ2
2

σ2
1

+
1

2

(
1

σ2
2

− 1

σ2
1

)
RT .

The right-hand side is an affine (hence strictly monotone when σ1 ̸= σ2) function of RT . By the
Neyman–Pearson lemma, any Bayes–optimal test is a threshold on RT , so purely radial statistics
are sufficient for optimality and coordinate-wise additions cannot lower the Bayes risk.

B.3 PROOF OF THEOREM 2

Theorem 3. Fix a class k. Let y1, . . . , yN
i.i.d.∼ N (µk,Σk) in Rd, where N is the number of calibra-

tion samples drawn for this class. Define

µ̂k :=
1

N

N∑

i=1

yi, q̂ :=
1

N

N∑

i=1

∥yi∥2, σ2
max := ∥Σk∥op.

For coordinate variances, write σ2
k,j := (Σk)jj and σ̂2

k,j := 1
N

∑N
i=1(yi,j − µ̂k,j)

2, j = 1, . . . , d.
Then:

1. NormStat (dimension-free). For q = ∥y∥2, one has

E[q] = ∥µk∥2 +Tr(Σk), Var(q) = 2Tr(Σ2
k) + 4µ⊤

k Σkµk.

By Bernstein’s inequality for sub-exponential variables, for all δ ∈ (0, 1),

|q̂ − q| ≲
√

Var(q) log(1/δ)

N
with probability at least 1− δ.

Normalizing by d makes the bound O(
√

log(1/δ)/N), i.e. dimension-free.

2. VecStat (dimension-dependent). With probability at least 1− δ,

∥µ̂k − µk∥2 ≤ C1σmax

√
d+ log(1/δ)

N
, max

j

∣∣σ̂2
k,j − σ2

k,j

∣∣ ≤ C2σ
2
max

√
log(d/δ)

N
,

for absolute constants C1, C2. To keep LLR plug-in error small of order ϵ, one needs
N = Ω(d/ϵ2µ) for mean accuracy in ℓ2 and N = Ω(log d/ϵ2σ) for variances in ℓ∞.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Proof of Theorem 2. NormStat: Denote qi := ∥yi∥2 and Zi := qi − E[q], so that q̂ − E[q] =
1
N

∑N
i=1 Zi. For yi ∼ N (µk,Σk), the centered quadratic form Zi obeys the Hanson–Wright tail

bound: there exist absolute constants c1, c2 > 0 such that for all t > 0,

Pr (|Zi| ≥ t) ≤ 2 exp

[
− c1 min

(
t2

Var(q)
,

t

B

)]
, (7)

where Var(q) = 2Tr(Σ2
k)+4µ⊤

k Σkµk, B = ∥Σk∥op+∥µk∥2. From (7), the Zi are i.i.d. mean-zero
sub-exponential. A standard Bernstein inequality for sums of independent sub-exponential variables
then yields, for some absolute c > 0 and all t > 0,

Pr

(∣∣∣∣∣
1

N

N∑

i=1

Zi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

[
− cN min

(
t2

Var(q)
,

t

B

)]
.

Choosing t ≲ Var(q)/B and inverting the tail gives, for any δ ∈ (0, 1),

|q̂ − E[q]| ≲

√
Var(q) log(2/δ)

N
with probability at least 1− δ.

Since under bounded eigenvalues Var(q) = Θ(d), dividing by d yields
∣∣ 1
d q̂ − 1

dE[q]
∣∣ ≲

√
log(2/δ)

N ,

which is dimension-free.

VecStat: Let zi := Σ
−1/2
k (yi − µk) ∼ N (0, Id). Then

µ̂k − µk = Σ
1/2
k

(
1

N

N∑

i=1

zi

)
∼ N

(
0,

1

N
Σk

)
.

Hence, ∥Σ−1/2
k (µ̂k − µk)∥22 ∼ 1

N χ2
d. Recall the standard Laurent-Massart inequalities: for any

x > 0,
Pr
(
χ2
d − d ≥ 2

√
dx+ 2x

)
≤ e−x, Pr

(
d− χ2

d ≥ 2
√
dx
)
≤ e−x. (8)

Applying (8) with x = log(1/δ) and scaling by 1/N yields, with probability ≥ 1− δ,

∥Σ−1/2
k (µ̂k − µk)∥2 ≤

√
1

N

(
d+ 2

√
d log(1/δ) + 2 log(1/δ)

)
.

Multiplying by ∥Σ1/2
k ∥op = σmax and using

√
a+ b ≤ √

a+
√
b gives

∥µ̂k − µk∥2 ≤ C1σmax

√
d+ log(1/δ)

N
,

for an absolute constant C1 > 0.

C EXPERIMENT DETAILS

C.1 DATASET COMPOSITION AND PROCESSING STRATEGIES

Table 5: Datasets composition for level-1 classification.

Category Calibration Data # Calibration Samples Classification Data # Classification Samples
General Text MMLU (European History) 165 MMLU (US History) 204

Math GSM8K 2,000 GSM8K 1,319
MATH500 500

Code Magicoder 2,000 Magicoder 5,000
HumanEval 164

We evaluate our lightweight intent classification methods across two hierarchical granularities. Our
experimental protocol consists of two stages: calibration and classification. During calibration, we
compute per-class baseline statistics (NormStat or VecStat) from calibration data passed through
pretrained LLMs. During classification, we compute the same statistics for test prompts and assign
labels based on the minimum KL divergence (or cosine distance) between the prompt’s statistics and
the calibrated per-class baselines.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 6: Datasets composition for level-2 classification.

Task Data Source Classes # Calibration Samples # Classification Samples
per Class per Class

Code Magicoder C++, C#, Java, PHP, Python, Rust,
Shell, Swift, TypeScript

2000 5000

Math Competition Math Algebra, Counting & Probability,
Geometry, Intermediate Algebra,
Number Theory, Prealgebra,
Precalculus

800 3000

Natural Language Aya Sinhala, Tamil, English, Moroccan
Arabic, Japanese

512 3000

Classification granularities We consider the following classification granularities:

• Level-1 Classification evaluates coarse-grained categorization into three primary domains: gen-
eral text, mathematics, and code. This level represents the typical routing scenario where
prompts are directed to specialized models based on broad task categories.

• Level-2 Classification examines fine-grained discrimination within each domain. We evalu-
ate three distinct tasks: (i) programming language identification across nine languages in code
prompts, (ii) mathematical subfield classification across seven topics, and (iii) natural language
identification across five linguistically diverse languages.

Datasets and evaluation Table 5 and Table 6 present the complete dataset composition. For
Level-1 classification, we calibrate using domain-representative datasets: MMLU European History
for general text (165 samples), GSM8K for math (2,000 samples), and Magicoder for code (2,000
samples). Classification evaluation employs both in-distribution and out-of-distribution datasets to
assess generalization. Specifically, we evaluate general text on MMLU US History, mathemat-
ics on GSM8K (in-distribution) and MATH500 (out-of-distribution), and code on Magicoder (in-
distribution) and HumanEval (out-of-distribution).

For Level-2 classification, we maintain consistent calibration sizes where feasible: 2,000 samples
per programming language, 800 samples per mathematical subfield, and 512 samples per natural
language. Classification sets contain up to 5,000 samples per programming language and 3,000
samples per category for mathematics and natural languages, subject to dataset availability. We also
provide more details on the datasets used in Appendix C.2.

C.2 DATASETS

We employ seven benchmark datasets spanning general text, mathematics, and code domains to
evaluate intent classification performance at both granularity levels.

• General Text Datasets. For Level-1 evaluation, we utilize MMLU (Hendrycks et al., 2021a;b),
a comprehensive benchmark of multiple-choice questions across 57 subjects. We construct cal-
ibration data using the High School European History subset and evaluate on the High School
US History subset, using question-choice pairs as input. For Level-2 language classification, we
employ the Aya dataset (Singh et al., 2024), which contains human-annotated prompts across
65 languages. We select five linguistically diverse languages as specified in Table 6 and use the
input field for classification.

• Mathematics Datasets. We employ three mathematics benchmarks for comprehensive evalu-
ation. GSM8K (Cobbe et al., 2021) provides grade-school word problems requiring multi-step
reasoning, from which we sample 2,000 calibration instances and use the complete test set for
Level-1 classification. MATH500 (Lightman et al., 2023) serves as an out-of-distribution test
set containing 500 problems from the MATH benchmark. For Level-2 domain-specific clas-
sification, Competition Math (Hendrycks et al., 2021c) provides problems from mathematics
competitions spanning seven mathematical subfields including algebra, geometry, and number
theory. We use the problem field as model input for Level-2 domain-specific classification.

• Code Datasets. Magicoder (Wei et al., 2023) forms our primary code classification resource,
containing solutions across multiple programming languages. We utilize the solution field as

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

model input for both Level-1 general code classification and Level-2 language-specific classi-
fication tasks, focusing on 9 mainstream programming languages as detailed in Table 6. Hu-
manEval (Chen et al., 2021) provides 164 function-level programming problems, where we use
the prompt field containing function signatures and docstrings as model input, serving as an
out-of-distribution test set for Level-1 classification.

All datasets are publicly available through HuggingFace Datasets (Lhoest et al., 2021). The exact
sampling strategies and train-test splits follow the specifications in Table 5 and Table 6, with test
samples capped at the minimum of specified counts and available data.

C.3 SELECTED LLMS

We evaluate our approach on 7 pretrained large language models spanning 1B to 32B parameters,
encompassing both base and instruction-tuned variants. This selection provides comprehensive cov-
erage across model scales and training stages. We consider the following two LLM families:

• Qwen family (Yang et al., 2025): We evaluate four models from the Qwen3 series. The
instruction-tuned variants include Qwen3-1.7B (28 layers), Qwen3-4B (36 layers), Qwen3-8B
(36 layers), and Qwen3-32B (64 layers), each post-trained with supervised fine-tuning and rein-
forcement learning from human feedback (RLHF). Additionally, we include Qwen3-1.7B-Base
to assess performance on pretrained models without alignment. For all Qwen3 evaluations, we
switch on non-thinking mode to ensure consistent comparison across models.

• Llama family (Dubey et al., 2024): We evaluate Llama-3.2-1B (16 layers) and its instruction-
tuned counterpart Llama-3.2-1B-Instruct. The instruction-tuned variant underwent supervised
fine-tuning and RLHF to better align with human preferences.

This benchmark model selection enables systematic evaluation across three critical dimensions:
model scale (from 1B to 32B parameters), training paradigm (pretrained-only versus post-
trained), and architectural diversity (Qwen and Llama families). The substantial range in model
sizes—spanning over an order of magnitude in parameters—allows us to rigorously test whether
our method can effectively operate across vastly different computational scales and model capaci-
ties. The comparison between base and aligned models reveals how post-training procedures affect
our method’s performance, demonstrating whether it remains equally effective for both pretrained
and instruction-tuned models. The prompt used for direct LLM inference under level-1 setting is
in Table 7.

C.4 MORE IMPLEMENTATION DETAILS

To stabilize training, we normalize input features and weight matrices through the following process:

1. Input Normalization: The input tensor z is normalized to unit norm for stability:

znormalized =
z

∥z∥2 + ϵ
.

2. Weight Normalization: The weight matrix W is normalized using its Frobenius norm:

Wnormalized =
W√

mean(W 2) + ϵ
.

3. Activation Computation: The normalized input is multiplied by the normalized weight
matrix:

Wz = znormalized ·WT
normalized.

The statistics for NormStat and VecStat are computed from Wz. Note that this is likely suboptimal;
in a production-scale implementation we should read Wz directly from the module’s output rather
than recomputing it.

C.5 PSEUDO-ALGORITHM

Our task inference approach follows the following steps:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 7: Prompt template for direct LLM inference under level-1 intent classification setting. The template
includes placeholders {examples block} for optional few-shot examples and {user text} for the input
to be classified. The few-shot examples are taken from the calibration data.

LLM Prompt Template for Intent Classification
You are a classifier.
Your task is to look at the user’s input text and decide which of these three categories it belongs to:

1. General text – natural language content like sentences, questions, explanations, stories, or instruc-
tions that are not primarily mathematics or code.
2. Math – text that is primarily mathematical expressions, equations, formulas, or word problems
where the main focus is on mathematics.
3. Code – text that is primarily programming code or pseudocode (any programming language,
including configuration snippets or shell commands).

Output rules:

- If the input is general text, output: A
- If the input is math, output: B
- If the input is code, output: C

Important Notes:

- Output only a single letter: A, B, or C.
- Do not output anything else (no explanation, no punctuation, no spaces).

Below are some classification examples for this task:
{examples block}

Now classify the following input accordingly and output just one letter.

Input:
{user text}
Output:

Algorithm 1 Intent Classification with NormStat or VecStat

Require: Input prompt x, baseline scores {S1, S2, . . . , Sm} for tasks C1, C2, . . . , Cm, distance
function “dist” (NormStat: KL; VecStat: KL or cosine similarity)

Ensure: Predicted task Tpred and confidence scores
1: Compute statistic scores Sx from input x
2: for each task Ci do
3: Compute distance di = dist(Sx, Si)
4: end for
5: Cpred = argminCi

di

6: Compute probabilities via softmax: pi = exp(−(di−d̄)/τ)∑
j exp(−(dj−d̄)/τ)

(used for uncertainty quantifica-

tion, d̄ is the average, τ is the temperature)
7: return Cpred, {p1, p2, . . . , pm}

C.6 HARDWARE AND SOFTWARE ENVIRONMENT

We conducted experiments on two computational platforms based on model scales. For models up
to 4B parameters, we utilized an NVIDIA L40S GPU with 48GB of memory. For larger models
(Qwen3-8B and Qwen3-32B), experiments were performed on an NVIDIA Grace Hopper GH200
superchip, featuring a Grace ARM 72-core CPU with 120GB RAM and a NVIDIA H100 GPU with

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

96GB of memory. All experiments are implemented using Python 3.12.0 and PyTorch 2.7.0 with
CUDA 12.6.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ADDITIONAL RESULTS FOR LEVEL-1 CLASSIFICATION.

Please refer to Table 8.

Table 8: Level-1 classification results for all seven LLMs.

Model Method gsm8k humaneval magicoder math500 mmlu history

Qwen3-1.7B

Avg-MLP 99.97±0.04 99.80±0.35 99.99±0.02 78.33±1.67 100.00±0.00

Tail-MLP 100.00±0.00 100.00±0.00 99.97±0.02 99.00±0.00 100.00±0.00

Avg-Linear 100.00±0.00 99.80±0.35 100.00±0.00 69.20±9.18 100.00±0.00

NormStat:KL 97.35±0.00 70.12±0.61 99.27±0.11 76.60±0.20 100.00±0.00

VecStat:KL 100.00±0.00 99.39±0.00 99.97±0.03 88.33±0.30 100.00±0.00

VecStat:Cos 100.00±0.00 98.78±0.00 99.97±0.03 92.26±0.11 100.00±0.00

LLM Call (0-shot) 51.18±0.30 99.39±0.61 97.38±0.11 80.87±0.61 82.19±1.02

LLM Call (3-shot) 99.49±0.09 78.05±1.61 99.26±0.11 99.47±0.12 73.37±1.72

Qwen3-1.7B-Base

Avg-MLP 78.09±31.54 99.80±0.35 100.00±0.00 40.60±19.91 100.00±0.00

Tail-MLP 100.00±0.00 84.55±26.76 99.87±0.18 99.00±0.00 100.00±0.00

Avg-Linear 79.76±0.53 99.59±0.70 100.00±0.00 30.73±4.28 100.00±0.00

NormStat:KL 79.71±0.29 82.93±0.00 99.71±0.03 88.47±0.12 100.00±0.00

VecStat:KL 40.46±0.10 100.00±0.00 100.00±0.0 49.06±0.95 100.00±0.00

VecStat:Cos 99.84±0.00 99.39±0.00 99.98±0.02 92.30±0.39 100.00±0.00

LLM Call (0-shot) 90.60±0.00 0.00±0.00 81.03±0.39 59.40±0.00 4.41±0.00

LLM Call (3-shot) 64.54±0.88 33.54±3.23 85.71±0.26 80.87±1.10 58.17±3.93

Llama-3.2-1B

Avg-MLP 100.00±0.00 100.00±0.00 99.99±0.01 64.33±8.33 99.84±0.28

Tail-MLP 99.95±0.04 100.00±0.00 99.97±0.03 98.93±0.42 99.35±1.13

Avg-Linear 100.00±0.00 99.80±0.35 99.99±0.01 71.47±7.78 98.69±1.86

NormStat:KL 99.49±0.09 90.85±0.00 96.39±0.20 83.40±0.00 92.48±0.57

VecStat:KL 100.00±0.00 99.39±0.00 99.98±0.02 78.80±0.12 100.00±0.00

VecStat:Cos 100.00±0.00 99.39±0.00 99.97±0.02 77.60±0.20 100.00±0.00

Llama-3.2-1B-Instruct

Avg-MLP 100.00±0.00 99.59±0.35 99.99±0.02 72.40±2.91 100.00±0.00

Tail-MLP 100.00±0.00 100.00±0.00 99.89±0.05 94.53±0.42 100.00±0.00

Avg-Linear 100.00±0.00 99.80±0.35 100.00±0.00 66.80±7.75 100.00±0.00

NormStat:KL 100.00±0.00 65.24±0.00 97.21±0.21 96.20±0.00 98.53±0.00

VecStat:KL 100.00±0.00 99.39±0.00 99.96±0.01 87.87±0.11 100.00±0.00

VecStat:Cos 100.00±0.00 99.39±0.00 99.97±0.03 85.60±0.00 100.00±0.00

Qwen3-4B

Avg-MLP 99.95±0.09 100.00±0.00 99.99±0.01 79.27±4.39 100.00±0.00

Tail-MLP 100.00±0.00 100.00±0.00 99.96±0.02 92.27±1.17 100.00±0.00

Avg-Linear 99.90±0.04 100.00±0.00 99.99±0.01 68.87±18.85 100.00±0.00

NormStat:KL 96.36±0.00 35.57±0.35 99.84±0.03 89.40±0.00 99.84±0.28

VecStat:KL 99.97±0.04 100.00±0.00 99.99±0.02 91.73±0.23 100.00±0.00

VecStat:Cos 100.00±0.00 96.34±0.00 99.97±0.03 93.40±0.20 100.00±0.00

LLM Call (0-shot) 91.84±0.16 100.00±0.00 99.47±0.06 98.33±0.12 95.42±0.28

LLM Call (3-shot) 97.60±0.31 91.06±1.27 99.03±0.15 99.87±0.23 96.41±1.02

Qwen3-8B

Avg-MLP 99.42±0.74 99.59±0.35 99.99±0.02 77.27±11.02 100.00±0.00

Tail-MLP 99.82±0.12 98.58±2.46 99.98±0.02 81.20±9.72 100.00±0.00

Avg-Linear 99.57±0.24 100.00±0.00 100.00±0.00 83.00±2.03 100.00±0.00

NormStat:KL 85.14±0.35 10.37±1.06 99.85±0.06 92.93±0.12 99.51±0.49

VecStat:KL 99.95±0.04 99.59±0.35 99.99±0.02 92.20±0.00 100.00±0.00

VecStat:Cos 100.00±0.00 95.73±0.61 99.98±0.03 94.20±0.00 100.00±0.00

LLM Call (0-shot) 99.67±0.04 100.00±0.00 99.42±0.07 99.60±0.00 99.67±0.28

LLM Call (3-shot) 99.14±0.18 97.15±0.35 99.43±0.07 99.87±0.12 99.51±0.49

Qwen3-32B

Avg-MLP 95.88±3.31 100.00±0.00 99.99±0.01 86.87±5.22 100.00±0.00

Tail-MLP 99.39±0.00 100.00±0.00 99.98±0.00 96.80±0.40 99.02±0.49

Avg-Linear 98.61±1.59 100.00±0.00 99.99±0.02 87.53±6.94 100.00±0.00

NormStat:KL 97.93±0.04 24.59±0.35 99.78±0.06 97.93±0.12 100.00±0.00

VecStat:KL 100.00±0.00 99.39±0.00 99.98±0.03 96.60±0.00 100.00±0.00

VecStat:Cos 100.00±0.00 98.17±0.00 99.98±0.03 96.80±0.35 100.00±0.00

LLM Call (0-shot) 86.91±0.29 100.00±0.00 98.69±0.06 96.27±0.42 100.00±0.00

LLM Call (3-shot) 97.80±0.20 100.00±0.00 98.87±0.05 99.80±0.20 100.00±0.00

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 9: Level-2 programming language classification results for all seven LLMs. Values represent per-
language accuracy across nine programming languages from the Magicoder dataset.

Model Method cpp csharp java php python rust shell swift typescript

Qwen3-1.7B

Avg-MLP 99.97±0.03 100.00±0.00 100.00±0.00 99.96±0.06 99.89±0.01 100.00±0.00 99.92±0.14 100.00±0.00 99.94±0.07

Tail-MLP 99.54±0.09 99.57±0.06 99.41±0.26 99.89±0.11 99.35±0.27 99.32±0.17 99.92±0.14 99.81±0.07 99.52±0.03

Avg-Linear 99.97±0.03 99.98±0.04 100.00±0.00 99.96±0.06 99.87±0.01 100.00±0.00 99.92±0.14 100.00±0.00 99.93±0.05

NormStat:KL 53.18±0.60 53.17±1.96 40.39±0.63 57.35±1.97 60.17±0.89 58.07±0.55 88.73±1.67 59.47±0.88 49.59±0.34

VecStat:KL 98.83±0.18 98.98±0.39 98.21±0.15 99.81±0.23 99.06±0.09 99.68±0.14 99.52±0.00 99.81±0.12 99.26±0.20

VecStat:Cos 98.51±0.19 98.78±0.37 97.79±0.19 99.85±0.17 99.06±0.14 99.35±0.15 99.84±0.14 99.55±0.11 99.02±0.29

Qwen3-1.7B-Base

Avg-MLP 99.97±0.03 99.96±0.04 99.97±0.03 100.00±0.00 99.89±0.05 100.00±0.00 99.92±0.14 100.00±0.00 99.96±0.04

Tail-MLP 99.28±0.19 99.37±0.19 99.23±0.12 99.96±0.06 99.25±0.14 99.27±0.19 99.84±0.27 99.75±0.14 99.50±0.03

Avg-Linear 99.97±0.03 99.96±0.04 99.98±0.03 100.00±0.00 99.89±0.04 100.00±0.00 99.92±0.14 100.00±0.00 99.96±0.04

NormStat:KL 47.76±0.18 43.75±1.18 36.92±0.96 60.44±1.13 56.03±0.82 54.88±0.78 88.33±2.42 57.85±1.25 51.20±0.25

VecStat:KL 98.29±0.13 98.37±0.53 97.00±0.21 99.66±0.11 98.63±0.09 99.45±0.12 99.68±0.14 99.64±0.12 99.17±0.19

VecStat:Cos 98.27±0.17 98.23±0.50 96.91±0.05 99.63±0.17 98.84±0.09 99.47±0.13 99.68±0.14 99.58±0.07 98.54±0.30

Llama-3.2-1B

Avg-MLP 99.97±0.03 99.98±0.04 99.97±0.05 99.96±0.06 99.91±0.02 100.00±0.00 100.00±0.00 100.00±0.00 99.94±0.03

Tail-MLP 99.21±0.24 99.08±0.16 99.41±0.10 99.85±0.17 99.25±0.26 99.21±0.32 99.84±0.27 99.75±0.09 99.58±0.11

Avg-Linear 99.97±0.03 99.96±0.04 99.94±0.05 99.96±0.06 99.89±0.01 99.98±0.03 100.00±0.00 100.00±0.00 99.93±0.03

NormStat:KL 44.23±1.37 39.54±2.26 35.09±1.07 49.25±1.60 38.65±0.71 54.91±0.78 90.95±1.56 55.63±1.24 34.67±1.81

VecStat:KL 98.77±0.19 98.37±0.43 97.14±0.07 99.63±0.17 98.66±0.21 99.79±0.03 99.84±0.27 99.73±0.18 99.02±0.25

VecStat:Cos 98.53±0.12 97.78±0.25 96.34±0.09 99.52±0.28 98.86±0.18 99.48±0.15 99.60±0.14 99.49±0.25 98.81±0.36

Llama-3.2-1B-Instruct

Avg-MLP 99.95±0.05 99.98±0.04 99.97±0.03 99.96±0.06 99.91±0.01 100.00±0.00 99.92±0.14 100.00±0.00 99.99±0.03

Tail-MLP 99.07±0.39 99.23±0.15 99.12±0.40 99.55±0.22 99.27±0.11 99.00±0.49 99.84±0.27 99.70±0.16 99.64±0.04

Avg-Linear 99.97±0.03 99.96±0.04 99.95±0.05 99.96±0.06 99.88±0.03 100.00±0.00 99.92±0.14 100.00±0.00 99.99±0.03

NormStat:KL 41.34±1.45 45.89±0.57 33.32±1.51 45.23±2.25 46.42±1.32 55.80±0.67 89.76±2.52 57.64±0.72 34.05±2.20

VecStat:KL 98.56±0.19 97.58±0.19 97.25±0.13 99.70±0.17 98.87±0.16 99.66±0.08 99.84±0.27 99.62±0.14 99.02±0.27

VecStat:Cos 98.56±0.19 97.46±0.34 96.85±0.23 99.78±0.19 99.00±0.13 99.37±0.10 99.84±0.27 99.64±0.14 98.87±0.32

Qwen3-4B

Avg-MLP 99.97±0.03 99.94±0.00 100.00±0.00 99.96±0.06 99.89±0.01 100.00±0.00 100.00±0.00 100.00±0.00 99.94±0.03

Tail-MLP 99.37±0.11 99.53±0.13 99.46±0.03 99.81±0.13 99.48±0.02 99.35±0.27 99.84±0.27 99.73±0.14 99.66±0.07

Avg-Linear 99.97±0.03 99.96±0.07 99.98±0.03 99.96±0.06 99.89±0.02 100.00±0.00 100.00±0.00 100.00±0.00 99.93±0.05

NormStat:KL 54.55±1.04 40.86±1.39 35.45±0.28 56.26±0.68 69.71±1.04 68.76±0.65 93.10±1.33 72.17±1.20 48.70±0.32

VecStat:KL 99.26±0.08 98.60±0.38 97.95±0.12 99.74±0.26 99.07±0.09 99.82±0.03 99.76±0.00 99.87±0.12 99.30±0.19

VecStat:Cos 98.92±0.09 98.86±0.44 98.18±0.05 99.89±0.19 99.13±0.08 99.53±0.10 99.84±0.14 99.79±0.13 99.26±0.23

Qwen3-8B

Avg-MLP 99.95±0.05 100.00±0.00 100.00±0.00 99.96±0.06 99.91±0.01 100.00±0.00 100.00±0.00 100.00±0.00 99.94±0.03

Tail-MLP 99.61±0.16 99.69±0.18 99.47±0.12 100.00±0.00 99.39±0.22 99.53±0.10 99.92±0.14 99.75±0.07 99.61±0.10

Avg-Linear 99.97±0.03 100.00±0.00 100.00±0.00 99.96±0.06 99.91±0.03 100.00±0.00 100.00±0.00 100.00±0.00 99.93±0.03

NormStat:KL 47.37±0.94 38.26±1.28 27.59±0.65 60.14±1.27 67.73±0.54 63.05±0.43 91.51±0.60 62.54±1.25 49.28±0.84

VecStat:KL 99.09±0.11 98.58±0.42 97.78±0.09 99.78±0.22 99.01±0.04 99.81±0.00 99.76±0.00 99.91±0.09 99.38±0.20

VecStat:Cos 98.90±0.24 98.96±0.38 98.49±0.03 99.85±0.13 99.13±0.12 99.55±0.07 100.00±0.00 99.81±0.12 99.35±0.19

Qwen3-32B

Avg-MLP 99.91±0.03 99.98±0.04 100.00±0.00 99.96±0.06 99.91±0.03 99.97±0.06 100.00±0.00 100.00±0.00 99.96±0.04

Tail-MLP 98.01±0.41 97.27±0.95 97.99±0.53 98.77±0.22 98.26±0.21 99.21±0.06 98.97±0.60 98.71±0.48 98.50±0.07

Avg-Linear 99.91±0.03 99.98±0.04 100.00±0.00 99.96±0.06 99.92±0.00 99.97±0.06 100.00±0.00 100.00±0.00 99.96±0.04

NormStat:KL 53.57±0.94 36.94±1.38 25.47±1.43 59.47±0.57 61.66±1.40 67.63±0.54 89.29±0.71 69.35±1.19 49.84±1.08

VecStat:KL 99.01±0.11 99.35±0.34 98.72±0.03 99.89±0.11 99.29±0.06 99.90±0.05 100.00±0.00 99.85±0.09 99.75±0.16

VecStat:Cos 99.18±0.14 99.53±0.19 99.01±0.10 99.89±0.11 99.50±0.04 99.81±0.13 100.00±0.00 99.87±0.12 99.72±0.09

D.2 ADDTIONAL RESULTS FOR LEVEL-2 EXPERIMENTS

For programming languages, please refer to Table 9. For math, please refer to Table 10. For natural
languages, refer to Table 11.

D.3 CASE STUDY

Fig. 8 presents the mixed-intent prompt used in Section 3.3, constructed by concatenating code
content with mathematical content. We also evaluated the reverse concatenation order (mathematics
followed by code), with results shown in Fig. 9. The uncertainty quantification patterns remain
consistent across both prompt orderings.

D.4 THE EFFECT OF THE NUMBER OF LAYERS CONSIDERED

See Fig. 10.

D.5 CALIBRATION CONVERGENCE ANALYSIS

See Fig. 11.

D.6 THE EFFECT OF THE MAXIMUM PROMPT LENGTH

See Fig. 12.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 10: Level-2 mathematical subfield classification results for all seven LLMs. Values represent per-
subfield accuracy across seven mathematical subfields from the Competition Math dataset.

Model Method Algebra Counting & Probability Geometry Intermediate Algebra Number Theory Prealgebra Precalculus

Qwen3-1.7B

Avg-MLP 71.78±5.57 79.48±1.91 89.98±3.46 79.33±3.96 84.02±2.56 50.00±2.29 82.79±3.37

Tail-MLP 65.79±3.55 76.10±4.24 84.88±4.43 71.86±6.02 82.32±3.80 50.31±2.59 73.58±4.30

Avg-Linear 64.13±3.32 75.88±0.79 89.31±1.47 81.14±3.20 79.47±4.34 52.66±2.86 79.74±1.54

NormStat:KL 23.67±1.27 37.83±0.65 48.15±4.09 58.75±1.08 65.46±1.25 0.97±0.28 33.88±1.02

VecStat:KL 33.29±1.39 53.71±2.00 35.88±3.28 81.88±0.58 86.26±0.62 1.46±0.05 46.07±1.82

VecStat:Cos 57.66±0.70 61.50±2.16 36.07±3.37 73.58±0.83 86.92±0.38 2.22±0.32 51.22±1.61

Qwen3-1.7B-Base

Avg-MLP 67.96±1.83 79.55±0.67 90.53±0.55 83.93±2.34 84.02±2.62 48.85±2.19 83.47±3.46

Tail-MLP 70.97±4.48 80.97±2.25 90.89±1.14 74.49±2.32 81.50±6.42 51.93±7.96 78.25±2.55

Avg-Linear 66.46±4.16 75.81±2.04 88.95±1.00 81.57±1.99 81.06±2.52 51.33±2.29 79.54±1.31

NormStat:KL 23.35±0.70 37.23±2.12 47.36±4.20 56.65±1.30 58.84±2.38 5.67±2.17 34.82±0.82

VecStat:KL 39.48±3.28 50.86±1.72 35.88±3.37 81.31±0.65 88.12±0.58 1.52±0.52 46.41±1.24

VecStat:Cos 61.24±0.90 62.62±2.31 36.00±3.55 73.46±0.80 88.18±0.28 2.66±0.67 53.59±0.82

Llama-3.2-1B

Avg-MLP 57.99±6.53 75.13±5.42 86.22±4.37 75.94±4.00 78.43±0.09 41.67±5.38 76.02±1.42

Tail-MLP 58.38±4.88 78.35±2.40 91.20±1.28 74.44±3.57 77.45±8.21 36.26±4.71 67.01±5.55

Avg-Linear 53.70±6.28 70.94±5.13 81.60±9.17 74.15±2.30 80.41±7.23 44.36±5.95 76.96±7.70

NormStat:KL 19.46±3.91 16.33±1.35 38.07±2.98 37.01±3.69 80.24±2.55 0.05±0.05 27.71±1.73

VecStat:KL 34.57±0.92 50.34±1.92 38.19±4.30 76.13±0.97 84.89±0.59 1.38±0.12 48.17±2.66

VecStat:Cos 44.71±0.78 59.48±2.26 44.63±5.73 72.65±0.35 83.96±1.19 2.30±0.32 52.57±0.92

Llama-3.2-1B-Instruct

Avg-MLP 64.88±4.97 78.95±1.01 86.76±4.30 76.82±5.70 85.39±0.43 45.27±2.58 84.35±2.00

Tail-MLP 73.63±4.07 79.48±2.60 88.71±2.03 78.02±2.53 83.58±0.16 51.28±3.11 83.47±1.84

Avg-Linear 57.23±5.70 77.83±1.72 83.36±2.16 82.14±0.69 80.57±1.53 48.75±2.43 82.05±0.96

NormStat:KL 4.38±3.24 11.69±1.57 36.13±3.19 37.34±3.24 84.40±1.00 0.26±0.12 27.98±4.39

VecStat:KL 40.03±2.62 45.09±1.50 35.88±3.46 74.32±1.49 88.67±0.43 1.25±0.14 46.75±2.34

VecStat:Cos 53.20±1.76 59.85±1.80 36.79±4.02 72.72±1.04 86.59±0.19 1.78±0.09 52.17±1.54

Qwen3-4B

Avg-MLP 73.52±1.54 79.63±4.68 89.80±2.86 79.16±1.48 80.84±0.78 51.23±3.88 84.62±2.94

Tail-MLP 68.98±9.23 82.47±1.96 82.70±2.37 67.84±7.26 81.55±3.51 46.89±4.30 79.95±1.50

Avg-Linear 70.64±2.89 80.07±0.34 90.59±3.57 80.02±2.61 79.97±3.76 49.53±5.57 81.91±2.12

NormStat:KL 19.57±3.97 17.15±0.91 42.26±3.41 47.00±2.72 76.79±2.63 0.60±0.25 34.28±1.70

VecStat:KL 29.80±3.56 51.99±1.30 35.82±3.37 82.31±1.15 89.00±0.28 1.36±0.05 54.81±3.00

VecStat:Cos 62.24±2.09 61.72±2.03 36.13±3.19 73.89±1.24 88.83±0.33 1.96±0.08 53.59±1.32

Qwen3-8B

Avg-MLP 73.94±1.63 82.70±0.98 87.13±0.56 81.00±3.61 86.59±4.35 52.95±5.24 89.36±0.42

Tail-MLP 68.43±1.81 80.52±2.03 89.92±1.91 73.87±6.12 82.92±5.55 53.58±0.64 81.10±5.72

Avg-Linear 73.28±4.60 80.82±3.83 90.29±2.47 79.92±3.87 82.65±0.90 52.19±3.70 84.76±0.54

NormStat:KL 21.01±6.35 19.03±1.50 40.19±3.56 46.38±0.91 73.45±4.22 0.73±0.59 31.98±1.31

VecStat:KL 36.23±3.18 51.24±1.17 35.88±3.28 81.00±1.60 88.89±0.47 1.52±0.12 55.15±3.27

VecStat:Cos 64.46±1.45 61.95±1.87 36.25±3.19 74.13±0.95 89.33±0.33 2.06±0.40 55.08±1.08

Qwen3-32B

Avg-MLP 73.25±4.75 77.83±2.89 89.01±3.74 84.14±3.27 81.88±2.64 57.92±4.22 86.65±3.02

Tail-MLP 66.70±8.95 78.43±2.02 88.52±4.65 79.61±3.33 74.06±11.10 50.57±10.68 80.62±3.30

Avg-Linear 71.97±5.76 79.93±3.82 87.86±0.92 82.33±3.88 85.06±0.72 52.82±4.70 87.53±1.89

NormStat:KL 31.99±2.02 21.72±0.85 40.56±3.48 44.61±1.14 75.53±2.56 0.13±0.05 31.44±1.47

VecStat:KL 55.76±1.11 58.50±2.04 35.94±3.28 77.80±1.04 89.87±0.34 1.46±0.12 52.78±0.59

VecStat:Cos 71.16±0.46 64.42±2.16 37.04±3.20 73.32±0.82 89.49±0.87 3.00±0.72 58.47±1.31

D.7 ROBUSTNESS TO ADVERSARIAL ATTACK

We evaluate the robustness of different classification methods against adversarial perturbations on
the MATH500 dataset. We construct adversarial examples by prompting GPT-5-mini to inject mis-
leading superficial features while preserving the mathematical content (see Table 12 for the genera-
tion template and Table 13 for example outputs).

Table 14 shows classification accuracy on original and adversarially perturbed prompts. All methods
are trained or calibrated on clean data only. Overall, all methods degrade under adversarial rephras-
ing, demonstrating the challenge of this attack. However, the results reveal interesting robustness
patterns.

Training-based methods show divergent behaviors. Tail-MLP maintains robustness (retaining most
of its accuracy), while Avg-MLP fails catastrophically with near-zero accuracy across all models.
This stark difference indicates that final-token representations in decoder-only LLMs—which attend
to all previous tokens—are more resistant to scattered misleading signals than averaged embeddings,
which are easily corrupted by adversarial tokens distributed throughout the prompt.

Training-free statistical methods demonstrate different levels of robustness. NormStat shows notable
resilience, retaining 58-96% of its original accuracy under attack. For instance, on Llama-3.2-1B-
Instruct, it drops only from 96.2% to 92.4%. In contrast, VecStat variants are more vulnerable
(e.g., VecStat:KL drops from 87.9% to 44.2% on Llama-3.2-1B-Instruct). This aligns with our
method design: NormStat’s reliance on radial statistics makes it relatively invariant to directional
perturbations induced by stylistic rephrasing, while VecStat’s directional information makes it more
sensitive to subtle changes in representation geometry.

The robustness of NormStat (using radial statistics) and Tail-MLP (using final-token features) sug-
gests that different defense mechanisms—statistical aggregation versus extensive context aggrega-

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 11: Level-2 natural language classification results for all seven LLMs. Values represent per-language
accuracy across five natural languages from the Aya dataset.

Model Method English Japanese Moroccan Arabic Sinhala Tamil

Qwen3-1.7B

Avg-MLP 99.74±0.12 99.99±0.02 99.97±0.03 99.99±0.02 99.94±0.04

Tail-MLP 99.49±0.15 100.00±0.00 99.97±0.03 99.93±0.06 99.94±0.10

Avg-Linear 99.79±0.11 100.00±0.00 99.97±0.03 99.99±0.02 99.94±0.04

NormStat:KL 82.26±1.39 81.42±0.81 85.78±0.86 99.87±0.12 99.52±0.12

VecStat:KL 96.27±0.34 99.83±0.03 99.97±0.00 99.99±0.02 99.93±0.06

VecStat:Cos 98.09±0.10 99.82±0.05 99.99±0.02 99.99±0.02 99.94±0.04

Qwen3-1.7B-Base

Avg-MLP 99.64±0.15 100.00±0.00 99.94±0.04 99.99±0.02 99.96±0.02

Tail-MLP 99.67±0.12 100.00±0.00 99.97±0.03 99.98±0.02 99.87±0.03

Avg-Linear 99.66±0.16 99.98±0.04 99.94±0.04 99.99±0.02 99.92±0.08

NormStat:KL 82.58±1.88 83.08±1.35 73.59±0.57 99.83±0.09 98.43±0.17

VecStat:KL 97.41±0.13 99.84±0.05 99.97±0.03 99.99±0.02 99.93±0.06

VecStat:Cos 98.46±0.13 99.83±0.09 100.00±0.00 99.99±0.02 99.94±0.04

Llama-3.2-1B

Avg-MLP 99.63±0.21 100.00±0.00 99.97±0.03 99.99±0.02 99.96±0.02

Tail-MLP 99.60±0.18 100.00±0.00 99.97±0.03 99.87±0.00 99.71±0.28

Avg-Linear 99.61±0.08 99.99±0.02 99.97±0.03 99.99±0.02 99.96±0.02

NormStat:KL 77.26±6.21 57.36±3.14 98.56±0.11 99.67±0.20 99.82±0.19

VecStat:KL 96.12±0.39 99.92±0.02 99.96±0.02 100.00±0.00 99.96±0.02

VecStat:Cos 98.76±0.07 99.98±0.02 99.96±0.02 99.99±0.02 99.94±0.04

Llama-3.2-1B-Instruct

Avg-MLP 99.72±0.10 99.99±0.02 99.94±0.04 99.99±0.02 99.97±0.03

Tail-MLP 99.58±0.15 100.00±0.00 99.96±0.02 99.94±0.07 99.82±0.20

Avg-Linear 99.67±0.12 100.00±0.00 99.94±0.04 99.99±0.02 99.96±0.02

NormStat:KL 79.47±5.07 42.79±2.16 98.54±0.18 99.86±0.13 99.86±0.07

VecStat:KL 96.04±0.39 99.84±0.13 99.98±0.02 99.99±0.02 99.96±0.02

VecStat:Cos 98.59±0.12 99.98±0.02 99.94±0.04 99.99±0.02 99.94±0.04

Qwen3-4B

Avg-MLP 99.71±0.10 100.00±0.00 99.94±0.04 99.99±0.02 99.96±0.02

Tail-MLP 99.60±0.15 100.00±0.00 99.97±0.03 99.99±0.02 99.99±0.02

Avg-Linear 99.74±0.12 100.00±0.00 99.94±0.04 99.99±0.02 99.96±0.02

NormStat:KL 84.60±0.34 90.29±1.27 90.53±0.61 99.84±0.07 99.11±0.54

VecStat:KL 93.99±0.82 99.77±0.09 100.00±0.00 99.99±0.02 99.93±0.06

VecStat:Cos 97.73±0.12 99.88±0.10 100.00±0.00 99.99±0.02 99.94±0.04

Qwen3-8B

Avg-MLP 99.70±0.06 100.00±0.00 99.94±0.04 99.99±0.02 99.97±0.00

Tail-MLP 99.53±0.15 100.00±0.00 99.97±0.03 99.99±0.02 99.92±0.08

Avg-Linear 99.81±0.05 100.00±0.00 99.94±0.04 99.99±0.02 99.96±0.02

NormStat:KL 85.06±0.85 92.03±1.32 76.76±0.77 99.92±0.04 96.69±2.25

VecStat:KL 96.27±0.38 99.82±0.05 100.00±0.00 100.00±0.00 99.93±0.06

VecStat:Cos 98.66±0.13 99.83±0.09 100.00±0.00 99.99±0.02 99.94±0.04

Qwen3-32B

Avg-MLP 99.76±0.17 99.99±0.02 99.94±0.04 99.99±0.02 99.96±0.04

Tail-MLP 99.31±0.02 100.00±0.00 99.96±0.02 99.99±0.02 99.94±0.04

Avg-Linear 99.87±0.06 100.00±0.00 99.94±0.04 99.98±0.02 99.93±0.03

NormStat:KL 82.00±0.74 72.11±1.63 96.17±0.40 99.48±0.10 98.32±0.35

VecStat:KL 94.08±0.27 99.68±0.18 100.00±0.00 99.99±0.02 99.94±0.04

VecStat:Cos 98.20±0.12 99.78±0.07 100.00±0.00 99.99±0.02 99.96±0.02

tion—can both provide resilience against adversarial attacks in intent classification systems. Fur-
thermore, the superior uncertainty calibration of training-free methods (demonstrated in Section 3.3)
could potentially serve as an adversarial detector. While our training-free methods (especially Norm-
Stat:KL) show competitive robustness, we acknowledge that achieving full adversarial robustness
remains an open challenge that warrants further exploration.

E ADDITIONAL DISCUSSION

E.1 MORE RELATED WORKS

LLM Routing Early work on LLM routing either ensembles outputs from multiple models (Jiang
et al., 2023; Wang et al., 2023a) or uses cascades that query models sequentially by capability (Ag-
garwal et al., 2023; Chen et al., 2023; Yue et al., 2023), but both incur high latency and cost due to
multiple calls per query. Subsequent approaches train learned routers–model-based predictors–that
estimate per-query quality or cost and select the target LLM (Hari & Thomson, 2023; Stripelis et al.,

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

```static func calcWidth(text: String) -> CGFloat {

    let constants = StoreSortBaseCell.Constants()

    let textWidth = HelperManager.textWidth(text, font: constants.titleLabelFont)

    return constants.horizontalSpace

        + textWidth

        + constants.spaceBetweenStarAndTitleLabel

        + constants.starImageViewSize

        + constants.spaceBetweenSeparatorAndImageView

        + constants.verticalSeparatorWidth

        + constants.spaceBetweenSeparatorAndImageView

        + constants.dropDownButtonWidth

        + constants.horizontalSpace

} ``` 

In the solution, the `calcWidth` function takes the input text and calculates the width based on the provided constants and helper function. It first      

initializes the constants and then uses the `textWidth` helper function to calculate the width of the input text. Finally, it computes the total width based        

on the constants and returns the result as a floating-point number.

-Jame will turn 27 in 5 years.  In 8 years his cousin will be 5 years younger than twice his age.  How many years separate the age of the two now? 

Code+Math

Figure 8: Mixed-intent prompt example combining Swift code (width calculation function) and a mathematical
problem used for uncertainty quantification analysis.

42.5%

9.4%

48.1%

(a) NormStat

39.4%

15.2%

45.3%

(b) VecStat

100.0%

(c) Tail-MLP

100.0%

(d) Avg-MLP

Math
Text
Code

Figure 9: Uncertainty quantification results on mixed-intent prompt with reversed concatenation order (math-
ematical contents followed by code contents) on Qwen3-1.7B-Base.

2024; Feng et al., 2024; Dekoninck et al., 2024; Somerstep et al., 2025; Jitkrittum et al., 2025);
these reduce unnecessary calls but introduce nontrivial training and maintenance overhead. Mean-
while, there are also training-free routers which choose among LLMs using lightweight ranking or
budget-aware criteria (Zhao et al., 2024; Wu & Silwal, 2025). In contrast, our training-free statis-
tical method is cheaper still because it operates entirely within a single LLM’s prefill: we compute
simple statistics of internal activations to obtain fast, calibrated intent probabilities that serve as an
efficient router without extra forward passes or router training.

E.2 WHEN ARE TRAINING-FREE METHODS PREFERABLE?

• High-throughput, multi-tenant systems. A provider may host a large number of routers (per
product, per customer, or per domain), where the intent label space evolves over time as new
tools, experts, or domains are introduced. In such settings, every change in the class set would
require retraining an MLP head, whereas VecStat/NormStat only require adding or removing
per-class statistics—keeping the adaptation cost essentially constant as the system scales.

• Untrusted or safety-critical deployments. In systems that must handle untrusted inputs (e.g.
public-facing assistants), reliable uncertainty quantification is crucial for detecting malicious or

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

4 8 12 16 20 24 28
Number of Layers

40

60

80

100
M

ea
n 

A
cc

ur
ac

y 
(%

)

gsm8k

4 8 12 16 20 24 28
Number of Layers

humaneval

4 8 12 16 20 24 28
Number of Layers

magicoder

4 8 12 16 20 24 28
Number of Layers

math500

4 8 12 16 20 24 28
Number of Layers

mmlu_history

NormStat:KL VecStat:KL VecStat:Cos

Figure 10: Effect of the number of layers on level-1 classification accuracy for Qwen3-1.7B.

0 5000 10000 15000 20000 25000 30000
Sample Size N

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

M
ea

n 
Er

ro
r

Empirical
±1 std
NormStat bound O( (log(1/ )/N))

103 104

Sample Size N

10 4

10 3

M
ea

n 
Er

ro
r

Empirical
±1 std
NormStat O(N^{-0.5})

(a) Llama-3.2-1B-Instruct (NormStat)

0 5000 10000 15000 20000 25000 30000
Sample Size N

0.2

0.4

0.6

0.8

M
ea

n 
Er

ro
r

Empirical
±1 std
VecStat bound O( (d/N))

103 104

Sample Size N

10 1

100

M
ea

n 
Er

ro
r

Empirical
±1 std
VecStat O(N^{-0.5})

(b) Llama-3.2-1B-Instruct (VecStat)

0 5000 10000 15000 20000 25000 30000
Sample Size N

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

M
ea

n 
Er

ro
r

Empirical
±1 std
NormStat bound O( (log(1/ )/N))

103 104

Sample Size N

10 4

10 3

M
ea

n 
Er

ro
r

Empirical
±1 std
NormStat O(N^{-0.5})

(c) Llama-3.2-1B (NormStat)

0 5000 10000 15000 20000 25000 30000
Sample Size N

0.2

0.4

0.6

0.8

M
ea

n 
Er

ro
r

Empirical
±1 std
VecStat bound O( (d/N))

103 104

Sample Size N

10 1

100

M
ea

n 
Er

ro
r

Empirical
±1 std
VecStat O(N^{-0.5})

(d) Llama-3.2-1B (VecStat)

0 5000 10000 15000 20000 25000 30000
Sample Size N

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

M
ea

n 
Er

ro
r

Empirical
±1 std
NormStat bound O( (log(1/ )/N))

103 104

Sample Size N

10 4

10 3

M
ea

n 
Er

ro
r

Empirical
±1 std
NormStat O(N^{-0.5})

(e) Qwen3-1.7B-Base (NormStat)

0 5000 10000 15000 20000 25000 30000
Sample Size N

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n 
Er

ro
r

Empirical
±1 std
VecStat bound O( (d/N))

103 104

Sample Size N

10 1

M
ea

n 
Er

ro
r

Empirical
±1 std
VecStat O(N^{-0.5})

(f) Qwen3-1.7B-Base (VecStat)

0 5000 10000 15000 20000 25000 30000
Sample Size N

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

M
ea

n 
Er

ro
r

Empirical
±1 std
NormStat bound O( (log(1/ )/N))

103 104

Sample Size N

10 4

10 3

M
ea

n 
Er

ro
r

Empirical
±1 std
NormStat O(N^{-0.5})

(g) Qwen3-1.7B (NormStat)

0 5000 10000 15000 20000 25000 30000
Sample Size N

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n 
Er

ro
r

Empirical
±1 std
VecStat bound O( (d/N))

103 104

Sample Size N

10 1

M
ea

n 
Er

ro
r

Empirical
±1 std
VecStat O(N^{-0.5})

(h) Qwen3-1.7B (VecStat)

Figure 11: Calibration convergence analysis for different models and methods on the MagiCoder dataset.
Each subplot shows both linear and log-log scales comparing empirical results with theoretical bounds. Norm-
Stat (norm method) uses dimension-free bounds while VecStat (projection method) uses dimension-dependent
bounds.

out-of-distribution prompts, and human interpretability is needed for post-hoc audits (e.g., to
assess potential fairness issues). Our training-free methods directly expose calibrated per-class
statistics, which can be inspected and monitored without the additional modeling and engineer-
ing complexity required to obtain well-calibrated uncertainty estimates from MLP heads.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

32 64 128 256 512

20

40

60

80

100

M
ea

n 
A

cc
ur

ac
y 

(%
)

gsm8k

32 64 128 256 512

humaneval

32 64 128 256 512

(a) Qwen3-1.7B

magicoder

32 64 128 256 512

math500

32 64 128 256 512

mmlu_history

32 64 128 256 512
40

60

80

100

M
ea

n 
A

cc
ur

ac
y 

(%
)

32 64 128 256 512 32 64 128 256 512

(b) Qwen3-1.7B-Base
32 64 128 256 512 32 64 128 256 512

32 64 128 256 512

20

40

60

80

100

M
ea

n 
A

cc
ur

ac
y 

(%
)

32 64 128 256 512 32 64 128 256 512

(c) Llama-3.2-1B
32 64 128 256 512 32 64 128 256 512

32 64 128 256 512
Maximum Sequence Length

20

40

60

80

100

M
ea

n 
A

cc
ur

ac
y 

(%
)

32 64 128 256 512
Maximum Sequence Length

32 64 128 256 512
Maximum Sequence Length

(d) Llama-3.2-1B-Instruct

32 64 128 256 512
Maximum Sequence Length

32 64 128 256 512
Maximum Sequence Length

NormStat:KL VecStat:KL VecStat:Cos

Figure 12: Effect of the maximum prompt length on level-1 classification accuracy for Qwen3-1.7B (a),
Qwen3-1.7B-Base (b), Llama-3.2-1B (c), and Llama-3.2-1B-Instruct (d)..

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 12: Adversarial prompt generation template used with GPT-5-mini. Original mathematics problems are
inserted at {prompt} to generate superficially code-like versions.

Prompt Template
Rewrite the following math problem to make an intent classifier predict “code”, while keeping
it obviously a math problem to any human reader.
Original problem: {prompt}

Core Principle:
A human should immediately recognize this as a math problem that requires mathematical
reasoning to solve. The “coding disguise” should be purely superficial - in the framing, vocab-
ulary, and presentation style, not in the underlying task.
Requirements:
1. PRESERVE MATHEMATICAL CLARITY:

• The numbers and their relationships should be immediately visible
• The mathematical operation(s) needed should be obvious to a human
• A human should think “this is clearly a math problem with coding window dressing”
• Don’t bury the math in convoluted programming scenarios

2. ADD CODING VOCABULARY (surface-level):
• Use programming terms for framing: “function”, “return”, “parameter”, “variable”
• Mention a programming language: Python, Java, C++, etc.
• Use coding-style notation where natural: = instead of ”equals”, * for multiply
• Frame as function input/output rather than “find” or “calculate”

3. WHAT TO AVOID (these make it unclear to humans):
✗ Complex programming scenarios that obscure the math
✗ Adding algorithmic steps unrelated to the core math
✗ Nested function calls or complicated code logic
✗ Programming-specific complications (edge cases, type checking, etc.)
✗ Data structures that hide the numbers (nested arrays, linked lists, etc.)

4. THE ATTACK SHOULD BE:
• Stylistic: Change how it’s presented, not what’s being asked
• Transparent: Humans immediately see through the coding framing
• Keyword-based: Inject terms that classifiers might key on
• Shallow: Surface-level reframing only

5. LENGTH AND NATURALNESS:
• Keep it concise: 1.5x to 2x original length
• Should read like a lazy programmer asking a math question
• Natural phrasing: “A function computes...” not “This is code question...”

6. TEST YOUR REWRITE:
• Ask yourself: “If I saw this on a forum, would I immediately know to solve it with basic

math, or would I be confused about what’s being asked?”
• If confused → too obscure, revise to be clearer
• If obvious math → good adversarial example!

OVERALL GOAL: Create examples where:
• Humans: “That’s obviously a math problem, why is it using coding terms?” ✓

• Classifier:“I see ’function’, ’return’, ’algorithm’ → must be CODE” ✗

Your rewritten problem:

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 13: Examples of adversarial prompt generated for MATH500 dataset.

Original Prompt Adversarial Prompt

Let f(x) = 2x− 3 and g(x) = x+ 1. What is the
value of g(f(5)− 1)?

In Python-style notation, two functions are defined
as follows:
f(x) = 2 ∗ x− 3 # returns 2 times x minus 3
g(x) = x+ 1 # returns x plus 1
If the program evaluates g(f(5) − 1), what integer
value is returned?

Find the product of the y-coordinates of all the dis-
tinct solutions (x, y) for the two equations y =
x2 − 8 and y2 = −5x+ 44.

You are writing a small Python-style function
find product() with no parameters that solves the
system
y = x*x - 8
y*y = -5*x + 44
for all distinct solution pairs (x,y), and then returns
the product of the y-values. What integer should
find product() return?

What is the result when the greatest common factor
of 6432 and 132 is increased by 11?

In Python-like pseudocode:
def compute():

gcd(6432, 132)
return base + 11

What integer should compute() return?

The Greek army contained two types of soldiers: the
upper class and the lower class soldiers. If there
were a total of 5 upper class soldiers, and 10 lower
class soldiers in a certain part of Athens, and the bat-
tle of Thermopylae demands a force of 4 upper class
soldiers and 8 lower class soldiers, how many differ-
ent battalions can be sent?

In Python, write a function battalion count(upper=
5, lower= 10, need upper= 4, need lower= 8) that
returns the number of distinct battalions formed by
choosing need upper soldiers from the upper class
and need lower soldiers from the lower class. In for-
mula form: return C(upper, need upper) * C(lower,
need lower) (i.e. (5 choose 4) * (10 choose 8)). With
the parameters shown, what integer should battal-
ion count(...) return?

The volume of a cone is given by the formula V =
1
3
Bh, where B is the area of the base and h is the

height. The area of the base of a cone is 30 square
units, and its height is 6.5 units. What is the number
of cubic units in its volume?

In Python, a function computes the volume of a cone
using the formula V = 1/3 * B * h. If the function
is defined with parameters B = 30 (area of base, in
square units) and h = 6.5 (height, in units):
def cone volume(B=30, h=6.5):

return 1/3 * B * h
What numeric value (in cubic units) should
cone volume return?

If a and b are vectors such that ∥a∥ = 2, ∥b∥ = 7,
and

a× b =

3
2
6

 ,

then find the smallest possible angle between a and
b, in degrees.

You’re writing a Python function angle between(a,
b) that should return the smallest angle between two
3D vectors a and b, in degrees. For the parameters
you are given:
- ∥a∥ = 2
- ∥b∥ = 7
- a× b = (3, 2, 6)
Using these inputs, what numeric value should an-
gle between(a, b) return? (Give the smallest possi-
ble angle in degrees.)

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 14: Level-1 classification accuracy on original and adversarially perturbed MATH500 prompts. All
methods are calibrated or trained on clean data only.

Model Method math500 adv math500

Llama-3.2-1B

Avg-MLP 64.33±8.33 1.53±1.01

Tail-MLP 98.93±0.42 94.20±2.16

NormStat:KL 83.40±0.00 77.07±0.12

VecStat:KL 78.80±0.12 12.87±0.64

VecStat:Cos 77.60±0.20 9.33±0.23

Llama-3.2-1B-Instruct

Avg-MLP 72.40±2.91 0.73±0.12

Tail-MLP 94.53±0.42 82.33±3.06

NormStat:KL 96.20±0.00 92.40±0.00

VecStat:KL 87.87±0.11 44.20±0.69

VecStat:Cos 85.60±0.00 28.07±0.23

Qwen3-32B

Avg-MLP 86.87±5.22 0.00±0.00

Tail-MLP 96.80±0.40 23.13±9.07

NormStat:KL 97.93±0.12 57.73±0.12

VecStat:KL 96.60±0.00 8.33±0.23

VecStat:Cos 96.80±0.35 12.20±0.53

33


	Introduction
	Related Work

	Methodology
	A Statistical Approach to Intent Classification
	Intuitive Analysis in a Gaussian Setting
	Training-based Intent Classification

	Experiments
	Experimental Setup
	Empirical Results
	Case study on ambiguous prompts
	Robustness to Adversarial Attack
	Effect of number of probed layers and prompt length
	Calibration Analysis

	Conclusion
	Additional Theoretical Analysis
	Two endpoints on the compression ladder
	Sufficiency

	Proofs
	Proof of lemma:sufficiency
	Proof of thm:radial-vs-coord
	Proof of thm:calibration

	Experiment details
	Dataset composition and processing strategies
	Datasets
	Selected LLMs
	More Implementation Details
	Pseudo-Algorithm
	Hardware and software environment

	Additional Experimental Results
	Additional Results for Level-1 Classification.
	Addtional Results for Level-2 Experiments
	Case Study
	The effect of the number of layers considered
	Calibration Convergence Analysis
	The effect of the maximum prompt length
	Robustness to adversarial attack

	Additional Discussion
	More Related Works
	When are training-free methods preferable?


