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ABSTRACT

Deep Neural Networks (DNNs) have revolutionized a wide range of industries,
from healthcare and finance to automotive, by offering unparalleled capabilities
in data analysis and decision-making. Despite their transforming impact, DNNs
face two critical challenges: the vulnerability to adversarial attacks and the in-
creasing computational costs associated with more complex and larger models. In
this paper, we introduce an effective method designed to simultaneously enhance
adversarial robustness and execution efficiency. Unlike prior studies that enhance
robustness via uniformly injecting noise, we introduce a non-uniform noise in-
jection algorithm, strategically applied at each DNN layer to disrupt adversarial
perturbations introduced in attacks. By employing approximation techniques, our
approach identifies and safeguard essential neurons while strategically introduc-
ing noise into non-essential neurons. Our experimental results demonstrate that
our method successfully enhances both robustness and efficiency across diverse
attack scenarios, model architectures, and datasets.

1 INTRODUCTION

Deep Neural Networks (DNNs) are at the forefront of technological advancements, powering a
multitude of intelligent applications across various sectors (Al-Qizwini et al., 2017; Bai et al., 2018;
Fujiyoshi et al., 2019). Yet, as DNNs become deeply integrated into mission-critical systems, two
challenges emerge in DNN deployment. Firstly, when DNNs are used in vital decision-making
tasks, their vulnerability to adversarial attacks becomes a serious concern. From a self-driving car
misinterpreting a traffic sign due to subtle, maliciously introduced perturbations, to defense systems
being deceived into false detection, the outcomes could be catastrophic (Carlini & Wagner, 2017;
Goodfellow et al., 2014; Kurakin et al., 2016; Madry et al., 2017; Moosavi-Dezfooli et al., 2016).
Secondly, deploying DNNs in resource-constrained environments relies on execution efficiency due
to the increasing computational needs. The key challenge in this paper is to enhance robustness of
DNNs when under adversarial attacks without compromising execution efficiency. Prior algorithmic
methods for adversarial attacks often incur significant overheads, i.e., compromising performance,
and without considering the implementation efficiency.

Recent studies indicate that the introduction of noise can improve both the robustness and efficiency
of models, as evidenced by several research papers (Cohen et al., 2019; He et al., 2019; Xiao et al.,
2020; Wu et al., 2020). Many techniques dedicated to improving the efficiency of neural networks
can be treated as noise injection techniques, such as sparse noise (Fu et al., 2021b; Guo et al., 2018;
Madaan et al., 2020; Sehwag et al., 2020; Ye et al., 2019; Gopalakrishnan et al., 2018; Gui et al.,
2019), quantization noise (Fu et al., 2021a; Galloway et al., 2017; Lin et al., 2019), and approxima-
tion noise (Guesmi et al., 2021), have been employed to enhance both the resilience and computa-
tional efficiency of deep neural networks. Additionally, efforts have been made to design hardware
accelerators specifically for this kind of algorithm (Fu et al., 2021c; Guesmi et al., 2021). How-
ever, these methods apply noise injections uniformly to all neurons, and such aggressive strategies
inevitably compromise model accuracy.

We hypothesize that only a subset of neurons are essential for representation learning while the rest
can tolerate noise perturbations without affecting overall accuracy. To address this, we introduce
non-uniform noise injection to enhance DNN robustness. Instead of perturbing all neurons, our
method protects identified essential neurons, bringing noise to only non-essential ones to enhance ro-
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bustness. The key is to identify the essential neurons effectively and efficiently. With that, we adopt
a learning-based approximate method to perform detection. Additionally, we propose to directly
populate non-essential neurons with approximate values used for detection, as a way to reduce com-
putation costs. We further investigate the noise injection granularity and propose structured noise
injection to have more efficiency improvements. Thus, we present non-uniform noise injection to
enhance both efficiency and robust accuracy. Our contributions are as follows:

• We are the first to identify that non-uniform noise injection is better than uniform one and
advocate that when fine-grained design, noise injection has the potential to substantially
improve the robustness of DNNs beyond their initial performance levels.

• We design a novel algorithm, which can efficiently select the essential and non-essential
neurons and a non-uniform noise injection is brought via approximation to enhance DNN
adversarial robustness while preserving clean accuracy. In addition, our method can be
used orthogonally with adversarial training and also achieves better results than the original
adversarial training methods.

• We further conduct the hardware performance analysis of our algorithm, yielding prelimi-
nary results that demonstrate its potential for efficiency.

• Using a variety of DNN models across different datasets and exposed to five distinct ad-
versarial attacks with varying adversarial perturbations, we showcase that our algorithm
consistently exhibits significantly higher robustness compared to the original model. When
used in combination with adversarial training, it is also superior to the original adversarial
training methods.

2 MOTIVATION

In this section, we analyze the limitations of existing robustness methods based on noise injection,
and then present the assumptions of our non-uniform noise injection algorithm.

2.1 LIMITATIONS OF NOISE INJECTION-BASED METHODS

Model compression techniques, originally conceived to enhance execution efficiency, are now under
the lens for their implications on adversarial robustness (Ye et al., 2019; Ahmad & Scheinkman,
2019). While techniques like weight pruning and quantization, when incorporated into adversar-
ial training, have demonstrated boosted robust accuracy and reduced model sizes (Sehwag et al.,
2020; Madaan et al., 2020; Fu et al., 2021b), they come with inherent limitations. For example,
when model compression methods operate on model weights to force sparse connections or low
precision, all neuron-wise activations become less effectual compared with activations of the dense
counterpart(Lin et al., 2019; Zhuang et al., 2020).
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Figure 1: As the noise injection becomes more
uniform, the trade-off between clean accuracy and
robust accuracy. Injecting noise into fewer neu-
rons achieves a small decrease in clean accuracy
and a significant increase in robustness accuracy
compared to the original model.

Intuitively, model compression can be inter-
preted as using noise injection to boost model
robustness. However, when model compression
techniques impose such noise injections uni-
formly across neurons—be it due to pruned
weights or reduced precision—there will be an
inevitable dip in model accuracy. This way of
uniform noise injection overlooks the nuanced
contribution of individual neurons—leading to
significant information loss and reduced clean
accuracy. As illustrated in Figure 1, as the spar-
sity becomes more and more uniform, it can be
seen that the clean accuracy of the model is ris-
ing, but the robustness is decreasing. Based on
this observation, we propose a hypothesis: only
a subset of neurons plays a critical role in rep-
resentation learning and retains high model ac-
curacy. The majority of neurons can endure tar-
geted noise injection without adversely affecting the overall robust accuracy of DNNs.
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2.2 NON-UNIFORM NOISE INJECTION FOR ENHANCED ROBUSTNESS

We propose a non-uniform noise injection method via hardware-efficient approximation to enhance
DNN adversarial robustness. Instead of uniform inject into all neurons, our data-dependent method
can precisely identify and keep the critical neurons that are contributing more to model accuracy,
while perturbing the remaining trivial neurons with approximate values to improve robust accuracy.

Then, we introduce structured patterns in noise injection granularity, ensuring that essential neu-
rons remain intact as depicted in Figure 2. This approach promotes regular data access and execu-
tion. Our evaluations confirm that structured noise injections maintain robust accuracy comparable
to fine-grained ones. Unlike the static sparsity in traditional weight pruning (Han et al., 2015; Niu
et al., 2020; Roy et al., 2021; Zaheer et al., 2020), our method offers dynamic adaptability, perturb-
ing activation values based on input samples. As demonstrated in Figure 2, using irregular 50%
and structured 2:4 examples, we apply a Top-K selection to each activation matrix, preserving the
highest K values and injecting noise into the rest. Furthermore, our structured pattern applied to
the activation matrix enhances hardware efficiency. This method selects only the largest N elements
within every M-element column. Viewing from a neuron perspective, essential neurons are retained,
while others are perturbed, which will be further detailed in the subsequent section.

3 APPROACH

Building on the hypothesis that only a subset of neurons are critical for model inference, we can
introduce noise injection to the non-essential neurons as a defense against adversarial attacks.
Our challenge is to locate precisely these essential neurons. Drawing from approximation stud-
ies (Achlioptas, 2001; Ailon & Chazelle, 2009; Vu, 2016), we propose a learning-based method to
identify essential neurons and inject noise into the non-essential neurons. Our approach not only
retains model accuracy but also enhances adversarial robustness.
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Neuron with 

Noise Injection
Pruned Connection

Irregular 50%

Structured 2:4

Noise 
Injected

Top-K 
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Figure 2: The concept of non-uniform noise injection from left: neuron perspective, where essential
neurons are kept intact to contribute model accuracy and non-essential neurons are perturbed to
improve robustness; and right: activation matrix perspective, where irregular noise injection on Top-
K activations and structured noise injection keeps the largest N elements of M elements.

3.1 LEARNING-BASED APPROXIMATION METHOD

We introduce layer-wise approximation as z̃ = W̃Px + b̃, where W̃ ∈ Rn×k and b̃ ∈ Rn are

trainable parameters, P ∈
√

3
k · {−1, 0, 1}k×d is a sparse random projection matrix. Note that the

approximate vector z̃ has the same dimension with the original output vector z. Since the approxi-
mate data is only used for the selection of essential neurons and injection of noise, we incorporate
quantization to decrease the bit-width of approximation parameters to further reduce computation
costs. Specifically, we apply a one-time quantization step on W̃ and b̃ to INT4 fixed-point arithmetic.

Learning process of approximation parameters. The trainable parameters, W̃ and b̃, are learned
through minimizing the mean squared error (MSE) as the optimization target: LMSE = 1

B ||z −
z̃||22 = 1

B ||(Wx+ b)− (W̃Px+ b̃)||22 where B is the mini-batch size. The random projection matrix
P is not trainable and stays constant after initialization.
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3.2 SELECTION OF ESSENTIAL NEURONS AND NOISE INJECTION

After we obtain optimized approximation parameters, we can use the approximate results z̃ to es-
timate the importance of individual neurons and select those with higher magnitude among z̃. We
can select essential neurons by comparing the approximate results with thresholds. A neuron is re-
garded as essential if its approximation from z̃ is larger than the predefined threshold. Specifically,
we can generate a binary mask m ∈ {0, 1}n, work as a map of essential neurons to keep and non-
essential neurons to inject noise, where mi equals 1 when the neurons are essential while it switches
to 0 when the neurons are non-essential. In this way, we can estimate which neurons are essential
without actual computations.

Once we identify the non-essential neurons, we can inject noise as a kind of perturbation. Instead
of adding a noise term drawn from a normal or uniform distribution to the outputs, we propose to
directly populate the non-essential neuron with approximate values drawn from z̃ that are computed
in the selection step. Overall, the outputs of a NN layer under our method can be formulated as

z
′
= z ⊙m + z̃ ⊙ (1−m), (1)

where the ⊙ denotes point-wise multiplication.

3.3 PRESERVATION OF CLEAN ACCURACY

With the aforementioned algorithm, we can make the essential neurons maintain clean accuracy,
while the non-essential neurons are injected with noise, which has a boosting effect on the adversar-
ial robustness. In this section, we will provide the theoretical support for our approach.

We start with the proof that there is almost no clean accuracy drop by using our critical neuron selec-
tion algorithm. From another perspective, our essential neuron selection algorithm is an algorithm
that dynamically prunes in a low-dimensional space. In other words, to prove that this algorithm has
no loss in clean accuracy is to demonstrate that this transformation in low-dimensional space has
almost no effect on the accuracy of matrix-matrix multiplication or matrix-vector multiplication. To
simplify matters, we will focus solely on treating each operation within a sliding window of the
convolution layer or the entirety of the fully connected (FC) layer, considering them as individual
basic optimization problems for a single input sample. Each output activation zi is generated by the
inner production:

zi = φ (⟨xi,Wj⟩) (2)

where xi is the i-th row in the matrix of input feature maps and for FC layer, there is only one x
vector. Wj is the j-th column of the weight matrix W , and φ(·) is usually the activation function,
here we omit the bias for simplicity. After defining Eq. 2 in this way, since matrix-matrix multipli-
cation or matrix-vector multiplication consists of inner products, all we have to prove is that there
exists a mapping of lower dimensional spaces that still gives a good approximation to inner products
in higher dimensional spaces.

In dimensional transformations, according to the relationship between inner product and the Eu-
clidean distance, the preservation of inner product is to preserve the Euclidean distance between two
points. The following lemma has this effect.

Lemma 1. (Johnson, 1984). Given 0 < ϵ < 1, a set of N points in Rd (i.e., all xi and Wj ), and a

number of k > O
(

log(N)
ϵ2

)
, there exists a linear map f : Rd ⇒ Rk such that (1− ϵ) ∥xi −Wj∥2 ≤

∥f (xi)− f (Wj)∥2 ≤ (1 + ϵ) ∥xi −Wj∥2.

For any given xi and Wj pair, where ϵ is a hyper-parameter to control the approximation error, i.e.,
larger ϵ ⇒ larger error. This lemma is a dimension-reduction lemma, named Johnson-Lindenstrauss
Lemma(JLL)(Johnson, 1984), which states that a collection of points within a high-dimensional
space can be transformed into a lower-dimensional space, where the Euclidean distances between
these points remain closely preserved.

Random projection(Achlioptas, 2001; Ailon & Chazelle, 2009; Vu, 2016) has found extensive use
in constructing linear maps f(·). In particular, the original d-dimensional vector is projected to a
k-dimensional space, where k ≪ d, utilizing a random k×d matrix P. Consequently, we can reduce
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the dimension of all xi and Wj by applying this projection.

f (xi) =
1√
k
Pxi ∈ Rk, f (Wj) =

1√
k
PWj ∈ Rk (3)

The random projection matrix P can be generated from Gaussian distribution (Ailon & Chazelle,
2009). In this paper, we adopt a simplified version, termed as sparse random projection (Achlioptas,
2001; Bingham & Mannila, 2001; Li et al., 2006) with Pr (Ppq =

√
s) = 1

2s ; Pr (Ppq = 0) =

1− 1
s ; Pr (Ppq = −

√
s) = 1

2s for all elements in P. This P only has ternary values that can re-
move the multiplications during projection, and the remaining additions are very sparse. Therefore,
the projection overhead is negligible compared to other high-precision multiplication operations.
Here we set s = 3 with 67% sparsity in statistics.

When ϵ in Lemma 1. is sufficiently small, a corollary derived from Johnson-Lindenstrauss Lemma
(JLL) yields the following norm preservation:

Corollary 1. (Instructors Sham Kakade, 2009) For Y ∈ Rd. If the entries in P ⊂ Rk×d are sampled
independently from N(0, 1). Then,

Pr

[
(1− ϵ)∥Y∥2 ≤ ∥ 1√

k
PY∥2 ≤ (1 + ϵ)∥Y∥2

]
≥ 1−O

(
ϵ2
)
. (4)

where Y could be any xi or Wj . This implies that the preservation of the vector norm is achievable
with a high probability, which is governed by the parameter ϵ. Given these basics, we can further
get the inner product preservation:

Theorem 1. Given a set of N points in Rd (i.e. all xi and Wj ), and a number of k > O
(

log(N)
ϵ2

)
,

there exists random projection matrix P and a ϵ0 ∈ (0, 1), for 0 < ϵ ≤ ϵ0 we have

Pr

[∣∣∣∣〈 1√
k
Pxi,

1√
k
PWj

〉
− ⟨xi,Wj⟩

∣∣∣∣ ≤ ϵ

]
≥ 1−O

(
ϵ2
)
. (5)

for all xi and Wj .

which indicates the low-dimensional inner product ⟨ 1√
k
Pxi,

1√
k
PWj⟩ can still approximate the

original high-dimensional one ⟨xi,Wj⟩ in Eq. 2 if the reduced dimension is sufficiently high. There-
fore, it is possible to calculate Eq. 2 in a low-dimensional space for activation estimation and select
the essential neurons. The detailed proof can be found in the Appendix A.

3.4 IMPROVEMENT OF ADVERSARIAL ROBUSTNESS

Regarding proof of robustness improvement, Pinot et al. (2019) has demonstrated that injecting noise
into a deep neural network can enhance the model’s resilience against adversarial attacks. A deep
neural network can be considered as a probabilistic mapping M , which maps the input X to Z via
M : X → P (Z). According to Pinot et al. (2019), the risk optimization term of the model is defined
as: Risk(M) := E(x,z)∼D

[
Ez′∼M(x) [1 (z

′ ̸= z)]
]

In the adversarial attack scenario, the model

risk optimization term becomes the: Riskα(M) := E(x,z)∼D

[
sup∥τ∥X≤α Ez′∼M(x+τ) [1 (z

′ ̸= z)]
]

where τ is the adversarial perturbation applied to the input sample, α is treated as the upper limit of
perturbation. After obtaining these, Pinot et al. (2019), (Theorem 1) proved that noise sampled from
the Exponential Family can ensure robustness. Finally, the robustness of the neural network with
noise injection can be expressed by the following theorem:

Theorem 2. (Pinot et al., 2019) Let M be the probabilistic mapping at hand. Let us suppose that M
is robust, then:

|Riskα(M)− Risk(M)| ≤ 1− e−θEx

[
e−H(M(x))

]
(6)

where H is the Shannon entropy H(p) = −
∑

i pi log (pi).

This theorem provides a means of controlling the accuracy degradation when under attack, with
respect to both the robustness parameter θ and the entropy of the predictor. Intuitively, as the in-
jection of noise increases, the output distribution tends towards a uniform distribution for any input.
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Consequently, as θ → 0 and the entropy H(M(x)) → log(K), K is the number of classes in the
classification problem, both the risk and the adversarial risk tend towards 1/K. Conversely, when
no noise is introduced, the output distribution for any input resembles a Dirac distribution. In this
scenario, if the prediction for an adversarial example differs from that of a regular one, θ → ∞
and H(M(x)) → 0. Therefore, the design of noise needs to strike a balance between preserving
accuracy and enhancing robustness against adversarial attacks, which proves our motivation.

3.5 IMPLICATIONS FOR EFFICIENT EXECUTION

As indicated in Eq. 1, the computed pattern is a mixture of precise computation and approximate
computation in the form of non-uniform noise perturbation. For precise computation, only essential
neurons need to be computed and non-essential neurons are from approximation. Hence, we can
skip precise computations of non-essential neurons, leading to potential performance speedup and
energy saving in the similar spirit of accelerated execution of activation sparsity. In addition, our
approximate method incurs a small amount of low-precision operations.
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Figure 3: Structured Non-uniform Noise Injection: After getting the approximate module from fine-
tuning, the Top-K algorithm is utilized to take out the index of the largest value of N , and then
the corresponding mask m is generated. Accurate module carries out the N:M Sparsity through the
mask m, and the final result is still a mixture of approximate and accurate modules.

On noise injection granularity. While non-uniform noise injection can improve execution effi-
ciency from computation skipping of essential neurons, the unconstrained and unstructured noise
injection patterns would increase the hardware design complexity and execution overheads from
irregular data access and low data reuse.

Taking inspiration from the sparsity-oriented designs, we raise the hypothesis that noise injection
granularity can be constrained in a similar way as sparsity constraints. In particular, structured
sparsity, denoted as N:M, is an emerging trend that preserves N elements in every 1×M vector of a
dense matrix. This fine-grained approach offers more combinations than block sparsity. An example
is the 1:2 and 2:4 structured pruning techniques for neural network weight introduced in NVIDIA
Ampere. Such techniques aim for efficiency and faster inference without sacrificing performance.

As shown in Figure 3, our revised method, i.e., structured noise injection, chooses N essential neu-
rons out of a vector of M neurons and injects noise into the rest. Note that here we perform noise
injection dynamically on neurons or activations, not static weight sparsity, despite the similarity in
granularity.

4 EXPERIMENTS

In this section, we mainly present the following advantages of our non-uniform noise injection
method. Our detailed evaluation methodology is in Appendix B. First, non-uniform noise injection
can enhance adversarial robustness of the model while retaining clean accuracy. Second, our algo-
rithm can be combined with adversarial training techniques to advance robustness further. Third, we
experiment with the algorithm’s efficiency gains and initially explore hardware feasibility.
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In our first experiment, we employ the ResNet18 and ResNet50 CNN architectures(He et al., 2016)
that are trained on the CIFAR-10 dataset (Krizhevsky et al., 2009) and the ImageNet-2012 dataset
(Russakovsky et al., 2015). Non-uniform noise injection is applied only to the convolutional layers,
and we implemented these models using the PyTorch framework (Paszke et al., 2019). To verify that
our non-uniform noise injection can be trained under adversarial conditions, we selected the struc-
tured 4:8 pattern, which demonstrates the best robustness for ResNet18 and ResNet50 on CIFAR-
10. We apply adversarial training using two methods, FGSM-RS (Wong et al., 2020) and PGD-10
(Madry et al., 2017). To assess the algorithm’s granularity stability, we conduct experiments with
larger granularity, as described in Appendix C.

4.1 DEFEND WITH NON-UNIFORM NOISE INJECTION

As shown in Table 1, our method has almost no loss in clean accuracy and exhibits better robustness
than the original models. Specifically, the best robustness gains are both on structured 4:8, 10.49%
on Resnet18 under BIM attack, and 6.61% on Resnet50 with DeepFool attack, respectively. The
second best is the Irregular 50%, and all other noise injection methods have better robustness than
the original model.

Table 1: The clean accuracy(%) and robust accuracy(%) of our non-uniform noise injection algo-
rithm of the ResNet18 and ResNet50 on CIFAR-10 under various adversarial attack methods with
different perturbation ϵ.

ResNet18 ResNet50
Granularity Clean PGD-40 FGSM CW DeepFool BIM Clean PGD-40 FGSM CW DeepFool BIM

ϵ = 4/255 ϵ = 4/255 ϵ = 0.5 ϵ = 4/255 ϵ = 4/255 ϵ = 4/255 ϵ = 4/255 ϵ = 0.5 ϵ = 4/255 ϵ = 4/255
Original 91.41 7.50 46.61 12.34 32.32 16.68 92.49 4.03 34.61 11.66 27.46 7.76

Irregular 50% 90.50 12.70 50.07 16.30 36.43 23.49 91.41 6.07 38.97 16.48 32.68 11.54
Irregular 80% 91.32 8.12 47.49 15.29 33.67 17.74 91.42 4.71 37.55 15.23 30.38 9.15
Irregular 90% 91.96 8.18 47.20 13.65 33.47 17.49 92.52 4.77 37.36 13.75 30.54 9.10
Structured 4:8 90.40 15.68 52.53 19.78 39.77 27.17 91.06 6.67 39.70 17.03 34.07 12.19
Structured 5:8 90.98 11.37 50.12 16.17 37.09 22.52 91.22 5.29 37.88 14.84 31.50 10.34
Structured 6:8 91.72 9.17 48.43 14.37 34.83 19.61 91.41 4.83 37.21 13.40 30.79 9.32

Table 2: The The clean accuracy(%) and robust accuracy(%) of our non-uniform noise injection al-
gorithm of the ResNet18 and ResNet50 on ImageNet-2012 under various adversarial attack methods
with different perturbation ϵ.

ResNet18 ResNet50
Granularity Clean PGD-40 FGSM CW DeepFool BIM Clean PGD-40 FGSM CW DeepFool BIM

ϵ = 0.0005 ϵ = 0.0005 ϵ = 0.2 ϵ = 0.0005 ϵ = 0.0005 ϵ = 0.0005 ϵ = 0.0005 ϵ = 0.2 ϵ = 0.0005 ϵ = 0.0005
Original 70.10 42.05 42.69 42.78 39.31 38.50 76.64 51.26 53.83 55.05 50.06 47.11

Irregular 50% 69.26 50.78 50.87 51.42 48.54 47.85 75.83 58.89 59.52 60.95 58.25 55.65
Irregular 80% 70.71 45.66 46.37 46.42 42.96 42.10 76.63 50.73 53.57 54.90 49.89 46.57
Irregular 90% 70.06 45.48 46.23 46.18 42.71 41.86 76.70 51.00 53.67 55.11 49.94 46.92
Structured 4:8 68.98 53.44 53.50 53.67 51.25 50.80 75.07 62.49 62.73 63.68 61.36 59.99
Structured 5:8 69.66 50.03 50.26 50.37 47.47 46.92 75.79 58.52 59.26 60.32 57.35 55.30
Structured 6:8 69.96 47.85 48.21 48.41 45.13 44.43 76.13 55.09 56.51 57.67 53.97 51.44

When looking at Table 2, the results obtained from ImageNet-2012 align closely with those from
CIFAR-10, demonstrating the scalability of our non-uniform noise injection approach to more com-
plex tasks. Notably, the structured 4:8 method outperforms others, achieving a 10.81%∼12.30%
and 8.63%∼12.88% robustness increase over the original ResNet18 and ResNet50 networks, re-
spectively. The Irregular 50% approach also delivers robust results, enhancing accuracy by 8.18%
to 9.35% for ResNet18 and between 5.69% to 8.54% for ResNet50 across various attack scenarios.
Other granularity methods contribute accuracy improvements ranging from 3% to 6%, with excep-
tions being Irregular 80% and Irregular 90%, which see minor robustness losses under Deepfool and
BIM attacks. Importantly, in terms of clean accuracy, our methods produce negligible losses.

These outcomes demonstrate the efficacy of non-uniform noise injection in enhancing adversarial
robustness. It retains the original model accuracy on clean data, suggesting that essential neurons
experience minimal noise injection, and elevates network robustness, indicating that noise injection
to non-essential neurons contributes to this improvement.

4.2 JOINT WITH ADVERSARIAL TRAINING

As illustrated in Table 3, we can observe that (1) our non-uniform noise injection consistently im-
proves robust accuracy across various PGD attack settings, for all networks and adversarial training
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methods. Specifically, when applying FGSM-RS, our algorithm achieves a 2.95%/3.19% higher ro-
bust accuracy under PGD-20 attacks on ResNet18 and ResNet50, respectively. Furthermore, when
integrated with PGD-10 training,we observe improvements of 2.08% and 1.89% on ResNet18 and
ResNet50, respectively. Also, our method maintains a consistent effect as the strength of the attack
increases. (2) Our approach has a negligible drop in clean accuracy. In particular, when applying
FGSM-RS and PGD-10, resnet18 shows a decrease in clean accuracy of only 1.86% and 0.46%,
respectively. For ResNet50, the drop in both methods is only 0.81% and 0.86%.

We further compare our method with the quantization uniform noise injection method, see Ap-
pendix D for details. This reaffirms our hypothesis that essential neurons without any noise injec-
tions maintain clean accuracy and that non-essential neurons injected with noise can bring about an
enhancement of robustness.

Table 3: The clean accuracy(%) and robust accuracy(%) of our non-uniform noise injection struc-
tured 4:8 algorithm joint with adversarial training of the ResNet18 and ResNet50 on CIFAR-10
under different adversarial attack methods with perturbation ϵ = 8/255.

ResNet18 ResNet50
Adversarial Training Method Clean PGD-20 PGD-40 PGD-100 Clean PGD-20 PGD-40 PGD-100

ϵ = 8/255 ϵ = 8/255 ϵ = 8/255 ϵ = 8/255 ϵ = 8/255 ϵ = 8/255
Original 91.41 1.45 0.78 0.61 92.49 0.09 0.04 0.02

Structured 4:8 90.40 5.92 3.85 2.50 91.06 0.17 0.19 0.03
FGSM-RS 84.77 34.51 33.71 33.32 86.08 38.09 37.28 36.26

FGSM-RS+Structural 4:8 82.91 37.46 36.67 35.25 85.27 41.28 41.10 39.47
PGD-10 81.08 43.89 43.52 43.19 83.96 46.43 46.21 44.96

PGD-10+Structural 4 :8 80.62 45.97 45.06 43.25 83.10 48.32 47.59 45.38

4.3 HARDWARE EFFICIENCY

By matching the hardware capabilities to the algorithm requirements, we can achieve better hard-
ware efficiency. A major factor is using relatively lower cost of low-precision arithmetic vs. high-
precision. Because multiplication characterizes each bit against each other, scaling from 4- to 16-bits
increases the intensity by 16x, not 4x. As a result, the cost of approximation is low compared to
full-precision calculation.

In our analysis, because the hardware uses a precision-scalable Matrix-Vector Unit (MVU), we con-
vert all operations to BitOps, which approximate the bit-level intensity of operations. For reference,
sixteen BitOps = four 4-bit additions = one 4-bit multiplication. As it pertains to performance, Fig-
ure 4 shows that the noise injection granularity affects on various statistics. This figure highlights
two key findings: 1) The effect on noise injection alone and 2) The effect of structured version.
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Figure 4: Normalized value of various metrics across different levels of perturbation generated from
our hardware simulator. NOTE: sixteen BitOps = four 4-bit additions = one 4-bit multiplication.

First, with the relative intensity of full-precision calculation, increasing perturbation alone effec-
tively improves speed and efficiency. This is because, as mentioned prior, high precision execution
dominates performance. A reduction in the high precision stage therefore has a significant effect on
performance.

Second, when using a structured perturbation scheme, speed and efficiency are improved relative to
an equivalent unstructured scheme. This is because with constrained, predictable execution patterns,

8



Under review as a conference paper at ICLR 2024

we can expand the MVU without significant overhead, allowing for a higher throughput and faster
execution despite a worse mapping efficiency. Additionally, with structured scheme, there is more
data reuse, reducing the SRAM energy. From these two points, we can see structured dynamic
perturbation is an effective means to vastly improve inference performance.

5 RELATED WORK

Adversarial Attacks & Defense Adversarial attacks, as discussed in Croce & Hein (2020), pose a
significant threat to the deployment of machine learning (ML) models. These attacks involve subtly
altering input data to deceive ML models, leading to incorrect predictions. The concept of ”adversar-
ial robustness” measures a neural network’s ability to resist such attacks by comparing its accuracy
on clean data to its accuracy on adversarially perturbed data (Carlini & Wagner, 2017). Without
protective measures, ML models can experience a significant drop in accuracy, often exceeding
20%, even under basic attacks. To defend against adversarial attacks, various methods have been
proposed, including defensive algorithms (Cohen et al., 2019; Dhillon et al., 2018; He et al., 2019;
Jeddi et al., 2020). These methods aim to enhance a model’s resistance to attacks but may lead to per-
formance trade-offs when dedicated hardware support is unavailable. Adversarial training (Shafahi
et al., 2019; Szegedy et al., 2013; Wong et al., 2020; Zhang et al., 2019a) is a notable approach
where models are trained using both regular and adversarial samples to expose and mitigate vul-
nerabilities. However, this method often sacrifices performance on clean data(Tsipras et al., 2018;
Zhang et al., 2019b; Nakkiran, 2019; Stutz et al., 2019) and requires intensive re-training (Wang
et al., 2020). Moreover, it lacks the flexibility to dynamically adjust the trade-off between clean and
robust accuracy. It’s important to note that while adversarial training can improve model resilience,
it doesn’t necessarily optimize computational efficiency. This highlights the need to explore alter-
native techniques that reduce computational costs without relying on specialized hardware.

Robustness and Efficiency To make deep neural networks (DNNs) work better, researchers have
looked into three main ways: making them smaller, and resilient to attacks. For instance, in the spar-
sity and robustness, Guo et al. (2018) examines how introducing sparsity in DNN architectures can
increase their resilience against adversarial attacks. More comprehensively, Ye et al. (2019) explores
various techniques like adversarial training, robust regularization, and model compression methods
such as pruning, quantization, and knowledge distillation to enhance adversarial robustness. Some
work, inspired by the lottery hypothesis(Frankle & Carbin, 2018) and adversarial training (Madry
et al., 2017; Shafahi et al., 2019; Wong et al., 2020), combines pruning or sparse masking with
adversarial training to obtain a sparse subnetwork with robustness (Sehwag et al., 2020; Madaan
et al., 2020; Fu et al., 2021b). Our proposed algorithm in this paper falls under dynamic sparsity,
incorporating non-uniform perturbations for finer-grained robustness exploration. Another research
direction focuses on the robustness of low-precision or quantized DNNs. For example, Galloway
et al. (2017) introduces robust binary neural networks that demonstrate increased adversarial robust-
ness compared to full-precision networks. Defensive Quantization (Lin et al., 2019) controls the
network’s Lipschitz constant during quantization to maintain non-expansive adversarial noise dur-
ing inference, striking a balance between efficiency and robustness. Additionally, Fu et al. (2021c)
and its corresponding algorithm design (Fu et al., 2021a) explores the challenges of transferring
between different quantization bits and introduces an algorithm for randomized accuracy switch-
ing during adversarial training and attack phases to improve robustness and efficiency. Another
approach involves introducing noise through approximation computation, with defensive approx-
imation ((Guesmi et al., 2021)) being a representative example. However, these methods usually
introduce noises to all neurons, which makes it challenging for neurons to maintain clean accuracy.

6 CONCLUSION

In this work, we introduce a novel approach: non-uniform noise injection, which bridges the gap be-
tween adversarial robustness and execution efficiency. Inspired by the trade-off between robustness
and clean accuracy, our data-dependent method can precisely identify and keep the critical neurons
that are contributing more to model accuracy, while injecting noise to the remaining trivial neurons
with approximate values to improve robust accuracy. We believe that our work sheds light on the im-
portance of fine-grained noise injection in bolstering adversarial robustness, contributing to a deeper
understanding of this critical aspect in the field of machine learning.
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A PROOF OF THE ALGORITHM FOR INNER PRODUCT PRESERVATION

Theorem 1. Given a set of N points in Rd (i.e. all xi and Wj ), and a number of k > O
(

log(N)
ϵ2

)
,

there exists random projection matrix P and a ϵ0 ∈ (0, 1), for 0 < ϵ ≤ ϵ0 we have

Pr

[∣∣∣∣〈 1√
k
Pxi,

1√
k
PWj

〉
− ⟨xi,Wj⟩

∣∣∣∣ ≤ ϵ

]
≥ 1−O

(
ϵ2
)
.

for all xi and Wj .

Proof. According to the definition of inner product and vector norm, any two vectors a and b satisfy{
⟨a,b⟩ =

(
∥a∥2 + ∥b∥2 − ∥a− b∥2

)
/2

⟨a,b⟩ =
(
∥a+ b∥2 − ∥a∥2 − ∥b∥2

)
/2

. (7)

It is easy to further get
⟨a,b⟩ =

(
∥a+ b∥2 − ∥a− b∥2

)
/4. (8)

Therefore, we can transform the target in Eq. 2 to
|⟨f (xi) , f (Wj)⟩ − ⟨xi,Wj⟩|

=
∣∣∣∥f (xi) + f (Wj)∥2 − ∥f (xi)− f (Wj)∥2 − ∥xi +Wj∥2 + ∥xi −Wj∥2

∣∣∣ /4
≤
∣∣∣∥f (xi) + f (Wj)∥2 − ∥xi +Wj∥2

∣∣∣ /4 + ∣∣∣∥f (xi)− f (Wj)∥2 − ∥xi −Wj∥2
∣∣∣ /4

(9)

which is also based on the fact that |u−v| ≤ |u|+|v|. Now recall the definition of random projection
in Eq. 3 of the main text

f (xi) =
1√
k
Pxi ∈ Rk, f (Wj) =

1√
k
PWj ∈ Rk.

Substituting Eq. 3 into Eq. 9, we have
|⟨f (xi) , f (Wj)⟩ − ⟨xi,Wj⟩|

≤

∣∣∣∣∣
∥∥∥∥ 1√

k
Pxi +

1√
k
PWj

∥∥∥∥2 − ∥xi +Wj∥2
∣∣∣∣∣ /4 +

∣∣∣∣∣
∥∥∥∥ 1√

k
Pxi −

1√
k
PWj

∥∥∥∥2 − ∥xi −Wj∥2
∣∣∣∣∣ /4

=

∣∣∣∣∣
∥∥∥∥ 1√

k
P (xi +Wj)

∥∥∥∥2 − ∥xi +Wj∥2
∣∣∣∣∣ /4 +

∣∣∣∣∣
∥∥∥∥ 1√

k
P (xi −Wj)

∥∥∥∥2 − ∥xi −Wj∥2
∣∣∣∣∣ /4

(10)
Further recalling the norm preservation in Eq. 4 of the main text: there exists a linear map f : Rd ⇒
Rk and a ϵ0 ∈ (0, 1), for 0 < ϵ ≤ ϵ0 we have

Pr

[
(1− ϵ)∥Y∥2 ≤ ∥ 1√

k
PY∥2 ≤ (1 + ϵ)∥Y∥2

]
≥ 1−O

(
ϵ2
)
.

Substituting the Eq. 4 into Eq. 10 yields

P

[∣∣∣∣∣
∥∥∥∥ 1√

k
P (xi +Wj)

∥∥∥∥2 − ∥xi +Wj∥2
∣∣∣∣∣ /4 +

∣∣∣∣∣
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k
P (xi −Wj)

∥∥∥∥2 − ∥xi −Wj∥2
∣∣∣∣∣ /4 . . .

≤ ϵ

4

(
∥xi +Wj∥2 + ∥xi −Wj∥2

)
=

ϵ

2

(
∥xi∥2 + ∥Wj∥2

)]
. . .

≥ Pr

(∣∣∣∣∣
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k
P (xi +Wj)

∥∥∥∥2 − ∥xi +Wj∥2
∣∣∣∣∣ /4 ≤ ϵ

4
∥xi +Wj∥2

)
. . .

×Pr

(∣∣∣∣∣
∥∥∥∥ 1√

k
P (xi −Wj)

∥∥∥∥2 − ∥xi −Wj∥2
∣∣∣∣∣ /4 ≤ ϵ

4
∥xi −Wj∥2

)
. . .

≥
[
1−O

(
ϵ2
)]

·
[
1−O

(
ϵ2
)]

= 1−O
(
ϵ2
)
.

(11)

Combining equation 9 and 11, finally we have

Pr

[∣∣∣∣〈 1√
k
Pxi,

1√
k
PWj

〉
− ⟨xi,Wj⟩

∣∣∣∣ ≤ ϵ

2

(
∥xi∥2 + ∥Wj∥2

)]
≥ 1−O

(
ϵ2
)

(12)
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B DETAILED EXPERIMENTAL SETUP

Hardware Experimental Setup. We tested the effectiveness of our algorithm on a co-designed
hardware implementation via an in-house cycle-accurate simulator. The simulator tracks key per-
formance metrics and maps them to specific power values. SRAM power/area is estimated using
CACTI, and all other components are synthesized using Synopsys Design Compiler on the FreePDK
45nm PDK.

To get an accurate reference for an optimized accelerator, we design our own hardware. The general
hierarchy is simple, with a central Matrix-Vector Unit (MVU), core-specific SRAM, and registers.
The MVU is purpose-designed to match the algorithm requirements as efficiently as possible. It
which uses 4-bit multipliers as a precision-scaling element, offering both 4- and 16-bit multiplication
while limiting additional hardware.

Training Strategies. For the first experiment, on CIFAR-10, we train the models using the momen-
tum SGD optimizer for 200 epochs and fine-tuned them for 50 epochs. On ImageNet-2012, we used
the Adam optimizer for training, running for 50 epochs initially and fine-tuning for an additional
10 epochs to achieve various noise injection ratios and structured sparsity. Our experiments with
non-uniform noise injection involved three different noise injection ratios: 50%, 80%, and 90%. We
also explore structured non-uniform noise injection with patterns of 4:8, 5:8, and 6:8.

For the second experiment, we follow the original papers’ hyperparameter settings for adversarial
training, which included a step size of 1.25ϵ for FGSM-RS and 2 for PGD-7 training. During
training, we fine-tune the models for 20 epochs with a batch size of 256, utilizing the SGD optimizer
with a momentum of 0.9 and an initial learning rate of 0.02, along with a cyclic scheduler.

Attacks. To evaluate adversarial robustness, we deploy five attack methods on the first experiment:
PGD (Madry et al., 2017), FGSM(Goodfellow et al., 2014), C&W (Carlini & Wagner, 2017), Deep-
Fool (Moosavi-Dezfooli et al., 2016), and BIM (Kurakin et al., 2016). On CIFAR-10, C&W attack
uses ϵ = 0.5, and all other methods use ϵ = 4/255, among which PGD-40 uses the step size of
1/255. These attacks are implemented using the Foolbox library (Rauber et al., 2017; 2020), ad-
hering to its default settings. On ImageNet-2012, Except for the C&W attack, which employs an
l2 perturbation limit of ϵ = 0.2, all other methods use l∞ attacks with a perturbation ceiling of
ϵ = 0.0005. We mainly focus on PGD-20, PGD-40 and PGD-100 (Madry et al., 2017) attacks with
perturbation strengths ϵ = 8/255, the step size is 2/255 in adversarial training.

Additional Analysis. Structured perturbation does not reduce the number of operations that need to
occur when compared to unstructured perturbation, however, it constrains the execution so that key
optimizations can be made. With unstructured, there is no guarantee that a weight will be reused or
not. This makes it very difficult to scale up performance without also scaling the weight read band-
width or vastly complicating control. With structured, however, there is now a guarantee that within
a given window (We use 8 rows), there is a strong spatial locality across columns. With this avenue
now open, we design to parallelize columns. We now load more activations at once, increased the
lane width of the MVU, and left SRAM bandwidths the same. We see significant strides in per-
formance from these changes. Figure 4 compares the speedup, efficiency, and operational intensity
between structured and unstructured. We use EDP (Energy Delay Product) as a metric for efficiency.
We first see that the enhanced parallelism allows for a greater reduction in execution time. Second,
we see an overall improvement in execution efficiency. Lower execution time, while desirable on
its own, decreases static energy consumption, which is especially important on chips with large
amounts of hardware. Spatial locality enables reuse, which leads to fewer overall SRAM accesses
and thus dynamic power. The combination of these leads to an approximately equivalent energy per
inference compared to a comparable unstructured scheme. When factoring in the previous speedup,
we see that the overall EDP is reduced when going from unstructured to an equivalent structured
perturbation scheme.

A nuance to structured execution is that the optimal execution pattern is not always met. As seen
by subplot C, structured can add some redundant operations due to poor boundary alignment. As
such, VPUs will not be entirely full, leading to some redundant operations. This can be avoided with
some additional hardware, but that itself could outweigh the cost of occasionally reduced efficiency.
As such, we perform our analysis with no such hardware. Regardless, we see that it does not
significantly effect performance, as it accounts for a lower overhead relative to the savings.
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C ROBUSTNESS EXPERIMENTS AT LARGER GRANULARITY

Experimental Setups. For the verification of the stability of hardware-friendly granularity, we
continue with a series of experiments at a larger granularity in the case of a 50% noise injection, and
we experiment on the performance of ResNet18 and ResNet50 on CIFAR-10 and ImageNet, with
all the attack parameters the same as Tables 1 and 2 respectively.

Results. As can be seen in Tables 4 and 5, our non-uniform noise injection is stable for different
hardware-friendly structured sparsity, which means that our algorithm can be scaled to the appropri-
ate hardware-friendly structured sparsity granularity as required.

Table 4: The clean accuracy(%) and robust accuracy(%) of larger granularity in the case of a 50%
noise injection of the ResNet18 and ResNet50 on CIFAR-10 under various adversarial attack meth-
ods with different perturbation ϵ.

Granularity Clean PGD-40 FGSM CW DeepFool BIM
ϵ = 4/255 ϵ = 4/255 ϵ = 0.5 ϵ = 4/255 ϵ = 4/255

ResNet18 91.41 7.5 46.61 12.34 32.32 16.68
Structural 8:16 91.25 16.86 55.42 21.54 42.31 29.35

Structural 16:32 91.05 15.79 55.19 20.72 41.62 28.47
Structural 32:64 91.01 14.97 55.06 20.42 41.48 27.83

ResNet50 92.49 4.03 34.61 11.66 27.46 7.76
Structural 8:16 92.12 7.40 42.44 18.03 35.96 13.57

Structural 16:32 92.33 6.99 42.09 17.31 35.57 13.10
Structural 32:64 92.26 7.42 42.97 17.77 36.03 13.46

Table 5: The clean accuracy(%) and robust accuracy(%) of larger granularity in the case of a 50%
noise injection of the ResNet18 and ResNet50 on ImageNet under various adversarial attack meth-
ods with different perturbation ϵ.

Granularity Clean PGD-40 FGSM CW DeepFool BIM
ϵ = 0.0005 ϵ = 0.0005 ϵ = 0.2 ϵ = 0.0005 ϵ = 0.0005

ResNet18 70.10 42.05 42.69 42.78 39.31 38.50
Structural 8:16 68.15 52.14 53.15 53.31 50.97 50.76

Structural 16:32 68.18 51.76 52.73 52.88 50.49 50.27
Structural 32:64 68.36 51.53 52.56 52.75 50.27 50.03

ResNet50 76.64 51.26 53.83 55.05 50.06 47.11
Structural 8:16 74.48 61.06 61.90 62.79 60.55 59.30

Structural 16:32 74.57 60.51 61.27 62.02 59.82 58.50
Structural 32:64 74.66 60.09 60.89 61.78 59.36 58.11

D COMPARISION WITH UNIFORM QUANTIZATION NOISE INJECTION

Experimental Setups. To validate our motivation, we conduct an experimental comparison with
quantization uniform noise injection. We use the same experimental setup for adversarial training
as Table 3, with INT8, INT4, and INT2 chosen for the quantization method.

Results. As shown in Table 6, under the adversarial training approach of FGSM, both INT8 and
INT4 have a slight improvement in robust accuracy compared to the original model. However,
when it comes to clean accuracy, quantization noise injection brings about a substantial decrease in
clean accuracy. As the quantization bit decreases, there is a large drop in both clean accuracy and
robust accuracy due to the error amplification effect(Lin et al., 2019). Under the adversarial training
mode of PGD-10, quantization uniform noise injection begins to become unstable. Compared to the
original model, both clean accuracy and robust accuracy fall dramatically.
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Table 6: The clean accuracy(%) and robust accuracy(%) of quantization noise injection in the case
of structured 4:8 noise injection of the ResNet18 on CIFAR10 under PGD-20 with perturbation
ϵ = 8/255 and step size is 2/255.

Adversarial Training Method Clean PGD-20
ϵ = 8/255

Original 91.41 1.45
Structured 4:8 90.40 5.92

FGSM-RS 84.77 34.51
FGSM-RS+Structural 4:8 82.91 37.46

FGSM-RS+INT 8 69.72 36.70
FGSM-RS+INT 4 64.63 35.19
FGSM-RS+INT 2 58.87 28.42

PGD-10 81.08 43.89
PGD-10+Structural 4 :8 80.62 45.97

PGD-10+INT 8 66.77 39.57
PGD-10+INT 4 66.20 37.75
PGD-10+INT 2 55.34 29.36
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