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Abstract

CLIP (Radford et al. 2021) enables strong performance
in zero-shot image classification and other single-modality
tasks through multi-modal pre-training. Recently, ClipCap
(Mokady, Hertz, and Bermano 2021) demonstrated how the
vision encoder of CLIP could be fed into GPT-2 to perform
image captioning. In this work, we propose WS-ClipCap,
which extends ClipCap to perform weakly-supervised image
captioning by training only on the text from image captions.
During training, WS-ClipCap encodes image captions using
CLIP’s text encoder. Then, during inference, WS-ClipCap
encodes images using CLIP’s vision encoder. Due to CLIP’s
joint embedding space for different modalities, the image
and text representations are similar and can be interchanged.
WS-ClipCap outperforms MAGIC (Su et al. 2022) substan-
tially (which trains only on textual image captions) and per-
forms on par with ESPER (Yu et al. 2022) (which trains only
on images) while being significantly simpler than both. We
also analyze how the performance of WS-ClipCap is affected
by the distribution shift between CLIP’s multi-modal embed-
dings and investigate several ways of correcting the distribu-
tion mismatch.

Introduction

The CLIP model (Radford et al. 2021) showed how con-
trastive multimodal pre-training can be used to produce
shared embeddings for vision and text in a joint embedding
space. Recently, Mokady, Hertz, and Bermano (2021) intro-
duced ClipCap, which combines the vision encoder of CLIP
and the text decoder of GPT-2 (Radford et al. 2019) to per-
form image captioning. ClipCap is trained through super-
vised text-caption pairs, which can be expensive to collect.
The fact that CLIP aims to produce text and image embed-
dings in a shared space suggests the possibility that ClipCap
could be trained on text alone. To explore this possibility,
we propose WS—-ClipCap which extends ClipCap to weakly-
supervised image captioning by leveraging the joint embed-
ding space of CLIP. Specifically, WS-C1ipCap trains on un-
paired image captions only by using CLIP’s text encoder
to get a (multi-modal) representation of text and then using
GPT-2 to reconstruct a different matching image caption that
corresponds to the same image. During inference, CLIP’s vi-
sion encoder is used to get a multi-modal representation of
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Figure 1: WS-ClipCap is trained by feeding in captions into
CLIP and then decoding the text. During inference, it feed-
ing in the image and decodes the text, leveraging CLIP’s
joint embedding space to swap encoders during training and
inference.

an image and then GPT-2 is used to generate the image cap-
tion. Our method relies on the fact that CLIP’s vision and
language encoder map to a shared embedding space, which
implies that the text encoder and vision encoder should be
interchangeable between training and inference (as shown
in fig. 1). Our approach enables training ClipCap with only
unpaired textual image captions.

Experimentally, WS-ClipCap performs strongly
compared to contemporaneous methods for weakly-
supervised/weakly-supervised image captioning.

WS-ClipCap outperforms MAGIC (Su et al. 2022)
substantially, which also trains on unpaired image cap-
tions only. This improvement could be thanks to the fact
that WS-ClipCap leverages additional supervision from
matching captions (i.e. paraphrases) that correspond to the
same image, which MAGIC cannot use. WS-ClipCap also
performs on par with ESPER (Yu et al. 2022), which trains
on images only, while being much simpler without requiring
any reinforcement learning to train.

Though WS-ClipCap attains reasonable weakly-



supervised image captioning performance, it does not
match the performance of supervised image captioning
with ClipCap. In line with recent work (Liang et al. 2022),
this suggests that CLIP’s representations are not truly
multimodal. We therefore perform additional analysis to un-
derstand the distribution mismatch between image/caption
pairs. We experiment with three methods for correcting the
distribution mismatch: aligning their means, aligning via
rotations, and aligning via optimal transport. Though none
of these methods can correct the distribution mismatch,
aligning the means performs the best and reduces the
distribution mismatch slightly.

Related Work

ClipCap. Our work is primarily based off ClipCap
(Mokady, Hertz, and Bermano 2021) which combines CLIP
and GPT-2 by connecting the vision encoder of CLIP and
the text decoder of GPT-2 using prompt tuning (Lester, Al-
Rfou, and Constant 2021). CLIP (Radford et al. 2021) trains
a vision and language encoder on images and their captions
using a contrastive loss that aims to images and text to a
shared embedding space. GPT-2 (Radford et al. 2019) is an
auto-regressive generative language model that was trained
on text scraped from the web.

Leveraging the Multimodality of CLIP. Nukrai,
Mokady, and Globerson (2022) concurrently propose
CapDec, which is very similar to WS-ClipCap but CapDec
also injects noise into CLIP’s representations when training.
While CapDec focuses on correcting the modality mismatch
during later fine-tuning by injecting noise, we focus on
aligning the mismatched distributions between image/-
caption pairs. Song et al. (2022) also propose a method
with similar motivation to WS-ClipCap that leverages the
multimodality of CLIP to swap the text encoder during
training with the image encoder during inference. However,
they work on a different task of visual entailment and
therefore use a completely different architecture based on
CLIP.

Learning from Limited Labeled Examples. Tewel et al.
(2021) propose ZeroCap for zero shot image-to-text genera-
tion by using gradient information during inference. Frozen
(Tsimpoukelli et al. 2021) combines a vision model and a
pre-trained language model for few-shot learning, but does
not leverage the multimodality of any particular model.
There have been several works proposed for unsupervised
image captioning from images only (Yu et al. 2022) and
weakly-supervised image captioning from image captions
only (Su et al. 2022). Most of these methods leverage CLIP
to compute a similarity score between images and generated
text as supervision for the model while we focus on the joint
embedding space of CLIP.

CLIP’s embeddings. There have been several recent
works analyzing CLIP’s embeddings. Liang et al. (2022)
showed CLIP’s text and image embeddings lie in two dif-
ferent cones that are separated by a gap. So et al. (2022)
propose closing the gap in embeddings between the differ-
ent modalities and improving zero-shot retrieval accuracy by

finetuning CLIP with Mixup of image and text representa-
tions.

WS-ClipCap

Before presenting WS-ClipCap, we provide a detailed de-
scription of ClipCap, the method upon which WS-ClipCap
is based. Let f; and f, be the text and vision encoders of
the CLIP model respectively, f, be the GPT-2 model, and
assume we are given an image-text pair (x,y), where x is
an image, and y is the image caption consisting of tokens
Yo, Y1, ---Yn. ClipCap first computes the representation of an
image using CLIP: f,(x). Then, it adds an MLP / which is
trained to project CLIP’s representation f,,(x) of the paired
image x into the same space as GPT’s text embeddings. The
loss is shown in eq. (1) where C'E corresponds to the cross
entropy loss. The parameters in CLIP are frozen while the
parameters in GPT-2 and the MLP are updated.
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WS-ClipCap is largely similar to ClipCap, with the
primary difference being that we train using an weakly-
supervised objective rather than a supervised cross-entropy
loss. During training, WS-ClipCap encodes a given (un-
paired) image caption with CLIP’s text encoder to get a rep-
resentation, feeds it through an MLP, and then decodes a dif-
ferent caption corresponding to the same image using GPT-
2. Note that different captions corresponding to the same
image are available in the image captioning datasets since
they annotate each image with multiple captions. Let y' be
a different image caption than y that also corresponds to the
image z. The loss is otherwise the same except for the mod-

ified objective as shown in eq. (2)

p(yilz) = fg(h(ft(y’))7y<i> )

During inference, we encode a query image with CLIP’s im-
age encoder to get an image representation and then decode
the image representation using GPT-2. Because CLIP’s im-
age and text encoders produce embeddings in a joint space,
the representation for an image and its corresponding cap-
tion should ideally be similar and therefore decoding from
GPT-2 should produce the same output whether it is fed with
the image or caption embedding. Crucially, CLIP’s weights
are frozen so the text representation won’t be updated during
training. This prevents the text representations from drifting
away from the image representations.

Results

We run experiments for image captioning on MS-COCO
(Lin et al. 2014) and Flickr30k (Hodosh, Young, and Hock-
enmaier 2013) following the Karparthy split. We use the

standard evaluation metrics from COCOEvalCap.1 We com-
pare against the following baselines:

! https://github.com/tylin/coco-caption
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Figure 2: We illustrate the training (fig. 2a) and inference (fig. 2b) of WS-C1lipCap. During training, an image is fed in through

CLIP’s vision encoder and projected into a prompt embeddings for GPT-2 while during inference, an image caption is fed in
through CLIP’s text encoder and projected into a prompt embeddings for GPT-2.

Method BLEU@! BLEU@2 BLEU@3 BLEU@4 METEOR ROUGE-L CIDEr SPICE
MAGIC (Su et al. 2022)* 56.8 - - 12.9 17.4 39.9 49.3 11.3
ESPER (Yu et al. 2022)* - - - 21.9 219 - 78.2 -
WS-ClipCap 65.5 46.7 32.1 22.1 22.2 48.0 74.6 14.9
— matched captions 50.3 30.0 17.0 9.6 15.2 37.5 33.7 8.6
ClipCap (Mokady, Hertz, and Bermano 2021) 74.0 57.2 427 31.5 26.8 54.7 106.6 19.9

Table 1: Image captioning results on MS-COCO. ClipCap is trained on supervised data. WS-ClipCap and MAGIC train on
image captions only. ESPER trains on images only. ZeroCap does not have any training. * indicates reported numbers from

paper.
Method BLEU@1 BLEU@2 BLEU@3 BLEU@4 METEOR ROUGE-L CIDEr SPICE
MAGIC (Su et al. 2022) 44.5 - - 6.4 13.1 31.6 20.4 7.1
WS-ClipCap 53.2 359 23.7 15.7 19.3 41.8 36.5 129
ClipCap (Mokady, Hertz, and Bermano 2021) 68.0 49.6 352 24.8 222 48.6 57.9 15.8

Table 2: Image captioning results on Flickr30k. ClipCap is trained on supervised data. WS-C1ipCap and MAGIC train on image

captions only.

* MAGIC (Su et al. 2022), which trains a language model
on the image captions and then steers the decoding dur-
ing inference based on the CLIP similarity of the image
and generated tokens.

¢ ESPER (Yu et al. 2022), which uses reinforcement learn-
ing to train a model on images only using CLIP’s similar-
ity of the image and generated text samples as a reward.

The MS-COCO results are shown in table 1 and the
Flickr30k results are shown in table 2. Overall, we see
WS-ClipCap outperforms other weakly-supervised image
captioning methods which train on captions only and per-
forms on par with ESPER which trains on images only
and requires more complicated training with reinforcement
learning. However, it still lags a bit behind ClipCap which
is trained with full supervision. We also see that removing
matched captions significantly decreases the performance of
WS-ClipCap. Under this scenario, WS-ClipCap is trained
by just encoding and decoding the same caption. Because
WS-ClipCap uses CLIP directly in the model (in contrast
to other unsupervised/weakly-supervised image captioning
methods which use CLIP indirectly as a scoring function), it
benefits from the matched image captions that can improve
CLIP’s text representations.

Analysis

The fact that WS-C1ipCap underperforms ClipCap suggests
that CLIP’s embeddings might not be truly multimodal. We
therefore analyze the distribution mismatch between CLIP’s
image and text representations to see the effect it has on
WS-ClipCap. To do so, we use Mixup (Zhang et al. 2017;
So et al. 2022) to interpolate image/caption embeddings,
where given an image representation x;, text representa-
tion x;, and mixup ratio A, the interpolated representation
is Az; + (1 — \)x;, where A represents the proportion of the
final embeddings coming from the text embedding.

Our results are shown in fig. 3. WS-C1ipCap evaluated on
text does very well, but as we shift the evaluation to images,
performance monotonically decreases. This can be due to
either 1) the loss of information in the image compared to
the image caption or 2) a distribution mismatch between text
representation and mixup representation.

We determine the reason by looking at ClipCap evaluated
on Mixup representations. ClipCap does well when evalu-
ated on images but does even better on a mixed up image
and text representation with A = 0.5. Even if we introduce
a distribution mismatch by evaluating on interpolated em-
beddings, the extra information in the image caption nul-
lifies any decrease in performance from the distributional
mismatch and actually improves performance. However, this
only holds till A = 0.5 and afterwards, the effect of the distri-
bution mismatch nullifies any gain from the image caption.



When we evaluate ClipCap on text, the performance drops
to roughly the same amount as when using WS-ClipCap.
This means the distribution mismatch between training and
inference caused by the distribution mismatch between indi-
vidual image caption pairs may be the main cause for per-
formance degradation between ClipCap and WS-ClipCap.
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Figure 3: Performance of WS-ClipCap trained with images
or text and evaluated on mixed up image and text represen-
tations.

Correcting the Distribution Mismatch

We study three methods for correcting the distribution
mismatch between CLIP’s image and text representations:
aligning the means of the distributions, aligning the repre-
sentations via rotations, and aligning the representations via
optimal transport.

Aligning the means. Previous works (Liang et al. 2022)
have shown that CLIP’s text and image representations are
separated by a modality gap and propose aligning the means
to remove this modality gap. Following (Liang et al. 2022),
we shift the image embeddings such that they have the same
mean as the text embeddings. The average performance of
WS-ClipCap improves from 40.8 to 42.1 but still does not
come close to ClipCap’s performance of 52.4.

Aligning via rotations. We also try aligning the represen-
tations by rotating them, motivated by PCA. PCA computes
principal directions, which are orthogonal directions ordered
by how much variance they explain. We want a rotation such
that the corresponding principal directions in each modal-
ity are aligned. For example, the top principal direction for
images should be aligned with the top principal direction
for text, the second principal direction for images should
be aligned with the second principal direction for text, and
so on. Rotating the representations in such a way requires
computing the principal component scores, or the magnitude
of the representation in each of its principal directions. The
principal component scores can be computed efficiently via
SVD. Given a matrix X € R™*® where N is the number of
image/caption pairs and D is the dimension, SVD computes
the left singular, diagonal, and right singular matrix U, D,

V respectively where X = UDV' The principal compo-
nent score is U D. The average performance of WS-ClipCap
drops from 40.8 to 15.8 using rotated representations. We
hypothesize rotations do not work well since it does not take
into account the distribution of points along each direction
of variance

Aligning via Optimal Transport. Finally, we consider
aligning the representations in each modality via optimal
transport. Given two probability measures p; and p, and a
cost matrix C' where C;; represents the cost of moving ele-
ment ¢ in the support of p; to element j in the support of po,
optimal transport computes a transport plan 7" where

[p1] Ip2]
T = i T -C. .
arnglniZOjZO Iner

For the cost matrix, we use the L2 distance between the rep-
resentations where C;; represents the distance between the

it image representation and the j ™ text representation. We
assume uniform probability measures p; and p,. To align
the image representations, we multiply them by 7. The av-
erage performance of WS-ClipCap drops from 40.8 to 0.0,
where the model generates non-sensible text. We hypoth-
esize that optimal transport does not work in aligning the
representations since the cost matrix alone, which is all op-
timal transport knows about the distribution mismatch, does
not transmit enough information about the distribution mis-
match.

Overall, we find that though none of the three methods
proposed can correct the distribution mismatch completely,
aligning the means can improve performance slightly.

Conclusion

We present WS-ClipCap for weakly-supervised image cap-
tioning based on ClipCap. WS-C1lipCap leverages the multi-
modality of CLIP by using the text encoder during training
and the vision encoder during inference. Despite its simplic-
ity, WS-ClipCap outperforms other weakly-supervised im-
age captioning methods trained on text and performs on par
with other unsupervised image captioning methods trained
on images. However, WS-C1lipCap does not perform as well
as ClipCap, which we conclude to be due to the distribu-
tion mismatch between image/caption pairs. We experiment
with three ways to correct the distribution mismatch includ-
ing via rotations, optimal transport, and shifting the means.
We find that shifting the means of the different modalities
to align the means performs the best in reducing the dis-
tribution mismatch. Future directions include: (1) correct-
ing the distribution mismatch between image/captions pairs
such that WS-ClipCap can perform on par with ClipCap,
(2) pre-training multimodal embeddings to not have a dis-
tribution mismatch, and (3) applying WS-ClipCap to mul-
timodal models where the structure of representations for
each modality differ (i.e. an image is represented with one
embedding while an image caption is represented with a set
of token embeddings).
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