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Abstract001

Recent studies emphasize that manually en-002
suring a consistent response style and main-003
taining high data quality in training sets can004
significantly improve the performance of fine-005
tuned Large Language Models (LLMs) while006
reducing the number of training examples007
needed. However, the precise definition of008
style and the relationship between style, data009
quality, and LLM performance remains unclear.010
This research identifies two key stylistic el-011
ements in responses: linguistic form and in-012
structional surprisal. We find that, among train-013
ing data of comparable quality, higher consis-014
tency in these response elements leads to bet-015
ter LLM performance. Inspired by this, we016
introduce Style Consistency-Aware Response017
Ranking (SCAR), which automatically prior-018
itizes instruction-response pairs in the train-019
ing set based on their response stylistic con-020
sistency. By selecting the most style-consistent021
examples, sometimes as few as 0.7% of the022
full dataset, the fine-tuned LLMs can match023
or even surpass the performance of models024
trained on the entire dataset in coding and open-025
ended question-answering benchmarks. Code026
and data are available at https://anonymous.027
4open.science/r/SCAR-0233/.028

1 Introduction029

Instruction-following Large Language Models030

(LLMs), such as GPT-3.5 and GPT-4 (Achiam et al.,031

2023), have demonstrated strong generalization032

across diverse language tasks (Chung et al., 2022;033

Ouyang et al., 2022). These models are trained034

in stages: unsupervised pre-training on large text035

corpora, followed by supervised fine-tuning (SFT)036

on instruction-response pairs and additional opti-037

mization stages (Bai et al., 2022).038

Recent studies, such as AlpaGasus (Chen et al.,039

2024) and LIMA (Zhou et al., 2024), demonstrate040

that carefully curated, smaller datasets can outper-041

form larger ones in improving LLM SFT perfor-042

mance. AlpaGasus finds that smaller datasets with043

higher quality scores, rated by GPT-4 for helpful- 044

ness or correctness, outperform significantly larger 045

ones when used to fine-tune high-capacity LLMs. 046

The Superficial Alignment Hypothesis, proposed 047

in LIMA, suggests that pre-trained language mod- 048

els already possess the necessary knowledge, and 049

fine-tuning is to guide the model toward specific 050

response styles, thus not requiring large amounts 051

of data. LIMA achieves notable performance with 052

only 1,000 high-quality instruction-response pairs, 053

optimized for consistent style by human experts. 054

However, this hypothesis raises three open ques- 055

tions: (i) What key elements constitute response 056

styles that impact LLM SFT? (ii) How does data 057

quality (i.e., helpfulness, correctness) relate to style 058

consistency in influencing efficient SFT? (iii) Can 059

we develop an automatic method that measures 060

stylistic elements to curate smaller, stylistically con- 061

sistent datasets for more efficient SFT at a lower 062

cost, without relying on human experts? 063

Text style is shaped by consistent choices across 064

various linguistic elements (Kang and Hovy, 2021; 065

Karlgren, 2004), such as lexical, syntactic, and se- 066

mantic features (DiMarco and Hirst, 1993). Our 067

empirical studies have identified two key stylis- 068

tic factors within responses that significantly af- 069

fect LLM SFT performance: Linguistic Form and 070

Instructional Surprisal. Linguistic Form com- 071

prises the lexical and syntactic choices that define 072

how a response is presented, independent of its 073

meaning. Empirically, this includes transitional and 074

functional word usage, sentence structure, punctu- 075

ation patterns, layout features (e.g., headers, bul- 076

let points), etc. Instructional Surprisal, in our 077

definition, measures how surprising a response is, 078

focusing on the semantic relationship between re- 079

sponse and instruction. We demonstrate that among 080

training datasets with similarly helpful and accu- 081

rate responses, those responses with greater consis- 082

tency in linguistic form and instructional surprisal 083

produce better-performing LLMs. 084
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Achieving style consistency is challenging, even085

for human experts. We found that datasets con-086

taining LLM-generated responses with consis-087

tent styles can significantly outperform human-088

crowdsourced data in enhancing LLM performance.089

Therefore, we introduce Style Consistency-Aware090

Response Ranking (SCAR), a novel ranking-based091

model that prioritizes instruction-response pairs092

with high stylistic consistency and superior data093

quality. SCAR is trained on LLM-synthesized and094

human-crowdsourced datasets to reward responses095

with higher style consistency regarding linguistic096

form and instructional surprisal. Enhanced with097

representation learning, SCAR can better distin-098

guish between these two elements and prioritize as-099

pects that improve LLM performance. Experiments100

show that by selecting the most style-consistent ex-101

amples, sometimes as little as 0.7% of the original102

dataset, fine-tuned LLMs can match or surpass the103

performance of models trained on full datasets like104

OCTOCODER-15.5B (Muennighoff et al., 2023)105

and OLMO-7B-SFT (Groeneveld et al., 2024) on106

coding (HumanEval; Chen et al. 2021) and open-107

ended question answering (AlpacaEval; Dubois108

et al. 2023) benchmarks.109

In summary, our contributions are two-fold:110

(I) We identify linguistic form and instructional111

surprisal as critical response style elements, and112

demonstrate that within training datasets with com-113

parable helpfulness and accuracy, responses ex-114

hibiting higher consistency in linguistic form and115

instructional surprisal yield better LLMs.116

(II) We develop SCAR, a ranking method that se-117

lects high-quality, stylistically consistent examples118

from style-inconsistent datasets. When selecting119

training data for efficient SFT, SCAR outperforms120

leading data selection baselines, enabling LLMs121

trained on small subsets (0.7–25% of original data)122

to match or exceed full-dataset performance.123

2 Impact of Styles on LLM Fine-tuning124

In this section, we study two research questions: i)125

What key elements in response style can influence126

LLM SFT? and ii) How do style consistency and127

data quality impact LLM performance?128

RQ1: What Factors Constitute Response Style129

Through empirical analysis of stylistic differ-130

ences between synthetically generated and human-131

written instruction-tuning data, we identified two132

key sets of stylistic features in responses that sig-133

nificantly influence LLM alignment performance. 134

Linguistic Form refers to the structure of lan- 135

guage, including how words and sentences are or- 136

ganized and interact (Fabb, 2001; Chomsky, 1957; 137

Jurafsky, 2000). In our context, it denotes ele- 138

ments that shape the presentation of a response, 139

mostly independent of semantics, such as transi- 140

tional and functional word usage, tone, sentence 141

structure, punctuation patterns, and layout features 142

(e.g., headers, bullet points), etc. For example, 143

GPT-3.5-TURBO responses often follow a consis- 144

tent structure, using bullet points and similar tran- 145

sitional phrases across responses, whereas human 146

responses, authored by diverse individuals, tend to 147

exhibit greater variation in the linguistic elements. 148

Instructional Surprisal measures how surpris- 149

ing a response is in addressing a given instruc- 150

tion, focusing on the semantic alignment of its 151

content (solutions, ideas, and approaches) with 152

the instruction. For example, when asked about 153

sorting algorithms, GPT-3.5-TURBO consistently 154

provides predictable solutions like merge sort or 155

quick sort, while human responses show a range 156

of surprisal–from conventional approaches to unex- 157

pected choices like StoogeSort or novel answers. 158

RQ2: Influence of Style Consistency and Data 159

Quality on LLM Performance 160

We collect both human-written and synthetic data 161

in coding and general open-ended domains, and 162

conduct stylometric and quality analyses on this 163

data. Following this, we fine-tune base LLMs using 164

this data to explore how style consistency and data 165

quality influence LLM SFT performance. 166

We control style variations to create three dataset 167

types–human-written, referenced, and direct–to ex- 168

plore how linguistic form and response surprisal im- 169

pact LLM performance. In the coding domain, we 170

collect 10,000 human-written instruction-response 171

pairs from StackExchange1, an online platform that 172

includes 11 million pairs of coding questions and 173

answers. We use the LIMA dataset, including 1,000 174

human-generated examples, for the general domain. 175

Additionally, we generate two synthetic response 176

types with controlled styles: “referenced” and “di- 177

rect.” “Referenced” responses are crafted by a chat- 178

LLM that rewrites human responses to retain their 179

semantic meaning, similar to the method in Yang 180

et al. (2024). This process retains the surprisal lev- 181

els of human responses but alters their linguistic 182

1https://stackexchange.com/
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form. We also filter out examples where “refer-183

enced” responses deviate significantly from human184

responses in surprisal metrics, reducing the datasets185

to 944 StackExchange and 407 LIMA examples.186

In contrast, the chat-LLM generates “direct” re-187

sponses to the remaining instructions without any188

references, potentially producing different seman-189

tics, thereby significantly varying their surprisal190

levels compared to human-referenced responses.191

In Appendix F, we provide examples to illustrate192

the similarities and differences among these three193

style variants.194

We also isolate the effects of data quality on195

LLM performance by using three chat-LLMs196

with different capabilities to generate synthetic197

“referenced” and “direct” datasets. The mod-198

els employed are GPT-3.5-TURBO, LLAMA2-199

70B-CHAT, and LLAMA2-13B-CHAT (Touvron200

et al., 2023), with GPT-3.5-TURBO being the201

most advanced, followed by LLAMA2-70B-CHAT202

and LLAMA2-13B-CHAT, according to the arena-203

leaderboard (Zheng et al., 2024). We find hallu-204

cinations that occur during the LLM generation205

of “referenced” and “direct” responses can signifi-206

cantly affect quality of the resulting synthetic data.207

Stylometric Analysis. To analyze the linguis-208

tic form of human and synthetic responses, we209

employ six authorship attribution metrics (Tripto210

et al., 2023; Zheng and Jin, 2023) that capture non-211

semantic features. These include the Type Token212

Ratio (TTR) (Templin, 1957), Measure of Tex-213

tual Lexical Diversity (MTLD) (McCarthy, 2005)214

for functional words, Flesch score (Kincaid et al.,215

1975), average sentence length, and the frequency216

of punctuation and layout features (e.g., bullet217

points and headers). Higher TTR and MTLD val-218

ues indicate greater lexical diversity, while a higher219

Flesch score suggests improved readability. We220

identify functional words in the response using221

a lexicon based on heuristic POS-tagging rules.222

To assess instructional surprisal, we compute per-223

plexity, a well-established metric for measuring224

text surprisal (Oh and Schuler, 2023; Goodkind225

and Bicknell, 2018), denoted as PPL(y|x), using226

META-LLAMA-3-8B (AI@Meta, 2024).227

T-SNE (Van der Maaten and Hinton, 2008) plots228

(Figure 1, left) show that embeddings of GPT-229

3.5-TURBO-generated “referenced” and “direct” re-230

sponses cluster tightly in the center, indicating that231

both synthetic response types share consistent and232

similar linguistic forms. These embeddings are cre-233

ated by vectorizing six authorship metrics and the234
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Figure 1: (Left) T-SNE plot showing embeddings of
the linguistic forms of human and GPT-3.5-TURBO
responses to LIMA instructions. (Right) Density plot of
perplexity detailing the surprisal levels of the responses.

unigrams of functional words. Conversely, human 235

responses are more dispersed in the outer region, 236

showing lower consistency. Figure 1 (right) shows 237

“direct” responses have a more skewed perplexity 238

distribution towards lower values, indicating higher 239

consistency in instructional surprisal compared to 240

both “referenced” and human ones. 241

Standard deviations (Std.) of TTR and perplex- 242

ity for different response types are listed in Table 1, 243

with additional linguistic form and text surprisal 244

metrics detailed in Table 5 (Appendix B.2). We 245

observe human responses have higher Std. values 246

regarding TTR, perplexity and other metrics com- 247

pared to synthetic responses, and “referenced” re- 248

sponses show a higher perplexity Std. than “direct” 249

responses. The Std. values of these metrics across 250

“referenced” and “direct” responses from LLAMA2- 251

70B-CHAT, LLAMA2-13B-CHAT, and GPT-3.5- 252

TURBO indicate synthetic responses from all these 253

LLMs have higher consistency in both stylistic ele- 254

ments than human ones. 255

Data Quality Analysis. We evaluate a sample 256

of 100 examples from each dataset using GPT-4- 257

1106-PREVIEW. We rate the scores for two data 258

quality metrics, helpfulness and correctness, us- 259

ing the adjusted prompt from the automatic data 260

evaluator ICE-Score (Zhuo, 2024) for the coding 261

domain and AlpaGasus (Chen et al., 2024) for the 262

open-ended domain, and then calculate the aver- 263

age scores across the samples. Higher scores indi- 264

cate better quality. Table 1 reveals that in the cod- 265

ing domain, GPT-3.5-TURBO-generated responses 266

match the quality of human-written ones, while 267

other LLMs produce lower-quality data. In the 268

open domain, LLAMA2-70B-CHAT and GPT-3.5- 269

TURBO responses are comparable in quality to 270

human-written responses, whereas LLAMA2-13B- 271

CHAT responses are of slightly lower quality. 272

Impact on LLM Performance. We evalu- 273

ate the CODELLAMA-7B model fine-tuned with 274
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StackExchange LIMA

Data Curation
Methods

Stylometric
Analysis

Data
Quality

CODELLAMA-7B
Performance

Stylometric
Analysis

Data
Quality

META-LLAMA-3-8B
Performance

Std. TTR ↓ /
Std. PPL(y|x)↓

Helpfulness /
Correctness

Avg. Pass@1 /
Avg. Pass@10

Std. TTR↓ /
Std. PPL(y|x)↓

Helpfulness /
Correctness L.C. WinRate

Human Response 24.23 / 0.33 3.29 / 3.70 26.56 / 41.63 20.49 / 1.53 3.86 / 4.14 1.93
GPT-3.5-TURBO

Referenced 8.16 / 0.33 3.44 / 3.70 29.82 / 46.89 18.43 / 1.52 3.79 / 4.00 3.64
Direct 8.14 / 0.30 3.32 / 3.45 31.00 / 47.12 16.06 / 0.64 3.91 / 4.16 5.67

LLAMA2-70B-CHAT

Referenced 11.90 / 0.36 3.14 / 3.54 29.82 / 44.03 16.51 / 1.45 3.89 / 4.11 3.96
Direct 13.52 / 0.28 3.18 / 2.71 30.89 / 45.31 15.63 / 0.42 3.85 / 4.22 6.25

LLAMA2-13B-CHAT

Referenced 7.46 / 0.27 2.65 / 2.68 26.61 / 41.91 13.64 / 1.19 3.75 / 3.89 3.77
Direct 8.86 / 0.28 1.85 / 1.70 26.42 / 40.00 14.22 / 0.38 3.29 / 3.48 6.22

Table 1: Performance comparison of CODELLAMA-7B and META-LLAMA-3-8B fine-tuned on training sets curated
using different methods and various LLMs, along with data quality and stylometric analysis for the training sets.

LoRA (Hu et al., 2021) on various datasets us-275

ing HumanEval (Python) (Chen et al., 2021) and276

MultiPL-E (Java, JavaScript, C++) (Cassano et al.,277

2023) benchmarks. For the coding domain, we278

report average Pass@1 and average Pass@10 ex-279

ecution accuracies across all coding questions280

spanning four programming languages. We mea-281

sure the length control win rate (L.C. WinRate)282

(Dubois et al., 2024) by comparing responses from283

the LoRA fine-tuned META-LLAMA-3-8B with284

those from GPT-4-PREVIEW-1106 on 2500 open-285

domain instructions from AlpacaEval2. We use286

LLAMA-3-70B-CHAT (AI@Meta, 2024) as our au-287

tomatic evaluator for its cost-effectiveness ($0.9288

per evaluation). This evaluator is comparable with289

GPT-4 evaluators in correlating with human judg-290

ment, surpassing human-to-human agreement (67.5291

vs. 65.7), given the agreement tests on AlpacaEval.292

When comparing synthetic responses of similar293

or slightly different quality generated from capa-294

ble chat-LLMs, “direct” responses outperform their295

“referenced” counterparts in downstream LLM SFT296

tasks through higher instructional surprisal consis-297

tency. Both synthetic types exhibit greater con-298

sistency in both stylistic elements, thereby out-299

performing human-authored data. However, style300

consistency alone cannot compensate for substan-301

tial quality deficits. This is evidenced by a no-302

table exception in coding tasks, where LLAMA2-303

13B-CHAT’s “direct” responses, despite having304

higher style consistency, achieve poorer fine-tuning305

outcomes due to their significantly lower quality306

scores (1.8) compared to both “referenced” re-307

sponses (2.6) and human data (3.5).308

Takeaway. The analysis reveals several insights:309

(I) Linguistic form and instructional surprisal310

inherent in the response styles of the training data311

significantly influence the LLM SFT performance.312

(II) LLM-generated responses show higher style313

2https://github.com/tatsu-lab/alpaca_eval/

consistency than human ones, with “direct” re- 314

sponses showing the greatest consistency in lin- 315

guistic form and instructional surprisal. 316

(III) Enhancing data quality and ensuring re- 317

sponse style consistency within a dataset both 318

contribute to improved LLM SFT performance. 319

Among datasets with shared instructions and simi- 320

lar quality, those with responses exhibiting higher 321

style consistency yield better LLM performance. 322

3 Style Consistency-Aware Ranking 323

Inspired by these findings, we develop a Style 324

Consistency-Aware Ranker to select training ex- 325

amples with consistent response styles, improving 326

LLM SFT performance. 327

Ranking Objective. Given a dataset D = 328

{(xi, ydi , yri , yhi )}Ni=1, where xi represents the in- 329

struction, ydi and yri are the “direct” and human 330

“referenced” responses from chat-LLMs, respec- 331

tively, and yhi represents the human response. We 332

aim to learn a ranking function R(x, y) that as- 333

signs higher scores to high-quality responses ad- 334

hering to the consistent style of a specific LLM’s 335

outputs. The objective for each instance is to learn 336

the ranking function: 337

Lr(x, y
d, yr, yh) = 338∑

(ya,yb)∈P

max(0, α−Rθ(x, y
a) +Rθ(x, y

b)) (1) 339

s.t. min(f(x, ya), f(x, yb)) > σ (2) 340

341where P = {(yd, yr), (yr, yh), (yd, yh)} repre- 342

sents the set of desired pairwise orderings, based 343

on the findings from Section 2, that “direct” re- 344

sponses are more consistent in surprisal levels than 345

“referenced” ones, “referenced” responses are more 346

consistent in linguistic form than human data, and 347

“direct” responses are more consistent than human 348

data in both stylistic feature types. The margin 349

α ensures the difference in the ranking scores as- 350

signed by Rθ(x, y), while the quality measure func- 351
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tion f(x, y) evaluates the quality (e.g., helpfulness,352

correctness) of the response y given the instruction353

x. The quality measure function f can be imple-354

mented using strong LLMs such as GPT-3.5 or355

GPT-4 with a prompt, as in Chen et al. (2024),356

to evaluate the helpfulness and correctness of the357

answers and average these scores to obtain the fi-358

nal quality score. The quality threshold σ ensures359

the ranker only rewards responses that are both360

style-consistent and high-quality.361

Reward Function. The reward function Rθ(x, y)362

is modelled as a neural network that takes repre-363

sentations of instructional surprisal vc ∈ R1×M364

and linguistic form vp ∈ R1×M , and computes a365

scalar reward score using a multi-layer perceptron366

(MLP):367

Rθ(x, y) = MLPr([vp;vc])368

vp = Max-Pool(Vy)369

vc = MLPc([V
0
x;V

0
y]) (3)370

371 Our experiments show that linguistic form has a372

minimal influence on instructional surprisal com-373

pared to semantic content and is significantly less374

dependent on the instruction. These findings moti-375

vate us to adopt disentangled modeling strategies.376

For linguistic form, we capture surface-level fea-377

tures through max pooling over the response se-378

quence Vy, independent of the instruction. For379

instructional surprisal, drawing on prior work that380

models surprisal as a text–context (Michaelov et al.,381

2023; Karampiperis et al., 2014) relation, we cap-382

ture multi-dimensional semantic alignment by pass-383

ing the concatenated [CLS] embeddings of the in-384

struction and response through an MLP. We use385

an encoder, such as ROBERTA-BASE (Liu et al.,386

2019), to generate the sequence representations V.387

Refer to the Appendix B.4 and B.5 for indepen-388

dence tests and background on surprisal modelling.389

Style Representation Learning. Accurately cap-390

turing distinct representations for linguistic form391

(vp) and instructional surprisal (vc) is challeng-392

ing, as these features can still become entangled393

during the learning process, even with our special-394

ized separation design. To address this, we lever-395

age observed similarities: the linguistic form of396

“referenced” responses is more similar to “direct”397

responses than to human responses, and the instruc-398

tional surprisal of “referenced” responses is closer399

to that of human responses than to “direct” ones, as400

shown in Figure 1. We introduce a regularization401

term using triplet margin losses to enforce these402

similarity patterns:403

Lrl(x, y
d, yr, yh) = 404

λp max{0, d(vd
p,v

r
p)− d(vr

p,v
h
p ) + βp} 405

+λc max{0, d(vh
c ,v

r
c)− d(vd

c ,v
h
c ) + βc} (4) 406

407where d(vi,vj) = ∥vi − vj∥2 is the distance func- 408

tion and β values are the margins. 409

Final Loss Function. The final loss function com- 410

bines the ranking loss and the representation learn- 411

ing losses: Lscar = Lr + Lrl 412

Ranking and Filtering. After training reward func- 413

tion Rθ(x, y), it ranks instruction-response pairs 414

(x, y) in a held-out dataset. The top k% of exam- 415

ples with the highest scores are selected to create a 416

high-quality style-consistent subset for fine-tuning 417

LLMs. This filtered dataset is expected to improve 418

the performance of fine-tuned LLMs on target 419

tasks more than using the entire original dataset. 420

4 Experiments 421

We train SCAR using data from the coding and 422

open-ended question-answering domains to select 423

examples for LLM SFT from the full dataset in 424

these same domains. 425

Ranker Data. We collect instructions for SCAR 426

training and evaluation, which include 10,000 ran- 427

domly selected examples from StackExchange for 428

the code domain, and 6,000 instructions from a 429

combination of 5,000 random Dolly (Conover et al., 430

2023) data samples and the full LIMA dataset. 431

Dolly is a human-curated dataset with 15,000 high- 432

quality instruction-response pairs. We create the 433

data by pairing instructions with human responses 434

and the “referenced” and “direct” responses gen- 435

erated by GPT-3.5-TURBO, as described in Sec- 436

tion 2. Due to budget limitations, we use GPT-3.5- 437

TURBO to rate the helpfulness and correctness of 438

responses according to the constraint in Eq.( 2). 439

LLM SFT Data. SCAR and other baselines 440

select data from two sources, held out from 441

the ranking training data. These sources pro- 442

vide diverse but style-inconsistent examples: i) 443

Human-Crowdsourced Data, curated by many au- 444

thors, making it diversified and naturally style- 445

inconsistent. ii) Mixed Synthetic Data, generated 446

by GPT-3.5-TURBO using various system prompts, 447

reflecting the practical use of multiple open-source 448

synthetic datasets to enhance diversity. 449

For the code domain, human-written data comes 450

from a sample of 20,000 crowdsourced StackEx- 451

change examples. 452
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The mixed synthetic data comprises 20,000 ex-453

amples, sourced evenly from: i) 5000 StackEx-454

change instructions with “direct” responses, ii)455

5000 StackExchange instructions with “referenced”456

responses, iii) 5,000 coding examples curated using457

Evol-Instruct (Luo et al., 2023) by Zan et al. (2023),458

and iv) 5,000 coding examples generated using459

Self-Instruct (Wang et al., 2023b). The instruc-460

tions cover Python, Java, JavaScript, and C++. For461

Self-Instruct, we use GPT-3.5-TURBO to generate462

responses in the target programming languages.463

For the open-ended domain, human-written464

data comes from 10,000 Dolly examples, held out465

from the Dolly examples used for ranker training.466

Mixed synthetic data includes 10,000 exam-467

ples, evenly sourced from: i) 2,500 held-out468

Dolly instructions with “direct” answers, ii) 2,500469

Dolly instructions with “referenced” answers, iii)470

2500 open-domain examples using Self-Instruct471

by LaMini (Wu et al., 2023b), and iv) examples472

curated using Evol-Instruct from Xu et al. (2023).473

Data Selection and LLM SFT. The data selection474

methods sample 50%, 25%, and 12.5% of coding-475

domain data to fine-tune CODELLAMA-7B, and476

50%, 25%, and 10% of open-domain data to fine-477

tune META-LLAMA-3-8B. Both LLM trainings478

use LoRA due to computational constraints.479

LLM Evaluation. We use HumanEval and480

Multip-E for coding evaluation, reporting the481

Avg. Pass@(1+10) = (Avg.Pass@1+Avg.Pass@10)
2482

across four languages for fine-tuned CODELLAMA-483

7B. For general tasks, we use AlpacaEval and484

report the L.C. WinRate of outputs from fine-485

tuned META-LLAMA-3-8B compared to GPT-4-486

PREVIEW-1106, as in Section 2.487

Data Selection Baselines. We compare SCAR in488

two settings with 7 baselines: i) RANDOM: Ran-489

domly select examples. ii)PERPLEXITY (Albalak490

et al., 2024): Select examples with the lowest491

response perplexity (PPL(y|x)) computed using492

META-LLAMA-3-8B. III) SUPERFILTERING (Li493

et al., 2024): Select the most challenging examples494

for LLMs with the highest Instruction-Following495

Difficulty (IFD) score. Here, we compute IFD496

as PPL(y|x)
PPL(y) using META-LLAMA-3-8B. IV) HU-497

MAN FEEDBACK RANKING (HFR): Use the same498

ranker architecture as SCAR trained on 10,000499

stack-exchange-paired (Lambert et al., 2023) ex-500

amples annotated given human preference (each501

instruction paired with positive and negative re-502

sponses) for coding domain and 6000 human pref-503

erence examples from Anthropic RLHF data (Bai 504

et al., 2022) for the general domain. V) ALPA- 505

GASUS (Chen et al., 2024): Select data based on 506

response quality scores rated by GPT-3.5-TURBO, 507

consistent with the rating method used in our ranker. 508

VI) DIVERSITY: Apply k-means clustering to di- 509

versify examples by selecting randomly from each 510

cluster, a method commonly used in active learn- 511

ing (Li and Haffari, 2023; Li et al., 2023c; Zh- 512

danov, 2019). VII) LONGEST: Select examples 513

with longest response token lengths (Zhao et al.). 514

VIII) SCAR (ID): SCAR trained on in-domain 515

(ID) data (e.g., code) and selects examples within 516

the same domain. IX) SCAR (OOD): SCAR 517

trained on in-domain data and select examples from 518

an out-of-domain (OOD) dataset. For instance, 519

SCAR(OOD) is trained on the code domain and 520

selects data from the open domain or vice versa. 521

4.1 Main Results and Discussion 522

Effectiveness of SCAR-Selected Data. As in Fig- 523

ure 2, SCAR(ID) can enhance SFT performance 524

while lowering computational costs. LLMs fine- 525

tuned on only 25% and 10% of SCAR(ID)-selected 526

data achieve comparable or superior performance 527

to models trained on full datasets in coding and 528

general domains, respectively. 529

SCAR(ID) and SCAR(OOD) consistently out- 530

perform other methods in data selection for fine- 531

tuning LLMs, with SCAR(OOD) slightly lagging 532

behind SCAR(ID) due to cross-domain generaliza- 533

tion. Some baselines show unstable performance. 534

SUPERFILTERING performs poorly in the coding 535

domain. We observe it may assign high IFD scores 536

to erroneous examples in crowdsourced coding data 537

of varying quality. PERPLEXITY and ALPAGASUS- 538

selected data result in similar LLM performance 539

trends. However, their performance is inferior to 540

SCAR(ID), which we attribute to their lack of style 541

consistency. Traditional active learning methods 542

like RANDOM and DIVERSITY sampling prove less 543

effective, as our style-inconsistent target scenario 544

inherently incorporates diversity, limiting their ad- 545

ditional benefits. HFR’s underperformance across 546

most scenarios suggests that training the ranker on 547

inconsistent human preferences from diverse au- 548

thors may impair its ability to select optimal train- 549

ing data. Notably, LONGEST performs comparably 550

to our method in open-domain synthetic data selec- 551

tion, though inferior elsewhere. This aligns with 552

our style consistency framework, as length serves 553

as a strong style indicator, with Evol-Instruct re- 554
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Figure 2: The performance of LLMs fine-tuned on human and synthetic data subsets of various sizes in code and
open domains, sampled with different data selection approaches.

Std. TTR Std. PPL Helpful Correct
StackExchange

100% 21.48 1.80 2.84 2.68
50% 16.78 1.61 3.02 3.01
25% 14.85 1.61 2.78 2.72

12.5% 14.29 1.94 2.67 2.77
Dolly

100% 30.96 65.70 3.95 3.91
50% 28.43 54.32 3.98 3.99
25% 24.74 49.51 3.96 3.93
10% 23.73 39.58 3.98 3.99

Table 2: Stylometric and quality analysis of data
subsets selected by SCAR(ID) from the full human-
crowdsourced StackExchange and Dolly datasets.

sponses consistently being longer.555

Impact of Data Sizes. Figure 2 shows that in556

the coding domain, using fewer data selected by557

various methods usually lowers LLM performance.558

However, in the open-ended domain, most methods559

can select fewer synthetic data to fine-tune LLMs560

that outperform those trained on the full dataset.561

With SCAR(ID), reducing data consistently im-562

proves LLM performance in the open domain. This563

suggests that while dataset size, diversity, and style564

consistency can all benefit LLM SFT, their optimal565

balance varies across different scenarios.566

Stylometric and Data Quality Analysis of SCAR-567

Selected Data. Table 2 shows that SCAR(ID) im-568

proves style consistency in the selected Dolly data,569

reflected by consistently lower TTR and perplex-570

ity standard deviation compared to the full dataset.571

However, for code data, while the TTR standard572

deviation decreases, the perplexity standard devia-573

tion increases when selecting smaller subsets (25%,574

12.5%), suggesting that differentiating semantic575

surprisal features in code is challenging. This may576

explain the sudden performance drop in LLMs fine-577

tuned on these smaller code subsets. Moreover,578

our method preserves average data quality (help-579

fulness, correctness), as rated using GPT-4-1106-580

PREVIEW, comparable to the full dataset, likely due581

to the use of the data quality constraint in Eq. (2)582

during ranker training.583

Effectiveness of SCAR on Open-Source LLMs.584

We fine-tune OLMO-7B (Groeneveld et al., 2024)585

and STARCODER-15.5B (Li et al., 2023b) on586

subsets of their publicly available SFT datasets.587

OLMO-7B
Data Sizes 320k 10k 5k 2.5k

L.C. WinRate 3.86 5.37 5.64 4.08

STARCODER-15.5B
Data Sizes 13k 10k 5k 2.5k

Avg. Pass@(1+10) 37.85 39.69 40.09 40.14

Table 3: L.C. WinRate for OLMO-7B and Avg.
Pass@(1+10) for STARCODER-15.5B fine-tuned on
original (320k, 13k) and subset sizes (10k, 5k, 2.5k).

Specifically, we select 2.5k, 5k, and 10k exam- 588

ples from the allenai/tulu-v2-sft-mixture (320k) and 589

bigcode/guanaco-commits (13k) datasets. These 590

subsets consist of a mixture of synthetic and human- 591

generated data, selected using the SCAR(ID) 592

method. We then compare their performance 593

to the official checkpoints, OLMO-7B-SFT and 594

OCTOCODER-15.5B (Muennighoff et al., 2023), 595

which were instruction-tuned on the full datasets. 596

Table 3 shows that SCAR-selected subsets signifi- 597

cantly boost performance, achieving these results 598

with only 0.7% to 20% of the original data, as 599

measured by L.C. WinRate on AlpacaEval and av- 600

erage Pass@(1+10) on HumanEval and MultiPL- 601

E. Further evaluation of OLMO-7B variants on 602

diverse benchmarks (Table 14, Appendix C.7)– 603

including ARC-Challenge (Clark et al., 2018), 604

TruthfulQA (Lin et al., 2022), HellaSwag (Zellers 605

et al., 2019) and MMLU (Hendrycks et al.)– 606

demonstrates that all our subset-fine-tuned OLMO- 607

7B outperform the full 320k-trained model in aver- 608

age performance across various LLM capabilities. 609

4.2 Ablation Study 610

To evaluate the effectiveness of SCAR(ID) compo- 611

nents, we compare the full ranker training setting 612

(Full, GPT-3.5) against variations without the qual- 613

ity constraint in Eq. (2) (w/o con, GPT-3.5), with- 614

out representation learning in Eq. (4) (w/o rl, GPT- 615

3.5), and without “referenced” responses during 616

training (w/o ref, GPT-3.5). We also generate syn- 617

thetic data to train the ranker using LLAMA2-13B- 618

CHAT (Full, Llama2-13b), LLAMA2-70B-CHAT 619

(Full, Llama2-70b), LLAMA-3-70B-CHAT (Full, 620

Llama3-70b), and LLAMA2-13B-CHAT without 621

using quality constraint (w/o con, Llama2-13b). 622
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Figure 3: Performance of LLMs fine-tuned on subsets
of human-written data selected by SCAR(ID), trained
with different configurations and synthetic data sources
(e.g., GPT-3.5, Llama).

Style Representation Learning. Figure 3 shows623

that removing the representation learning loss (w/o624

rl, GPT-3.5) or excluding “referenced” responses625

(w/o ref, GPT-3.5) only slightly reduces LLM per-626

formance in the code domain. The objective in627

Eq. (4) is likely satisfied even without the loss628

because “referenced” responses provide an inter-629

mediate style during training, which is why we630

set a low coefficient (0.1) for this loss. However,631

excluding “referenced” responses significantly de-632

grades performance in the open domain (Table 17,633

Appendix D.1) and disrupts the optimization of634

Eq. (4). Table 18, Appendix D.2 further analyses635

the representation learning results.636

Data Quality Constraint. Figure 3 (2nd) shows637

that removing the data quality constraint in Eq. (2)638

significantly worsens the performance of LLMs639

fine-tuned on human-crowdsourced data when640

SCAR is trained on lower-quality datasets, such641

as LLAMA2-13B-CHAT-generated responses (w/o642

con, Llama2-13b), compared to using the constraint643

(Full, Llama2-13b). In this case, SCAR tends to644

select style-consistent but erroneous or unhelpful645

examples from LLM SFT data with varying qual-646

ity(e.g. crowdsourced data). However, in other647

cases, removing the quality constraint has minimal648

impact on data selection performance.649

LLMs for Generating SCAR Training Data. Fig-650

ure 3 shows that using LLAMA-generated synthetic651

data for training SCAR slightly reduces fine-tuned652

LLM performance compared to GPT-3.5-TURBO-653

generated data, but the impact is more severe with654

LLAMA2-13B-CHAT-generated data. This is likely655

because the quality constraint filters out 90% of656

low-quality LLAMA2-13B-CHAT examples, lim-657

iting the ranker’s generalization ability. Style658

misalignment between the LLAMA and GPT-3.5-659

TURBO data may also affect data selection perfor-660

mance when selecting mixed synthetic GPT-3.5-661

TURBO data. 662

5 Related Work 663

Instruction-Tuning Data Selection. Instruction- 664

tuning trains LLMs to follow complex instructions 665

in various contexts (Wei et al., 2021; Sanh et al., 666

2021). Data are sourced from human-curated ex- 667

amples (Wang et al., 2022b; Zhou et al., 2024) 668

and LLM outputs (Xu et al., 2023; Wang et al., 669

2022a). Studies (Zhou et al., 2024; Chen et al., 670

2024; Li et al., 2024, 2023a; Lu et al., 2023; Liu 671

et al.) show that smaller, high-quality datasets can 672

outperform significantly larger ones in boosting 673

LLM performance. LIMA uses expert human cu- 674

ration for stylistic consistency (Zhou et al., 2024), 675

while AlpaGasus (Chen et al., 2024) utilizes LLMs 676

to assess data quality. Other methods select ef- 677

fective examples based on Instruction Following 678

Difficulty scores (Li et al., 2024, 2023a), diversity 679

metrics (Lu et al., 2023; Bukharin and Zhao, 2023), 680

or response length (Zhao et al.). 681

Automatic Authorship Detection. Our method 682

relates to authorship detection studies. Traditional 683

authorship detection used lexical features like 684

TTR, MTLD, and Flesch readability scores (Tripto 685

et al., 2023; Zheng and Jin, 2023). Recent focus 686

has shifted to distinguishing human and machine- 687

generated texts using advanced neural networks 688

to analyze styles at the corpus (Mitchell et al., 689

2023; Su et al., 2023) or the sentence levels (Zeng 690

et al., 2024, 2023; Wang et al., 2023a; Zeng et al.). 691

The studies (Xu and Sheng, 2024; Su et al., 2023; 692

Wang et al., 2023a; Mitchell et al., 2023; Wu et al., 693

2023a), like ours, show perplexity effectively dif- 694

ferentiates between human and machine styles. 695

6 Conclusion 696

Our empirical study demonstrates that, among 697

training datasets with comparable helpfulness and 698

correctness, those with higher consistency in lin- 699

guistic form and instructional surprisal significantly 700

enhance the performance of fine-tuned LLMs. 701

Building on this insight, we propose SCAR, a rank- 702

ing method designed to measure and select stylisti- 703

cally consistent training data for LLM fine-tuning. 704

Our experiments show that LLMs fine-tuned on 705

small subsets of the original dataset–using as little 706

as 0.7% of the data selected by SCAR–can outper- 707

form models trained on the full datasets. Moreover, 708

SCAR consistently outperforms other data selec- 709

tion baselines in LLM fine-tuning. 710
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Limitations711

Reducing the training dataset size can potentially712

introduce biases. To address this concern, we dis-713

cuss two types of bias: fairness bias and lexical714

diversity bias.715

Fairness Bias. SCAR-selected subsets may ex-716

hibit some degree of toxicity and sentiment polar-717

ity towards certain demographic and occupational718

groups. However, the overall fairness performance719

is generally comparable to, or even better than,720

that achieved with full-data training and other se-721

lection methods. While fairness biases may persist,722

this issue is not unique to SCAR but is a challenge723

faced by all LLMs. Refining selection criteria to724

further minimize such biases remains a promising725

direction for future work. For a detailed analysis,726

see Tables 19 and 20 at Appendix E.1.727

Lexical Diversity Bias. Lexical diversity in in-728

structions and responses is evaluated separately us-729

ing TTR and MTLD. Compared to the full dataset730

and other subsets, SCAR-selected instructions ex-731

hibit a slightly lower TTR, with a more noticeable732

reduction in responses. However, MTLD scores,733

which reflect deeper, length-independent lexical734

richness, remain comparable to those of the full735

dataset and subsets selected by other selection base-736

lines. This indicates that while SCAR reduces737

some surface-level lexical variation in responses738

(as reflected by TTR), it does not significantly com-739

promise the overall richness of vocabulary in ei-740

ther instructions or responses. Importantly, since741

instruction-level diversity plays a more critical role742

in LLM fine-tuning performance (Lu et al., 2023;743

Bukharin and Zhao, 2023), SCAR-selected subsets744

retain the diversity that matters most. The minor745

reduction in TTR does not pose a significant issue,746

as demonstrated by SCAR’s strong performance747

in our extensive experiments. See Table 21 at Ap-748

pendix E.2 for detailed analysis.749
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A Implementation Details 1172

A.1 Model Training Configurations 1173

We fine-tune the META-LLAMA-3-8B and CODELLAMA-7B models using LoRA, a parameter-efficient 1174

tuning method, on NVIDIA A100 GPUs to minimize computational costs. Both models undergo three 1175

training epochs with a learning rate of 2×10−5, using a cosine learning rate scheduler and a warm-up ratio 1176

of 0.03. Training is performed with BF16 and TF32 precision modes enabled. For META-LLAMA-3-8B, 1177

we employ a single GPU with a batch size of 2, while for CODELLAMA-7B, two GPUs are used with 1178

the same batch size, incorporating LoRA parameters set to r = 8 and α = 16. For the OpenAI models, 1179

we adopt gpt-3.5-turbo-0125 and gpt-4-1106-preview as our default configurations. We set the 1180

maximum input length for the LLMs to 2048 tokens. 1181

The SCAR ranker is trained with a learning rate of 2 × 10−5 for up to 20 epochs, using early 1182

stopping based on validation performance. For code domain tasks, we utilize CODET5P-110M- 1183

EMBEDDING (Wang et al., 2023c) for contextual representation encoding, while for open-domain tasks, 1184

we employ ROBERTA-BASE (Liu et al., 2019). When curating StackExchange examples for the ranker 1185
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and LLM training, we ensure quality by selecting instructions containing code blocks and answers with1186

ratings above 2.1187

A.2 Prompt for Generating Referenced Response1188

The prompt used to rewrite the human response to generate the “referenced” response is as follows:1189
1190
1191

### Reference Answer:1192

{human response}1193

1194

### Background1195

You are a knowledgeable AI assistant.1196

Above is the reference answer. Below is an instruction that describes1197

a task. Given the reference answer , write a response that1198

appropriately completes the request.1199

Please keep the semantics of the reference answer unchanged in your1200

response , while pretending as if you have never seen the reference1201

answer , when crafting your final response.1202

1203

### Instruction:1204

{instruction}1205

1206

### Response:1207

12081209

A.3 Prompt for Generating Direct Response1210

The prompt instruction to generate “direct” response is as follows:1211
1212
1213

### Background1214

You are a knowledgeable AI assistant.1215

Below is an instruction that describes a task. Please write a1216

response that appropriately completes the request.1217

1218

### Instruction:1219

{instruction}1220

1221

### Response:1222

12231224

B Extended Analysis of Style Effects on LLM Fine-Tuning Performance1225

B.1 Extended Analysis of LLM Performance on Coding Tasks1226

Table 4 presents the detailed results for the coding tasks mentioned in Table 1, providing a comprehensive1227

breakdown of the Pass@1 and Pass@10 metrics for each task, rather than just the average scores.1228

Table 4 reveals that “direct” responses outperform “referenced” responses across most programming1229

benchmarks, suggesting that generating answers without mirroring human semantic content yields better1230

results for coding tasks. For instance, GPT-3.5-TURBO-generated “direct” achieves a Pass@1 of 33.00%1231

on the HumanEval benchmark, compared to 28.58% for GPT-3.5-TURBO-generated “referenced,” and1232

similar trends are observed across Java, JavaScript, and C++ benchmarks. Human responses also lag1233

behind “direct” and “referenced” responses, indicating that synthetic data can offer better stylistic1234

consistency, which can boost LLM SFT performance. LLAMA2-70B-CHAT performs notably better than1235

its smaller counterpart, LLAMA2-13B-CHAT, showing a clear advantage due to larger model scale, though1236
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it still falls short of GPT-3.5-TURBO in most metrics, highlighting GPT-3.5-TURBO ’s stronger coding 1237

capabilities. Interestingly, fine-tuned base LLMs perform particularly well in JavaScript, likely due to its 1238

simpler syntax and predictable patterns, which chat-LLMs like GPT-3.5-TURBO can easily understand 1239

and replicate, leading to high-quality training data. These findings highlight the effectiveness of “direct” 1240

responses and underscore the importance of data quality and style consistency in fine-tuning LLMs for 1241

code generation. 1242

Data Curation
Methods

HumanEval MultiPL-E
Python Java JavaScript C++

Pass@1 / Pass@10 Pass@1 / Pass@10 Pass@1 / Pass@10 Pass@1 / Pass@10
Human Response 23.45 / 39.99 27.13 / 39.14 30.14 / 47.39 25.52 / 40.00
GPT-3.5-TURBO

Referenced 28.58 / 52.64 29.46 / 41.91 33.53 / 50.84 27.70 / 42.17
Direct 33.00 / 51.48 29.38 / 42.03 33.19 / 51.72 28.45 / 43.27

LLAMA2-70B-CHAT

Referenced 31.64 / 45.58 29.09 / 40.59 31.79 / 49.20 26.77 / 40.74
Direct 33.62 / 48.18 30.23 / 41.79 32.91 / 50.24 26.80 / 41.05

LLAMA2-13B-CHAT

Referenced 23.88 / 43.31 27.58 / 37.92 29.90 / 47.72 25.09 / 38.67
Direct 28.32 / 40.99 24.67 / 36.41 28.88 / 45.65 23.81 / 36.96

Table 4: Detailed performance comparison of fine-tuned CODELLAMA-7B evaluated on HumanEval (Python) and
MultiPL-E (Java, JavaScript, C++) coding benchmarks. The LLMs are fine-tuned on training sets curated with
different response generation strategies and LLMs. The data examples are further filtered based on the perplexity
similarity between “referenced” and human responses, excluding those with significant deviation. Pass@1 and
Pass@10 scores for each programming language are reported.

B.2 Extended Stylometric Analysis 1243

Evaluation Settings. To quantitatively evaluate stylistic consistency across datasets, we employ six 1244

stylometric metrics that capture distinct aspects of linguistic form, the structural elements that shape 1245

response presentation independent of semantics. Specifically, these metrics measure key linguistic form 1246

elements: transitional and functional word usage measured by TTR and MTLD of functional words, tone 1247

assessed by Flesch score, sentence structure quantified through Average Sentence Length, punctuation 1248

patterns captured by Punctuation Frequency, and layout features such as headers and bullet points measured 1249

by Layout Feature Frequency. Together with perplexity for assessing instructional surprisal, these metrics 1250

provide a comprehensive framework for analyzing response styles: 1251

Linguistic Form Metrics: 1252

1. Type-Token Ratio (TTR): Measures lexical diversity by calculating the ratio of unique words (types) 1253

to the total number of words (tokens) in a text. A higher TTR indicates greater lexical diversity. 1254

2. Measure of Textual Lexical Diversity (MTLD): MTLD is less sensitive to text length compared 1255

to TTR. It computes the average length of sequential word strings that maintain a given TTR value, 1256

where higher MTLD scores suggest greater lexical diversity. 1257

3. Average Sentence Length (Avg. Sent. Len.): Calculates the average number of words per sentence, 1258

providing insights into the syntactic complexity of the text. 1259

4. Punctuation Frequency (Punct. Freq.): Computes the frequency of punctuation marks within each 1260

response, reflecting the density of punctuation usage. 1261

5. Flesch Reading Ease Score (Flesch Score): Assesses readability based on the average sentence 1262

length and the average number of syllables per word. Higher scores indicate greater readability. 1263
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Data Curation
Methods

TTR MTLD Avg. Sent. Len. Punct. Freq. Flesch Score Avg. Layout Freq. PPL(y|x)
Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

StackExchange
Human Response 62.06 24.23 11.58 7.71 124.37 100.22 42.80 31.96 38.33 43.97 0.42 1.36 1.85 0.33
GPT-3.5-TURBO

Referenced 31.65 8.16 13.61 2.51 46.49 20.90 44.88 25.38 57.32 16.16 0.10 0.28 1.84 0.33
Direct 34.15 8.14 13.34 2.57 46.31 23.59 38.80 20.48 54.66 16.92 0.26 0.41 1.78 0.30

LLAMA2-70B-CHAT

Referenced 44.01 11.90 14.28 3.66 70.34 51.50 42.30 36.70 54.12 21.73 0.18 0.52 1.81 0.36
Direct 45.67 13.52 14.20 4.23 83.18 84.01 35.82 26.28 51.78 24.34 0.28 0.72 1.57 0.28

LLAMA2-13B-CHAT

Referenced 31.97 7.46 15.64 3.06 43.03 25.11 50.31 28.81 62.73 17.23 0.13 0.42 1.76 0.27
Direct 33.35 8.86 14.90 3.12 43.49 27.49 39.60 22.64 61.44 16.92 0.22 0.38 1.76 0.28

LIMA
Human Response 31.77 20.49 15.21 4.38 32.41 49.18 64.54 63.70 63.71 27.98 0.43 1.37 4.42 1.53
GPT-3.5-TURBO

Referenced 48.40 18.43 15.28 6.04 26.51 21.36 14.27 10.73 59.45 19.25 0.15 0.64 4.02 1.52
Direct 47.53 16.06 15.08 5.31 24.87 17.04 14.08 9.33 55.59 21.00 0.26 0.58 2.51 0.64

LLAMA2-70B-CHAT

Referenced 39.32 16.51 15.15 4.88 25.67 21.47 27.76 19.84 61.77 18.43 0.33 0.46 3.51 1.45
Direct 37.02 15.63 14.62 4.84 24.76 18.59 27.94 17.11 59.66 18.16 0.43 0.50 2.09 0.42

LLAMA2-13B-CHAT

Referenced 35.74 13.64 15.98 4.42 24.65 14.75 27.44 17.70 64.46 17.45 0.16 0.42 3.10 1.19
Direct 31.90 14.22 15.08 3.78 22.60 12.61 35.22 18.74 62.30 15.40 0.37 0.39 2.06 0.38

Table 5: Comprehensive performance comparison of stylometric analysis across datasets using instructions from
StackExchange and LIMA, paired with responses generated by human writers and various LLMs, presenting the
average (Mean) and standard deviation (Std.) for six authorship detection metrics and Perplexity(y|x).

6. Layout Feature Frequency (Avg. Layout Freq.): Calculates the frequency of structural elements1264

(bullet points, headers, bold text) per sentence, representing the consistency of formatting and1265

organizational patterns.1266

Instructional Surprisal Metric:1267

• Perplexity of P (y|x): Captures the overall response surprisal given the instruction.1268

Discussion. Table 5 presents the average and standard deviation (Std.) of these metrics across responses1269

from human-written and LLM-generated texts for both LIMA and StackExchange instructions. Our1270

analysis reveals that LLM-generated responses consistently demonstrate higher stylistic consistency1271

compared to human-written ones, with responses synthesized by GPT-3.5-TURBO and LLAMA2 showing1272

lower standard deviations across most metrics. This indicates greater consistency in functional word1273

diversity, sentence length, punctuation usage, readability, and layout features. Furthermore, “direct”1274

responses achieve higher consistency in response surprisal than “referenced” and human responses, as1275

evidenced by their lower standard deviation values of perplexities.1276

Notably, even the LIMA dataset, despite being optimized and curated by human experts for style1277

consistency, exhibits lower stylistic consistency in our metrics compared to LLM-synthesized datasets.1278

These results highlight both the inherent challenge of achieving style consistency through manual curation1279

and the significant potential of using LLMs to generate stylistically consistent training data.1280

In conclusion, our stylometric analysis quantitatively validates that LLM-synthesized datasets demon-1281

strate superior stylistic consistency compared to human-written responses across most measured dimen-1282

sions.1283

B.3 Impact of Maintaining Instructional Surprisal Consistency in Referenced Responses on1284

Stylometric Analysis and Model Performance1285

In Section 2, we applied perplexity-based filtering to remove instructions where “referenced” responses1286

deviated significantly from human responses. Specifically, we excluded instructions where the PPL(y|x)1287

of at least one “Referenced” response exceeded thresholds of 0.15 or 2.5. This filtering process reduced1288

the dataset to 944 instructions from StackExchange and 407 instructions from LIMA.1289
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StackExchange (10k) LIMA (1k)

Data Curation
Methods

Stylometric
Analysis

Data
Quality

CODELLAMA-7B
Performance

Stylometric
Analysis

Data
Quality

META-LLAMA-3-8B
Performance

Std. TTR /
Std. PPL

Helpfulness /
Correctness

Avg. Pass@1 /
Avg. Pass@10

Std. TTR /
Std. PPL

Helpfulness /
Correctness L.C. WinRate

Human Response 22.27 / 1.41 3.34 / 3.57 31.65 / 46.63 19.54 / 8.01 4.32 / 4.37 2.29
GPT-3.5-TURBO

Referenced 7.95 / 0.31 3.65 / 3.60 31.66 / 48.82 17.43 / 5.86 4.05 / 4.32 4.07
Direct 7.75 / 0.28 3.55 / 3.50 35.11 / 49.68 16.43 / 3.61 4.18 / 4.49 7.15

LLAMA2-70B-CHAT

Referenced 11.09 / 0.48 3.47 / 3.33 30.16 / 46.44 16.08 / 5.04 4.25 / 4.36 4.27
Direct 12.49 / 0.25 3.03 / 3.03 33.11 / 47.35 15.60 / 3.11 4.33 / 4.44 8.14

LLAMA2-13B-CHAT

Referenced 7.29 / 0.24 2.82 / 2.54 26.88 / 42.87 12.96 / 3.49 4.03 / 4.00 3.94
Direct 8.27 / 0.22 2.09 / 1.93 25.13 / 37.73 13.18 / 1.13 3.66 / 3.78 6.80

Table 6: Performance comparison of CODELLAMA-7B and META-LLAMA-3-8B fine-tuned on training sets curated
using different methods and various LLMs, without applying surprisal-based instruction filtering, along with data
quality and stylometric analysis metrics for the training sets.

Table 6 highlights the impact of dataset size on LLM fine-tuning performance in the coding domain. For 1290

human responses, the average Pass@1 score across all four programming languages increased from 26.56 1291

to 31.65 after adding more data. Notably, the official base model CODELLAMA-7B achieves a Pass@1 1292

score of 29.98, while CODELLAMA-7B-INSTRUCT achieves 34.8 on HumanEval on BigCodeLeader- 1293

board3. In contrast, Table 4 reports a significantly lower Pass@1 of 23.45, mainly due to the reduced 1294

dataset size (944 examples). With sufficient data and effective selection strategies, the Pass@1 score 1295

on HumanEval for base CODELLAMA-7B trained on human responses can reach 33, while synthetic 1296

responses can further boost performance to around 40, as shown in Tables 8 and 9. As achieving 1297

high model performance is not the primary goal in Section 2, controlled filtering is essential for accurately 1298

analyzing variations in the instructional surprisal of responses and their impact on LLM fine-tuning. 1299

A key observation from the stylometric analysis is the measurement of instructional surprisal through 1300

perplexity. Interestingly, Table 6 shows, without filtering, “referenced” responses exhibit greater surprisal 1301

consistency compared to human-written responses, particularly within the StackExchange code data. This 1302

finding is somewhat counterintuitive, as one might expect “referenced” responses–rewritten versions of 1303

human responses–to closely mirror the surprisal consistency of their human counterparts. We hypothesize 1304

that this discrepancy arises because LLMs, even when explicitly instructed to semantically align closely 1305

with human responses, may introduce subtle variations that affect surprisal metrics. 1306

While perplexity-based filtering is critical for achieving a more accurate analysis of LLM performance 1307

under varying stylistic consistency conditions, it was not used for our SCAR training due to the following 1308

reasons: i) Table 6 shows that “Direct” responses already exhibit higher stylistic consistency than both 1309

“Referenced” and human responses, fulfilling the ranking objective. ii) Filtering removes a substantial 1310

number of examples, which could negatively impact training performance by reducing the dataset size. 1311

B.4 Independence Tests of Linguistic Form and Instructional Surprisal 1312

In this section, we examine whether the linguistic form features of responses are correlated with instruc- 1313

tional surprisal and whether linguistic form depends on instructions. Understanding these relationships is 1314

essential for justifying the design of our ranking model, which employs distinct structures to represent 1315

these two sets of features. 1316

Independence Between Linguistic Form and Instructional Surprial. To validate the independence 1317

between linguistic form and instructional surprisal, we conduct two complementary analyses: 1318

Regression Analysis: We perform regression modelling on the LIMA dataset to predict the instructional 1319

surprisal metric, perplexity PPL(y|x), based on two feature sets: 1320

3https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
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• Linguistic form features: unigrams of functional words, TTR and MTLD of functional words,1321

punctuation and layout patterns, and Flesch readability scores.1322

• Semantic features: SentenceBERT (Reimers, 2019) embeddings derived from1323

sentence-transformers/all-MiniLM-L6-v2, pre-trained for semantic encoding and para-1324

phrase detection tasks.1325

The average absolute regression coefficients indicate that semantic features are significantly more1326

influential in predicting instructional surprisal, with an average importance score of 1.193, compared to1327

only 0.236 for each linguistic form feature.1328

Variance Analysis. We further investigate the independence of linguistic form and instructional surprisal1329

by analyzing variance patterns in PPL(y|x). Responses are decomposed into semantic tokens (yc) and1330

functional non-semantic tokens (yp), which represent a key component of linguistic form elements (see1331

Section B.6 for token separation details). By comparing the variance contributions of PPL(yc|yp, x) and1332

PPL(yp|yc, x) to PPL(y|x), we find:1333

• Semantic tokens (yc): explain 283.67% of the variance.1334

• Functional tokens (yp): explain only 4.01% of the variance.1335

The combined evidence from our regression and variance analyses confirms that linguistic form and1336

instructional surprisal are independent dimensions of response style. Semantic features are the primary1337

contributors to instructional surprisal, while linguistic form has a much weaker influence.1338

Independence Tests between Linguistic Form and Instructions We employ Conditional Mutual1339

Information (CMI) (Wyner, 1978) to quantify the dependencies between semantic tokens (yc) and non-1340

semantic tokens (yp) with respect to instructions (x). For semantic content and instructions, CMI is1341

defined as:1342

I(yc;x | yp) =
1

N

N∑
i=1

log

(
P (y

(i)
c | x(i), y(i)p )

P (y
(i)
c | y(i)p )

)
,1343

with an analogous formulation for functional tokens:1344

I(yp;x | yc) =
1

N

N∑
i=1

log

(
P (y

(i)
p | x(i), y(i)c )

P (y
(i)
p | y(i)c )

)
.1345

Using META-LLAMA-3-8B to estimate conditional probabilities and a POS-based approach to separate1346

semantic and non-semantic functional tokens (detailed in Appendix B.6), we analyze both human-written1347

and GPT-3.5-TURBO-generated responses with LIMA and StackExchange instructions.1348

For LIMA instructions, the mutual information scores reveal that semantic tokens show a stronger1349

dependence on instructions, with I(yc;x | yp) = 0.4, compared to I(yp;x | yc) = 0.15. Similarly,1350

for StackExchange instructions, semantic tokens again dominate with I(yc;x | yp) = 0.49, while1351

functional tokens exhibit a much weaker dependence at I(yp;x | yc) = 0.03. Since functional tokens are1352

key indicators of linguistic form, these findings confirm that linguistic form has a significantly weaker1353

dependence on instructions compared to semantic tokens. Therefore, in Eq. (3), we aim to use max pooling1354

over their representations to capture linguistic form features as non-semantic surface characteristics of1355

responses without explicitly modelling their relationship to the instruction. This approach aligns with our1356

findings that linguistic form is largely independent of instructional context and has minimal influence on1357

instructional surprisal.1358

B.5 Background on Surprisal Modeling1359

Text surprisal can be modelled in two primary ways:1360
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Probability-based Surprisal. Surprisal of a word, traditionally defined as the negative log probability 1361

of a word given its context − logP (w | context), has been widely recognized as a strong predictor of 1362

cognitive processing effort and neural responses, such as the N400 effect or other research (Oh and 1363

Schuler, 2023; Goodkind and Bicknell, 2018; Michaelov et al., 2023; Karampiperis et al., 2014). This 1364

measure can be directly computed using the next-token prediction objectives of language models. For 1365

example, the probability of a response given an instruction can theoretically be derived through the chain 1366

rule of probability: 1367

P (response | instruction) =
∏
i

P (wi | w1, . . . , wi−1, instruction), 1368

where wi is the i-th token of the response. While probabilistic models effectively capture word-level 1369

surprisal, transitioning to response-level surprisal introduces computational and conceptual complexities. 1370

Representation-based Surprisal. Recent studies suggest that representation similarity can approximate 1371

surprisal by measuring semantic alignment between text spans (Michaelov et al., 2023; Karampiperis 1372

et al., 2014). This approach avoids direct probability computations, making it particularly suitable for 1373

capturing global semantic relationships between instructions and responses. 1374

Challenges in Modeling Instructional Surprisal for SCAR. Prior work (Michaelov et al., 2023) 1375

employs simple word embeddings such as Word2Vec (Le and Mikolov, 2014) or GloVe (Pennington et al., 1376

2014) and models surprisal as a scalar value through cosine similarity between text embeddings. While 1377

effective for certain semantic tasks, these methods face significant limitations in our context: 1378

• Limited Contextual Representations. Word2Vec and GloVe embeddings, as employed in Michaelov 1379

et al. (2023), lack the contextual depth needed to capture the nuanced relationships between in- 1380

structions and responses. Advanced encoders like RoBERTa or BERT offer significantly richer 1381

semantic representations, making them more suitable for modelling instructional surprisal within our 1382

framework and enhancing ranking performance. 1383

• Inadequacy of Linear Approaches. Methods such as cosine similarity or Euclidean distances, as 1384

used in Michaelov et al. (2023); Karampiperis et al. (2014), rely on linear relationships to approximate 1385

mutual information between shallow text representations from Word2Vec or GloVe. While effective 1386

for these simpler embeddings, our preliminary experiments with advanced contextual embeddings 1387

from RoBERTa demonstrate that linear measures such as cosine or Euclidean distances between 1388

instruction and response embeddings fail to reveal meaningful patterns. This suggests that linear 1389

relationships may be sufficient for Word2Vec or GloVe but are inadequate for capturing the complex, 1390

non-linear relationships present in high-dimensional representations generated by models like BERT 1391

or RoBERTa. A non-linear approach is, therefore, essential to fully leverage these richer semantic 1392

representations. 1393

• Integration with Linguistic Form Modeling: Our framework simultaneously models instructional 1394

surprisal and linguistic form, with linguistic features represented as high-dimensional distributed 1395

vectors. Reducing semantic alignment to a scalar value would create an imbalance in feature 1396

representation, limiting the model’s ability to jointly optimize both dimensions. A distributed 1397

representation for surprisal is more compatible with our multi-dimensional modeling goals. 1398

To overcome these limitations, we adopt a Relation Network as defined in Eq. (3) and leverage advanced 1399

contextual embeddings. This approach models instructional surprisal as a distributed representation, 1400

enabling the Relation Network to learn complex non-linear relationships while maintaining compatibility 1401

with the joint modelling of linguistic form. 1402

Why Not Use Perplexity Directly? While perplexity is a traditional measure of surprisal, it is not 1403

well-suited for our task due to the following limitations: 1404
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• Dependence on Large Models. Accurate perplexity estimation requires large-scale pre-trained1405

language models like META-LLAMA-3-8B, which are computationally expensive and misaligned1406

with our goal of developing a scalable, efficient ranking-based data selection method.1407

• Structural Misalignment. Our framework models both linguistic form and instructional surprisal1408

using distributed representations. Perplexity, as a scalar value, is inherently incompatible with this1409

architecture, which relies on integrating distributed features for both aspects.1410

By modelling instructional surprisal as a distributed representation, our approach overcomes these1411

challenges while maintaining compatibility with linguistic form modelling.1412

B.6 Identification of Semantic and Non-Semantic (Functional) Words1413

To distinguish between semantic content (yc) and non-semantic (linguistic form-related) words (yp)1414

in the responses, we adopt a heuristic approach based on part-of-speech (POS) tagging. Specifically,1415

content words–nouns, verbs, adjectives, and adverbs–are classified as semantic, while other POS tags1416

(e.g., pronouns, conjunctions, prepositions, and determiners) are categorized as non-semantic.1417

For code-related responses, we also treat code blocks as semantic content, given their integral role in1418

conveying the main content of the response. Code blocks are identified using regular expressions that1419

capture common code delimiters, such as triple backticks (```), tildes (~~~), and inline code marked by1420

single backticks (`).1421

Given the limitations of current NLP techniques, achieving perfect separation between semantic and1422

non-semantic elements is challenging. However, our primary goal is not absolute precision, but to perform1423

independence tests on various stylistic features relative to instructions and estimate instructional surprisal1424

to inform our data selection ranker design. By focusing on comparative patterns, our approach effectively1425

captures the impact of semantic and non-semantic content on stylistic consistency, and how these patterns1426

influence data selection, ultimately improving LLM alignment through SFT.1427

To illustrate, Table 7 provides an example of how a response is split into semantic and non-semantic1428

content using this method.1429

Instruction
Why is FIFA against adding instant replay to the game?
Response

FIFA is against adding instant replay to the game because they believe it would disrupt the flow of the
game and potentially lead to delays. They also argue that human error is a part of the game and adding
instant replay could take away from the excitement and unpredictability of live sports. Additionally,
implementing instant replay would require significant changes to the rules and regulations of the
game, which FIFA may be hesitant to do.

Table 7: Visualization of semantic and non-semantic words selected based on the POS tags in the response. Semantic
words are in blue and functional words are in black.

C Extended Analysis of Main Experiments1430

C.1 Extended Analysis of Evaluation Results for Data Selection in Human-Written Coding Data1431

Table 8 offers a comprehensive breakdown of LLM performance when fine-tuned on datasets sampled1432

using various data selection strategies, expanding upon the average results presented in Figure 2. While1433

the figure provides aggregated metrics, this table delivers a detailed view of Pass@1 and Pass@101434

scores for each programming language across the HumanEval and MultiPL-E benchmarks. This detailed1435

presentation highlights performance variations in Python, Java, JavaScript, and C++.1436

The performance ranking of data selection methods aligns consistently with the trends shown in1437

Figure 2, reinforcing our findings’ reliability. Strategies such as SCAR(ID) and Perplexity-based sampling1438

demonstrate robust performance across most languages, while approaches like HFR and Superfiltering1439
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Data Sampling
Methods

HumanEval MultiPL-E
Python Java JavaScript C++

Pass@1 / Pass@10 Pass@1 / Pass@10 Pass@1 / Pass@10 Pass@1 / Pass@10
Full Data 32.87 / 48.24 30.92 / 44.92 33.84 / 52.62 28.51 / 43.91
SCAR (OOD)

50% 31.94 / 47.80 30.85 / 43.29 33.91 / 52.45 29.23 / 45.28
25% 31.85 / 46.80 29.97 / 43.24 33.14 / 52.75 29.20 / 45.21
12.5% 30.77 / 46.80 28.92 / 41.86 31.23 / 48.38 28.17 / 43.61

SCAR (ID)
50% 33.83 / 50.24 30.10 / 44.95 34.46 / 53.10 28.25 / 43.71
25% 31.48 / 48.68 30.76 / 44.60 32.91 / 52.15 28.92 / 43.98
12.5% 31.10 / 47.14 29.46 / 43.06 31.38 / 49.11 27.61 / 42.39

Random
50% 29.79 / 44.06 30.14 / 43.90 32.86 / 51.61 28.48 / 43.89
25% 30.04 / 45.76 30.22 / 42.35 33.06 / 51.05 28.89 / 43.89
12.5% 27.94 / 45.79 27.53 / 40.47 31.48 / 51.25 25.29 / 40.51

Perplexity
50% 33.27 / 47.90 29.73 / 42.16 32.67 / 52.13 28.46 / 43.40
25% 32.29 / 47.05 29.33 / 42.40 32.45 / 50.10 28.73 / 44.78
12.5% 27.40 / 45.13 28.67 / 40.77 31.30 / 50.71 26.36 / 41.75

Superfiltering
50% 26.50 / 42.00 29.72 / 43.53 32.97 / 52.40 27.86 / 44.86
25% 24.12 / 38.51 29.29 / 42.76 32.50 / 53.20 26.89 / 41.01
12.5% 8.22 / 25.58 26.79 / 38.83 30.11 / 49.20 23.99 / 36.82

HFR
50% 20.29 / 41.52 30.41 / 44.11 33.49 / 51.27 28.71 / 44.83
25% 11.20 / 25.73 29.38 / 42.81 31.73 / 51.51 28.09 / 43.07
12.5% 11.04 / 27.74 27.51 / 40.82 30.71 / 49.41 24.91 / 39.77

AlpaGasus
50% 31.30 / 44.90 30.59 / 43.41 34.21 / 52.48 29.45 / 43.91
25% 30.32 / 45.00 29.73 / 42.78 32.24 / 51.65 28.29 / 44.15
12.5% 24.76 / 41.90 28.24 / 42.12 30.84 / 49.56 26.17 / 41.12

Diversity
50% 33.05 / 48.38 30.53 / 44.06 34.02 / 53.99 28.84 / 42.60
25% 30.38 / 44.52 30.04 / 42.53 33.34 / 52.71 28.68 / 44.66
12.5% 25.87 / 44.07 27.35 / 39.37 30.48 / 49.65 24.99 / 40.38

Longest
50% 30.99 / 50.90 30.74 / 44.74 32.17 / 52.47 28.32 / 43.55
25% 30.10 / 48.41 29.35 / 42.65 30.72 / 51.98 28.92 / 45.07
12.5% 28.12 / 47.60 28.54 / 41.97 29.53 / 48.43 27.40 / 41.65

Table 8: Detailed performance comparison of fine-tuned CODELLAMA-7B evaluated on the HumanEval (Python)
and MultiPL-E (Java, JavaScript, C++) coding benchmarks. The models are fine-tuned on human-written datasets
selected with different selection methods and proportions. The table reports Pass@1 and Pass@10 scores for each
individual programming language.

yield less favourable results, particularly with smaller data proportions. Notably, LLMs trained on our 1440

SCAR(ID)-selected data outperform those trained on the full dataset when the selection portion exceeds 1441

25%, highlighting the superiority of our method. This result indicates that a carefully curated subset can 1442

sometimes produce better outcomes than using the entire dataset. 1443

For a detailed explanation of the Pass@1 and Pass@10 metrics, please refer to the HumanEval paper 1444

by Chen et al. (2021). 1445
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Data Sampling
Methods

HumanEval MultiPL-E
Python Java JavaScript C++

Pass@1 / Pass@10 Pass@1 / Pass@10 Pass@1 / Pass@10 Pass@1 / Pass@10
Full Data 40.63 / 54.93 32.67 / 44.24 36.89 / 54.10 32.68 / 45.65
SCAR (OOD)

50% 40.15 / 55.25 32.15 / 44.44 37.01 / 55.59 31.96 / 46.59
25% 38.23 / 52.58 32.57 / 45.44 37.04 / 53.20 30.60 / 45.67
12.5% 38.29 / 52.74 32.46 / 45.45 36.07 / 53.45 31.91 / 45.56

SCAR (ID)
50% 40.98 / 56.57 32.80 / 45.75 37.58 / 55.69 32.73 / 45.71
25% 39.84 / 56.75 32.52 / 43.83 36.67 / 55.32 32.00 / 46.26
12.5% 36.93 / 52.96 32.62 / 44.82 36.45 / 52.33 30.43 / 45.42

Random
50% 39.04 / 51.80 31.75 / 44.85 35.59 / 55.13 32.76 / 46.34
25% 35.61 / 52.40 31.33 / 44.24 36.68 / 54.23 30.53 / 44.60
12.5% 34.99 / 51.90 31.34 / 44.29 35.91 / 51.63 31.08 / 44.49

Perplexity
50% 31.91 / 50.94 32.44 / 45.37 37.02 / 54.75 33.22 / 46.19
25% 35.55 / 48.65 31.85 / 45.44 35.40 / 51.75 31.28 / 43.32
12.5% 27.37 / 43.06 30.90 / 44.19 36.34 / 48.74 30.46 / 42.96

Superfiltering
50% 38.93 / 54.55 31.80 / 44.48 35.03 / 54.40 32.22 / 47.25
25% 35.93 / 51.41 32.47 / 44.10 34.46 / 53.13 30.89 / 44.90
12.5% 34.35 / 49.81 30.34 / 42.81 32.97 / 50.60 30.46 / 44.22

HFR
50% 39.09 / 53.59 32.42 / 43.90 36.11 / 53.51 31.60 / 45.51
25% 38.04 / 53.36 32.57 / 43.51 36.45 / 54.10 31.27 / 46.28
12.5% 29.20 / 50.06 31.87 / 43.85 35.17 / 53.94 30.02 / 44.31

AlpaGasus
50% 36.88 / 53.05 32.20 / 45.65 36.57 / 54.84 33.07 / 45.77
25% 32.52 / 49.55 31.37 / 42.82 33.32 / 51.72 30.37 / 44.69
12.5% 29.08 / 45.07 31.09 / 43.09 34.82 / 52.53 29.73 / 44.16

Diversity
50% 39.21 / 54.95 32.10 / 45.48 37.25 / 54.58 32.60 / 46.33
25% 35.29 / 51.33 32.00 / 43.41 36.10 / 55.44 30.98 / 45.19
12.5% 33.60 / 50.18 31.78 / 44.92 34.82 / 51.92 30.91 / 44.10

Longest
50% 36.83 / 53.90 32.73 / 45.15 36.73 / 55.92 33.85 / 46.83
25% 35.60 / 53.50 32.34 / 45.54 36.25 / 54.65 32.57 / 46.43
12.5% 34.54 / 49.89 32.41 / 46.31 35.57 / 54.64 31.42 / 45.30

Table 9: Detailed performance comparison of fine-tuned CODELLAMA-7B evaluated on the HumanEval (Python)
and MultiPL-E (Java, JavaScript, C++) coding benchmarks. The models are all fine-tuned using GPT-3.5-TURBO-
generated datasets selected with different data selection methods and varying proportions. The table reports the
Pass@1 and Pass@10 scores for each individual programming language.

C.2 Extended Analysis of Evaluation Results for Data Selection in Mixed Synthetic Coding Data1446

Table 9 offers a detailed breakdown of the LLM performance results summarized in Figure 2. It presents1447

Pass@1 and Pass@10 scores across four programming languages, evaluating LLMs fine-tuned on synthetic1448

dataset subsets chosen through various selection methods. This comprehensive view provides insights into1449

the LLM’s performance on individual tasks and programming languages, complementing the aggregated1450

results shown in the figure.1451
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C.3 Extended Analysis of Evaluation Results for Open-Domain Data Selection Experiments 1452

Methods
SCAR (ID) SCAR (OOD) Random Perplexity Superfiltering HFR AlpaGasus Diversity Longest

Human
100% 2.34
50% 2.24 1.90 2.03 1.74 2.00 1.50 2.09 1.99 1.46
25% 2.43 2.59 1.92 2.12 1.82 1.66 1.83 1.97 1.75
10% 2.67 2.02 2.13 2.51 2.04 2.21 1.96 2.03 1.27

Synthetic
100% 3.64
50% 5.56 5.31 2.61 4.17 4.22 3.86 3.86 3.56 6.29
25% 5.89 5.08 3.00 4.04 5.70 4.30 3.94 2.51 5.32
10% 6.61 4.94 2.38 4.54 5.38 4.06 4.78 3.02 6.61

Table 10: Detailed comparison of Length Control WinRate for fine-tuned META-LLAMA-3-8B models evaluated
on AlpacaEval benchmarks. Models are trained using human-written and synthetic GPT-3.5-TURBO-generated
data, sampled with various selection methods and proportions.

Table 10 presents the detailed numerical values for the Length Control WinRate, complementing 1453

the visual representation provided in Figure 2. The results show that for the selection of human data, 1454

SCAR(ID) and SCAR(OOD) achieve competitive performance even at reduced data proportions, with 1455

SCAR(ID) showing a slight advantage as the data size decreases, especially at the 25% and 10% subsets. 1456

In contrast, methods such as Random and HFR struggle to maintain consistently high performance across 1457

different data scales. 1458

For the selection of synthetic GPT-3.5-TURBO-generated data, SCAR(ID) consistently outperforms 1459

all methods except Longest, with WinRates peaking at 6.61 for the 10% subset. Interestingly, Longest 1460

performs comparably to SCAR(ID) when selecting synthetic data, as it tends to favour Evol-Instruct- 1461

generated data, which produces longer responses. This finding highlights that response token length can 1462

serve as a strong stylistic indicator, aligning with the principles of our style consistency framework. 1463

These results suggest that well-curated synthetic datasets can enable high-performing chat-LLMs 1464

even at significantly reduced data proportions. Furthermore, traditional methods such as Random and 1465

Perplexity exhibit lower performance, underscoring the importance of selection strategies tailored to 1466

stylistic consistency in synthetic data scenarios. Striking a balance between data size, diversity, and style 1467

consistency remains crucial for optimizing performance. 1468

C.4 Extended Analysis of Style and Quality Analysis in SCAR-Selected Data 1469

Table 11 presents an extensive set of results, expanding upon the data shown in Table 2. In addition to 1470

helpfulness and correctness scores, as well as the standard deviations of TTR and perplexity, this table 1471

includes a comprehensive range of stylometric and quality metrics with their corresponding average 1472

and standard deviation values. The results are consistent with our findings in Table 2. SCAR selection 1473

effectively enhances the consistency of the linguistic form in the selected data, as evidenced by the 1474

consistently decreasing standard deviation values across most linguistic form metrics as the selection 1475

portion decreases. Similarly, the standard deviation of instructional surprisal metrics generally decreases, 1476

except in a few cases when selecting smaller portions (e.g., 25%, 12.5%) of human-written or synthetic 1477

code data. 1478

Interestingly, while the standard deviations of TTR and MTLD for functional words decrease, their 1479

mean values remain largely unaffected–and in some cases, even increase. This suggests that SCAR 1480

selection preserves the overall lexical diversity of functional words while narrowing their variability across 1481

examples, resulting in more consistent usage. In other words, the coverage of functional word choices is 1482

maintained (as reflected by stable or higher mean values); however, SCAR’s ranking mechanism enhances 1483

response stylistic consistency by reducing outliers and extreme variations of linguistic forms, leading 1484

to lower standard deviations. This indicates that SCAR does not inherently restrict lexical diversity in 1485

linguistic form; rather, it ensures that linguistic form features are applied more uniformly throughout the 1486
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TTR MTLD Avg. Sent. Len. Punct. Freq. Flesch Score Avg. Layout Freq. PPL(y | x) Helpful CorrectMean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.
Code Domain

Human
100% 59.16 21.48 15.05 8.37 69.40 66.43 30.77 27.17 42.75 44.36 0.25 0.81 3.83 1.81 2.84 2.68
50% 50.80 16.78 16.34 6.30 68.16 65.49 37.23 28.53 48.59 30.68 0.21 0.67 3.77 1.72 3.02 3.01
25% 47.43 14.85 16.58 5.28 53.36 48.11 34.93 27.10 49.84 24.60 0.20 0.63 3.84 1.73 2.78 2.72
12.5% 45.78 14.29 16.45 4.98 50.50 49.46 33.35 25.42 51.26 22.25 0.20 0.54 3.93 1.86 2.67 2.77

Synthetic
100% 36.67 14.45 12.13 3.87 60.88 61.39 37.72 24.62 49.17 23.10 0.10 0.49 1.67 0.31 3.63 3.64
50% 36.79 10.52 13.07 2.80 52.85 36.48 35.49 22.01 50.52 16.87 0.14 0.63 1.74 0.31 3.52 3.56
25% 36.67 9.33 13.29 2.75 48.71 27.26 31.70 17.62 51.19 15.94 0.21 0.85 1.83 0.34 3.47 3.44
12.5% 37.19 9.22 13.52 2.98 48.36 28.54 28.93 17.02 51.42 16.03 0.25 0.45 1.94 0.35 3.55 3.39

Open Domain
Human

100% 54.51 30.96 8.93 8.00 19.90 16.66 7.62 12.22 61.21 28.03 0.25 1.42 5.23 3.26 3.95 3.91
50% 61.24 28.43 9.55 7.92 21.35 16.36 6.58 8.84 58.27 24.33 0.34 1.76 4.57 2.69 3.98 3.99
25% 62.81 24.74 18.58 7.52 23.49 17.22 6.92 9.32 55.54 21.76 0.40 2.03 4.17 2.41 3.96 3.93
10% 57.01 23.73 11.26 6.77 25.44 20.01 7.71 7.16 51.78 22.40 0.60 2.71 3.93 2.18 3.98 3.99

Synthetic
100% 55.15 30.04 9.87 7.67 23.76 32.82 12.30 20.53 54.40 71.06 0.29 1.27 2.75 1.16 3.93 3.96
50% 47.78 21.08 13.30 5.71 27.33 25.25 18.12 22.09 48.61 21.62 0.35 1.17 2.38 0.72 3.99 3.99
25% 41.96 17.34 13.83 4.40 24.59 18.42 20.54 19.19 46.47 19.89 0.41 1.14 2.33 0.61 3.98 4.02
10% 40.53 14.83 14.15 3.87 21.49 11.93 20.99 15.92 42.04 17.74 0.39 0.80 2.46 0.52 4.00 4.02

Table 11: Detailed performance comparison of the stylometric analysis conducted across the full datasets and the
subsets of the full datasets selected by SCAR(ID) in both code and open domains. The table reports the average and
standard deviation for six authorship metrics, perplexity, and average helpfulness and correctness scores.

SCAR(ID) SCAR(OOD)
Code Open Code Open

Acc(yd ≻ yr ≻ yh) 98.20 64.77 64.26 45.85
Acc(yd ≻ yr) 98.40 80.80 68.29 67.88
Acc(yr ≻ yh) 99.80 81.47 95.58 69.89

Table 12: SCAR’s ranking accuracies when trained with in-domain or out-of-domain examples and tested on ranking
data from code and open domains.

dataset.1487

C.5 Analysis of Ranker Performance1488

Evaluation Settings. We report the accuracy of the ranker in correctly rating responses on the test,1489

where the goal is to rate “direct” responses higher than “referenced” responses and “referenced” responses1490

higher than human responses. These accuracies are denoted as Acc(yd ≻ yr ≻ yh), Acc(yr ≻ yh), and1491

Acc(yd ≻ yr), respectively.1492

Impact of SCAR Performance. Table 12 shows accuracies of SCAR(OOD) are lower than SCAR(ID)1493

in both domains, explaining the lower LLM performance with SCAR(OOD)-selected data. Despite this,1494

SCAR(OOD) outperforms selection baselines in most cases, demonstrating its cross-domain robustness.1495

The ranking accuracy gap between SCAR(OOD) and SCAR(ID) is larger in the open domain, indicating1496

that generalizing from code to open-ended data is more challenging than the reverse. Differentiating1497

surprisal-related features is more difficult than differentiating linguistic form, especially for selecting code1498

data in out-of-domain settings, as shown by comparing Acc(yd ≻ yr) (68.29) and Acc(yr ≻ yh) (95.58).1499

C.6 Extended Evaluation Analysis of STARCODER-15.5B1500

Table 13 presents the full Pass@1 and Pass@10 results for the HumanEval and MultiPL-E coding1501

benchmarks, comparing STARCODER-15.5B fine-tuned with various portions of SCAR-selected data1502

against OCTOCODER-15.5B. The original dataset, comprising 13k examples, was curated by the BigCode1503

team, who developed both STARCODER-15.5B and OCTOCODER-15.5B and fine-tuned STARCODER-1504

15.5B into OCTOCODER-15.5B. Notably, STARCODER-15.5B models fine-tuned on SCAR-selected1505

subsets outperform the original OCTOCODER-15.5B in Pass@1 and Pass@10 across all programming1506

languages.1507
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The Pass@1 score of OCTOCODER-15.5B for HumanEval-Python on the BigCode leaderboard 1508

is 45.3, which corresponds to the humanevalsynthesize-python benchmark. This variant of 1509

humaneval-python employs improved prompt formatting, resulting in higher performance. In con- 1510

trast, our paper reports OCTOCODER-15.5B’s Pass@1 score of 35.56 on the standard humaneval-python 1511

benchmark to maintain consistency with widely accepted evaluation protocols and the default settings 1512

used in our experiments. Both results are sourced from the official BigCode leaderboard data files4. 1513

For further details, please refer to the provided data file URL and the benchmark description in Muen- 1514

nighoff et al. (2023) to understand the design differences between humanevalsynthesize-python and 1515

humaneval-python.

Data Sampling
Methods

HumanEval MultiPL-E
Python Java JavaScript C++

Pass@1 / Pass@10 Pass@1 / Pass@10 Pass@1 / Pass@10 Pass@1 / Pass@10
OCTOCODER-15.5B 35.56 / 51.81 26.03 / 38.44 32.80 / 46.97 29.32 / 41.90
STARCODER-15.5B

10,000 36.29 / 53.99 28.29 / 39.58 33.22 / 49.79 30.17 / 46.20
5,000 36.95 / 54.07 28.96 / 39.02 34.53 / 49.90 32.83 / 44.47
2,500 37.57 / 55.65 29.29 / 41.06 34.09 / 49.47 31.19 / 42.83

Table 13: Detailed performance comparison of OCTOCODER-15.5B and STARCODER-15.5B fine-tuned on various
subsets of the 13k data used to train OCTOCODER-15.5B. The models are evaluated on the HumanEval (Python)
and MultiPL-E (Java, JavaScript, C++) coding benchmarks.

1516

C.7 Extended Evaluation of Data Selection Performance for LLMs on Four Additional 1517

Benchmarks: ARC-Challenge, HellaSwag, MMLU, and TruthfulQA 1518

Model Variants Data Size ARC-Challenge HellaSwag MMLU TruthfulQA AlpacaEval Average
ACC (LHH) ACC (LHH) ACC (SM) BLEU L.C. WinRate Rank↓

OLMO-7B

(allenai/tulu-v2-sft-mixture)

320k 39.42 75.06 38.60 33.90 3.86 3.2
10k 41.04 75.18 25.40 38.31 5.37 2.6
5k 39.08 75.33 26.28 40.02 5.64 2.2

2.5k 39.76 75.29 26.41 40.39 4.08 2.0

META-LLAMA-3-8B
(Mixed Synthetic Data)

10k 55.72 79.02 40.04 19.34 3.64 3.4
5k 50.85 79.06 54.45 37.21 5.56 2.7

2.5k 49.40 79.31 54.60 37.58 5.89 2.0
1k 51.88 79.06 48.79 39.90 6.61 1.9

META-LLAMA-3-8B
(Human-written Data)

10k 53.41 81.07 34.02 33.90 2.34 2.6
5k 55.46 80.56 28.28 34.52 2.24 2.8

2.5k 54.35 80.22 31.13 34.88 2.43 2.4
1k 47.35 80.15 35.62 37.09 2.67 2.2

Table 14: Performance comparison on five benchmarks: ARC-Challenge (Accuracy calculated with Likelihood),
HellaSwag (Accuracy calculated with Likelihood), MMLU (Accuracy using String Matching), TruthfulQA (BLEU
comparison), AlpacaEval (L.C. WinRate), and Average Rank. The table includes fine-tuned versions of OLMO-7B
on human-written data and META-LLAMA-3-8B fine-tuned on mixed synthetic and human-written data across
varying dataset sizes (320k, 10k, 5k, 2.5k, and 1k).

Evaluation Settings. Table 14 provides a detailed evaluation of fine-tuned OLMO-7B and META- 1519

LLAMA-3-8B models across five diverse benchmarks: ARC-Challenge, TruthfulQA, HellaSwag, MMLU, 1520

and AlpacaEval. These benchmarks includes a wide range of tasks, from general knowledge and reasoning 1521

to language understanding and text generation, offering a comprehensive assessment of LLM SFT 1522

performance. 1523

• ARC-Challenge (Clark et al., 2018): Evaluates multiple-choice science questions, with accuracy 1524

measured using Likelihood (LHH). 1525

4https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard/tree/main/community_results/
bigcode_octocoder_loubnabnl/metrics_octocoder
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• TruthfulQA (Lin et al., 2022): Measures factual precision and correctness in LLM responses using1526

BLEU scores.1527

• HellaSwag (Zellers et al., 2019): Tests common-sense reasoning and contextual understanding, with1528

accuracy calculated using Likelihood (LHH).1529

• MMLU (Hendrycks et al.): Focuses on multi-task language understanding, with accuracy evaluated1530

using String Matching (SM).1531

• AlpacaEval: Assesses open-domain instruction-following capabilities, using Length Control Win-1532

Rate (L.C. WinRate) as the metric.1533

Additionally, an average ranking metric is used to aggregate performance across benchmarks, with1534

lower ranks indicating better overall performance. The average ranking is chosen instead of average1535

performance because it balances variations across metrics, preventing benchmarks with different scales1536

(e.g., BLEU and accuracy) from disproportionately influencing the results.1537

For TruthfulQA and MMLU, String Matching and BLEU scores are used instead of Likelihood-1538

based metrics to better align with the nature of instruction-tuned models, which are optimized for1539

generating complete answers rather than reproducing ground truth tokens. However, as we rely on1540

lm-evaluation-harness5, it lacks direct support for implementing these metrics for ARC-Challenge1541

and TruthfulQA, constraining us to use Likelihood for these benchmarks.1542

Discussion. Table 14 demonstrates that subsets selected by SCAR(ID) from larger datasets can consis-1543

tently outperform models trained on full data in most cases, aligning with our findings in Table 3 in the1544

main body of the paper. Notably, subsets selected using our SCAR method show substantial performance1545

improvements. For example, OLMO-7B fine-tuned on a SCAR-selected subset (e.g., 2.5k examples)1546

achieves superior average rankings compared to the 320k full dataset on benchmarks like TruthfulQA1547

(BLEU: 40.39 vs. 33.90) and AlpacaEval (L.C. WinRate: 4.08 vs. 3.86). Similarly, META-LLAMA-3-8B1548

fine-tuned on a 2.5k subset of mixed synthetic data curated with SCAR outperforms larger subsets on1549

MMLU (Accuracy: 54.60) and AlpacaEval (L.C. WinRate: 5.89), achieving a top average rank of 2.0.1550

These results highlight the effectiveness of our SCAR selection method in optimizing fine-tuned LLM1551

performance across diverse benchmarks. By prioritizing data quality and style consistency, SCAR-selected1552

subsets not only reduce computational costs but also enhance model generalization.1553

D Extended Analysis of Ablation Studies1554

Tables 15 and 16 present detailed performance metrics for various CODELLAMA-7B-based models.1555

These models were fine-tuned on different data subsets selected by SCAR from full datasets with either1556

human-written or synthetic responses, with instructions derived from StackExchange. The tables illustrate1557

the performance of fine-tuned LLMs when using SCAR with various components removed during SCAR1558

training. This comparison allows us to assess the impact of each SCAR component on the LLM fine-tuning1559

performance. Unlike the summary results in Figure 3, these tables offer specific numerical values, enabling1560

clearer and more precise comparisons. The results demonstrate that removing almost any component of1561

SCAR during ranker training reduces LLM fine-tuning performance, regardless of whether the data is1562

sourced from human or synthetic origins in the coding domain. This finding validates the importance of1563

each element in our ranker design.1564

To further explore the impact of representation learning (w/o rl, GPT-3.5) and “referenced” responses1565

(w/o ref, GPT-3.5) during SCAR training, we conducted two additional analyses, which are detailed in the1566

following sections.1567

D.1 Impact of Training SCAR without Referenced Responses1568

As shown in Table 17, excluding “referenced” responses during SCAR(ID) training significantly reduces1569

the performance of META-LLAMA-3-8B fine-tuned on SCAR-selected open-domain data subsets when1570

5https://github.com/EleutherAI/lm-evaluation-harness
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Data Sampling
Methods

HumanEval MultiPL-E
Python Java JavaScript C++

Pass@1 / Pass@10 Pass@1 / Pass@10 Pass@1 / Pass@10 Pass@1 / Pass@10
Human Data

Full, GPT-3.5
50% 32.44 / 50.38 30.67 / 44.86 34.40 / 53.16 29.49 / 45.73
25% 31.98 / 49.25 30.41 / 43.65 34.04 / 52.72 29.19 / 43.41
12.5% 31.10 / 47.14 29.46 / 43.06 31.38 / 49.11 27.61 / 42.39

w/o con, GPT-3.5
50% 31.21 / 50.01 30.14 / 44.23 34.67 / 51.90 28.67 / 43.90
25% 31.19 / 47.83 31.22 / 45.73 32.91 / 52.41 28.32 / 44.85
12.5% 30.13 / 45.39 28.72 / 42.68 30.99 / 49.60 27.39 / 42.85

w/o rl, GPT-3.5
50% 33.60 / 50.02 30.47 / 44.53 33.88 / 52.96 28.91 / 45.22
25% 31.76 / 47.47 30.73 / 43.98 32.51 / 51.11 29.42 / 43.47
12.5% 30.56 / 45.26 28.82 / 43.19 31.24 / 49.35 26.89 / 40.95

w/o ref, GPT-3.5
50% 33.63 / 49.22 31.06 / 45.11 34.45 / 53.41 28.66 / 43.96
25% 31.57 / 48.06 30.84 / 44.26 32.89 / 52.58 29.24 / 45.05
12.5% 30.62 / 45.98 28.06 / 40.71 30.80 / 48.08 28.16 / 42.80

Full, Llama2-70b
50% 33.27 / 49.42 30.49 / 43.21 33.70 / 51.46 29.24 / 44.27
25% 29.47 / 46.12 29.75 / 43.19 33.33 / 49.69 29.17 / 44.39
12.5% 30.76 / 46.79 28.13 / 40.52 31.23 / 50.34 27.66 / 41.58

Full, Llama2-13b
50% 31.90 / 50.38 30.75 / 44.29 33.34 / 51.81 28.62 / 42.57
25% 31.71 / 48.49 29.78 / 43.73 32.20 / 51.25 28.40 / 43.16
12.5% 30.29 / 46.03 28.18 / 42.03 30.70 / 48.19 27.47 / 41.58

w/o con, Llama2-13b
50% 30.76 / 43.63 29.84 / 44.11 32.07 / 51.50 28.04 / 43.07
25% 30.15 / 42.78 29.44 / 43.66 32.88 / 54.14 27.93 / 44.26
12.5% 27.93 / 41.07 27.28 / 39.27 31.18 / 49.99 25.57 / 41.35

Full, Llama3-70b
50% 32.48 / 50.39 30.68 / 45.30 33.49 / 53.01 29.28 / 45.13
25% 32.28 / 49.14 30.04 / 43.86 32.09 / 51.54 28.09 / 43.63
12.5% 30.40 / 48.36 28.14 / 41.71 30.67 / 49.67 26.99 / 42.47

Table 15: Comprehensive performance comparison of CODELLAMA-7B models fine-tuned on human-written
datasets, evaluated on HumanEval (Python) and MultiPL-E (Java, JavaScript, C++) coding benchmarks. The
training datasets were sampled using various methods at different proportions. Pass@1 and Pass@10 scores are
reported for each programming language.

evaluated on the AlpacaEval benchmark. This result underscores the importance of incorporating “ref- 1571

erenced” responses during ranker training to ensure the ranker effectively captures representations that 1572

model the instructional surprisal of responses in the open domain. In the code domain, however, excluding 1573

“referenced” responses during SCAR training has only a minor effect on data selection and LLM SFT 1574

performance. 1575

D.2 Representation Similarities Analysis 1576

As shown in Table 18, we calculate the cosine similarities between linguistic form representations (vp) 1577

and instructional surprisal representations (vc) for “direct”, “referenced”, and human-written responses. 1578

Specifically, the table reports the cosine similarities between i) “direct” and “referenced” responses, 1579

ii) “referenced” and human-written responses, and iii) “direct” and human-written responses for both 1580

linguistic form and instructional surprisal representations. According to Eq. 4, we expect the similarity 1581

between “direct” and “referenced” responses to be higher than those between “referenced” and human or 1582
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Data Sampling
Methods

HumanEval MultiPL-E
Python Java JavaScript C++

Pass@1 / Pass@10 Pass@1 / Pass@10 Pass@1 / Pass@10 Pass@1 / Pass@10
Mixed Synthetic Data

Full, GPT-3.5
50% 40.98 / 56.57 32.80 / 45.75 37.58 / 55.69 32.73 / 45.71
25% 39.84 / 56.75 32.52 / 43.83 36.67 / 55.32 32.00 / 46.26
12.5% 36.93 / 52.96 32.62 / 44.82 36.45 / 52.33 30.43 / 45.42

w/o con, GPT-3.5
50% 39.65 / 55.05 32.30 / 44.40 38.21 / 54.92 32.17 / 45.66
25% 39.30 / 56.87 32.76 / 45.87 37.43 / 54.76 32.11 / 45.77
12.5% 36.56 / 51.72 33.00 / 44.48 35.53 / 53.10 31.02 / 45.44

w/o rl, GPT-3.5
50% 39.83 / 54.27 32.28 / 43.66 37.66 / 55.99 32.53 / 46.31
25% 38.62 / 56.03 32.55 / 43.67 36.75 / 53.65 32.25 / 45.06
12.5% 36.02 / 51.78 32.71 / 45.68 35.70 / 52.15 31.70 / 45.51

w/o ref, GPT-3.5
50% 39.85 / 55.81 32.13 / 44.00 36.87 / 56.79 32.67 / 46.43
25% 36.80 / 54.70 32.68 / 45.91 36.87 / 57.04 31.61 / 47.02
12.5% 36.41 / 50.96 32.66 / 44.58 35.78 / 52.21 30.99 / 44.88

Full, Llama2-70b
50% 39.21 / 52.49 32.39 / 45.21 37.45 / 54.87 33.03 / 46.36
25% 39.23 / 53.77 31.59 / 45.21 37.35 / 55.15 30.81 / 45.04
12.5% 37.59 / 51.64 31.44 / 44.82 37.04 / 52.55 30.67 / 44.80

Full, Llama2-13b
50% 37.29 / 53.60 33.24 / 43.86 37.04 / 56.29 32.36 / 44.65
25% 36.70 / 51.88 31.97 / 44.57 36.35 / 56.33 31.12 / 46.04
12.5% 33.78 / 48.61 30.61 / 41.77 34.21 / 51.66 31.11 / 45.27

w/o con, Llama2-13b
50% 37.72 / 53.82 32.18 / 44.19 37.23 / 56.76 32.57 / 46.31
25% 38.59 / 53.47 32.68 / 44.97 37.19 / 55.59 32.00 / 46.58
12.5% 33.34 / 49.78 32.05 / 43.76 35.58 / 53.38 31.02 / 46.13

Full, Llama3-70b
50% 39.40 / 54.46 32.87 / 45.00 36.99 / 57.26 32.52 / 46.38
25% 38.40 / 54.73 32.54 / 44.79 37.40 / 54.46 30.92 / 44.06
12.5% 35.48 / 50.33 31.80 / 45.40 36.45 / 53.71 30.99 / 46.66

Table 16: Comprehensive performance comparison of CODELLAMA-7B models fine-tuned on GPT-3.5-TURBO-
generated datasets, evaluated on HumanEval (Python) and MultiPL-E (Java, JavaScript, C++) coding benchmarks.
The training datasets were selected from the full mixed synthetic dataset with different sample sizes using our
selection approach, SCAR(ID), with various training configurations. Pass@1 and Pass@10 scores are reported for
each programming language.

Human Mix Synthetic
50% 25% 10% 50% 25% 10%

Full 2.24 2.43 2.67 5.56 5.89 6.61
w/o ref 1.95 2.25 1.99 3.59 4.74 4.44

Table 17: Comparison of L.C. WinRate on the AlpacaEval benchmark for META-LLAMA-3-8B fine-tuned on
subsets of human-written and synthetic data selected by SCAR(ID), with and without incorporating “referenced”
responses during ranker training.

“direct” and human responses for linguistic form representations. Conversely, for instructional surprisal1583

representations, the similarity between “referenced” and human responses should be the highest.1584

Interestingly, even without the representation learning regularization loss in Eq. 4 and while incor-1585

porating “referenced” responses during SCAR training, the observed cosine similarities still align with1586
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Linguistic Form Representation Instructional Surprisal Representation
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LIMA
SCAR(ID) 0.9368 0.8970 0.7884 0.8312 0.8801 0.7209
SCAR(ID) w/o rl 0.9050 0.7962 0.6369 0.9406 0.9587 0.8717
SCAR(ID) w/o ref 0.9442 0.7970 0.7249 0.9696 0.8935 0.8544
SCAR(OOD) 0.9416 0.9344 0.8884 0.8887 0.9115 0.8574

StackExchange
SCAR(ID) 0.9020 0.8574 0.6867 -0.4330 0.9646 -0.4803
SCAR(ID) w/o rl 0.9274 0.8224 0.6968 0.7312 0.8978 0.4480
SCAR(ID) w/o ref 0.9778 0.8844 0.8660 0.9836 0.9143 0.8952
SCAR(OOD) 0.9702 0.8502 0.8249 0.7451 0.0083 -0.1289

Table 18: Cosine similarities between linguistic form representations (vp) and instructional surprisal representations
(vc) for “direct”, “referenced”, and human-written responses. The table reports the cosine similarities between (1)
“direct” and “referenced” responses, (2) “referenced” and human-written responses, and (3) “direct” and human-
written responses, separately for linguistic form and instructional surprisal representations. These similarities are
computed using representations from SCAR rankers trained with different configurations: SCAR(ID) trained on
in-domain data, SCAR(ID) without representation learning regularization (w/o rl), SCAR(ID) without “referenced”
responses (w/o ref), and SCAR(OOD) trained on out-of-domain data. The SCAR rankers are applied to response
triplets generated for the same instructions in the LIMA and StackExchange datasets. Results are reported
separately for each dataset, with higher cosine similarity values indicating greater alignment between the respective
representations.

our optimization objectives for representation similarities. However, when SCAR training excludes 1587

“referenced” responses or utilizes out-of-domain data, these expected similarity patterns are significantly 1588

disrupted. Consequently, the performance of the META-LLAMA-3-8B model deteriorates when fine-tuned 1589

on data selected by such SCAR configurations. 1590

In summary, incorporating “referenced” responses and utilizing in-domain data during SCAR training 1591

are crucial for maintaining the desired representation similarities. These findings emphasize the importance 1592

of carefully curating training data within SCAR to effectively model both linguistic form and instructional 1593

surprisal. This approach ensures robust SCAR data selection performance and, ultimately, enhances LLM 1594

performance across different domains. 1595

E Bias Analysis 1596

We categorize bias into two types–fairness bias and lexical bias (Vanmassenhove et al., 2021)–and conduct 1597

separate experiments to evaluate each. 1598

E.1 Fairness Bias Analysis. 1599

Model Data Type Data Size Regard Diff. (Positive + Negative, % ↓) Toxicity Ratio (Male, % ↓) Toxicity Ratio (Female, % ↓)

Meta-LLaMA-8B

Full Human Written 10k 1.03 0.97 1.66
Subset Human Written 1k 2.33 0.00 0.83
Full Mixed Synthetic 10k 1.63 0.28 1.66
Subset Mixed Synthetic 1k 0.22 1.25 2.50

OLMo-7B
Full 320k 0.82 0.28 0.28
Subset 2.5k 0.42 0.83 1.11

Table 19: Fairness and safety metrics for models trained on full datasets and subsets. Regard difference (Positive
+ Negative, % ↓) reflects the absolute value of the sum of positive and negative differences, with lower values
(indicated by ↓) signifying better fairness. Toxicity ratios for male and female prompts (% ↓) highlight model safety,
where lower values are better.

Evaluation Settings. To evaluate fairness bias, we analyze the toxicity and sentiment polarity of 1600

model responses across different demographic and occupational groups. The evaluation consists of two 1601
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Data Type SCAR (ID) Random Perplexity Superfiltering HFR AlpaGasus Diversity Longest

Human Subset 2.33 2.42 0.97 0.88 0.87 2.36 0.80 2.17

Mixed Synthetic Subset 0.22 0.75 1.04 0.38 0.82 0.16 0.62 0.28

Table 20: Regard difference results (|Positive + Negative|) for models trained on subsets selected from Human full
data and Mixed Synthetic full data using different selection methods. Lower values (↓) indicate better fairness
across domains.

components:1602

• Gender Bias: Using prompts from WinoBias (Zhao et al., 2018), we generate model responses1603

and assess toxicity levels using a pretrained hate speech detection model from Vidgen et al. (2021).1604

Lower toxicity ratios for male and female prompts (% ↓) indicate better fairness.1605

• Occupational Bias: Using prompts from BOLD (Dhamala et al., 2021), we generate model re-1606

sponses and evaluate language sentiment polarity with the Regard metric (Sheng et al., 2019). This1607

analysis includes comparisons across categories such as professions (e.g., artistic versus computer1608

occupations), gender (e.g., actors versus actresses), political ideologies (e.g., anarchism versus1609

capitalism), race (e.g., African Americans versus Asian Americans), and religious ideologies (e.g.,1610

atheism versus Buddhism). We report the absolute value of the sum of positive and negative regard1611

differences (% ↓), with lower values indicating reduced bias.1612

We compare models fine-tuned on subsets selected by various methods with those trained on full1613

datasets, evaluating the impact of human-written and mixed synthetic subsets on fairness bias in LLM1614

training.1615

Discussion. The results (Tables 19 and 20) demonstrate that SCAR-selected subsets maintain fairness1616

while significantly reducing dataset size. For human-written data, SCAR(ID) achieves a fairness score of1617

2.33, which is comparable to the full dataset score of 1.03. Additionally, SCAR(ID)-selected subsets show1618

improvements in toxicity ratios, achieving 0.00 for male prompts and 0.83 for female prompts compared1619

to 0.97 (male) and 1.66 (female) for the full dataset, indicating its capability to maintain fairness with1620

smaller data.1621

When compared to other selection methods, SCAR(ID) achieves comparable or slightly better fairness1622

in some cases. For mixed synthetic data, SCAR(ID)-selected subsets achieve the lowest regard difference1623

(0.22% ↓) compared to Random (0.75%) and Perplexity (1.04%). These findings confirm that SCAR1624

maintains fairness on par with other methods while balancing data efficiency, making it an effective1625

strategy for fine-tuning fair LLMs.1626

E.2 Lexical Diversity Bias Analysis.1627

Methods for Data Selection
Full Data SCAR (ID) Random Perplexity Superfiltering HFR AlpaGasus Diversity Longest

Instruction
TTR 29.54 27.92 30.04 30.04 30.63 27.18 29.32 32.78 33.57
MTLD 14.71 14.72 14.77 14.83 14.80 14.61 14.85 14.71 14.69

Response
TTR 23.37 16.60 23.22 22.37 21.79 18.09 23.13 24.69 5.35
MTLD 14.43 14.40 14.44 14.53 14.31 14.52 14.55 14.40 13.77

Table 21: Lexical diversity metrics (TTR and MTLD) for instructions and responses within different datasets, either
the full open-domain human-written dataset (Full Data) or subsets with 2500 examples selected using various data
selection methods: SCAR (ID), Random, Perplexity, Superfiltering, HFR, AlpaGasus, Diversity, and Longest.
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Evaluation Settings. We measure lexical bias in instructions and responses separately using two 1628

complementary metrics: TTR and MTLD. Type-Token Ratio (TTR) measures the ratio of unique words 1629

(types) to the total number of words (tokens) in a text. Higher TTR values indicate a greater immediate 1630

variety of words, making it sensitive to text length; shorter texts typically have higher TTR scores as 1631

they are less likely to repeat words. Measure of Textual Lexical Diversity (MTLD), on the other 1632

hand, evaluates how lexical diversity is maintained throughout an entire text. It considers how often 1633

unique words appear relative to repeated words across longer segments, offering a more robust and length- 1634

independent view of lexical richness. We apply these metrics to the full open-domain human-written 1635

dataset (Full Data) and to 2,500-example subsets selected by various methods—SCAR (ID), Random, 1636

Perplexity, Superfiltering, HFR, AlpaGasus, Diversity, and Longest—to understand how each selection 1637

method influences lexical diversity. 1638

Discussion. As shown in Table 21, SCAR-selected subsets exhibit slightly reduced lexical diversity in 1639

responses, indicated by lower TTR values, decreasing from 23.4 to 16.6 compared to the full dataset. We 1640

conjecture this is due to SCAR’s focus on instructional surprisal consistency. As shown in Table 11, SCAR 1641

enhances the consistency of linguistic forms (lower standard deviations of TTR) in selected responses 1642

without affecting their mean TTR. This indicates that the reduced response-level TTR is likely due to 1643

instructional surprisal consistency rather than consistency in linguistic forms. In contrast, the impact on 1644

instructions is less pronounced, with TTR decreasing only slightly from 29.5 to 28 compared to the full 1645

dataset, indicating that SCAR does not significantly limit the coverage of instructional content. 1646

Despite these shifts in TTR, our MTLD scores remain comparable to both the full dataset and other 1647

selection methods, for both instructions and responses. In other words, while the immediate variety 1648

of word choices (as reflected by TTR) decreases, the overall, sustained richness of vocabulary (as 1649

measured by MTLD) is preserved. Since instruction-level diversity is more crucial for LLM fine-tuning 1650

performance (Lu et al., 2023; Bukharin and Zhao, 2023), SCAR-selected subsets still preserve the kind of 1651

lexical variety that matters most. These findings align with results from the extensive experiments in the 1652

main body of the paper, where SCAR-selected subsets continue to achieve strong performance. 1653

F Response Examples 1654

F.1 Abbreviated Example 1655

For the same instruction, we generated three style variations—human-written, referenced, and direct—to 1656

investigate how linguistic form and instructional surprisal influence LLM performance. Table 22 provides 1657

abbreviated examples of “human", “referenced", and “direct" responses to the instruction. The detailed 1658

content in this table has been condensed to focus on highlighting the stylistic differences. From Table 22, 1659

we can observe the shared aspects of linguistic form and instructional surprisal across the three distinct 1660

styles of rewrites.

Instruction
Why is FIFA against adding instant replay to the game?
Human Response
There are a few fundamental considerations:
Uncertainty is a part of the game. ... Football is global. ... Football is a fast-paced game with few opportunities for stoppage. ... In 2008, FiFA
President Sepp Blatter said: ...
Human Referenced Response from GPT-3.5-turbo
FIFA is against adding instant replay to the game for several reasons. One of the main concerns is that uncertainty is seen as a natural part of the
game,... Additionally, football is a global sport;... Another factor is that football is a fast-paced game with minimal stoppages;...
Direct Response from GPT-3.5-turbo
FIFA is against adding instant replay to the game because they believe it would disrupt the flow of the game ... They also argue that human error is a
part of the game ... Additionally, implementing instant replay would require significant changes to the rules and regulations ...

Table 22: Examples of different response types for a given instruction. Some details are abbreviated as ‘...’. Shared
surprisal-related style elements between “Human” and “Referenced” responses are highlighted in orange, and shared
linguistic form elements between “Referenced” and “Direct” responses are in green.

1661

F.2 Complete Example 1662

Table 23 provides complete examples of human, “referenced,” and “direct” responses to the instruction, 1663

preserving all details. As shown, the “referenced” response closely aligns with the semantic content of the 1664
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human response, thereby reflecting comparable instructional surprisal. In contrast, the “direct” response1665

maintains similar transitional phrases and formatting to the “referenced” response, indicating a shared1666

linguistic form between them.1667

1668
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Instruction
Why is FIFA against adding instant replay to the game?
Human Response
There are a few fundamental considerations:

Uncertainty is a part of the game. The referee and linesmen are the arbiters of the action.
Instant replay would limit their authority.
Football is global. Many places do not have access to the technology necessary to implement
instant replay.
Football is a fast-paced game with few opportunities for stoppage. Instant replay would
unnecessarily slow the pace.
In 2008, FiFA President Sepp Blatter said:

"Let it be as it is and let’s leave [football] with errors. The television companies will have the
right to say [the referee] was right or wrong, but still the referee makes the decision – a man,
not a machine."

Blatter and others at FIFA have repeatedly argued against using instant replay. But lately, FIFA
has begun to come around on the idea. At FIFA’s Congress in São Paulo prior to the 2014
World Cup, Blatter proposed allowing managers 2 challenges per game, much like the NFL
handles challenges today.
Although it’s not quite “instant replay,” in 2012 FIFA approved two different goal-line technolo-
gies to improve referee accuracy: “Hawk-Eye” – which uses visual triangulation to determine
ball location – and “GoalRef” – which uses a microchip in the ball and magnetic sensors
within goalposts. (Many say FIFA approved the technologies in response to Frank Lampard’s
snubbed “goal” against Germany in the 2010 World Cup.) In 2013, FIFA announced it would
use GoalControl, a German competitor to Hawk-Eye, at the Confederations Cup, basically a
rehearsal for the World Cup. After a successful run at that tournament, FIFA announced it
would implement GoalControl at the 2014 World Cup. The Guardian provides a pretty helpful
FAQ on the technology.
FIFA may choose to implement further changes to approved goal-line technology and referee
rules when it meets again after the World Cup.
Human Referenced Response from GPT-3.5
FIFA is against adding instant replay to the game for several reasons. One of the main concerns
is that uncertainty is seen as a natural part of the game, and implementing instant replay would
limit the authority of the referees and linesmen. Additionally, football is a global sport, and
many regions may not have the necessary technology to support instant replay. Another factor
is that football is a fast-paced game with minimal stoppages, so introducing instant replay could
potentially disrupt the flow of the game. Ultimately, FIFA has historically been hesitant to
embrace instant replay, preferring to maintain the human element in decision-making on the
field.
Direct Response from GPT-3.5
FIFA is against adding instant replay to the game because they believe it would disrupt the flow
of the game and potentially lead to delays. They also argue that human error is a part of the
game and adding instant replay could take away from the excitement and unpredictability of
live sports. Additionally, implementing instant replay would require significant changes to the
rules and regulations of the game, which FIFA may be hesitant to do.

Table 23: Comparison of the three responses regarding FIFA’s stance on instant replay.
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