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Abstract001

We introduced PERCOR—Persian002
Commonsense Reasoning—the first large-003
scale Persian benchmark for commonsense004
reasoning. PERCOR contains 106K multiple-005
choice sentence-completion problems drawn006
from more than forty news, cultural and007
other web sources. We introduce a novel008
conjunction-based segmentation strategy009
to generate coherent sentence–completion010
pairs, enabling broad topical and structural011
diversity. To create challenging distractors, we012
propose DRESS-AF—Distractor Ranking via013
Embedding Similarity Scoring and Adversarial014
Filtering—a generation-free adversarial015
filtering method that selects distractors from016
the pool of gold continuations while max-017
imising model confusion. Human annotators018
score 89% on PERCOR, while OpenAI-o3019
achieves the highest performance at 92.18%,020
followed closely by Claude-Sonnet-3.7021
(91.17%). The strongest open-source model,022
DeepSeek-R1, reaches 82.51%, underscoring023
both the dataset’s difficulty and the remaining024
performance gap in Persian commonsense025
reasoning. We further show that DRESS-AF026
transfers to the English HellaSwag benchmark,027
increasing its difficulty without hurting028
human solvability. The dataset is available at029
https://anonymized_for_review.030

1 Introduction031

Commonsense reasoning is a critical capability032

in natural language understanding, enabling mod-033

els to draw inferences, disambiguate meaning,034

and interpret implicit knowledge. While large035

language models (LLMs) have shown remark-036

able progress across various tasks, their perfor-037

mance on commonsense reasoning—particularly038

in structured formats like multiple-choice sentence039

completion—remains limited (Sap et al., 2020b).040

To benchmark and improve this ability, several041

datasets such as SWAG (Zellers et al., 2018),042

Figure 1: An example from the PerCoR dataset. The
passage discusses the pleasant spring weather in Qeshm
and recommends nighttime exploration. The correct
answer (written in Green) refers to night camps and
music breaking the beach’s silence, while other options,
though plausible in isolation, lack relevance to the im-
mediate context.

HellaSwag (Zellers et al., 2019), and Common- 043

senseQA (Talmor et al., 2019) have been proposed. 044

However, these benchmarks are overwhelmingly 045

English-centric, leaving a significant gap in re- 046

sources for evaluating and improving common- 047

sense reasoning in low-resource languages. 048

Despite recent progress in Persian NLP through 049

resources such as PARSINLU (Khashabi et al., 050

2021), PersianQA (Ayoubi, 2021), and PQUAD 051

(Darvishi et al., 2023), Persian remains a low- 052

resource language for high-level reasoning tasks, 053

particularly commonsense inference. This leaves a 054

significant gap in evaluating and advancing struc- 055

tured reasoning capabilities in this language. To ad- 056

dress this limitation, we introduce PERCOR—the 057

first large-scale Persian commonsense reasoning 058

dataset in multiple-choice sentence–completion for- 059

mat. Constructed from over 40 diverse Persian 060

websites, PerCoR captures a broad range of do- 061
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mains and linguistic styles. We formulate each062

instance as a sentence prefix followed by four com-063

pletion candidates: one correct and three distrac-064

tors. Instead of relying on simple rule-based meth-065

ods for sentence segmentation, we generate sen-066

tence–completion pairs by splitting at conjunctions,067

promoting natural flow and semantic coherence.068

Unlike oversimplified strategies such as the one069

employed in SWAG (Zellers et al., 2018), which070

relies on temporally grounded data like video cap-071

tions, our conjunction-based approach is applicable072

to a wide range of textual sources. This enables073

broader domain coverage and greater variability in074

sample length, enhancing both the diversity and075

richness of the dataset.076

We further propose a novel distractor selection077

strategy, DRESS-AF, which is a combination of078

Adversarial filtering (AF) (Zellers et al., 2019)079

and Embedding-based ranking (Liang et al., 2018;080

Chiang et al., 2022) methods. DRESS-AF avoids081

LLM-based generations—thus sidestepping associ-082

ated biases—and instead ranks completions using083

embedding-based similarity metrics. These scores084

are adversarially tuned to maximise model con-085

fusion using Bayesian optimisation over a devel-086

opment set, yielding difficult yet human-solvable087

distractors.088

An example is shown in Figure 1 illustrating089

a key aspect of PerCoR dataset—candidates are090

intentionally context-sensitive. While all options091

may appear semantically valid in isolation, only092

one logically follows from the passage. In this093

case, the mention of “nighttime exploration” cues094

the correct choice, requiring the model to interpret095

implicit temporal references to succeed.096

In summary, our key contributions are as fol-097

lows: (1) we introduce PERCOR, the first large-098

scale Persian commonsense reasoning dataset in a099

multiple-choice sentence–completion format, span-100

ning diverse domains and linguistic styles; (2) we101

propose a conjunction-based extraction method that102

enables natural and semantically coherent sample103

generation from non-temporal texts; (3) we present104

DRESS-AF, a language-agnostic, embedding-105

based distractor generation approach that incor-106

porates adversarial filtering to produce challeng-107

ing yet human-solvable distractors—without rely-108

ing on generative models; and (4) we benchmark109

a broad set of state-of-the-art open- and closed-110

source LLMs on PerCoR, establishing strong em-111

pirical baselines for future work.112

2 Related Work 113

Commonsense Reasoning Datasets. Numerous 114

English benchmarks have been introduced to eval- 115

uate commonsense reasoning in multiple formats. 116

SWAG (Zellers et al., 2018) and HELLASWAG 117

(Zellers et al., 2019) pose multiple-choice sentence 118

completion tasks based on narrative or descriptive 119

contexts. HellaSwag, in particular, uses adversar- 120

ial filtering to create distractors that are challeng- 121

ing for language models but easily solvable by hu- 122

mans. Other benchmarks such as WINOGRANDE 123

(Sakaguchi et al., 2021), COMMONSENSEQA (Tal- 124

mor et al., 2019), OPENBOOKQA (Mihaylov et al., 125

2018), PIQA (Bisk et al., 2019), COSMOS (Huang 126

et al., 2019), and SOCIAL IQA (Sap et al., 2019) 127

cover a variety of commonsense dimensions, in- 128

cluding physical reasoning, social dynamics, and 129

multi-hop inference. More recent efforts include 130

GLUCOSE (Mostafazadeh et al., 2020), a dataset 131

of causal explanations in short narratives, anno- 132

tated across ten dimensions of inferential knowl- 133

edge; COM2SENSE (Singh et al., 2021), which 134

evaluates a model’s ability to discriminate between 135

true and false commonsense statements in comple- 136

mentary pairs; and COMMONSENSEQA 2.0 (Tal- 137

mor et al., 2021), an adversarially curated yes/no 138

question dataset designed to be difficult for large 139

language models while remaining easy for humans. 140

Despite substantial progress, these benchmarks are 141

primarily designed for English, leaving a gap in 142

resources for other languages. 143

Distractor Generation Techniques. Creating 144

high-quality distractor candidates is crucial for 145

constructing reliable multiple-choice datasets (Al- 146

hazmi et al., 2024). Adversarial filtering (AF), used 147

in SWAG, HELLASWAG, and WINOGRANDE, it- 148

eratively removes easy distractors using a discrim- 149

inator model, resulting in semantically challeng- 150

ing options. Alternatively, retrieval-based methods 151

select distractors from external corpora or knowl- 152

edge graphs, ensuring topical relevance (Ren and 153

Zhu, 2021b). Recent work extends this by incor- 154

porating topic models to filter noisy candidates 155

from knowledge graphs like Probase (Ren and Zhu, 156

2021a). Embedding-based ranking selects distrac- 157

tors based on similarity in embedding space (Liang 158

et al., 2018; Chiang et al., 2022), while retrieval- 159

augmented generation leverages retrieved passages 160

and knowledge triplets to guide large language 161

models in producing diverse distractors (Chen et al., 162

2023). Our proposed method, DRESS-AF, com- 163
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Figure 2: Overview of our dataset construction and distractor generation pipeline. The process consists of:
(a) collecting diverse Persian text data, (b) creating and filtering sentence-completion pairs, and (c) generating
challenging multiple-choice distractors using DRESS-AF.

bines these principles: we rank gold completions164

using embedding-based similarity scoring and ad-165

versarially optimise parameters to select distractors166

that maximise model confusion.167

Persian NLP Resources. Recent years have seen168

a growing body of work on Persian NLP, but most169

resources target core tasks such as machine trans-170

lation, sentiment analysis, and reading compre-171

hension. PARSINLU (Khashabi et al., 2021) in-172

cludes benchmarks for Persian NLI, QA, and senti-173

ment classification. FARSTAIL (Amirkhani et al.,174

2023) is a natural language inference dataset, while175

PQUAD (Darvishi et al., 2023) provides large-176

scale reading comprehension benchmarks in the177

SQuAD format. For more open-ended reasoning,178

PERCQA (Jamali et al., 2022) is a community QA179

dataset compiled from Persian web forums, con-180

sisting of 989 real-world questions and over 21k181

answers, designed for tasks like answer selection182

and ranking. Although these resources enable eval-183

uation of Persian understanding and reasoning, they184

do not address commonsense reasoning specifically.185

To the best of our knowledge, our work presents186

the first large-scale Persian commonsense reason-187

ing dataset, addressing a significant gap in low-188

resource language evaluation.189

3 The PERCOR Dataset190

We adopt a three-stage pipeline to create the PER-191

COR dataset: (1) Data Collection, in which raw192

text segments are gathered from diverse sources;193

(2) Sentence–Completion Creation, where sen-194

tence–completion pairs are generated using our195

novel conjunction-based method; and (3) Distrac- 196

tor Generation, where we apply our proposed 197

DRESS-AF algorithm to select challenging distrac- 198

tor candidates for each instance. An overview of 199

this pipeline is illustrated in Figure 2. 200

3.1 Data Collection 201

To construct our dataset, we begin by collect- 202

ing a diverse set of paragraphs spanning a 203

broad range of topics, ensuring that meaningful 204

sentence–completion pairs can be extracted for 205

multiple-choice commonsense evaluation. For this 206

purpose, we leverage the Corpesia corpus (Sarmadi 207

et al., 2025), a large-scale resource built by crawl- 208

ing the main content (excluding advertisements and 209

irrelevant sections) from a wide variety of Persian 210

websites. The raw data in Corpersia is cleaned 211

through rule-based filtering to remove boilerplate 212

artifacts—such as author names, timestamps, and 213

footers—while preserving the original paragraph 214

structure and maintaining document-level segmen- 215

tation, including title identification. 216

To generate sentence–completion pairs, we se- 217

lect a subset of websites from Corpersia that cover 218

a broad spectrum of topics (detailed in Section 4.1). 219

We discard any paragraph with fewer than 50 char- 220

acters to ensure the textual quality and context rich- 221

ness. Finally, we sample up to 200,000 paragraphs 222

from each selected website to be used as the source 223

for extracting sentence–completion pairs. 224

3.2 Sentence–Completion Creation 225

Rather than relying on conventional techniques 226

such as those employed in SWAG (Zellers et al., 227
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2018), which depend on temporally coherent data228

(e.g., video captions), we adopt a linguistically229

grounded strategy based on conjunctions to ex-230

tract sentence–completion pairs from static text.231

Specifically, we begin by curating a list of 49 high-232

frequency conjunctions in Persian. To ensure con-233

sistency and reduce sparsity, we remove conjunc-234

tions that appear fewer than 500 times in the corpus.235

Importantly, all excluded items have semantically236

equivalent counterparts in the retained set, preserv-237

ing the expressivity of the conjunction space. The238

final list of conjunctions, along with their English239

translations, is presented in Figure 6. To main-240

tain balanced representation across conjunctions241

and avoid dominance by high-frequency items, we242

sample up to 4,000 instances per connective. If a243

conjunction occurs fewer than 4,000 times, we in-244

clude every instance. For semantically ambiguous245

conjunctions—those that may not always function246

as true connectives in contexts—we increase our247

oversampling multiplier so that the filtered data248

retains a sufficient number of valid usages.249

To ensure that the sentence–completion split oc-250

curs at an informative and coherent boundary, we251

define a valid character span within which conjunc-252

tions are considered—ranging from a minimum253

of 50 to a maximum of 250 characters from the254

start of the paragraph. The lower bound ensures255

that the prefix contains sufficient context for predic-256

tion, while the upper bound prevents overly long257

or semantically overloaded prefixes. Once a valid258

conjunction is found within this range, we check259

the character length of the clause following it. If260

the length is below a threshold of 150 characters,261

the paragraph is split at that conjunction to form a262

sentence–completion pair. Otherwise, the search263

continues with other conjunctions in the span. This264

ensures that the completion segment remains con-265

cise and focused.266

To further validate the quality of extracted pairs267

, we perform a lightweight filtering step using the268

GPT-4o-mini model. Specifically, the model is269

used for two binary classification checks: (1) veri-270

fying that the identified conjunction functions as a271

true discourse connective (since some Persian con-272

junctions may be contextually ambiguous), and (2)273

ensuring that the completion segment is a syntac-274

tically and semantically complete sentence. Since275

the model is only used for verification, not gen-276

eration, it does not introduce generation-related277

biases into the data. Additional details regarding278

this filtering process are provided in Appendix A.1.279

3.3 Distractor Generation 280

To avoid introducing any biases associated with 281

language model generations, we select distractor 282

options from the set of gold completions belong- 283

ing to other samples, rather than generating them 284

via an LLM. Let xi and yi be the embedding of 285

the sentence and completion, respectively. We 286

define a score sij , representing the suitability of 287

completionj as a candidate option for sentencei, as 288

follows: 289

sij = α cos(xi,yj) + β cos(yi,yj)

+ (1− α− β) cos(zi,yj),
(1) 290

where α, β ∈ [0, 1] are tunable coefficients that 291

balance the contributions of each similarity term, 292

cos(·, ·) denotes cosine similarity, and zi refers to 293

the embedding of concatenation of the sentence and 294

its gold completion. Using a held-out development 295

set, we compute sij for each sample pair i within 296

the development set and all candidates j within 297

the whole data (not only in the development set). 298

Based on these scores, we sort the candidates in 299

descending order, exclude the gold completion yi, 300

and uniformly sample three distractors from the 301

next k-best candidates. This process yields a 4-way 302

multiple-choice instance for each sentence in the 303

held-out set, constructed dynamically according to 304

the current values of α and β. 305

We optimize α and β via adversarial filtering: 306

for a given (α, β), we build the provisional dataset 307

from the held-out development set, measure the 308

accuracy of an LLM on it, and use that accuracy 309

as the objective in a Tree-structured Parzen Es- 310

timator (TPE) Bayesian optimization over c tri- 311

als. Although the search space is low-dimensional, 312

TPE is known for its strong empirical performance 313

and sample efficiency in hyperparameter tuning 314

tasks, and has been widely adopted in AutoML 315

and deep learning optimisation pipelines (Watan- 316

abe, 2023).1. The optimal (α∗, β∗) are then used 317

to generate our final dataset. To construct the PER- 318

COR dataset, we set c = 30 and k = 20. We 319

employed the HAKIM embedding model (Sarmadi 320

et al., 2025), as it demonstrated the best perfor- 321

mance on FAMTEB (Zinvandi et al., 2025), a com- 322

prehensive benchmark for Persian text embeddings. 323

We refer to this method as DRESS-AF (Dis- 324

tractor Ranking via Embedding Similarity Scoring 325

and Adversarial Filtering). DRESS-AF constructs 326

1We employed the implementation of TPE in the Optuna
library (Akiba et al., 2019).
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multiple-choice questions by scoring all candidate327

completions using the embedding-based metric de-328

fined above, and then adversarially optimising the329

scoring parameters to select the most challenging330

distractors. Importantly, the adversarial nature of331

DRESS-AF ensures that the selected distractors332

increase question difficulty—but it does not guar-333

antee overall dataset quality or standardness. In334

practice, two hyperparameters play a key role in ad-335

justing the difficulty: c, the number of optimisation336

trials, and k, the number of top-ranked distractor337

candidates (after excluding the gold completion)338

from which three distractors are randomly sampled.339

While DRESS-AF aims to generate difficult exam-340

ples for evaluation, human oversight may still be341

required to discard samples that are excessively342

ambiguous or unsolvable, ensuring that the final343

dataset remains reliable and informative.344

We hypothesise that the set of gold completions345

across all samples is sufficiently diverse to serve346

as a reliable pool of distractor candidates. This as-347

sumption enables us to avoid synthetic generation348

altogether and sidestep potential biases introduced349

by LLM outputs. In Section 4, we empirically vali-350

date this hypothesis by showing that several strong351

LLMs consistently achieve below 80% accuracy352

on our dataset. This confirms the overall challenge353

posed by the distractors selected via DRESS-AF.354

Furthermore, evaluations conducted by human an-355

notators on a subset of the data yield accuracies356

around 90%, providing additional evidence that the357

questions are both plausible and solvable, albeit358

non-trivial.359

4 Experiments360

We structure our experiments in three phases: first,361

we analyse the PERCOR dataset by examining362

token-length distributions and covered topics and363

domain; second, we evaluate DRESS-AF’s ability364

to craft challenging distractors for the sentence-365

completion pairs in the HellaSwag dataset, demon-366

strating the generality of our method in generating367

strong distractors without relying on generative368

models, and also its applicability beyond Persian;369

third, we benchmark 32 large language models on370

the dataset in a zero-shot setting to gauge their371

out-of-the-box performance. Further experiments372

regarding the effect of input length and also few-373

shot evaluation are provided in Appendix B.2, B.3.374

4.1 Dataset Statistics 375

The dataset is divided into three splits: training 376

(86,217 samples), validation (10,000 samples), and 377

test (10,000 samples). Each sample consists of an 378

uncompleted text and four candidate completions. 379

The average sentence length is 129.23 characters 380

and 41.78 tokens, while the average completion 381

length is 93.24 characters and 30.08 tokens. Com- 382

pletion statistics are computed by first averaging 383

the length (in characters and tokens) across the 384

four candidates within each sample, and then tak- 385

ing the mean over all samples. Token lengths are 386

calculated using the GPT-4o-mini tokeniser via the 387

tiktoken library (OpenAI, 2023). 388

To ensure linguistic and topical diversity in our 389

dataset, we collected raw Persian text data from 390

over 40 distinct websites spanning a broad range 391

of domains. These include news and current af- 392

fairs (e.g., ISNA, KhabarOnline, YJC), technol- 393

ogy and digital media (e.g., Digiato, Zoomit), 394

religion and culture (e.g., Hawzah, WikiShia, 395

Wiki Ahlolbait), lifestyle and health (e.g., Nin- 396

iSite, Doctoreto, Namnak), economy and busi- 397

ness (e.g., EqtesadOnline, Ecoiran, Digikala Mag), 398

travel and leisure (e.g., Hamgardi, Alibaba), educa- 399

tion and self-improvement (e.g., Fidibo, Taaghche, 400

Motamem), and sports and entertainment (e.g., 401

Varzesh3, VIPofilm). In addition, user-generated 402

content platforms like Virgool contribute informal 403

and diverse writing styles. This domain variety 404

enables broad coverage of content structures, writ- 405

ing registers, and topics, making the dataset a rep- 406

resentative resource for real-world commonsense 407

reasoning in Persian. 408

4.2 Effectiveness of DRESS-AF in Distractor 409

Generation 410

4.2.1 PerCoR Dataset 411

To evaluate the effectiveness of our proposed dis- 412

tractor generation method during the construc- 413

tion of the dataset, we track the performance 414

of the GPT-4o-mini model on the provisional 415

datasets constructed during the optimization pro- 416

cess. Specifically, we run c = 30 trials, where in 417

each trial we use a different pair of (α, β) coeffi- 418

cients to generate distractors based on the scoring 419

function defined in Section 3. Our goal is to ad- 420

versarially reduce the model’s accuracy—i.e., to 421

identify distractor settings that make the multiple- 422

choice task more challenging. Among the c trials, 423

we select the (α∗, β∗) pair corresponding to the 424
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Figure 3: Accuracy of GPT-4o-mini on the provisional
dataset, during the construction of the PerCoR dataset.
DRESS-AF tries to find the best coefficients within 30
trials. The first 10 trials use random sampling, followed
by TPE-based search. The lowest accuracy (trial 20)
corresponds to the selected distractor configuration.

lowest model accuracy for use in the final dataset425

construction.426

Figure 3 shows the model’s accuracy across the427

30 trials. For the first 10 trials, we use random428

initialization to encourage exploration; from trial429

11 onward, we apply the Tree-structured Parzen430

Estimator (TPE) algorithm for guided search. We431

plot the accuracy along with a rolling standard de-432

viation (window size = 3) to visualize exploration433

dynamics. As seen, the variance is initially high434

due to random sampling, then decreases as the opti-435

mization converges. The lowest observed accuracy436

occurs at trial 20, indicating the most adversarial437

configuration found by DRESS-AF.438

4.2.2 HellaSwag Dataset439

To further demonstrate the effectiveness and gener-440

ality of DRESS-AF in generating challenging dis-441

tractor candidates without introducing generation-442

induced biases from LLMs, we apply the method to443

a non-Persian benchmark: the HellaSwag dataset444

(Zellers et al., 2019). Specifically, we take the vali-445

dation split of the HellaSwag dataset, then use its446

sentence–completion pairs (i.e., the context and447

gold ending) as inputs to DRESS-AF, showcasing448

the method’s language-agnostic applicability.449

To evaluate the extent to which DRESS-AF al-450

lows control over distractor difficulty, we construct451

two new variants of HellaSwag. In the first (harder)452

version, for each sample, we randomly sample453

three distractors from the top 10 highest-scoring454

candidates based on the embedding similarity score455

Figure 4: Accuracy of GPT-4o-mini on the provisional
dataset across 30 trials during DRESS-AF optimisation
on sentence–completion pairs from HellaSwag. The
left plot corresponds to the harder version, with distrac-
tors sampled from the top 10 candidates. The right plot
corresponds to the easier version, where the top 3 candi-
dates are excluded and distractors are sampled from the
next top 20.

(excluding the gold completion). In the second (eas- 456

ier) version, we exclude the top 3 candidates (and 457

the gold completion if it is not among them), then 458

sample three distractors from the next top 20. For 459

both versions, we run c = 30 optimisation trials to 460

find the best (α, β) parameters via the DRESS-AF 461

procedure. For both variations, we employed Jina- 462

v3 (Sturua et al., 2024) as the embedding model. 463

Figure 4 shows the accuracy of GPT-4o-mini 464

on provisional datasets over the 30 trials during 465

the tuning process of (α, β). The observed trend 466

resembles the Persian setup in Figure 3: during the 467

initial 10–15 randomly sampled trials, variance is 468

high due to exploration; afterward, performance 469

stabilises as TPE converges. Using the best-found 470

(α, β), we finalise the two dataset variants. We then 471

evaluate both closed-source (GPT-4o-mini) and 472

open-source (Gemma-3-27B-it) models on these 473

variants, as well as on the original HellaSwag, to as- 474

sess how distractor difficulty affects performance. 475

Figure 5 presents model performance across 476

three versions of the HellaSwag dataset: the orig- 477

inal, an easier variant, and a harder one—both 478

constructed using DRESS-AF. As expected, accu- 479

racy decreases as the distractor difficulty increases, 480

demonstrating the method’s effectiveness in pro- 481

ducing more challenging distractors. Notably, both 482

GPT-4o-mini and Gemma3-27B-it exhibit the low- 483

est accuracy on the harder variant, indicating that 484

DRESS-AF successfully identifies distractors that 485

are more confounding for models. 486

The performance difference between the easier 487

and harder versions can be attributed to the dis- 488

tractor sampling strategy. In the easier variant, we 489

exclude the top three most confounding candidates 490
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Figure 5: Accuracy of GPT-4o-mini and Gemma3-27B-
it, representing closed- and open-source models respec-
tively, across three HellaSwag variants. DRESS-AF was
used to generate distractors for the easier and harder
variants.

and then randomly select from the next top 20.491

This design favours broader semantic differences492

between gold and distractor completions. In con-493

trast, for the harder variant, we randomly sample494

distractors from the top 10 candidates, making the495

distractors more semantically similar to the correct496

answer and hence more difficult.497

While increasing dataset difficulty is desirable,498

it is crucial that the dataset remains answerable499

and reliable. To assess this, we conduct a hu-500

man evaluation on a 200-sample subset from each501

dataset. Each dataset is annotated by a human502

annotator. The resulting human accuracies are503

90% for the original HellaSwag, 89.5% for the504

easier variant, and 83% for the harder variant. Al-505

though the trend mirrors the degradation observed506

in model performance, the drop in human accu-507

racy is modest by comparison. These results high-508

light an important point: unlike LLM-generated509

distractors that may introduce stylistic or fluency510

biases, our embedding-based distractor construc-511

tion avoids generation artifacts, allowing humans512

to perform more consistently. This suggests that513

while DRESS-AF introduces additional challenge,514

it maintains dataset integrity. In sum, DRESS-AF515

yields more difficult yet human-solvable distrac-516

tors, effectively benchmarking model robustness517

without compromising dataset quality.518

4.3 Model Results on PERCOR519

To assess the out-of-the-box commonsense abil-520

ities of modern LLMs in Persian, we evaluated521

12 closed-source and 20 open-source models in a522

zero-shot, multiple-choice setting. Each model523

was prompted in Persian to return only the index524

of the correct option. We report: (1) Strict Ac- 525

curacy—exact match on the raw output, and (2) 526

Post-Processed Accuracy—after applying a sim- 527

ple regex to extract the final digit 1–4, recovering 528

correct answers when extra justification is included. 529

The model results appear in Table 1. 530

Overall, closed-source models dominate: 531

OpenAI-o3 (OpenAI, 2025b) tops the leaderboard 532

at 92.18 %, followed by Claude-3.7-Sonnet (An- 533

thropic, 2025) (91.17 %) and GPT-4.1 (OpenAI, 534

2025a) (88.39 %); the best open-source checkpoint, 535

DeepSeek-R1 (DeepSeek-AI et al., 2025a), reaches 536

82.51 %, trimming the gap to roughly 10%, while 537

most open-source peers fall between 60 % and 538

80 %. Human majority-vote accuracy on PERCOR 539

is 89 % (details in Appendix B.4), so only o3 and 540

Sonnet currently exceed non-expert annotators per- 541

formance. Despite strong aggregate performance, 542

top-performing models still exhibit occasional 543

failures on nuanced reasoning cases—several 544

examples are provided in Appendix B.6. 545

Formatting sensitivity is revealed by the gaps 546

between Strict and Post-Processed accuracy: 547

e.g., GPT-4o (OpenAI, 2024) from 78.32% to 548

86.65% (+8.3%), LLaMA-3.3-70B (Grattafiori 549

et al., 2024) from 11.23% to 79.56% (+68.3%), 550

Aya-Expanse-32B (Dang et al., 2024) from 551

5.85% to 63.27% (+57.4%), and DeepSeek-V3 552

(DeepSeek-AI et al., 2025b) from 51.15% to 553

82.41% (+31.3%). Large difference indicates that 554

the model often embeds the correct answer in ex- 555

tra prose; shallow post-processing recovers more 556

than 60% of hidden accuracy for some models. In 557

contrast, other models show consistent and simi- 558

lar accuracies, indicating strong adherence to the 559

required output format. 560

Within individual open-source families, accu- 561

racy generally scales with parameter count: the 562

Gemma3 (Team et al., 2025) series improves from 563

26% (1B) to 76% (27B), Qwen-3 (Yang et al., 2025) 564

from 50% (4B) to 76.5% (32B), while Mistral 565

(Jiang et al., 2023; MistralAI, 2025) lags (7B in- 566

struct: 30%; 24B “Small-3.1”: 69%). Command 567

A (Cohere et al., 2025) outperforms its predeces- 568

sor Command R (Cohere, 2024) (79.8 % vs. 60.0 %), 569

likely due to its significantly larger parameter count 570

and improved multilingual alignment—especially 571

in Persian. The LLaMA-3.2 instruction variants 572

(1B/3B) underperform (<25%), yet the 70B variant, 573

after post-processing, rivals Gemma3-27B. These 574

trends confirm that parameter count alone is in- 575

sufficient; alignment strategy and prompt-format 576
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robustness are equally critical on PerCoR.577

Closed-source diversity also emerges:578

o3 > GPT-4.1 > GPT-4o suggests benefits579

from more advanced architecture and reasoning580

abilities. While OpenAI-o4-mini belongs to the581

same “o-series” family, it underperforms o3 by a582

notable margin (85.5 % vs. 92.2 %), potentially due583

to architectural simplifications or instruction tuning584

compromises aimed at latency and efficiency. The585

superior performance of Gemini-Flash-2.5 over586

Flash-2.0 and Flash-Lite-2.0 (Comanici et al.,587

2025) reflects incremental training improvements;588

and Claude-3.7-Sonnet (91.2%) outperforming589

Claude-3.5-Haiku (Anthropic, 2024) (71.6%)590

aligns with Anthropic’s published capability tiers.591

To further investigate the potential592

of instruction-tuned open models, we593

fine-tuned LLaMA3.3-70B-Instruct and594

Qwen3-32B-Instruct by applying LoRA595

(Hu et al., 2022) on the attention layers, leveraging596

only 10 % of the training data (8,000 samples) for a597

sequence classification objective. Despite its poor598

zero-shot performance on strict accuracy (11.23 %),599

the fine-tuned LLaMA3.3-70B-Instruct achieved600

an accuracy of 86.82 %, while Qwen3-32B reached601

85.64 %—both surpassing DeepSeek-R1 (82.51 %)602

and DeepSeek-V3 (82.41 %), the strongest603

open-source models in our zero-shot evaluation.604

This result highlights the latent capability of605

instruction-tuned LLMs and demonstrates that606

even lightweight, resource-efficient fine-tuning can607

substantially improve both task performance and608

output format adherence. Full fine-tuning details609

are provided in Appendix B.5.610

In summary: (i) PERCOR is a challenging611

benchmark—only two proprietary models exceed612

90 % accuracy, while the best open-source model,613

DeepSeek-R1, still lags by ∼10 %; (ii) post-614

processing plays a crucial role in revealing latent615

reasoning capabilities, especially for models that616

embed correct answers in natural language rather617

than the required format; (iii) reasoning-oriented618

fine-tuning and alignment are key—OpenAI-o3619

leads all models, and DeepSeek-R1 outperforms620

DeepSeek-V3 in strict accuracy, highlighting its621

superior adherence to the expected output format;622

and (iv) there remains ample headroom for open-623

source models to close the gap—not only through624

better prompt-following and format alignment, but625

also via lightweight, resource-efficient fine-tuning;626

our adaptation of these models with limited data627

surpassed the strongest open-source zero-shot base-628

Table 1: Accuracy of closed-source and open-source
models on the test split of the PERCOR dataset.

Group Model Str Acc PP Acc

C
lo

se
d-

So
ur

ce

GPT-4o-mini 75.98 75.98
GPT-4o 78.32 86.65
GPT-4.1-nano 54.94 54.94
GPT-4.1-mini 77.12 77.12
GPT-4.1 88.39 88.39
OpenAI o3 92.18 92.18
OpenAI o4-mini 85.51 85.51
Gemini 2.0 Flash-Lite 81.43 81.43
Gemini 2.0 Flash 86.38 86.38
Gemini 2.5 Flash 87.17 87.14
Claude 3.5 Haiku 71.60 71.60
Claude 3.7 Sonnet 91.17 91.17

O
pe

n-
So

ur
ce

Gemma 3n-E4B-it 59.15 59.15
Gemma 3-1B-it 25.99 25.99
Gemma 3-4B-it 48.32 48.32
Gemma 3-12B-it 70.94 70.94
Gemma 3-27B-it 76.28 76.28
Mistral 7B Instruct v0.3 30.11 30.15
Mistral Small 3.1 24B Instruct 68.94 68.94
LLaMA 3.2 1B Instruct 0.79 24.12
LLaMA 3.2 3B Instruct 25.17 25.21
LLaMA 3.3 70B Instruct 11.23 79.56
Aya Expanse 32B 5.85 63.27
Command R-v01 60.0 60.0
Command A 79.81 79.84
Qwen 3-4B 50.33 50.33
Qwen 3-8B 54.37 54.37
Qwen 3-14B 69.58 69.58
Qwen 3-30B-A3B 68.80 68.80
Qwen 3-32B 76.54 76.54
DeepSeek-V3 51.15 82.41
DeepSeek-R1 82.51 82.51

lines, highlighting the impact of minimal task- 629

specific supervision. 630

5 Conclusion 631

We introduced PERCOR, a 106K-example bench- 632

mark that fills a major evaluation gap for common- 633

sense reasoning in Persian. Our conjunction-based 634

extraction strategy generates natural sentence- 635

completion pairs from static prose, while DRESS- 636

AF produces hard, language-agnostic distractors 637

without resorting to LLM generation. Benchmark- 638

ing 32 models reveals a persistent ten-point gap be- 639

tween the strongest open and closed systems, and 640

qualitative analysis highlights residual weaknesses 641

in discourse-level reasoning. 642

Future work will (i) extend our language- 643

agnostic pipeline to other languages by adapting 644

conjunction lists and applying DRESS-AF, and (ii) 645

conduct expert-based human evaluation to estab- 646

lish a high-quality gold standard for ambiguous 647

cases. We believe PERCOR will catalyse research 648

on multilingual commonsense reasoning and foster 649

the development of more robust, culturally-aware 650

language models. 651
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Limitations652

Annotation As noted previously (see Section 4),653

our annotations were conducted by human anno-654

tators rather than human experts. While this ap-655

proach is sufficient for broad evaluations, relying656

on expert annotators would likely yield more ac-657

curate and reliable assessments, particularly for658

complex or ambiguous cases. Moreover, we could659

have annotated a larger portion of the dataset to ob-660

tain a more robust and reliable estimate of human661

accuracy. Additionally, we could have adopted a662

standard annotation strategy similar to the one used663

in HellaSwag (Zellers et al., 2019), which involves664

multiple rounds of human validation and a larger665

set of possible answers to choose from. However,666

this approach requires substantially more human667

effort and coordination, making it more resource-668

intensive.669

Multilingual Given that the proposed method is670

largely language-agnostic, we could have extended671

the algorithm to other languages to construct a672

multilingual commonsense reasoning dataset. This673

would have involved creating lists of conjunctions674

in each target language for the sentence-completion675

step, followed by applying the DRESS-AF algo-676

rithm accordingly.677

Ethics678

License In accordance with OpenAI’s Terms of679

Use, “as between you and OpenAI... you (a) retain680

your ownership rights in Input and (b) own the681

Output. We hereby assign to you all our right, title,682

and interest, if any, in and to Output”2.683

Google Gemini’s terms distinguish between684

paid vs unpaid usage: under paid/enterprise tiers,685

Google does not use submitted prompts or outputs686

to train its models and customers retain ownership687

of both input and output3. Under unpaid or free688

tiers, Google may use content for product improve-689

ments, and retention policies differ.690

Anthropic’s Claude Terms grant users ownership691

of all generated outputs: “subject to your compli-692

ance with our Terms, we assign to you all of our693

right, title, and interest—if any—in Outputs”4.694

Based on these platform policies, we acknowl-695

edge that—under the Terms of Use for OpenAI,696

2https://openai.com/policies/
row-terms-of-use/

3https://ai.google.dev/gemini-api/terms
4https://terms.law/2024/08/24/

who-owns-claudes-outputs-and-how-can-they-be-used/

Google Gemini (paid/enterprise tiers), and An- 697

thropic Claude—users retain ownership of both 698

prompts (inputs) and generated outputs, and that 699

the AI-produced text used in this research was ob- 700

tained and employed ethically within those licens- 701

ing frameworks. 702

Furthermore, we confirm that the outputs gen- 703

erated from the model were not used to train or 704

develop models that compete with These Models. 705

All content and model-generated assistance were 706

applied solely for academic and illustrative pur- 707

poses in the context of this research. 708

To generate the PerCoR dataset, we utilized tex- 709

tual data extracted from over 40 publicly accessible 710

websites. All selected sources were openly avail- 711

able and did not impose restrictions that would 712

preclude academic or non-commercial use. 713

Harmful content To curate our dataset, we se- 714

lected sources with minimal sexual content and 715

hate speech to maintain ethical standards. However, 716

due to the complexities of open-domain language 717

and commonsense reasoning tasks, we cannot guar- 718

antee the absence of social biases. As noted in 719

prior work (Sakai et al., 2024; Rajani et al., 2019; 720

Sap et al., 2020a), it remains challenging to deter- 721

mine when content that reflects commonsense also 722

constitutes social bias. 723
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other than the intended one. The final proportion of 1054
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Furthermore, we perform an additional pass over 1057

the entire dataset using a second prompt (shown in 1058

Figure 9) to identify structurally incomplete sen- 1059

tence completions. At this stage, 12,117 out of 1060

135,912 instances are flagged by the model as in- 1061

complete and removed from the dataset accord- 1062

ingly. 1063

B Model Evaluation 1064

B.1 Model Configurations 1065

We conducted all evaluations using the vLLM infer- 1066

ence engine for efficient serving of open-source 1067

models. Each model was run on a single NVIDIA 1068

A100 80GB GPU, except for LLaMA 3.2 70B In- 1069

struct, which required two A100 80GB GPUs due 1070

to its size. For DeepSeek variants, we used their 1071

official API endpoints, as the open-source check- 1072

points were not served locally. 1073

B.2 Model Behaviour by Input Length 1074

Owing to our conjunction-based segmentation strat- 1075

egy, PERCOR samples exhibit a broad range of in- 1076

put lengths. To assess how input length influences 1077

model performance, we analyse the correlation be- 1078

tween sentence length and model accuracy. As 1079

shown in Figure 10, both GPT-4o-mini and Gemma 1080
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Figure 6: Treemap visualisation of conjunction words used to generate sentence–completion pairs. The area of each
block corresponds to the conjunction’s frequency in the dataset. Less frequently used conjunctions are shown in the
adjacent panel for completeness.

Figure 7: The prompt that we used for GPT4o-mini to
detect the ambiguity of conjunctions.

3-27B-it exhibit improved accuracy as the number1081

of input tokens increases.1082

This trend suggests that longer sentence prefixes1083

provide more contextual cues, enabling models to1084

more reliably identify the correct completion. The1085

result highlights a natural advantage for models1086

when reasoning over richer, more informative con-1087

texts—an important factor to consider when design-1088

ing evaluation datasets for commonsense reason-1089

ing.1090

Figure 8: The number of data instances with ambiguous
conjunctions before and after filtering with the GPT4o-
mini model.

B.3 Few-Shot Performance 1091

To assess model sensitivity to minimal supervision, 1092

we conducted 1-shot and 5-shot evaluations on the 1093

PerCoR dataset using GPT-4o-mini and Gemma 1094

3-27B-it. As shown in Figure 11, Gemma bene- 1095

fits modestly from few-shot prompting, improving 1096

from 76.28% (zero-shot) to 78.51% (1-shot) and 1097

78.17% (5-shot). In contrast, GPT-4o-mini exhibits 1098

marginal or inconsistent gains, with accuracy fluc- 1099
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Figure 9: The prompt that is leveraged by GPT4o-mini
to filter out the incomplete pairs.

Figure 10: Accuracy of GPT-4o-mini and Gemma 3-
27B-it as a function of input length. Longer prefixes
tend to improve accuracy by offering more contextual
information.

tuating around its zero-shot baseline of 75.98%.1100

These results highlight the robustness of Gemma to1101

few-shot prompting and suggest that further gains1102

may require stronger prompt design or fine-tuning.1103

B.4 Human Evaluation1104

We used Label Studio (Tkachenko et al., 2020-1105

2022) to evaluate the accuracy on the test split of1106

the dataset. Each sample was annotated indepen-1107

dently by three human annotators. In cases where1108

at least two annotators agreed on the same label,1109

their consensus was taken as the final label, which1110

was then compared with the provided label. If all1111

three annotators disagreed, the sample was consid-1112

ered incorrectly labelled. Importantly, annotators1113

worked independently and were not aware of each1114

other’s selections.1115

B.5 Model Fine-tuning on the Dataset1116

To evaluate the impact of fine-tuning on PER-1117

COR, we selected two instruction-tuned open-1118

source models: LLaMA-3.3-70B-Instruct and1119

Qwen3-32B. The former was quantised to 4-bit pre-1120

Figure 11: Accuracy of GPT-4o-mini and Gemma 3-
27B-it on the PERCOR dataset under zero-shot, 1-shot,
and 5-shot settings.

cision, while the latter was trained using bfloat16. 1121

We used a per-GPU batch size of 8 for LLaMA and 4 1122

for Qwen3. Training was conducted for 2 epochs us- 1123

ing 8×A100 80GB GPUs with DeepSpeed (Rasley 1124

et al., 2020) for distributed optimisation. We used 1125

HuggingFace (Wolf et al., 2020) for training the 1126

models. 1127

Both models were fine-tuned using a Cosine 1128

learning rate scheduler with an initial learning rate 1129

of 5e–5 and a warmup ratio of 0.03. LoRA (Hu 1130

et al., 2022) was applied to the q, k, v, and o pro- 1131

jection matrices within the attention layers, with 1132

hyperparameters r=4 and α=8. 1133

Figures 12 and 13 show the training loss, evalua- 1134

tion loss, and evaluation accuracy over the course 1135

of training for both models. Training took approxi- 1136

mately 2.5 hours for LLaMA3.3 and around 1 hour 1137

for Qwen3. 1138

Figure 12: Training/evaluation loss and evaluation accu-
racy during fine-tuning of LLaMA-3.3-70B-Instruct
on PERCOR.

B.6 Qualitative Failure Cases 1139

Despite these strong overall results, even top- 1140

performing closed-source models occasionally fail 1141

on examples requiring subtle syntactic, temporal, 1142

or discourse-level reasoning. Several illustrative 1143
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Figure 13: Training/evaluation loss and evaluation ac-
curacy during fine-tuning of Qwen3-32B-Instruct on
PERCOR.

failure cases are provided in Figures 14- 17, where1144

the selected completions are semantically or gram-1145

matically incoherent. Each example is accompa-1146

nied by an explanation clarifying why the chosen1147

option is incorrect and why the correct answer bet-1148

ter satisfies the continuation constraints. These1149

qualitative insights highlight that high aggregate1150

accuracy can mask nuanced reasoning failures that1151

warrant deeper analysis.1152
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Figure 14: An example from the PerCoR dataset where both Claude 3.7 Sonnet and GPT-4.1 incorrectly selected
Option 4 (highlighted in red). While Option 4 contains true statements about the current and past state of Mars, it
fails to form a coherent continuation when appended to the prompt. The question sets up a comparison referring
specifically to Mars’s past, expecting a grammatically and temporally consistent continuation. Option 2 correctly
completes the sentence with a minimal and coherent reference to Mars’s possible past habitability.
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Figure 15: An example from the PerCoR dataset where both Claude 3.7 Sonnet and GPT-4.1 incorrectly selected
Option 2 (highlighted in red). Appending Option 2 to the prompt results in a grammatically broken and incoherent
sentence: “Infants, while your child is encouraged to play while standing...” — which abruptly shifts subject and
verb, making no syntactic or semantic sense. The phrase “Infants, while...” requires a continuation that describes a
physical or observational state of the infant. Only Option 4 satisfies this expectation with a coherent and contextually
appropriate description of the infant’s posture.
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Figure 16: An example from the PerCoR dataset where Claude 3.7 Sonnet and GPT-4.1 both incorrectly selected
Options 2 and 4, respectively. The sentence discusses how business closures led to a decline in payroll tax
contributions, and the phrase “On the other hand...” introduces a contrasting development that should remain within
the domain of tax revenue. While Option 2 is contextually plausible—highlighting economic stress—it shifts the
focus away from taxation. Option 4 is even less relevant, as it redundantly repeats the cause already stated in the
prompt (business closures due to COVID-19). In contrast, Option 3 presents a coherent and contrastive continuation:
despite payroll tax revenue declining, the share of wealth tax increased during the pandemic. This makes Option 3
the most topically and logically aligned completion.
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Figure 17: An example from the PerCoR dataset where Claude 3.7 Sonnet incorrectly selected Option 4 as the
answer. While Option 4 provides a comparison between chipsets, it fails to directly continue the original sentence,
which is about the X70 Pro Plus smartphone. The phrase “Nevertheless...” sets up a contrast or qualification
specifically about the phone mentioned. Option 1 correctly continues this contrast by discussing the Pro variant of
the same phone and its different chipset—maintaining topical and grammatical coherence. In contrast, Option 4
shifts focus entirely to the chipset itself, breaking the discourse continuity and making it an incoherent continuation
in context.
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