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Abstract

After a period of research, deep actor-critic algorithms have reached a level where1

they influence our everyday lives. They serve as the driving force behind the2

continual improvement of large language models through user-collected feed-3

back. However, their deployment in physical systems is not yet widely adopted,4

mainly because no validation scheme that quantifies their risk of malfunction. We5

demonstrate that it is possible to develop tight risk certificates for deep actor-critic6

algorithms that predict generalization performance from validation-time observa-7

tions. Our key insight centers on the effectiveness of minimal evaluation data.8

Surprisingly, a small feasible of evaluation roll-outs collected from a pretrained9

policy suffices to produce accurate risk certificates when combined with a simple10

adaptation of PAC-Bayes theory. Specifically, we adopt a recently introduced recur-11

sive PAC-Bayes approach, which splits validation data into portions and recursively12

builds PAC-Bayes bounds on the excess loss of each portion’s predictor, using13

the predictor from the previous portion as a data-informed prior. Our empirical14

results across multiple locomotion tasks and policy expertise levels demonstrate15

risk certificates that are tight enough to be considered for practical use.16

1 Introduction17

Reinforcement Learning (RL) is transforming emerging AI technologies. Large language models18

incorporate human feedback via RL, thereby continually improving their accuracy [Christiano et al.,19

2017, Ziegler et al., 2019, DeepSeek-AI et al., 2025]. Generative AI is increasingly being integrated20

into agentic workflows to automate complex decision making tasks. RL has also shown great promise21

in the control of physical robotic systems. Recent deep actor-critic algorithms learned to make a22

legged robot walk after only 20 minutes of outdoor training in an online mode [Kostrikov et al., 2023].23

Model-based extensions of actor-critic pipelines can also achieve sample-efficient visual-control tasks24

in diverse settings [Hafner et al., 2025, Zhang et al., 2023]. Despite the exciting results observed in25

experimental conditions, RL is used far less than classical approaches in physical robot control. This26

opportunity has largely been missed mainly because deep RL algorithms are overly sensitive to initial27

conditions and can change behavior drastically during training. Embodied intelligent systems have28

a high risk of causing harm when their generalization performance differs significantly from their29

observed validation performance. Predictable generalization performance is even more critical when30

these systems update their behavior based on interactions with humans.31

There has been an effort to use learning-theoretic approaches to train high-capacity predictors with32

risk certificates, i.e., bounds that guarantee a predictor’s generalization performance. Typically, this33

performance is estimated from observed validation results, which may be misleading. Probably34

Approximately Correct Bayesian (PAC-Bayes) theory [McAllester, 1999, Alquier et al., 2024] provides35

risk certificates for stochastic predictors, relative to a prior distribution over the hypothesis space.36

In this framework, the computationally prohibitive capacity term is reduced to a Kullback-Leibler37
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Figure 1: Our four steps to generate tight risk certificates for deep actor-critic algorithms.

divergence between the posterior and the prior, enabling the incorporation of domain knowledge into38

the analysis. Since we often deal with stochastic policies, relying on PAC-Bayes is a natural choice.39

PAC-Bayes is the first and remains the most promising method for providing meaningful risk40

certificates to deep neural networks [Dziugaite and Roy, 2017, Pérez-Ortiz et al., 2021, Lotfi et al.,41

2022]. Further studies have improved the tightness, i.e., precision, of these certificates through the42

following techniques: (i) pretraining probabilistic neural nets on held-out data and using them as43

data-informed priors [Ambroladze et al., 2006, Dziugaite et al., 2021]; (ii) using pretrained networks44

as first-step predictors and developing PAC-Bayes guarantees on the residual of their predictions,45

termed the excess loss; and (iii) recursively repeating the first two steps on multiple data splits, a46

recent method known as the Recursive PAC-Bayes [Wu et al., 2024]. The scope of these exciting47

developments has thus far been limited to simple classification tasks with feedforward neural networks.48

Their application to deep actor-critic algorithms remains open, primarily because the mainstream49

PAC-Bayes bounds assume i.i.d. datasets, whereas RL assumes a controlled Markov chain.50

We present a simple recipe for providing risk certificates for deep model-free actor-critic architectures.51

We find that, contrary to what one might expect, the three modern PAC-Bayesian learning tools52

mentioned above can successfully handle the high variance of Monte Carlo samples collected by53

running a pretrained policy network for multiple episodes in evaluation mode. Our approach proposes54

self-certified training of probabilistic neural networks on different splits of an i.i.d. data set containing55

return realizations of the policy, computed by first-visit Monte Carlo and post-processed through56

a simple thinning approach. We recursively build a PAC-Bayes bound on the excess losses of57

these networks, following a new adaptation of the recipe introduced by Wu et al. [2024]. Figure 158

illustrates our risk-certificate generation workflow. Our results highlight that the risk certificates get59

significantly tighter as the recursion depth increases. The final bounds are tight enough for practical60

use. Furthermore, the tightness of the risk certificates is proportional to the policy’s level of expertise.61

2 Background62

2.1 The state of the art of model-free deep actor-critic learning63

Consider a set of states S an agent may be in and an action space A from which the agent can64

choose actions to interact with its environment. Denote by ∆(S) and ∆(A) the sets of probability65

distributions defined on S and A, respectively. We define a Markov Decision Process (MDP)66

[Puterman, 2014] as the tuple M = ⟨S,A, r, P, P0, γ⟩, where r : S × A → [0, R] is a bounded67

reward function, P : S ×A× S → [0, 1] is the state-transition kernel conditioned on a state-action68

pair; specifically P (s′|s, a) is the probability distribution of the next state s′ ∈ S given the current69

state-action pair (s, a) ∈ S ×A. We denote the initial-state distribution by P0 ∈ ∆(S), the discount70

factor by γ ∈ (0, 1), and let π : S ×A → [0, 1] be a policy. The goal of RL is to learn a policy71

that maximizes the expected discounted return, π∗ := argmaxπ∈ΠEτπ [
∑∞

t=0 γ
tr(st, at)]. The72

expectation is taken with respect to the trajectory τπ := (s0, a0, s1, a1, s2, a2, . . .) of states and73

actions generated when a policy π chosen from a feasible set Π is executed. We refer to π∗ as the74

optimal policy. The exact Bellman operator for a policy π is defined as75

TπQ(s, a) := r(s, a) + γEs′∼P (·|s,a) [Q(s′, π(s′))] (1)
for some function Q : S × A → R. The unique fixed point of this operator is the true76

action-value function Qπ, which maps a state-action pair (s, a) to the expected discounted77

sum of rewards the policy π collects when executed from (s, a). In other words, the equality78

TπQ(s, a) = Q(s, a) holds if and only if Q(s, a) = Qπ(s, a),∀(s, a). Any other Q incurs an error79

(TπQ(s, a) − Q(s, a))2, called the Bellman error. Common deep actor-critic methods approxi-80

mate the true action-value function Qπ by one-step Temporal Difference (TD) learning that min-81

imizes L(Q, π) := Es∼Pπ [(TπQ(s, a) − Q(s, a))2] with respect to Q, given a data set D and82

Pπ(s
′ ∈ A) = Es∼P0

[∑
t>0 P (st ∈ A|s0 = s, π(s))

]
which is defined as the state-visitation dis-83

tribution of policy π for some event A that belongs to the σ-algebra of the transition probability84
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distribution. Because the transition probabilities are unknown, the expectation term in Eq. 1 cannot85

be computed. Instead, the observed transitions are used to approximate it with a single-sample Monte86

Carlo estimate, yielding the training objective below:87

L̃(Q) := Es∼Pπ

[
Es′∼P (·|s,π(s))

[
(r(s, a) + γQ(s′, π(s′))−Q(s, a))2

] ]
.

A deep actor-critic algorithm fits a neural-network function approximator Q, referred to as the critic,88

to a set of observed tuples (s, a, s′) stored in a replay buffer D by minimizing an empirical estimate89

of the stochastic loss: L̂D(Q) := 1/|D|
∑

(s,a,s′)∈D(T̃πQ(s, a, s′) − Q(s, a))2. The critic is then90

used to train a policy network, or actor, π′ ← argmaxπ Es∼Pπ [Q(s, π(s))]. It is common practice to91

adopt the Maximum-Entropy Reinforcement Learning approach [Haarnoja et al., 2018a,b] to balance92

exploration and exploitation, thereby ensuring effective training. The approach supplements the93

reward function with a policy-entropy term rMaxEnt(s, a) = r(s, a) + αH[π(·|s)], where α ≥ 0 is a94

scaling hyperparameter tuned jointly with the actor and critic.95

Performing off-policy TD learning with deep neural nets is notoriously unstable which is often96

attributed to the deadly triad [Sutton and Barto, 2018]. The main source of instability is the97

accumulation of errors from approximating TπQ by its Monte Carlo estimate. Strategies to improve98

stability include maintaining Polyak-updated target networks [Lillicrap et al., 2016] and learning99

twin critics while using the minimum of their target-network outputs in Bellman target calculation100

[Fujimoto et al., 2018]. Empirically, training an ensemble of critic networks in a maximum-entropy101

setup largely mitigates these stability issues. We adopt REDQ [Chen et al., 2021], a state-of-the-art102

actor-critic method for model-free continuous control, as our representative approach. This choice is103

pragmatic rather than restrictive allowing us to trade the computational cost of a broader exploration104

of algorithms for a deeper, more comprehensive empirical evaluation of a single one.105

2.2 Developing risk certificates with PAC-Bayes bounds106

PAC-Bayes [McAllester, 1999, Alquier et al., 2024] offers a powerful way to understand and control107

how well learning algorithms generalize by blending prior beliefs with what we learn from data.108

PAC-Bayesian learning uses modern machine learning techniques to model ρ with complex function109

approximators and fit them to data. It has been successfully applied in both image classification110

[Dziugaite and Roy, 2017, Wu et al., 2024] and regression tasks [Reeb et al., 2018]. Its application to111

reinforcement learning has so far been limited to the design of critic training losses without rigorously112

quantifying the tightness of the performance guarantees [Tasdighi et al., 2024a,b].113

Notation. Let H : X → Y be a set of feasible hypotheses and ℓ : Y × Y → [0, 1] be114

a bounded loss function.1 Further, let L(h) = E(x,y)∼PD
[ℓ(h(x), y)] be the expected error,115

where PD is a distribution on X × Y . The empirical loss is L̂(h) = 1
N

∑N
i=1 ℓ(h(xi), yi)116

for a data set D = {(xn, yn) : n ∈ {1, . . . , N}} of size N with (xn, yn) ∼ PD. P117

is the set of distributions on H. For two distributions ρ, ρ0 on H, the Kullback-118

Leibler (KL) divergence is defined as KL (ρ ∥ ρ0) ≜ Eh∼ρ [log ρ(h)− log ρ0(h)]. We use119

kl (p ∥ q) ≜ p log(p/q) + (1− p) log((1− p)/(1− q)) to denote the KL divergence between two120

Bernoulli distributions. PAC-Bayesian analysis [McAllester, 1999, Shawe-Taylor and Williamson,121

1997, Alquier et al., 2024] develops bounds on the expected loss Eh∼ρ [L(h)], under a posterior dis-122

tribution ρ with respect to a prior distribution ρ0, that hold with high probability. That is, they provide123

risk certificates for the generalization error. For brevity, we will use Eρ [·] = Eh∼ρ [·] throughout this124

paper. In the context of PAC-Bayes, the terms posterior and prior refer to distributions dependent125

and independent of the validation data, respectively. They are not to be understood in a Bayesian126

manner as being linked by a likelihood.2 Which bounds one should choose to get the tightest risk127

certificates depends on the specific use case; see, e.g., Alquier et al. [2024] for a recent introduction128

and a survey of various bounds. In this work we rely on bounds derived from the kl divergence as129

they are tighter than the alternatives when no additional information about the data distribution is130

available, while noting that the same arguments apply to any other PAC-Bayesian bound.131

2.2.1 PAC-Bayes-kl bound132

Assuming the definitions given above, the PAC-Bayes-kl bound is given by133

1Our discussion generalizes directly to any bounded loss within an interval [a, b] with a, b ∈ R.
2See Germain et al. [2016] for results linking PAC-Bayes and Bayesian inference.
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Theorem 2.1 (PAC-Bayes-kl bound [Seeger, 2002, Maurer, 2004]). For any probability distribution134

ρ0 ∈ P that is independent of D and any δ ∈ (0, 1), we have135

P
(
∃ρ ∈ P : kl

(
Eρ[L̂(h)]||Eρ [L(h)]

)
≥
(
KL (ρ ∥ ρ0) + ln(2

√
N/δ)

)
/N
)
≤ δ.

Proof. See, e.g., Maurer [2004] for a proof of the bound.136

We define the upper inverse of kl (· ∥ ·) as kl−1,+(p̂, ε) ≜ max{p : p ∈ [0, 1] | kl (p̂ ∥ p) ≤ ε} and137

the lower one as kl−1,−(p̂, ε) ≜ min{p : p ∈ [0, 1], kl (p̂ ∥ p) ≤ ε} and cite the following inequality.138

Lemma 2.2 (kl-inequality [Langford, 2005, Foong et al., 2021, 2022]). Let Z1, . . . , ZN be i.i.d.139

random variables taking values on an interval [0, 1] and E [Zn] = p for all n. Let their empirical140

mean be p̂ = 1
N

∑N
n=1 Zn. Then, for any δ ∈ (0, 1) we have141

P
(
kl(p̂||p) ≥ ln(1/δ)/N

)
≤ δ,

the inverse of which is given by142

P
(
p ≥ kl−1,+ (p̂, ln(1/δ)/N)

)
≤ δ, and P

(
p ≤ kl−1,− (p̂, ln(1/δ)/N)

)
≤ δ.

Proof. See Langford [2005], Corollary 3.7 for a proof of the bound.143

2.2.2 PAC-Bayes-Split-kl bound144

Wu and Seldin [2022] generalize these bounds to random variables that take values in intervals [a, b]145

splitting each into two components that individually satisfy the constraints of the kl-inequality.146

Let Z ∈ [a, b], with a, b ∈ R, be a random variable and set p = E [Z]. For µ ∈ [a, b] define147

Z+ = max{0, Z − µ} and Z− = max{0, µ−Z}, so that Z = µ+Z+−Z−. Let p+ = E [Z+] and148

p− = E [Z−] be their respective expectations, and let p̂+ = 1
N

∑N
n=1 Z

+
n and p̂− = 1

N

∑N
n=1 Z

−
n149

be their empirical means for an i.i.d. sample Z1, . . . , ZN . The split-kl inequality is stated below.150

Lemma 2.3 (Split-kl inequality [Wu and Seldin, 2022]). For any µ ∈ [a, b] and δ ∈ (0, 1)151

P

(
p ≤ µ+ (b− µ)kl−1,+

(
p̂+

b− µ
,
ln(2/δ)

N

)
− (µ− a)kl−1,−

(
p̂−

µ− a
,
ln(2/δ)

N

))
≥ 1− δ.

Proof. The lemma follows by applying Lemma 2.2 to each of the kl terms and a union bound.152

For the PAC-Bayesian analogue, define ℓ̃ : Y × Y → [a, b], where a, b ∈ R. For µ ∈ [a, b],153

define ℓ̃+ = max{0, ℓ̃ − µ} and ℓ̃− = max{0, µ− ℓ̃}. L̃+(h) = E(x,y)∼PD
[ℓ̃+(h(x), y)] and154

ˆ̃L+(h) = 1
N

∑N
n=1 ℓ̃

+(h(xn), yn) are the expected and empirical losses. L− and ˆ̃L− are defined155

analogously. With these definitions, we now cite the PAC-Bayes-split-kl inequality.156

Theorem 2.4 (PAC-Bayes-Split-kl inequality [Wu and Seldin, 2022]). Let ℓ̃ and the remaining loss157

terms be defined as above. Then for any ρ0 onH independent of D, any µ ∈ [a, b], and any δ ∈ (0, 1)158

P

(
∃ρ ∈ P : Eρ[L̃(h)] ≥ µ+ (b− µ)kl−1,+

(
Eρ[

ˆ̃L+(h)]

b− µ
,
KL (ρ ∥ ρ0) + ln(4

√
N/δ)

N

)

− (µ− a)kl−1,+

(
Eρ[

ˆ̃L−(h)]

µ− a
,
KL (ρ ∥ ρ0) + ln(4

√
N/δ)

N

))
≤ δ.

Proof. The theorem follows by applying Lemma 2.3 to the decomposition159

Eρ[L̃(h)] = µ+ Eρ[L̃
+(h)]− Eρ[L̃

−(h)].160
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2.2.3 Recursive PAC-Bayes bound161

Data-informed prior. The tightness of PAC-Bayesian bounds is dominated by the KL divergence162

between the posterior ρ and the prior ρ0. The better the prior guess is, the tighter the bound. Because163

the prior must be be independent of the observed data, a common choice is to select a prior that is as164

uniform as possible over the hypothesis space. To improve upon this naïve choice, Ambroladze et al.165

[2006] proposed splitting the observed data into two disjoint subsets S0 and S1, i.e., D = S0 ∪ S1,166

using S0 to infer a data-informed prior and S1 to subsequently evaluate the bound. This approach167

balances the benefit of a better prior with the cost of having fewer observations to evaluate the bound.168

Excess loss. The excess loss Lexc(h) with respect to a reference hypothesis h∗ ∈ H is defined as169

Lexc(h) = L(h) − L(h∗). The excess-loss concept allows us to decompose the expected loss as170

Eρ [L(h)] = Eρ [L(h)− L(h∗)] + L(h∗). Using S0 to construct both the prior ρ0 and the reference171

h∗ , Mhammedi et al. [2019] showed that, assuming L(h∗) is close to L(h), the excess loss has172

lower variance and thus yields a more efficient bound, while a bound on L(h∗) is independent of173

KL (ρ ∥ ρ0) and can be obtained using standard generalization guarantees.174

Recursive PAC-Bayes. Wu et al. [2024] generalized the excess loss further by in-175

troducing a scaling factor κ < 1 to maintain a diminishing effect of recursions:176

Eρ [L(h)] = Eρ [L(h)− κEρ0
[L(h∗)]] + κEρ0

[L(h∗)]. Here, the first term reflects the excess loss177

with respect to a scaled version of the expected reference hypothesis loss under the prior ρ0. The178

second term in turn is an expected loss again similar to the one on the left-hand side of the equation.179

Instead of adhering to a binary split D = S0 ∪ S1 such that S0 ∩ S1 = ∅, they propose to extend180

this decomposition recursively, by partitioning D into T disjoint subsets, D =
⋃T

t=1 St and and they181

define S≤t =
⋃t

s=1 Ss and S≥t =
⋃T

s=t Ss. Their recursion is given by182

Eρt
[L(h)] = Eρt

[
L(h)− κtEρt−1

[L(h)]
]
+ κtEρt−1

[L(h)] , (2)

for t ≥ 2, and κ1, . . . , κT are scaling factors. The distributions ρ1, . . . , ρT ∈ H form a sequence183

such that ρt depends solely on S≤t and S≥t to estimate Eρt
[L(h)].184

While Wu et al. [2024] formulate their final recursive bound directly for a zero-one loss and PAC-185

Bayes split-kl bounds [Wu and Seldin, 2022], we present their result first in a general loss-agnostic186

form before we construct a specific bound in the next section.187

Theorem 2.5. (Recursive PAC-Bayes bound.) Let D = S1 ∪ · · · ∪ ST be a disjoint decomposition188

of the set of observations D. Let S≤t and S≥t be as defined above, N = |D|, and Nt = |S≥t|. Let189

κ1, . . . , κT be a sequence of scaling factors, where κt is allowed to depend on S≤t−1. Let Pt be the190

set of distributions onH which are allowed to depend on S≤t, and ρt ∈ Pt. Then, for any δ ∈ (0, 1),191

P
(
∃t ∈ [T ], ρt ∈ Pt such that Eρt

[L(h)] ≥ Bt(ρt)
)
≤ δ,

where Bt(ρt) is a generic PAC-Bayesian bound on Eρt [L(h)] defined recursively as follows.192

Bt(ρt) = Et(ρt, κt) + κtBt−1(ρ
∗
t−1),

where B1(ρ1) is a PAC-Bayes bound on Eρ1
[L(h)] with an uninformed prior and Et(ρt, κt) is a193

PAC-Bayes bound on the excess loss Eρt

[
L(h)− κtEρ∗

t−1
[L(h′)]

]
.194

Proof. Because B1(ρ1) and Et(ρt, κt) are PAC-Bayes bounds by assumption, we have195

P (∃ρ1 ∈ P1 : Eρ1 [L(h)] ≥ B1(ρ1)) ≤ δ/T,

and P
(
∃ρt ∈ Pt : Eρt

[
L(h)− κtEρ∗

t−1
[L(h′)]

]
≥ Et(ρt, κt)

)
≤ δ/T for t ∈ {2, . . . , T}.

The claim follows by expected loss decomposition and the recursion.196

3 Recursive PAC-Bayesian risk certificates for reinforcement learning197

Obtaining risk certificates involves four steps, following our conceptual structure in Figure 1.198

(i) Training an agent. The chosen actor-critic algorithm, REDQ [Chen et al., 2021], which we use199

in our experiments, is trained until convergence or until a computational budget is exhausted, after200

which we freeze its policy parameters, e.g., the weights of the corresponding neural net.201
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(ii) Collecting data. After training the policy, we run an agent acting according to this policy for202

several episodes. Although a PAC-Bayesian bound gets tighter as the number of data points increases,203

we observe that even a relatively small number of evaluation roll-outs is sufficient to get tight results.204

(iii) Fitting the posteriors. We rely on the discounted return as the prediction target rather than a205

plain sum of rewards for several reasons. Short-term risks tend to be more relevant for decisions, as206

longer-term risks depend on an increasing set of external, usually unaccountable, factors. Discounted207

rewards also serve as a proxy for lifelong learning and policy evaluation as they generalize to non-208

episodic data. That said, even though the original policy might be trained on discounted returns in209

step (i), a valid bound could also be constructed by computing the non-discounted rewards from data210

collected in (ii). As discussed in Section 2.2.3, we split the data into T disjoint subsets and train a211

series of T last-layer Bayesian neural nets via first-visit Monte Carlo to infer distributions over S≤t.212

(iv) Construction of the bound. As discussed above, we focus on a generally well-performing set of213

kl-based bounds. We construct the following bounds for B1 and Et (t ∈ {1, . . . , T}).214

A bound for B1. As L̂(h) is bounded between [0, B], we rescale its expectation and choose215

B1(ρ1) = Bkl−1,+

(
Eρ[L̂(h)]

B
,
KL (ρ1 ∥ ρ∗0) + ln(2T

√
n/δ)

N

)
,

where ρ∗0 is a data-independent prior distribution on H. Given the result in Theorem 2.1, this is a216

PAC-Bayesian bound on Eρ1 [L(h)], i.e., P
(
∃ρ1 ∈ P1 : Eρ1 [L(h)] ≥ B1(ρ1)

)
≤ δ/T .217

A bound for Et. Let Lexc
t (h) = L(h) − κtEρt−1

[L(h′)] ∈ [−κtB,B]. For µ ∈ [−κtB,B],218

define Lexc+
t (h) = max{0, Lexc

t (h)− µ} and Lexc−
t (h) = max{0, µ− Lexc

t (h)}, with L̂exc+
t (h) and219

L̂exc−
t (h) as their empirical analogous. We set220

Et(ρt) = µ+ (B − µ)kl−1,+

(
Eρt [L̂

exc+
t (h)]

B − µ
,
KL
(
ρt ∥ ρ∗t−1

)
+ ln(4T

√
Nt/δ)

Nt

)
− (µ+ κtB)kl−1,+

(
Eρt

[L̂exc−
t (h)]

µ+ κtB
,
KL
(
ρt ∥ ρ∗t−1

)
+ ln(4T

√
Nt/δ)

Nt

)
,

where ρ∗t−1 is a distribution on H informed by S≤t−1. Via Theorem 2.4 this is a PAC-Bayesian221

bound on Eρt
[Lexc

t ] that holds with a probability greater than 1− δ/T , i.e.,222

P
(
∃ρt ∈ Pt such that Eρt

[Lexc
t (h)] ≥ Et(ρt)

)
≤ δ/T.

Applying this construction recursively with T steps therefore gives us a recursive PAC-Bayesian223

bound that holds with probability greater than 1− δ.224

4 Experiments225

We perform experiments to answer the following three questions: (Q1) Can the test-time return of226

a policy π be predicted with high precision across a range of environments and policies of varying227

expertise? (Q2) What is the influence of a PAC-Bayes bound’s structure? (Q3) How does the228

validation set size influence the tightness of the risk certificate guarantee?229

4.1 Experiment design230

To evaluate our certificate-generation pipeline at an error tolerance of δ = 0.05, we choose REDQ231

[Chen et al., 2021] as a representative state-of-the-art, sample-efficient, model-free continuous control232

algorithm. All REDQ hyperparameters follow those in the original paper. We first train a REDQ agent233

for 300 000 steps using an ensemble of ten critics, randomly sampling two at each Bellman-target234

evaluation for min-clipping. The learned policy is then run in evaluation mode for 100 episodes. The235

resulting state transitions and rewards are stored as the data set used for bound fitting. Subsequently,236

we run the trained policy for another 100 episodes to obtain a test dataset to compute a proxy for the237

generalization performance. We predict the discounted return of the policy on the test set by fitting a238

PAC-Bayes bound using observations from the validation set.239
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Figure 2: Correlation plots. PAC-Bayes bounds, one in each column, are plotted on the x-axis against
true test errors on the y-axis for each method across all environments, policy instances, and repetitions
to visualize correlation. Environments are color-coded as follows: Ant (blue circle), Half-Cheetah
(orange cross), Hopper (green square), Humanoid (red plus), and Walker2d (purple diamond).

We evaluate and compare the final posterior loss ρ on the full training data, and on the held-out240

test data, alongside the corresponding PAC-Bayes bounds across all methods and environments. To241

mitigate the overfitting common in continuous-control settings, where consecutive samples are highly242

correlated, we apply a thinning strategy that reduces redundancy while preserving data diversity.243

Full details on each experiment are provided in Appendix D. We provide an implementation at244

anonymous.245

Policy instances. We define a policy instance as the output of a single policy-training round. In our246

experiments, we consider five policy instances, each obtained by running the REDQ algorithm with a247

different initial seed. Due to the stochastic nature of initialization and training, each instance follows248

a unique trajectory. We construct individual bounds for each instance and report them in Appendix D.249

To account for randomness in the risk certificate generation process, we repeat the procedure five250

times for every policy instance. To address question (Q2), we create separate risk certificates for251

three training stages of each policy, each reflecting a different level of expertise: Starter (S) for a252

policy trained for 100 000 steps, Intermediate (I) for 200 000 steps, and Expert (E) for 300 000 steps,253

after which no performance improvement observed.254

Environments. We evaluate five MuJoCo environments: Ant, Half-Cheetah, Hopper, Humanoid,255

and Walker2d [Todorov et al., 2012] due to their widespread use in the community and the represen-256

tative value of the platforms for real-world use cases. Risk certificates may be particularly interesting257

for mobile platforms that interact with their surroundings as well as humans.258

Baselines. We design our baselines with the following points in mind: 1. how well a PAC-Bayes259

bound predicts test-time performance, 2. whether informative priors yield tighter guarantees, 3.260

whether the bound gets tighter when the recursive scheme is used, and 4. whether increasing the261

recursion depth improve tightness. As this is the first work to evaluate generalization bounds tailored262

for continuous control with deep actor-critics, there are no existing baselines for comparison. We263

consider two non-recursive (NR) baselines: non-informed (NR-NI), a PAC-Bayes-kl inverse bound264

(see Theorem 2.1) with a non-informative prior that is independent of the training data, and informed265

(NR-I), a data-informed variant in which the dataset is split equally intoD = Dprior∪Dbound, allowing266

the prior to depend on Dprior and the empirical loss to be computed on Dbound. We evaluate two267

recursion (R) depths, depth two (R-I T=2) and depth six (R-I T=6), to test the effect of recursion.268

Performance metrics. We evaluate the bounds based on three metrics: Normalized bound value: To269

ensure comparability across environments with different reward scales, we normalize the squared270

discounted return prediction errors by the maximum observed return during training. A value close to271
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Figure 3: Bound values. Normalized bound values for all baselines across five MuJoCo environments
over three policy qualities. Results are aggregated over all policy instances and repetitions.

zero implies that the bound closely follows the actual returns. Tightness: The difference between272

the predicted bound and the actual test error; smaller values indicate more accurate estimates of273

the discounted return prediction error. Correlation: We expect a linear correlation between the risk274

certificates and the observed test errors across policy instances.275

Computational requirements. We conduct our experiments on a single computer equipped with a276

GeForce RTX 4090 GPU, an Intel(R) Core(TM) i7-14700K CPU (5.6 GHz), and 96 GB of memory.277

Training five policy instances to convergence in each environment takes about 30 minutes per instance,278

totaling 150 minutes. Collecting validation and test episodes requires around 20 minutes per policy279

level, or 60 minutes in total. Model training and PAC-Bayes bound computation across five policy280

instances, five repetitions, four baselines, and three policies takes four minutes per run, totaling281

roughly 1200 minutes per environment, 7000 minutes in total (about five days).282

4.2 Results283

We present full results on every environment, policy instance and repetition in Appendix D and284

restrict ourselves to discussing aggregated results in the main text.285

Strong correlation between bounds and test errors. In Figure 2, we present scatter plots of all286

the PAC-Bayes bounds discussed in 4.1, policy instances, and repetitions against their respective287

test set errors across environments and levels of policy expertise. For every bound, the correlation288

between the bound and the test error increases with policy expertise. Within a fixed expertise level,289

the correlation also improves as the bound becomes more advanced, a trend that is already evident290

in more noisy starter policy. For example, in the brittle Hopper environment, which exhibits the291

weakest correlations overall, moving from NR-NI to R-I with T=6 raises the Pearson correlation from292

0.4 to 0.65. At higher expertise levels, our recursive bounds achieve correlations above 0.9 in almost293

all environments. Overall we see a clear linear trend, which demonstrates that our bounds are tight.294

There appears an increasing scatter as the expertise level decreases. This is expected, as the effects of295

an unconverged policy function on environment dynamics are less predictable. The bounds therefore296

provide a good prediction of the test-time return, answering Q1.297

Tightness improves with recursive depth. In Figure 3 we plot the normalized bounds aggregated298

over policy instances and repetitions for each of the five environments. Smaller values reflect tighter299

bounds. Data-informed priors improve bounds across all environments for intermediate and expert300

policies, though this effect is less clear for the starter level policy. Introducing recursion (R-I, with301

T=2 and T=6) further tightens bounds, with deeper recursion generally yielding the tightest results.302

These improvements are most evident in environments with brittle dynamics such as Humanoid and303

Hopper where the locomotor has to keep its balance and less so in simpler environments such as304

Half-Cheetah. We see that while the correlation between bound and test-set error is already high,305

better, recursive, bounds provide improved tightness guarantees answering Q2.306

Recursion improves sample efficiency. Collecting validation data from physical robots is often307

costly. Hence, the sample efficiency of a risk-certificate generation pipeline is of particular interest.308
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(b) The effect of local reparameterization on tightness.

Figure 4: Bound tightness; smaller is better. Results are provided for the Humanoid environment,
using five policy instances and five repetitions. (a) Tightness scores aggregated across three policy
qualities and various validation set sizes, expressed as percentages of the full validation dataset. (b)
Effect of the local reparameterization trick on bound tightness, illustrated for the expert-level policy.

Figure 4a shows the tightness scores of the bounds across different validation data sizes in the309

Humanoid environment, while keeping the test size fixed. As expected, larger validation sets lead310

to tighter bounds, but the effect is most pronounced for our proposed recursive bounds. R-I T=6311

achieves tightness results comparable to those that the non-recursive bounds (non-informed, NR-NI,312

and data-informed, NR-I) attain with twice as many data points. These findings demonstrate the313

ability of recursive bounds to significantly improve sample efficiency, addressing Q3.314

Local reparameterization improves tightness. To train our model, we use a Bayesian neural315

network (BNN) that represents uncertainty by learning distributions over neural network parameters.316

To our knowledge, prior work on PAC-Bayesian risk certificate building with BNNs has relied317

exclusively on Blundell et al. [2015]’s Bayes by backprop approach [see, e.g., Pérez-Ortiz et al.,318

2021]. We show with Figure 4b that using the local reparameterization trick (LRT) [Kingma et al.,319

2015] to compute the empirical risk term in the bound calculation greatly improves bound tightness320

of all four evaluated bounds. This effects holds even in the already saturated expert-level policy of321

the challenging Humanoid environment. Further details can be found in Appendix D.322

5 Limitations, future work, and broader impact323

We restricted our empirical investigation to a single actor-critic algorithm and a single physics engine.324

This was a conscious choice to facilitate interpretation and maintain feasibility. Given the brittleness325

of the MuJoCo locomotion environments, we do not expect meaningful additional information to326

come from extending the same pipeline to RL suites with a similar level of fidelity. The next major327

step forward would be to implement our pipeline on a physical platform under controlled conditions.328

We considered only dense-reward locomotion scenarios with rigid locomotors, as this is the natural329

first step. The applicability of our findings to more advanced control settings, such as sparse-reward330

scenarios that require goal-conditioned or hierarchical RL algorithm design is subject to further331

investigation. We leave this enterprise to future work as the deep learning-based solutions for such332

setups have not yet reached the level of maturity to move beyond simulations. Another significant leap333

would be to proceed from our current self-certified policy evaluation approach to self-certified policy334

optimization in an online setting. This would necessitate training the policy via a PAC-Bayes bound.335

However, RL is a feedback-loop system in which assuring convergence, numerical stability, and336

optimal trade-offs between exploration and exploitation are major determinants of a stable training.337

While promising preliminary results exist [Tasdighi et al., 2024a,b], the problem is fundamental and338

requires a dedicated research program—an effort that goes beyond the scope of a single paper.339

Our work contributes to the trustworthy development of agentic AI technologies, thereby promoting340

their adoption by society. Public concerns about such technologies will be even more pronounced341

when they are deployed on physical systems that are in direct contact with humans. Thanks to reliable342

risk certificates, such safety-critical technologies are likely to receive wider adoption. This, in turn,343

will further accelerate their development by expanding the pool of practice and observations.344
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NeurIPS Paper Checklist425

1. Claims426

Question: Do the main claims made in the abstract and introduction accurately reflect the427

paper’s contributions and scope?428

Answer: [Yes]429

Justification: We summarize our claims and approach in the last paragraph of the introduction430

and provide extensive evidence for them in Section 4.431

Guidelines:432

• The answer NA means that the abstract and introduction do not include the claims433

made in the paper.434

• The abstract and/or introduction should clearly state the claims made, including the435

contributions made in the paper and important assumptions and limitations. A No or436

NA answer to this question will not be perceived well by the reviewers.437

• The claims made should match theoretical and experimental results, and reflect how438

much the results can be expected to generalize to other settings.439

• It is fine to include aspirational goals as motivation as long as it is clear that these goals440

are not attained by the paper.441

2. Limitations442

Question: Does the paper discuss the limitations of the work performed by the authors?443

Answer: [Yes]444

Justification: We discuss the limitations in Section 5.445

Guidelines:446

• The answer NA means that the paper has no limitation while the answer No means that447

the paper has limitations, but those are not discussed in the paper.448

• The authors are encouraged to create a separate "Limitations" section in their paper.449

• The paper should point out any strong assumptions and how robust the results are to450

violations of these assumptions (e.g., independence assumptions, noiseless settings,451

model well-specification, asymptotic approximations only holding locally). The authors452

should reflect on how these assumptions might be violated in practice and what the453

implications would be.454

• The authors should reflect on the scope of the claims made, e.g., if the approach was455

only tested on a few datasets or with a few runs. In general, empirical results often456

depend on implicit assumptions, which should be articulated.457

• The authors should reflect on the factors that influence the performance of the approach.458

For example, a facial recognition algorithm may perform poorly when image resolution459

is low or images are taken in low lighting. Or a speech-to-text system might not be460

used reliably to provide closed captions for online lectures because it fails to handle461

technical jargon.462

• The authors should discuss the computational efficiency of the proposed algorithms463

and how they scale with dataset size.464

• If applicable, the authors should discuss possible limitations of their approach to465

address problems of privacy and fairness.466

• While the authors might fear that complete honesty about limitations might be used by467

reviewers as grounds for rejection, a worse outcome might be that reviewers discover468

limitations that aren’t acknowledged in the paper. The authors should use their best469

judgment and recognize that individual actions in favor of transparency play an impor-470

tant role in developing norms that preserve the integrity of the community. Reviewers471

will be specifically instructed to not penalize honesty concerning limitations.472

3. Theory assumptions and proofs473

Question: For each theoretical result, does the paper provide the full set of assumptions and474

a complete (and correct) proof?475

Answer: [Yes]476
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Justification: We either cite the original work or provide a proof ourselves for every theoreti-477

cal statement in the paper.478

Guidelines:479

• The answer NA means that the paper does not include theoretical results.480

• All the theorems, formulas, and proofs in the paper should be numbered and cross-481

referenced.482

• All assumptions should be clearly stated or referenced in the statement of any theorems.483

• The proofs can either appear in the main paper or the supplemental material, but if484

they appear in the supplemental material, the authors are encouraged to provide a short485

proof sketch to provide intuition.486

• Inversely, any informal proof provided in the core of the paper should be complemented487

by formal proofs provided in appendix or supplemental material.488

• Theorems and Lemmas that the proof relies upon should be properly referenced.489

4. Experimental result reproducibility490

Question: Does the paper fully disclose all the information needed to reproduce the main ex-491

perimental results of the paper to the extent that it affects the main claims and/or conclusions492

of the paper (regardless of whether the code and data are provided or not)?493

Answer: [Yes]494

Justification: Yes, we provide all required details required to guarantee reproducibility in495

the Appendix C.496

Guidelines:497

• The answer NA means that the paper does not include experiments.498

• If the paper includes experiments, a No answer to this question will not be perceived499

well by the reviewers: Making the paper reproducible is important, regardless of500

whether the code and data are provided or not.501

• If the contribution is a dataset and/or model, the authors should describe the steps taken502

to make their results reproducible or verifiable.503

• Depending on the contribution, reproducibility can be accomplished in various ways.504

For example, if the contribution is a novel architecture, describing the architecture fully505

might suffice, or if the contribution is a specific model and empirical evaluation, it may506

be necessary to either make it possible for others to replicate the model with the same507

dataset, or provide access to the model. In general. releasing code and data is often508

one good way to accomplish this, but reproducibility can also be provided via detailed509

instructions for how to replicate the results, access to a hosted model (e.g., in the case510

of a large language model), releasing of a model checkpoint, or other means that are511

appropriate to the research performed.512

• While NeurIPS does not require releasing code, the conference does require all submis-513

sions to provide some reasonable avenue for reproducibility, which may depend on the514

nature of the contribution. For example515

(a) If the contribution is primarily a new algorithm, the paper should make it clear how516

to reproduce that algorithm.517

(b) If the contribution is primarily a new model architecture, the paper should describe518

the architecture clearly and fully.519

(c) If the contribution is a new model (e.g., a large language model), then there should520

either be a way to access this model for reproducing the results or a way to reproduce521

the model (e.g., with an open-source dataset or instructions for how to construct522

the dataset).523

(d) We recognize that reproducibility may be tricky in some cases, in which case524

authors are welcome to describe the particular way they provide for reproducibility.525

In the case of closed-source models, it may be that access to the model is limited in526

some way (e.g., to registered users), but it should be possible for other researchers527

to have some path to reproducing or verifying the results.528

5. Open access to data and code529
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Question: Does the paper provide open access to the data and code, with sufficient instruc-530

tions to faithfully reproduce the main experimental results, as described in supplemental531

material?532

Answer: [Yes]533

Justification: The environments we use are publicly available, we reference the respective534

python packages in the appendix. We additionally provide a pytorch implementation of our535

proposed approach.536

Guidelines:537

• The answer NA means that paper does not include experiments requiring code.538

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/539

public/guides/CodeSubmissionPolicy) for more details.540

• While we encourage the release of code and data, we understand that this might not be541

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not542

including code, unless this is central to the contribution (e.g., for a new open-source543

benchmark).544

• The instructions should contain the exact command and environment needed to run to545

reproduce the results. See the NeurIPS code and data submission guidelines (https:546

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.547

• The authors should provide instructions on data access and preparation, including how548

to access the raw data, preprocessed data, intermediate data, and generated data, etc.549

• The authors should provide scripts to reproduce all experimental results for the new550

proposed method and baselines. If only a subset of experiments are reproducible, they551

should state which ones are omitted from the script and why.552

• At submission time, to preserve anonymity, the authors should release anonymized553

versions (if applicable).554

• Providing as much information as possible in supplemental material (appended to the555

paper) is recommended, but including URLs to data and code is permitted.556

6. Experimental setting/details557

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-558

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the559

results?560

Answer: [Yes]561

Justification: We provide all experimental details in Appendix C.562

Guidelines:563

• The answer NA means that the paper does not include experiments.564

• The experimental setting should be presented in the core of the paper to a level of detail565

that is necessary to appreciate the results and make sense of them.566

• The full details can be provided either with the code, in appendix, or as supplemental567

material.568

7. Experiment statistical significance569

Question: Does the paper report error bars suitably and correctly defined or other appropriate570

information about the statistical significance of the experiments?571

Answer: [Yes]572

Justification: We report error bars for all experiments and define them in Appendix C.573

Guidelines:574

• The answer NA means that the paper does not include experiments.575

• The authors should answer "Yes" if the results are accompanied by error bars, confi-576

dence intervals, or statistical significance tests, at least for the experiments that support577

the main claims of the paper.578

• The factors of variability that the error bars are capturing should be clearly stated (for579

example, train/test split, initialization, random drawing of some parameter, or overall580

run with given experimental conditions).581
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• The method for calculating the error bars should be explained (closed form formula,582

call to a library function, bootstrap, etc.)583

• The assumptions made should be given (e.g., Normally distributed errors).584

• It should be clear whether the error bar is the standard deviation or the standard error585

of the mean.586

• It is OK to report 1-sigma error bars, but one should state it. The authors should587

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis588

of Normality of errors is not verified.589

• For asymmetric distributions, the authors should be careful not to show in tables or590

figures symmetric error bars that would yield results that are out of range (e.g. negative591

error rates).592

• If error bars are reported in tables or plots, The authors should explain in the text how593

they were calculated and reference the corresponding figures or tables in the text.594

8. Experiments compute resources595

Question: For each experiment, does the paper provide sufficient information on the com-596

puter resources (type of compute workers, memory, time of execution) needed to reproduce597

the experiments?598

Answer: [Yes]599

Justification: We discuss the required computational ressources in the main paper in Section 4600

and in Appendix C.601

Guidelines:602

• The answer NA means that the paper does not include experiments.603

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,604

or cloud provider, including relevant memory and storage.605

• The paper should provide the amount of compute required for each of the individual606

experimental runs as well as estimate the total compute.607

• The paper should disclose whether the full research project required more compute608

than the experiments reported in the paper (e.g., preliminary or failed experiments that609

didn’t make it into the paper).610

9. Code of ethics611

Question: Does the research conducted in the paper conform, in every respect, with the612

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?613

Answer: [Yes]614

Justification: We carefully checked the guidelines and follow them in this submission.615

Guidelines:616

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.617

• If the authors answer No, they should explain the special circumstances that require a618

deviation from the Code of Ethics.619

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-620

eration due to laws or regulations in their jurisdiction).621

10. Broader impacts622

Question: Does the paper discuss both potential positive societal impacts and negative623

societal impacts of the work performed?624

Answer: [Yes]625

Justification: Please see Section 5 for the discussion.626

Guidelines:627

• The answer NA means that there is no societal impact of the work performed.628

• If the authors answer NA or No, they should explain why their work has no societal629

impact or why the paper does not address societal impact.630
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• Examples of negative societal impacts include potential malicious or unintended uses631

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations632

(e.g., deployment of technologies that could make decisions that unfairly impact specific633

groups), privacy considerations, and security considerations.634

• The conference expects that many papers will be foundational research and not tied635

to particular applications, let alone deployments. However, if there is a direct path to636

any negative applications, the authors should point it out. For example, it is legitimate637

to point out that an improvement in the quality of generative models could be used to638

generate deepfakes for disinformation. On the other hand, it is not needed to point out639

that a generic algorithm for optimizing neural networks could enable people to train640

models that generate Deepfakes faster.641

• The authors should consider possible harms that could arise when the technology is642

being used as intended and functioning correctly, harms that could arise when the643

technology is being used as intended but gives incorrect results, and harms following644

from (intentional or unintentional) misuse of the technology.645

• If there are negative societal impacts, the authors could also discuss possible mitigation646

strategies (e.g., gated release of models, providing defenses in addition to attacks,647

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from648

feedback over time, improving the efficiency and accessibility of ML).649

11. Safeguards650

Question: Does the paper describe safeguards that have been put in place for responsible651

release of data or models that have a high risk for misuse (e.g., pretrained language models,652

image generators, or scraped datasets)?653

Answer: [NA]654

Justification: The submission poses no such risks.655

Guidelines:656

• The answer NA means that the paper poses no such risks.657

• Released models that have a high risk for misuse or dual-use should be released with658

necessary safeguards to allow for controlled use of the model, for example by requiring659

that users adhere to usage guidelines or restrictions to access the model or implementing660

safety filters.661

• Datasets that have been scraped from the Internet could pose safety risks. The authors662

should describe how they avoided releasing unsafe images.663

• We recognize that providing effective safeguards is challenging, and many papers do664

not require this, but we encourage authors to take this into account and make a best665

faith effort.666

12. Licenses for existing assets667

Question: Are the creators or original owners of assets (e.g., code, data, models), used in668

the paper, properly credited and are the license and terms of use explicitly mentioned and669

properly respected?670

Answer: [Yes]671

Justification: We credit the python environments and packages we rely on in the appendix.672

Guidelines:673

• The answer NA means that the paper does not use existing assets.674

• The authors should cite the original paper that produced the code package or dataset.675

• The authors should state which version of the asset is used and, if possible, include a676

URL.677

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.678

• For scraped data from a particular source (e.g., website), the copyright and terms of679

service of that source should be provided.680

• If assets are released, the license, copyright information, and terms of use in the681

package should be provided. For popular datasets, paperswithcode.com/datasets682

has curated licenses for some datasets. Their licensing guide can help determine the683

license of a dataset.684
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• For existing datasets that are re-packaged, both the original license and the license of685

the derived asset (if it has changed) should be provided.686

• If this information is not available online, the authors are encouraged to reach out to687

the asset’s creators.688

13. New assets689

Question: Are new assets introduced in the paper well documented and is the documentation690

provided alongside the assets?691

Answer: [NA]692

Justification: The submission does not introduce any new assets.693

Guidelines:694

• The answer NA means that the paper does not release new assets.695

• Researchers should communicate the details of the dataset/code/model as part of their696

submissions via structured templates. This includes details about training, license,697

limitations, etc.698

• The paper should discuss whether and how consent was obtained from people whose699

asset is used.700

• At submission time, remember to anonymize your assets (if applicable). You can either701

create an anonymized URL or include an anonymized zip file.702

14. Crowdsourcing and research with human subjects703

Question: For crowdsourcing experiments and research with human subjects, does the paper704

include the full text of instructions given to participants and screenshots, if applicable, as705

well as details about compensation (if any)?706

Answer: [NA]707

Justification: The submission does not rely on human subjects.708

Guidelines:709

• The answer NA means that the paper does not involve crowdsourcing nor research with710

human subjects.711

• Including this information in the supplemental material is fine, but if the main contribu-712

tion of the paper involves human subjects, then as much detail as possible should be713

included in the main paper.714

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,715

or other labor should be paid at least the minimum wage in the country of the data716

collector.717

15. Institutional review board (IRB) approvals or equivalent for research with human718

subjects719

Question: Does the paper describe potential risks incurred by study participants, whether720

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)721

approvals (or an equivalent approval/review based on the requirements of your country or722

institution) were obtained?723

Answer: [NA]724

Justification: The submission does not rely on human subjects.725

Guidelines:726

• The answer NA means that the paper does not involve crowdsourcing nor research with727

human subjects.728

• Depending on the country in which research is conducted, IRB approval (or equivalent)729

may be required for any human subjects research. If you obtained IRB approval, you730

should clearly state this in the paper.731

• We recognize that the procedures for this may vary significantly between institutions732

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the733

guidelines for their institution.734

• For initial submissions, do not include any information that would break anonymity (if735

applicable), such as the institution conducting the review.736
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16. Declaration of LLM usage737

Question: Does the paper describe the usage of LLMs if it is an important, original, or738

non-standard component of the core methods in this research? Note that if the LLM is used739

only for writing, editing, or formatting purposes and does not impact the core methodology,740

scientific rigorousness, or originality of the research, declaration is not required.741

Answer: [NA]742

Justification: The submission does not rely on LLMs for any of its research.743

Guidelines:744

• The answer NA means that the core method development in this research does not745

involve LLMs as any important, original, or non-standard components.746

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)747

for what should or should not be described.748
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