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Abstract

After a period of research, deep actor-critic algorithms have reached a level where
they influence our everyday lives. They serve as the driving force behind the
continual improvement of large language models through user-collected feed-
back. However, their deployment in physical systems is not yet widely adopted,
mainly because no validation scheme that quantifies their risk of malfunction. We
demonstrate that it is possible to develop tight risk certificates for deep actor-critic
algorithms that predict generalization performance from validation-time observa-
tions. Our key insight centers on the effectiveness of minimal evaluation data.
Surprisingly, a small feasible of evaluation roll-outs collected from a pretrained
policy suffices to produce accurate risk certificates when combined with a simple
adaptation of PAC-Bayes theory. Specifically, we adopt a recently introduced recur-
sive PAC-Bayes approach, which splits validation data into portions and recursively
builds PAC-Bayes bounds on the excess loss of each portion’s predictor, using
the predictor from the previous portion as a data-informed prior. Our empirical
results across multiple locomotion tasks and policy expertise levels demonstrate
risk certificates that are tight enough to be considered for practical use.

1 Introduction

Reinforcement Learning (RL) is transforming emerging Al technologies. Large language models
incorporate human feedback via RL, thereby continually improving their accuracy [Christiano et al.,
2017, Ziegler et al., 2019, DeepSeek-Al et al., 2025]. Generative Al is increasingly being integrated
into agentic workflows to automate complex decision making tasks. RL has also shown great promise
in the control of physical robotic systems. Recent deep actor-critic algorithms learned to make a
legged robot walk after only 20 minutes of outdoor training in an online mode [Kostrikov et al., 2023].
Model-based extensions of actor-critic pipelines can also achieve sample-efficient visual-control tasks
in diverse settings [Hafner et al., 2025, Zhang et al., 2023]. Despite the exciting results observed in
experimental conditions, RL is used far less than classical approaches in physical robot control. This
opportunity has largely been missed mainly because deep RL algorithms are overly sensitive to initial
conditions and can change behavior drastically during training. Embodied intelligent systems have
a high risk of causing harm when their generalization performance differs significantly from their
observed validation performance. Predictable generalization performance is even more critical when
these systems update their behavior based on interactions with humans.

There has been an effort to use learning-theoretic approaches to train high-capacity predictors with
risk certificates, i.e., bounds that guarantee a predictor’s generalization performance. Typically, this
performance is estimated from observed validation results, which may be misleading. Probably
Approximately Correct Bayesian (PAC-Bayes) theory [McAllester, 1999, Alquier et al., 2024] provides
risk certificates for stochastic predictors, relative to a prior distribution over the hypothesis space.
In this framework, the computationally prohibitive capacity term is reduced to a Kullback-Leibler
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Figure 1: Our four steps to generate tight risk certificates for deep actor-critic algorithms.

divergence between the posterior and the prior, enabling the incorporation of domain knowledge into
the analysis. Since we often deal with stochastic policies, relying on PAC-Bayes is a natural choice.

PAC-Bayes is the first and remains the most promising method for providing meaningful risk
certificates to deep neural networks [Dziugaite and Roy, 2017, Pérez-Ortiz et al., 2021, Lotfi et al.,
2022]. Further studies have improved the tightness, i.e., precision, of these certificates through the
following techniques: (i) pretraining probabilistic neural nets on held-out data and using them as
data-informed priors [ Ambroladze et al., 2006, Dziugaite et al., 2021]; (ii) using pretrained networks
as first-step predictors and developing PAC-Bayes guarantees on the residual of their predictions,
termed the excess loss; and (iii) recursively repeating the first two steps on multiple data splits, a
recent method known as the Recursive PAC-Bayes [Wu et al., 2024]. The scope of these exciting
developments has thus far been limited to simple classification tasks with feedforward neural networks.
Their application to deep actor-critic algorithms remains open, primarily because the mainstream
PAC-Bayes bounds assume i.i.d. datasets, whereas RL assumes a controlled Markov chain.

We present a simple recipe for providing risk certificates for deep model-free actor-critic architectures.
We find that, contrary to what one might expect, the three modern PAC-Bayesian learning tools
mentioned above can successfully handle the high variance of Monte Carlo samples collected by
running a pretrained policy network for multiple episodes in evaluation mode. Our approach proposes
self-certified training of probabilistic neural networks on different splits of an i.i.d. data set containing
return realizations of the policy, computed by first-visit Monte Carlo and post-processed through
a simple thinning approach. We recursively build a PAC-Bayes bound on the excess losses of
these networks, following a new adaptation of the recipe introduced by Wu et al. [2024]. Figure 1
illustrates our risk-certificate generation workflow. Our results highlight that the risk certificates get
significantly tighter as the recursion depth increases. The final bounds are tight enough for practical
use. Furthermore, the tightness of the risk certificates is proportional to the policy’s level of expertise.

2 Background

2.1 The state of the art of model-free deep actor-critic learning

Consider a set of states S an agent may be in and an action space A from which the agent can
choose actions to interact with its environment. Denote by A(S) and A(A) the sets of probability
distributions defined on S and A, respectively. We define a Markov Decision Process (MDP)
[Puterman, 2014] as the tuple M = (S, A,r, P, Py,v), where r : S x A — [0, R] is a bounded
reward function, P : S x A x § — [0, 1] is the state-transition kernel conditioned on a state-action
pair; specifically P(s’|s, a) is the probability distribution of the next state s’ € S given the current
state-action pair (s,a) € S x A. We denote the initial-state distribution by Py € A(S), the discount
factor by v € (0,1), and let 7 : S x A — [0, 1] be a policy. The goal of RL is to learn a policy
that maximizes the expected discounted return, 7, := argmax, cp B [>po v 7(ss, ar)]. The
expectation is taken with respect to the trajectory 7, := (so, ag, S1, a1, $2,as, . . .) of states and
actions generated when a policy 7 chosen from a feasible set II is executed. We refer to 7, as the
optimal policy. The exact Bellman operator for a policy 7 is defined as

T,Q(s,a) :==71(s,a) + YEyp(.|s,a) [Q(s, 7(s))] (1)
for some function @ : § x A — R. The unique fixed point of this operator is the true
action-value function @Q., which maps a state-action pair (s,a) to the expected discounted
sum of rewards the policy 7 collects when executed from (s,a). In other words, the equality
T,Q(s,a) = Q(s, a) holds if and only if Q(s,a) = Q(s,a),V(s,a). Any other Q incurs an error
(T=Q(s,a) — Q(s,a))?, called the Bellman error. Common deep actor-critic methods approxi-
mate the true action-value function @), by one-step Temporal Difference (TD) learning that min-
imizes L(Q,7) := Esup [(TrQ(s,a) — Q(s,a))?] with respect to @, given a data set D and
Pr(s' € A) = Egup, [Y 120 P(st € Alsg = s,7(s))] which is defined as the state-visitation dis-
tribution of policy 7 for some event A that belongs to the o-algebra of the transition probability
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distribution. Because the transition probabilities are unknown, the expectation term in Eq. 1 cannot
be computed. Instead, the observed transitions are used to approximate it with a single-sample Monte
Carlo estimate, yielding the training objective below:

E(Q) = ESNPW |:Es’~P(-\s77r(s)) [(T(S’ Cl) + ’YQ(SI’ W(S/)) - Q(57 a))ﬂ }

A deep actor-critic algorithm fits a neural-network function approximator @, referred to as the critic,
to a set of observed tuples (s, a, s’) stored in a replay buffer D by minimizing an empirical estimate
of the stochastic loss: Lp(Q) := 1/|D| 32, 4 snep(TxQ(s,a,5") — Q(s, a))?. The critic is then
used to train a policy network, or actor, 7’ <— arg max, E;p_[Q(s, 7(s))]. It is common practice to
adopt the Maximum-Entropy Reinforcement Learning approach [Haarnoja et al., 2018a,b] to balance
exploration and exploitation, thereby ensuring effective training. The approach supplements the
reward function with a policy-entropy term ryaxgnt (S, @) = (s, a) + aH[r(-|s)], where &« > 0 is a
scaling hyperparameter tuned jointly with the actor and critic.

Performing off-policy TD learning with deep neural nets is notoriously unstable which is often
attributed to the deadly triad [Sutton and Barto, 2018]. The main source of instability is the
accumulation of errors from approximating 7, @) by its Monte Carlo estimate. Strategies to improve
stability include maintaining Polyak-updated target networks [Lillicrap et al., 2016] and learning
twin critics while using the minimum of their target-network outputs in Bellman target calculation
[Fujimoto et al., 2018]. Empirically, training an ensemble of critic networks in a maximum-entropy
setup largely mitigates these stability issues. We adopt REDQ [Chen et al., 2021], a state-of-the-art
actor-critic method for model-free continuous control, as our representative approach. This choice is
pragmatic rather than restrictive allowing us to trade the computational cost of a broader exploration
of algorithms for a deeper, more comprehensive empirical evaluation of a single one.

2.2 Developing risk certificates with PAC-Bayes bounds

PAC-Bayes [McAllester, 1999, Alquier et al., 2024] offers a powerful way to understand and control
how well learning algorithms generalize by blending prior beliefs with what we learn from data.
PAC-Bayesian learning uses modern machine learning techniques to model p with complex function
approximators and fit them to data. It has been successfully applied in both image classification
[Dziugaite and Roy, 2017, Wu et al., 2024] and regression tasks [Reeb et al., 2018]. Its application to
reinforcement learning has so far been limited to the design of critic training losses without rigorously
quantifying the tightness of the performance guarantees [Tasdighi et al., 2024a,b].

Notation. Let H : X — ) be a set of feasible hypotheses and ¢:) x )Y — [0,1] be
a bounded loss function." Further, let L(h) = E, ,)~p, [((h(z),y)] be the expected error,
where Pp is a distribution on X x ). The empirical loss is L(h) = L Zf\il L(h(x;), i)
for a data set D= {(zp,yn):n€{l,...,N}} of size N with (z,,y,) ~ Pp. P
is the set of distributions on H. For two distributions p,pg on H, the Kullback-
Leibler (KL) divergence is defined as KL (p || po) = Ep~, [log p(h) —log po(h)]. We use
Kl (p || q) £ plog(p/q) + (1 —p)log((1 — p)/(1 — q)) to denote the KL divergence between two
Bernoulli distributions. PAC-Bayesian analysis [McAllester, 1999, Shawe-Taylor and Williamson,
1997, Alquier et al., 2024] develops bounds on the expected loss Ej,~., [L(h)], under a posterior dis-
tribution p with respect to a prior distribution pg, that hold with high probability. That is, they provide
risk certificates for the generalization error. For brevity, we will use IE, [-] = IEj,~, [-] throughout this
paper. In the context of PAC-Bayes, the terms posterior and prior refer to distributions dependent
and independent of the validation data, respectively. They are not to be understood in a Bayesian
manner as being linked by a likelihood.> Which bounds one should choose to get the tightest risk
certificates depends on the specific use case; see, e.g., Alquier et al. [2024] for a recent introduction
and a survey of various bounds. In this work we rely on bounds derived from the kl divergence as
they are tighter than the alternatives when no additional information about the data distribution is
available, while noting that the same arguments apply to any other PAC-Bayesian bound.

2.2.1 PAC-Bayes-kl bound

Assuming the definitions given above, the PAC-Bayes-kl bound is given by

'Our discussion generalizes directly to any bounded loss within an interval [a, b] with a, b € R.
2See Germain et al. [2016] for results linking PAC-Bayes and Bayesian inference.
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Theorem 2.1 (PAC-Bayes-kl bound [Seeger, 2002, Maurer, 2004]). For any probability distribution
po € P that is independent of D and any § € (0, 1), we have

P(3p € P KB LMIE, [L(R)]) = (KL(p || po) + n(2VN/6))/N) < 6.
Proof. See, e.g., Maurer [2004] for a proof of the bound. O

We define the upper inverse of k1 (- || -) as kI 5" (p,e) £ max{p : p € [0,1] | kl(p || p) < ¢} and
the lower one as kI ™"~ (p,&) £ min{p : p € [0,1],kl (p || p) < £} and cite the following inequality.
Lemma 2.2 (kl-inequality [Langford, 2005, Foong et al., 2021, 2022]). Let Z;,...,ZnN be i.id.
random variables taking values on an interval [0, 1] and & [Z,,] = p for all n. Let their empirical
mean be p = + ZnN:1 Zny,. Then, for any 6 € (0,1) we have

P (KI(pl[p) > In(1/8)/N) < 4,
the inverse of which is given by

P(p>k"* (p,In(1/6)/N)) <6, and P (p<k™" (p,In(1/6)/N)) <.
Proof. See Langford [2005], Corollary 3.7 for a proof of the bound. O

2.2.2 PAC-Bayes-Split-kl bound

Wu and Seldin [2022] generalize these bounds to random variables that take values in intervals [a, b]
splitting each into two components that individually satisfy the constraints of the kl-inequality.

Let Z € [a,b], with a,b € R, be a random variable and set p = E[Z]. For 1 € [a,b] define
Zt =max{0,Z — p}and Z~ = max{0,u—Z},sothat Z = u+Z*—Z~. Letp™ = E[Z "] and
p~ = E[Z~] be their respective expectations, and let p* = L SN Z+andp— = L N 7
be their empirical means for an i.i.d. sample Z1, ..., Zy. The split-kl inequality is stated below.
Lemma 2.3 (Split-kl inequality [Wu and Seldin, 2022]). For any p € [a,b] and § € (0,1)

P (p <p+(b—pkl™ bt (bpju ln(QN/‘S)> —(p—a)kl™h™ <#’fa ln(QN/‘S)» >1-4.

Proof. The lemma follows by applying Lemma 2.2 to each of the kl terms and a union bound. [

For theNPAC—BayesianNanalogue, deNﬁne /Y xY — [a,~b], where a,b € IR.~ For i € [a,b],
define /* = max{0,¢ — p} and £~ = max{0,u —}. Lt (h) =K )~p,[(T(h(z),y)] and

i*(h) =+ 22]21 0+ (h(x,), yn) are the expected and empirical losses. L~ and L~ are defined
analogously. With these definitions, we now cite the PAC-Bayes-split-kl inequality.

Theorem 2.4 (PAC-Bayes-Split-kl inequality [Wu and Seldin, 2022]). Let ¢ and the remaining loss
terms be defined as above. Then for any po on H independent of D, any . € [a,b], and any § € (0,1)

E,[L*(h)] KL (p || po) + ln(4\/fv/5))
b—u N

P <3p €P:E,[L(h)] > p+ (b— M)k11’+<

~ (=

(L™ (h)] KL (p | po) + m(dV/N/5) )) o
u—a N -

Proof. The theorem follows by applying Lemma 2.3 to the decomposition
E,[L(h)] = p+ E,[LT ()] = Ey[L™ (h)). O
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2.2.3 Recursive PAC-Bayes bound

Data-informed prior. The tightness of PAC-Bayesian bounds is dominated by the KL divergence
between the posterior p and the prior pg. The better the prior guess is, the tighter the bound. Because
the prior must be be independent of the observed data, a common choice is to select a prior that is as
uniform as possible over the hypothesis space. To improve upon this naive choice, Ambroladze et al.
[2006] proposed splitting the observed data into two disjoint subsets Sy and Sy, i.e., D = Sy U 51,
using Sy to infer a data-informed prior and S; to subsequently evaluate the bound. This approach
balances the benefit of a better prior with the cost of having fewer observations to evaluate the bound.

Excess loss. The excess loss L¥¢(h) with respect to a reference hypothesis h* € H is defined as
L#*¢(h) = L(h) — L(h*). The excess-loss concept allows us to decompose the expected loss as
E, [L(h)] =E,[L(h) — L(h*)] + L(h*). Using Sy to construct both the prior py and the reference
h* , Mhammedi et al. [2019] showed that, assuming L(h*) is close to L(h), the excess loss has
lower variance and thus yields a more efficient bound, while a bound on L(h*) is independent of
KL (p || po) and can be obtained using standard generalization guarantees.

Recursive PAC-Bayes.  Wu et al. [2024] generalized the excess loss further by in-
troducing a scaling factor K < 1 to maintain a diminishing effect of recursions:
E, [L(h)] = E, [L(h) — kKE,, [L(h*)]] + KE,, [L(h*)]. Here, the first term reflects the excess loss
with respect to a scaled version of the expected reference hypothesis loss under the prior pg. The
second term in turn is an expected loss again similar to the one on the left-hand side of the equation.
Instead of adhering to a binary split D = Sy U S; such that So N S; = (), they propose to extend
this decomposition recursively, by partitioning D into 7" disjoint subsets, D = Uthl S; and and they

define S<; = |J'_, Ss and S; = |JI_, Ss. Their recursion is given by
EPt [L(h)] = Eﬁt [L(h) - K’t]EPt—l [L(h)]] + K/t]EPt—l [L(h)} ) (2)

for t > 2, and k1, ...,k are scaling factors. The distributions p1, ..., pr € H form a sequence
such that p,; depends solely on S<; and S> to estimate I, [L(h)].

While Wu et al. [2024] formulate their final recursive bound directly for a zero-one loss and PAC-
Bayes split-kl bounds [Wu and Seldin, 2022], we present their result first in a general loss-agnostic
form before we construct a specific bound in the next section.

Theorem 2.5. (Recursive PAC-Bayes bound.) Let D = S1 U - - - U St be a disjoint decomposition
of the set of observations D. Let S<, and S>, be as defined above, N = |D|, and Ny = |S>|. Let
K1, ..., kT be a sequence of scaling factors, where k. is allowed to depend on S<;_1. Let P; be the
set of distributions on H which are allowed to depend on S<,, and p, € Py. Then, for any ¢ € (0, 1),

P (EIt € [T, pr € Py such that E,,, [L(h)] > Bt(pt)) <4,

where By (p¢) is a generic PAC-Bayesian bound on I, [L(h))] defined recursively as follows.

Bi(pt) = Et(pe, ki) + keBe—1(pf_1),

where Bi(p1) is a PAC-Bayes bound on E,, [L(h)] with an uninformed prior and E;(py, k) is a
PAC-Bayes bound on the excess loss E,, [L(h) — kelEpr | [L(R)] ]

Proof. Because B1(p1) and & (p¢, ¢) are PAC-Bayes bounds by assumption, we have
P (3p1 € P1: Ep, [L(R)] 2 Bi(p1)) < 0/T,
and P (3p, € Py : By, [L(h) — ke | [L(R)]] = Elpe, k1)) < 6/T fort € {2,...,T}.

The claim follows by expected loss decomposition and the recursion. O

3 Recursive PAC-Bayesian risk certificates for reinforcement learning

Obtaining risk certificates involves four steps, following our conceptual structure in Figure 1.

(i) Training an agent. The chosen actor-critic algorithm, REDQ [Chen et al., 2021], which we use
in our experiments, is trained until convergence or until a computational budget is exhausted, after
which we freeze its policy parameters, e.g., the weights of the corresponding neural net.
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(ii) Collecting data. After training the policy, we run an agent acting according to this policy for
several episodes. Although a PAC-Bayesian bound gets tighter as the number of data points increases,
we observe that even a relatively small number of evaluation roll-outs is sufficient to get tight results.

(iii) Fitting the posteriors. We rely on the discounted return as the prediction target rather than a
plain sum of rewards for several reasons. Short-term risks tend to be more relevant for decisions, as
longer-term risks depend on an increasing set of external, usually unaccountable, factors. Discounted
rewards also serve as a proxy for lifelong learning and policy evaluation as they generalize to non-
episodic data. That said, even though the original policy might be trained on discounted returns in
step (i), a valid bound could also be constructed by computing the non-discounted rewards from data
collected in (ii). As discussed in Section 2.2.3, we split the data into 7" disjoint subsets and train a
series of T" last-layer Bayesian neural nets via first-visit Monte Carlo to infer distributions over S<;.

(iv) Construction of the bound. As discussed above, we focus on a generally well-performing set of
kl-based bounds. We construct the following bounds for By and &; (t € {1,...,T}).

A bound for B;. As L(h) is bounded between [0, B], we rescale its expectation and choose

E,[L(h)] KL (p1 || p5) + 1H(2T\/ﬁ/5)>
B N ’

Bi(p1) = Bk1‘1’+<
where pj) is a data-independent prior distribution on H. Given the result in Theorem 2.1, this is a
PAC-Bayesian bound on E,, [L(h)], i.e., P(3p1 € Py : E,, [L(h)] > Bi(p1)) < 6/T.

A bound for &;. Let L$*(h) = L(h) — xE,, , [L(R')] € [-kB,B]. For p € [—k.B,B],
define L&t (k) = max{0, LE(h) — p} and L&~ (k) = max{0, n — L& (h)}, with L&+ (h) and
L~ (h) as their empirical analogous. We set

B, [L9*(h)] KL (o, || pi_y) + 1n(4TWt/6>)

E(pt) = p+ (B — u)kll’+<

B—u N,
[~ (h)] KL . In(4T/N; /6
—(n+ /itB)kl_l’+ (Em [Lt (h)]7 (Pt | pt—l) + In( +/ )>,
w+ ke B N,

where p;_, is a distribution on H informed by S<;_;. Via Theorem 2.4 this is a PAC-Bayesian
bound on IE,,, [L§*°] that holds with a probability greater than 1 — §/T, i.e.,

P(3p; € Py such that B, [LS(h)] > & (p1)) < 6/T.

Applying this construction recursively with 7" steps therefore gives us a recursive PAC-Bayesian
bound that holds with probability greater than 1 — §.

4 Experiments

We perform experiments to answer the following three questions: (Q1) Can the test-time return of
a policy 7 be predicted with high precision across a range of environments and policies of varying
expertise? (Q2) What is the influence of a PAC-Bayes bound’s structure? (Q3) How does the
validation set size influence the tightness of the risk certificate guarantee?

4.1 Experiment design

To evaluate our certificate-generation pipeline at an error tolerance of 6 = 0.05, we choose REDQ
[Chen et al., 2021] as a representative state-of-the-art, sample-efficient, model-free continuous control
algorithm. All REDQ hyperparameters follow those in the original paper. We first train a REDQ agent
for 300 000 steps using an ensemble of ten critics, randomly sampling two at each Bellman-target
evaluation for min-clipping. The learned policy is then run in evaluation mode for 100 episodes. The
resulting state transitions and rewards are stored as the data set used for bound fitting. Subsequently,
we run the trained policy for another 100 episodes to obtain a test dataset to compute a proxy for the
generalization performance. We predict the discounted return of the policy on the test set by fitting a
PAC-Bayes bound using observations from the validation set.
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Figure 2: Correlation plots. PAC-Bayes bounds, one in each column, are plotted on the x-axis against
true test errors on the y-axis for each method across all environments, policy instances, and repetitions
to visualize correlation. Environments are color-coded as follows: Ant (blue circle), Half-Cheetah
(orange cross), Hopper (green square), Humanoid (red plus), and Walker2d (purple diamond).

We evaluate and compare the final posterior loss p on the full training data, and on the held-out
test data, alongside the corresponding PAC-Bayes bounds across all methods and environments. To
mitigate the overfitting common in continuous-control settings, where consecutive samples are highly
correlated, we apply a thinning strategy that reduces redundancy while preserving data diversity.
Full details on each experiment are provided in Appendix D. We provide an implementation at
anonymous.

Policy instances. We define a policy instance as the output of a single policy-training round. In our
experiments, we consider five policy instances, each obtained by running the REDQ algorithm with a
different initial seed. Due to the stochastic nature of initialization and training, each instance follows
a unique trajectory. We construct individual bounds for each instance and report them in Appendix D.
To account for randomness in the risk certificate generation process, we repeat the procedure five
times for every policy instance. To address question (Q2), we create separate risk certificates for
three training stages of each policy, each reflecting a different level of expertise: Starter (S) for a
policy trained for 100 000 steps, Intermediate (I) for 200 000 steps, and Expert (E) for 300 000 steps,
after which no performance improvement observed.

Environments. We evaluate five MuJoCo environments: Ant, Half-Cheetah, Hopper, Humanoid,
and Walker2d [Todorov et al., 2012] due to their widespread use in the community and the represen-
tative value of the platforms for real-world use cases. Risk certificates may be particularly interesting
for mobile platforms that interact with their surroundings as well as humans.

Baselines. We design our baselines with the following points in mind: 1. how well a PAC-Bayes
bound predicts test-time performance, 2. whether informative priors yield tighter guarantees, 3.
whether the bound gets tighter when the recursive scheme is used, and 4. whether increasing the
recursion depth improve tightness. As this is the first work to evaluate generalization bounds tailored
for continuous control with deep actor-critics, there are no existing baselines for comparison. We
consider two non-recursive (NR) baselines: non-informed (NR-NI), a PAC-Bayes-kl inverse bound
(see Theorem 2.1) with a non-informative prior that is independent of the training data, and informed
(NR-I), a data-informed variant in which the dataset is split equally into D = Dpyior U Dpound, allowing
the prior to depend on Dy, and the empirical loss to be computed on Dyoung. We evaluate two
recursion (R) depths, depth two (R-I1 T=2) and depth six (R-I T=6), to test the effect of recursion.

Performance metrics. We evaluate the bounds based on three metrics: Normalized bound value: To
ensure comparability across environments with different reward scales, we normalize the squared
discounted return prediction errors by the maximum observed return during training. A value close to
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Figure 3: Bound values. Normalized bound values for all baselines across five MuJoCo environments
over three policy qualities. Results are aggregated over all policy instances and repetitions.

zero implies that the bound closely follows the actual returns. Tightness: The difference between
the predicted bound and the actual test error; smaller values indicate more accurate estimates of
the discounted return prediction error. Correlation: We expect a linear correlation between the risk
certificates and the observed test errors across policy instances.

Computational requirements. We conduct our experiments on a single computer equipped with a
GeForce RTX 4090 GPU, an Intel(R) Core(TM) i7-14700K CPU (5.6 GHz), and 96 GB of memory.
Training five policy instances to convergence in each environment takes about 30 minutes per instance,
totaling 150 minutes. Collecting validation and test episodes requires around 20 minutes per policy
level, or 60 minutes in total. Model training and PAC-Bayes bound computation across five policy
instances, five repetitions, four baselines, and three policies takes four minutes per run, totaling
roughly 1200 minutes per environment, 7000 minutes in total (about five days).

4.2 Results

We present full results on every environment, policy instance and repetition in Appendix D and
restrict ourselves to discussing aggregated results in the main text.

Strong correlation between bounds and test errors. In Figure 2, we present scatter plots of all
the PAC-Bayes bounds discussed in 4.1, policy instances, and repetitions against their respective
test set errors across environments and levels of policy expertise. For every bound, the correlation
between the bound and the test error increases with policy expertise. Within a fixed expertise level,
the correlation also improves as the bound becomes more advanced, a trend that is already evident
in more noisy starter policy. For example, in the brittle Hopper environment, which exhibits the
weakest correlations overall, moving from NR-NI to R-I with T=6 raises the Pearson correlation from
0.4 to 0.65. At higher expertise levels, our recursive bounds achieve correlations above 0.9 in almost
all environments. Overall we see a clear linear trend, which demonstrates that our bounds are tight.
There appears an increasing scatter as the expertise level decreases. This is expected, as the effects of
an unconverged policy function on environment dynamics are less predictable. The bounds therefore
provide a good prediction of the test-time return, answering Q1.

Tightness improves with recursive depth. In Figure 3 we plot the normalized bounds aggregated
over policy instances and repetitions for each of the five environments. Smaller values reflect tighter
bounds. Data-informed priors improve bounds across all environments for intermediate and expert
policies, though this effect is less clear for the starter level policy. Introducing recursion (R-I, with
T=2 and T=6) further tightens bounds, with deeper recursion generally yielding the tightest results.
These improvements are most evident in environments with brittle dynamics such as Humanoid and
Hopper where the locomotor has to keep its balance and less so in simpler environments such as
Half-Cheetah. We see that while the correlation between bound and test-set error is already high,
better, recursive, bounds provide improved tightness guarantees answering Q2.

Recursion improves sample efficiency. Collecting validation data from physical robots is often
costly. Hence, the sample efficiency of a risk-certificate generation pipeline is of particular interest.
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Figure 4: Bound tightness; smaller is better. Results are provided for the Humanotd environment,
using five policy instances and five repetitions. (a) Tightness scores aggregated across three policy
qualities and various validation set sizes, expressed as percentages of the full validation dataset. (b)
Effect of the local reparameterization trick on bound tightness, illustrated for the expert-level policy.

Figure 4a shows the tightness scores of the bounds across different validation data sizes in the
Humanoid environment, while keeping the test size fixed. As expected, larger validation sets lead
to tighter bounds, but the effect is most pronounced for our proposed recursive bounds. R-I1 T=6
achieves tightness results comparable to those that the non-recursive bounds (non-informed, NR-NI,
and data-informed, NR-I) attain with twice as many data points. These findings demonstrate the
ability of recursive bounds to significantly improve sample efficiency, addressing Q3.

Local reparameterization improves tightness. To train our model, we use a Bayesian neural
network (BNN) that represents uncertainty by learning distributions over neural network parameters.
To our knowledge, prior work on PAC-Bayesian risk certificate building with BNNs has relied
exclusively on Blundell et al. [2015]’s Bayes by backprop approach [see, e.g., Pérez-Ortiz et al.,
2021]. We show with Figure 4b that using the local reparameterization trick (LRT) [Kingma et al.,
2015] to compute the empirical risk term in the bound calculation greatly improves bound tightness
of all four evaluated bounds. This effects holds even in the already saturated expert-level policy of
the challenging Humanoid environment. Further details can be found in Appendix D.

5 Limitations, future work, and broader impact

We restricted our empirical investigation to a single actor-critic algorithm and a single physics engine.
This was a conscious choice to facilitate interpretation and maintain feasibility. Given the brittleness
of the MuJoCo locomotion environments, we do not expect meaningful additional information to
come from extending the same pipeline to RL suites with a similar level of fidelity. The next major
step forward would be to implement our pipeline on a physical platform under controlled conditions.
We considered only dense-reward locomotion scenarios with rigid locomotors, as this is the natural
first step. The applicability of our findings to more advanced control settings, such as sparse-reward
scenarios that require goal-conditioned or hierarchical RL algorithm design is subject to further
investigation. We leave this enterprise to future work as the deep learning-based solutions for such
setups have not yet reached the level of maturity to move beyond simulations. Another significant leap
would be to proceed from our current self-certified policy evaluation approach to self-certified policy
optimization in an online setting. This would necessitate training the policy via a PAC-Bayes bound.
However, RL is a feedback-loop system in which assuring convergence, numerical stability, and
optimal trade-offs between exploration and exploitation are major determinants of a stable training.
While promising preliminary results exist [Tasdighi et al., 2024a,b], the problem is fundamental and
requires a dedicated research program—an effort that goes beyond the scope of a single paper.

Our work contributes to the trustworthy development of agentic Al technologies, thereby promoting
their adoption by society. Public concerns about such technologies will be even more pronounced
when they are deployed on physical systems that are in direct contact with humans. Thanks to reliable
risk certificates, such safety-critical technologies are likely to receive wider adoption. This, in turn,
will further accelerate their development by expanding the pool of practice and observations.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We summarize our claims and approach in the last paragraph of the introduction
and provide extensive evidence for them in Section 4.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations in Section 5.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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477 Justification: We either cite the original work or provide a proof ourselves for every theoreti-
478 cal statement in the paper.

479 Guidelines:

480 * The answer NA means that the paper does not include theoretical results.

481  All the theorems, formulas, and proofs in the paper should be numbered and cross-
482 referenced.

483 * All assumptions should be clearly stated or referenced in the statement of any theorems.
484 * The proofs can either appear in the main paper or the supplemental material, but if
485 they appear in the supplemental material, the authors are encouraged to provide a short
486 proof sketch to provide intuition.

487 * Inversely, any informal proof provided in the core of the paper should be complemented
488 by formal proofs provided in appendix or supplemental material.

489 * Theorems and Lemmas that the proof relies upon should be properly referenced.

490 4. Experimental result reproducibility

491 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
492 perimental results of the paper to the extent that it affects the main claims and/or conclusions
493 of the paper (regardless of whether the code and data are provided or not)?

494 Answer: [Yes]

495 Justification: Yes, we provide all required details required to guarantee reproducibility in
496 the Appendix C.

497 Guidelines:

498 * The answer NA means that the paper does not include experiments.

499 * If the paper includes experiments, a No answer to this question will not be perceived
500 well by the reviewers: Making the paper reproducible is important, regardless of
501 whether the code and data are provided or not.

502 * If the contribution is a dataset and/or model, the authors should describe the steps taken
503 to make their results reproducible or verifiable.

504 * Depending on the contribution, reproducibility can be accomplished in various ways.
505 For example, if the contribution is a novel architecture, describing the architecture fully
506 might suffice, or if the contribution is a specific model and empirical evaluation, it may
507 be necessary to either make it possible for others to replicate the model with the same
508 dataset, or provide access to the model. In general. releasing code and data is often
509 one good way to accomplish this, but reproducibility can also be provided via detailed
510 instructions for how to replicate the results, access to a hosted model (e.g., in the case
511 of a large language model), releasing of a model checkpoint, or other means that are
512 appropriate to the research performed.

513 * While NeurIPS does not require releasing code, the conference does require all submis-
514 sions to provide some reasonable avenue for reproducibility, which may depend on the
515 nature of the contribution. For example

516 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
517 to reproduce that algorithm.

518 (b) If the contribution is primarily a new model architecture, the paper should describe
519 the architecture clearly and fully.

520 (c) If the contribution is a new model (e.g., a large language model), then there should
521 either be a way to access this model for reproducing the results or a way to reproduce
522 the model (e.g., with an open-source dataset or instructions for how to construct
523 the dataset).

524 (d) We recognize that reproducibility may be tricky in some cases, in which case
525 authors are welcome to describe the particular way they provide for reproducibility.
526 In the case of closed-source models, it may be that access to the model is limited in
527 some way (e.g., to registered users), but it should be possible for other researchers
528 to have some path to reproducing or verifying the results.

529 5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The environments we use are publicly available, we reference the respective
python packages in the appendix. We additionally provide a pytorch implementation of our
proposed approach.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide all experimental details in Appendix C.
Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report error bars for all experiments and define them in Appendix C.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discuss the required computational ressources in the main paper in Section 4
and in Appendix C.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We carefully checked the guidelines and follow them in this submission.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Please see Section 5 for the discussion.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The submission poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We credit the python environments and packages we rely on in the appendix.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The submission does not introduce any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The submission does not rely on human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The submission does not rely on human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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737 16. Declaration of LLLM usage

738 Question: Does the paper describe the usage of LLMs if it is an important, original, or
739 non-standard component of the core methods in this research? Note that if the LLM is used
740 only for writing, editing, or formatting purposes and does not impact the core methodology,
741 scientific rigorousness, or originality of the research, declaration is not required.

742 Answer: [NA]

743 Justification: The submission does not rely on LLMs for any of its research.

744 Guidelines:

745 * The answer NA means that the core method development in this research does not
746 involve LLMs as any important, original, or non-standard components.

747 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
748 for what should or should not be described.
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