
Deep Actor-Critics with Tight Risk Certificates

Anonymous Author(s)

Affiliation
Address
email

Abstract

1 After a period of research, deep actor-critic algorithms have reached a level where
2 they influence our everyday lives. They serve as the driving force behind the
3 continual improvement of large language models through user-collected feed-
4 back. However, their deployment in physical systems is not yet widely adopted,
5 mainly because no validation scheme that quantifies their risk of malfunction. We
6 demonstrate that it is possible to develop tight risk certificates for deep actor-critic
7 algorithms that predict generalization performance from validation-time observa-
8 tions. Our key insight centers on the effectiveness of minimal evaluation data.
9 Surprisingly, a small feasible of evaluation roll-outs collected from a pretrained
10 policy suffices to produce accurate risk certificates when combined with a simple
11 adaptation of PAC-Bayes theory. Specifically, we adopt a recently introduced recur-
12 sive PAC-Bayes approach, which splits validation data into portions and recursively
13 builds PAC-Bayes bounds on the excess loss of each portion’s predictor, using
14 the predictor from the previous portion as a data-informed prior. Our empirical
15 results across multiple locomotion tasks and policy expertise levels demonstrate
16 risk certificates that are tight enough to be considered for practical use.

17

1 Introduction

18 Reinforcement Learning (RL) is transforming emerging AI technologies. Large language models
19 incorporate human feedback via RL, thereby continually improving their accuracy [Christiano et al.,
20 2017, Ziegler et al., 2019, DeepSeek-AI et al., 2025]. Generative AI is increasingly being integrated
21 into agentic workflows to automate complex decision making tasks. RL has also shown great promise
22 in the control of physical robotic systems. Recent deep actor-critic algorithms learned to make a
23 legged robot walk after only 20 minutes of outdoor training in an online mode [Kostrikov et al., 2023].
24 Model-based extensions of actor-critic pipelines can also achieve sample-efficient visual-control tasks
25 in diverse settings [Hafner et al., 2025, Zhang et al., 2023]. Despite the exciting results observed in
26 experimental conditions, RL is used far less than classical approaches in physical robot control. This
27 opportunity has largely been missed mainly because deep RL algorithms are overly sensitive to initial
28 conditions and can change behavior drastically during training. Embodied intelligent systems have
29 a high risk of causing harm when their generalization performance differs significantly from their
30 observed validation performance. Predictable generalization performance is even more critical when
31 these systems update their behavior based on interactions with humans.

32 There has been an effort to use learning-theoretic approaches to train high-capacity predictors with
33 risk certificates, i.e., bounds that guarantee a predictor’s generalization performance. Typically, this
34 performance is estimated from observed validation results, which may be misleading. *Probably*
35 *Approximately Correct Bayesian (PAC-Bayes) theory* [McAllester, 1999, Alquier et al., 2024] provides
36 risk certificates for stochastic predictors, relative to a prior distribution over the hypothesis space.
37 In this framework, the computationally prohibitive capacity term is reduced to a Kullback-Leibler

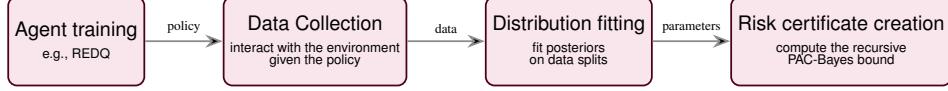


Figure 1: Our four steps to generate tight risk certificates for deep actor-critic algorithms.

38 divergence between the posterior and the prior, enabling the incorporation of domain knowledge into
 39 the analysis. Since we often deal with stochastic policies, relying on PAC-Bayes is a natural choice.

40 PAC-Bayes is the first and remains the most promising method for providing meaningful risk
 41 certificates to deep neural networks [Dziugaite and Roy, 2017, Pérez-Ortiz et al., 2021, Lotfi et al.,
 42 2022]. Further studies have improved the tightness, i.e., precision, of these certificates through the
 43 following techniques: (i) pretraining probabilistic neural nets on held-out data and using them as
 44 *data-informed priors* [Ambroladze et al., 2006, Dziugaite et al., 2021]; (ii) using pretrained networks
 45 as first-step predictors and developing PAC-Bayes guarantees on the residual of their predictions,
 46 termed the *excess loss*; and (iii) recursively repeating the first two steps on multiple data splits, a
 47 recent method known as the *Recursive PAC-Bayes* [Wu et al., 2024]. The scope of these exciting
 48 developments has thus far been limited to simple classification tasks with feedforward neural networks.
 49 Their application to deep actor-critic algorithms remains open, primarily because the mainstream
 50 PAC-Bayes bounds assume i.i.d. datasets, whereas RL assumes a controlled Markov chain.

51 We present a simple recipe for providing risk certificates for deep model-free actor-critic architectures.
 52 We find that, contrary to what one might expect, the three modern PAC-Bayesian learning tools
 53 mentioned above can successfully handle the high variance of Monte Carlo samples collected by
 54 running a pretrained policy network for multiple episodes in evaluation mode. Our approach proposes
 55 self-certified training of probabilistic neural networks on different splits of an i.i.d. data set containing
 56 return realizations of the policy, computed by first-visit Monte Carlo and post-processed through
 57 a simple thinning approach. We recursively build a PAC-Bayes bound on the excess losses of
 58 these networks, following a new adaptation of the recipe introduced by Wu et al. [2024]. Figure 1
 59 illustrates our risk-certificate generation workflow. Our results highlight that the risk certificates get
 60 significantly tighter as the recursion depth increases. The final bounds are tight enough for practical
 61 use. Furthermore, the tightness of the risk certificates is proportional to the policy’s level of expertise.

62 2 Background

63 2.1 The state of the art of model-free deep actor-critic learning

64 Consider a set of states \mathcal{S} an agent may be in and an action space \mathcal{A} from which the agent can
 65 choose actions to interact with its environment. Denote by $\Delta(\mathcal{S})$ and $\Delta(\mathcal{A})$ the sets of probability
 66 distributions defined on \mathcal{S} and \mathcal{A} , respectively. We define a Markov Decision Process (MDP)
 67 [Puterman, 2014] as the tuple $M = \langle \mathcal{S}, \mathcal{A}, r, P, P_0, \gamma \rangle$, where $r : \mathcal{S} \times \mathcal{A} \rightarrow [0, R]$ is a bounded
 68 reward function, $P : \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow [0, 1]$ is the state-transition kernel conditioned on a state-action
 69 pair; specifically $P(s'|s, a)$ is the probability distribution of the next state $s' \in \mathcal{S}$ given the current
 70 state-action pair $(s, a) \in \mathcal{S} \times \mathcal{A}$. We denote the initial-state distribution by $P_0 \in \Delta(\mathcal{S})$, the discount
 71 factor by $\gamma \in (0, 1)$, and let $\pi : \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$ be a policy. The goal of RL is to learn a policy
 72 that maximizes the expected discounted return, $\pi_* := \arg \max_{\pi \in \Pi} \mathbb{E}_{\pi_*} [\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)]$. The
 73 expectation is taken with respect to the trajectory $\tau_{\pi} := (s_0, a_0, s_1, a_1, s_2, a_2, \dots)$ of states and
 74 actions generated when a policy π chosen from a feasible set Π is executed. We refer to π_* as the
 75 optimal policy. The exact Bellman operator for a policy π is defined as

$$T_{\pi} Q(s, a) := r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} [Q(s', \pi(s'))] \quad (1)$$

76 for some function $Q : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$. The unique fixed point of this operator is the true
 77 action-value function Q_{π} , which maps a state-action pair (s, a) to the expected discounted
 78 sum of rewards the policy π collects when executed from (s, a) . In other words, the equality
 79 $T_{\pi} Q(s, a) = Q(s, a)$ holds if and only if $Q(s, a) = Q_{\pi}(s, a), \forall (s, a)$. Any other Q incurs an error
 80 $(T_{\pi} Q(s, a) - Q(s, a))^2$, called the *Bellman error*. Common deep actor-critic methods approxi-
 81 mate the true action-value function Q_{π} by one-step Temporal Difference (TD) learning that min-
 82 imizes $L(Q, \pi) := \mathbb{E}_{s \sim P_{\pi}} [(T_{\pi} Q(s, a) - Q(s, a))^2]$ with respect to Q , given a data set \mathcal{D} and
 83 $P_{\pi}(s' \in A) = \mathbb{E}_{s \sim P_0} [\sum_{t>0} P(s_t \in A | s_0 = s, \pi(s))]$ which is defined as the state-visitation dis-
 84 tribution of policy π for some event A that belongs to the σ -algebra of the transition probability

85 distribution. Because the transition probabilities are unknown, the expectation term in Eq. 1 cannot
 86 be computed. Instead, the observed transitions are used to approximate it with a single-sample Monte
 87 Carlo estimate, yielding the training objective below:

$$\tilde{L}(Q) := \mathbb{E}_{s \sim P_\pi} \left[\mathbb{E}_{s' \sim P(\cdot|s, \pi(s))} [(r(s, a) + \gamma Q(s', \pi(s')) - Q(s, a))^2] \right].$$

88 A deep actor-critic algorithm fits a neural-network function approximator Q , referred to as the critic,
 89 to a set of observed tuples (s, a, s') stored in a replay buffer \mathcal{D} by minimizing an empirical estimate
 90 of the stochastic loss: $\hat{L}_{\mathcal{D}}(Q) := 1/|\mathcal{D}| \sum_{(s, a, s') \in \mathcal{D}} (\tilde{T}_\pi Q(s, a, s') - Q(s, a))^2$. The critic is then
 91 used to train a policy network, or actor, $\pi' \leftarrow \arg \max_\pi \mathbb{E}_{s \sim P_\pi} [Q(s, \pi(s))]$. It is common practice to
 92 adopt the *Maximum-Entropy Reinforcement Learning* approach [Haarnoja et al., 2018a,b] to balance
 93 exploration and exploitation, thereby ensuring effective training. The approach supplements the
 94 reward function with a policy-entropy term $r_{\text{MaxEnt}}(s, a) = r(s, a) + \alpha \mathbb{H}[\pi(\cdot|s)]$, where $\alpha \geq 0$ is a
 95 scaling hyperparameter tuned jointly with the actor and critic.

96 Performing off-policy TD learning with deep neural nets is notoriously unstable which is often
 97 attributed to the *deadly triad* [Sutton and Barto, 2018]. The main source of instability is the
 98 accumulation of errors from approximating $T_\pi Q$ by its Monte Carlo estimate. Strategies to improve
 99 stability include maintaining Polyak-updated target networks [Lillicrap et al., 2016] and learning
 100 twin critics while using the minimum of their target-network outputs in Bellman target calculation
 101 [Fujimoto et al., 2018]. Empirically, training an ensemble of critic networks in a maximum-entropy
 102 setup largely mitigates these stability issues. We adopt REDQ [Chen et al., 2021], a state-of-the-art
 103 actor-critic method for model-free continuous control, as our representative approach. This choice is
 104 pragmatic rather than restrictive allowing us to trade the computational cost of a broader exploration
 105 of algorithms for a deeper, more comprehensive empirical evaluation of a single one.

106 2.2 Developing risk certificates with PAC-Bayes bounds

107 PAC-Bayes [McAllester, 1999, Alquier et al., 2024] offers a powerful way to understand and control
 108 how well learning algorithms generalize by blending prior beliefs with what we learn from data.
 109 *PAC-Bayesian learning* uses modern machine learning techniques to model ρ with complex function
 110 approximators and fit them to data. It has been successfully applied in both image classification
 111 [Dziugaite and Roy, 2017, Wu et al., 2024] and regression tasks [Reeb et al., 2018]. Its application to
 112 reinforcement learning has so far been limited to the design of critic training losses without rigorously
 113 quantifying the tightness of the performance guarantees [Tasdighi et al., 2024a,b].

114 **Notation.** Let $\mathcal{H} : \mathcal{X} \rightarrow \mathcal{Y}$ be a set of feasible hypotheses and $\ell : \mathcal{Y} \times \mathcal{Y} \rightarrow [0, 1]$ be
 115 a bounded loss function.¹ Further, let $L(h) = \mathbb{E}_{(x, y) \sim P_D} [\ell(h(x), y)]$ be the expected error,
 116 where P_D is a distribution on $\mathcal{X} \times \mathcal{Y}$. The empirical loss is $\hat{L}(h) = \frac{1}{N} \sum_{i=1}^N \ell(h(x_i), y_i)$
 117 for a data set $\mathcal{D} = \{(x_n, y_n) : n \in \{1, \dots, N\}\}$ of size N with $(x_n, y_n) \sim P_D$. \mathcal{P}
 118 is the set of distributions on \mathcal{H} . For two distributions ρ, ρ_0 on \mathcal{H} , the Kullback-
 119 Leibler (KL) divergence is defined as $\text{KL}(\rho \parallel \rho_0) \triangleq \mathbb{E}_{h \sim \rho} [\log \rho(h) - \log \rho_0(h)]$. We use
 120 $\text{kl}(p \parallel q) \triangleq p \log(p/q) + (1-p) \log((1-p)/(1-q))$ to denote the KL divergence between two
 121 Bernoulli distributions. PAC-Bayesian analysis [McAllester, 1999, Shawe-Taylor and Williamson,
 122 1997, Alquier et al., 2024] develops bounds on the *expected loss* $\mathbb{E}_{h \sim \rho} [L(h)]$, under a posterior dis-
 123 tribution ρ with respect to a prior distribution ρ_0 , that hold with high probability. That is, they provide
 124 *risk certificates* for the generalization error. For brevity, we will use $\mathbb{E}_\rho [\cdot] = \mathbb{E}_{h \sim \rho} [\cdot]$ throughout this
 125 paper. In the context of PAC-Bayes, the terms *posterior* and *prior* refer to distributions dependent
 126 and independent of the validation data, respectively. They are not to be understood in a Bayesian
 127 manner as being linked by a likelihood.² Which bounds one should choose to get the tightest risk
 128 certificates depends on the specific use case; see, e.g., Alquier et al. [2024] for a recent introduction
 129 and a survey of various bounds. In this work we rely on bounds derived from the kl divergence as
 130 they are tighter than the alternatives when no additional information about the data distribution is
 131 available, while noting that the same arguments apply to any other PAC-Bayesian bound.

132 2.2.1 PAC-Bayes-kl bound

133 Assuming the definitions given above, the *PAC-Bayes-kl bound* is given by

¹Our discussion generalizes directly to any bounded loss within an interval $[a, b]$ with $a, b \in \mathbb{R}$.

²See Germain et al. [2016] for results linking PAC-Bayes and Bayesian inference.

134 **Theorem 2.1** (PAC-Bayes-kl bound [Seeger, 2002, Maurer, 2004]). *For any probability distribution*
 135 $\rho_0 \in \mathcal{P}$ *that is independent of \mathcal{D} and any $\delta \in (0, 1)$, we have*

$$\mathbb{P}\left(\exists \rho \in \mathcal{P} : \text{kl}(\mathbb{E}_\rho[\hat{L}(h)] \parallel \mathbb{E}_\rho[L(h)]) \geq (\text{KL}(\rho \parallel \rho_0) + \ln(2\sqrt{N}/\delta))/N\right) \leq \delta.$$

136 *Proof.* See, e.g., Maurer [2004] for a proof of the bound. \square

137 We define the upper inverse of $\text{kl}(\cdot \parallel \cdot)$ as $\text{kl}^{-1,+}(\hat{p}, \varepsilon) \triangleq \max\{p : p \in [0, 1] \mid \text{kl}(\hat{p} \parallel p) \leq \varepsilon\}$ and
 138 the lower one as $\text{kl}^{-1,-}(\hat{p}, \varepsilon) \triangleq \min\{p : p \in [0, 1], \text{kl}(\hat{p} \parallel p) \leq \varepsilon\}$ and cite the following inequality.

139 **Lemma 2.2** (kl-inequality [Langford, 2005, Foong et al., 2021, 2022]). *Let Z_1, \dots, Z_N be i.i.d.*
 140 *random variables taking values on an interval $[0, 1]$ and $\mathbb{E}[Z_n] = p$ for all n . Let their empirical*
 141 *mean be $\hat{p} = \frac{1}{N} \sum_{n=1}^N Z_n$. Then, for any $\delta \in (0, 1)$ we have*

$$\mathbb{P}(\text{kl}(\hat{p} \parallel p) \geq \ln(1/\delta)/N) \leq \delta,$$

142 *the inverse of which is given by*

$$\mathbb{P}(p \geq \text{kl}^{-1,+}(\hat{p}, \ln(1/\delta)/N)) \leq \delta, \quad \text{and} \quad \mathbb{P}(p \leq \text{kl}^{-1,-}(\hat{p}, \ln(1/\delta)/N)) \leq \delta.$$

143 *Proof.* See Langford [2005], Corollary 3.7 for a proof of the bound. \square

144 2.2.2 PAC-Bayes-Split-kl bound

145 **Wu and Seldin [2022]** generalize these bounds to random variables that take values in intervals $[a, b]$
 146 splitting each into two components that individually satisfy the constraints of the kl-inequality.

147 Let $Z \in [a, b]$, with $a, b \in \mathbb{R}$, be a random variable and set $p = \mathbb{E}[Z]$. For $\mu \in [a, b]$ define
 148 $Z^+ = \max\{0, Z - \mu\}$ and $Z^- = \max\{0, \mu - Z\}$, so that $Z = \mu + Z^+ - Z^-$. Let $p^+ = \mathbb{E}[Z^+]$ and
 149 $p^- = \mathbb{E}[Z^-]$ be their respective expectations, and let $\hat{p}^+ = \frac{1}{N} \sum_{n=1}^N Z_n^+$ and $\hat{p}^- = \frac{1}{N} \sum_{n=1}^N Z_n^-$
 150 be their empirical means for an i.i.d. sample Z_1, \dots, Z_N . The *split-kl inequality* is stated below.

151 **Lemma 2.3** (Split-kl inequality [Wu and Seldin, 2022]). *For any $\mu \in [a, b]$ and $\delta \in (0, 1)$*

$$\mathbb{P}\left(p \leq \mu + (b - \mu)\text{kl}^{-1,+}\left(\frac{\hat{p}^+}{b - \mu}, \frac{\ln(2/\delta)}{N}\right) - (\mu - a)\text{kl}^{-1,-}\left(\frac{\hat{p}^-}{\mu - a}, \frac{\ln(2/\delta)}{N}\right)\right) \geq 1 - \delta.$$

152 *Proof.* The lemma follows by applying Lemma 2.2 to each of the kl terms and a union bound. \square

153 For the PAC-Bayesian analogue, define $\tilde{\ell} : \mathcal{Y} \times \mathcal{Y} \rightarrow [a, b]$, where $a, b \in \mathbb{R}$. For $\mu \in [a, b]$,
 154 define $\tilde{\ell}^+ = \max\{0, \tilde{\ell} - \mu\}$ and $\tilde{\ell}^- = \max\{0, \mu - \tilde{\ell}\}$. $\tilde{L}^+(h) = \mathbb{E}_{(x,y) \sim P_D}[\tilde{\ell}^+(h(x), y)]$ and
 155 $\hat{\tilde{L}}^+(h) = \frac{1}{N} \sum_{n=1}^N \tilde{\ell}^+(h(x_n), y_n)$ are the expected and empirical losses. L^- and \hat{L}^- are defined
 156 analogously. With these definitions, we now cite the PAC-Bayes-split-kl inequality.

157 **Theorem 2.4** (PAC-Bayes-Split-kl inequality [Wu and Seldin, 2022]). *Let $\tilde{\ell}$ and the remaining loss*
 158 *terms be defined as above. Then for any ρ_0 on \mathcal{H} independent of \mathcal{D} , any $\mu \in [a, b]$, and any $\delta \in (0, 1)$*

$$\mathbb{P}\left(\exists \rho \in \mathcal{P} : \mathbb{E}_\rho[\tilde{L}(h)] \geq \mu + (b - \mu)\text{kl}^{-1,+}\left(\frac{\mathbb{E}_\rho[\hat{\tilde{L}}^+(h)]}{b - \mu}, \frac{\text{KL}(\rho \parallel \rho_0) + \ln(4\sqrt{N}/\delta)}{N}\right) - (\mu - a)\text{kl}^{-1,+}\left(\frac{\mathbb{E}_\rho[\hat{\tilde{L}}^-(h)]}{\mu - a}, \frac{\text{KL}(\rho \parallel \rho_0) + \ln(4\sqrt{N}/\delta)}{N}\right)\right) \leq \delta.$$

159 *Proof.* The theorem follows by applying Lemma 2.3 to the decomposition
 160 $\mathbb{E}_\rho[\tilde{L}(h)] = \mu + \mathbb{E}_\rho[\tilde{L}^+(h)] - \mathbb{E}_\rho[\tilde{L}^-(h)]$. \square

161 **2.2.3 Recursive PAC-Bayes bound**

162 **Data-informed prior.** The tightness of PAC-Bayesian bounds is dominated by the KL divergence
 163 between the posterior ρ and the prior ρ_0 . The better the prior guess is, the tighter the bound. Because
 164 the prior must be independent of the observed data, a common choice is to select a prior that is as
 165 uniform as possible over the hypothesis space. To improve upon this naïve choice, [Ambroladze et al.](#)
 166 [[2006](#)] proposed splitting the observed data into two disjoint subsets S_0 and S_1 , i.e., $\mathcal{D} = S_0 \cup S_1$,
 167 using S_0 to infer a *data-informed prior* and S_1 to subsequently evaluate the bound. This approach
 168 balances the benefit of a better prior with the cost of having fewer observations to evaluate the bound.

169 **Excess loss.** The *excess loss* $L^{\text{exc}}(h)$ with respect to a reference hypothesis $h^* \in \mathcal{H}$ is defined as
 170 $L^{\text{exc}}(h) = L(h) - L(h^*)$. The excess-loss concept allows us to decompose the expected loss as
 171 $\mathbb{E}_\rho [L(h)] = \mathbb{E}_\rho [L(h) - L(h^*)] + L(h^*)$. Using S_0 to construct both the prior ρ_0 and the reference
 172 h^* , [Mhammedi et al.](#) [[2019](#)] showed that, assuming $L(h^*)$ is close to $L(h)$, the excess loss has
 173 lower variance and thus yields a more efficient bound, while a bound on $L(h^*)$ is independent of
 174 $\text{KL}(\rho \parallel \rho_0)$ and can be obtained using standard generalization guarantees.

175 **Recursive PAC-Bayes.** [Wu et al.](#) [[2024](#)] generalized the excess loss further by in-
 176 troducing a scaling factor $\kappa < 1$ to maintain a diminishing effect of recursions:
 177 $\mathbb{E}_\rho [L(h)] = \mathbb{E}_\rho [L(h) - \kappa \mathbb{E}_{\rho_0} [L(h^*)]] + \kappa \mathbb{E}_{\rho_0} [L(h^*)]$. Here, the first term reflects the excess loss
 178 with respect to a scaled version of the expected reference hypothesis loss under the prior ρ_0 . The
 179 second term in turn is an expected loss again similar to the one on the left-hand side of the equation.
 180 Instead of adhering to a binary split $\mathcal{D} = S_0 \cup S_1$ such that $S_0 \cap S_1 = \emptyset$, they propose to extend
 181 this decomposition recursively, by partitioning \mathcal{D} into T disjoint subsets, $\mathcal{D} = \bigcup_{t=1}^T S_t$ and they
 182 define $S_{\leq t} = \bigcup_{s=1}^t S_s$ and $S_{\geq t} = \bigcup_{s=t}^T S_s$. Their recursion is given by

$$\mathbb{E}_{\rho_t} [L(h)] = \mathbb{E}_{\rho_t} [L(h) - \kappa_t \mathbb{E}_{\rho_{t-1}} [L(h)]] + \kappa_t \mathbb{E}_{\rho_{t-1}} [L(h)], \quad (2)$$

183 for $t \geq 2$, and $\kappa_1, \dots, \kappa_T$ are scaling factors. The distributions $\rho_1, \dots, \rho_T \in \mathcal{H}$ form a sequence
 184 such that ρ_t depends solely on $S_{\leq t}$ and $S_{\geq t}$ to estimate $\mathbb{E}_{\rho_t} [L(h)]$.

185 While [Wu et al.](#) [[2024](#)] formulate their final recursive bound directly for a zero-one loss and PAC-
 186 Bayes split-kl bounds [[Wu and Seldin, 2022](#)], we present their result first in a general loss-agnostic
 187 form before we construct a specific bound in the next section.

188 **Theorem 2.5.** (Recursive PAC-Bayes bound.) *Let $\mathcal{D} = S_1 \cup \dots \cup S_T$ be a disjoint decomposition
 189 of the set of observations \mathcal{D} . Let $S_{\leq t}$ and $S_{\geq t}$ be as defined above, $N = |\mathcal{D}|$, and $N_t = |S_{\geq t}|$. Let
 190 $\kappa_1, \dots, \kappa_T$ be a sequence of scaling factors, where κ_t is allowed to depend on $S_{\leq t-1}$. Let \mathcal{P}_t be the
 191 set of distributions on \mathcal{H} which are allowed to depend on $S_{\leq t}$, and $\rho_t \in \mathcal{P}_t$. Then, for any $\delta \in (0, 1)$,*

$$\mathbb{P} (\exists t \in [T], \rho_t \in \mathcal{P}_t \text{ such that } \mathbb{E}_{\rho_t} [L(h)] \geq \mathcal{B}_t(\rho_t)) \leq \delta,$$

192 where $\mathcal{B}_t(\rho_t)$ is a generic PAC-Bayesian bound on $\mathbb{E}_{\rho_t} [L(h)]$ defined recursively as follows.

$$\mathcal{B}_t(\rho_t) = \mathcal{E}_t(\rho_t, \kappa_t) + \kappa_t \mathcal{B}_{t-1}(\rho_{t-1}^*),$$

193 where $\mathcal{B}_1(\rho_1)$ is a PAC-Bayes bound on $\mathbb{E}_{\rho_1} [L(h)]$ with an uninformed prior and $\mathcal{E}_t(\rho_t, \kappa_t)$ is a
 194 PAC-Bayes bound on the excess loss $\mathbb{E}_{\rho_t} [L(h) - \kappa_t \mathbb{E}_{\rho_{t-1}^*} [L(h')]]$.

195 *Proof.* Because $\mathcal{B}_1(\rho_1)$ and $\mathcal{E}_t(\rho_t, \kappa_t)$ are PAC-Bayes bounds by assumption, we have

$$\mathbb{P} (\exists \rho_1 \in \mathcal{P}_1 : \mathbb{E}_{\rho_1} [L(h)] \geq \mathcal{B}_1(\rho_1)) \leq \delta/T,$$

$$\text{and } \mathbb{P} (\exists \rho_t \in \mathcal{P}_t : \mathbb{E}_{\rho_t} [L(h) - \kappa_t \mathbb{E}_{\rho_{t-1}^*} [L(h')]] \geq \mathcal{E}_t(\rho_t, \kappa_t)) \leq \delta/T \text{ for } t \in \{2, \dots, T\}.$$

196 The claim follows by expected loss decomposition and the recursion. \square

197 **3 Recursive PAC-Bayesian risk certificates for reinforcement learning**

198 Obtaining risk certificates involves four steps, following our conceptual structure in Figure 1.

199 **(i) Training an agent.** The chosen actor-critic algorithm, REDQ [[Chen et al., 2021](#)], which we use
 200 in our experiments, is trained until convergence or until a computational budget is exhausted, after
 201 which we freeze its policy parameters, e.g., the weights of the corresponding neural net.

202 **(ii) Collecting data.** After training the policy, we run an agent acting according to this policy for
 203 several episodes. Although a PAC-Bayesian bound gets tighter as the number of data points increases,
 204 we observe that even a relatively small number of evaluation roll-outs is sufficient to get tight results.

205 **(iii) Fitting the posteriors.** We rely on the discounted return as the prediction target rather than a
 206 plain sum of rewards for several reasons. Short-term risks tend to be more relevant for decisions, as
 207 longer-term risks depend on an increasing set of external, usually unaccountable, factors. Discounted
 208 rewards also serve as a proxy for lifelong learning and policy evaluation as they generalize to non-
 209 episodic data. That said, even though the original policy might be trained on discounted returns in
 210 step (i), a valid bound could also be constructed by computing the non-discounted rewards from data
 211 collected in (ii). As discussed in Section 2.2.3, we split the data into T disjoint subsets and train a
 212 series of T last-layer Bayesian neural nets via first-visit Monte Carlo to infer distributions over $S_{\leq t}$.

213 **(iv) Construction of the bound.** As discussed above, we focus on a generally well-performing set of
 214 kl-based bounds. We construct the following bounds for \mathcal{B}_1 and \mathcal{E}_t ($t \in \{1, \dots, T\}$).

215 **A bound for \mathcal{B}_1 .** As $\hat{L}(h)$ is bounded between $[0, B]$, we rescale its expectation and choose

$$\mathcal{B}_1(\rho_1) = B \text{kl}^{-1,+} \left(\frac{\mathbb{E}_{\rho_1}[\hat{L}(h)]}{B}, \frac{\text{KL}(\rho_1 \parallel \rho_0^*) + \ln(2T\sqrt{n}/\delta)}{N} \right),$$

216 where ρ_0^* is a data-independent prior distribution on \mathcal{H} . Given the result in Theorem 2.1, this is a
 217 PAC-Bayesian bound on $\mathbb{E}_{\rho_1} [L(h)]$, i.e., $\mathbb{P}(\exists \rho_1 \in \mathcal{P}_1 : \mathbb{E}_{\rho_1} [L(h)] \geq \mathcal{B}_1(\rho_1)) \leq \delta/T$.

218 **A bound for \mathcal{E}_t .** Let $L_t^{\text{exc}}(h) = L(h) - \kappa_t \mathbb{E}_{\rho_{t-1}} [L(h')] \in [-\kappa_t B, B]$. For $\mu \in [-\kappa_t B, B]$,
 219 define $L_t^{\text{exc}+}(h) = \max\{0, L_t^{\text{exc}}(h) - \mu\}$ and $L_t^{\text{exc}-}(h) = \max\{0, \mu - L_t^{\text{exc}}(h)\}$, with $\hat{L}_t^{\text{exc}+}(h)$ and
 220 $\hat{L}_t^{\text{exc}-}(h)$ as their empirical analogous. We set

$$\begin{aligned} \mathcal{E}_t(\rho_t) = \mu + (B - \mu) \text{kl}^{-1,+} & \left(\frac{\mathbb{E}_{\rho_t}[\hat{L}_t^{\text{exc}+}(h)]}{B - \mu}, \frac{\text{KL}(\rho_t \parallel \rho_{t-1}^*) + \ln(4T\sqrt{N_t}/\delta)}{N_t} \right) \\ & - (\mu + \kappa_t B) \text{kl}^{-1,+} \left(\frac{\mathbb{E}_{\rho_t}[\hat{L}_t^{\text{exc}-}(h)]}{\mu + \kappa_t B}, \frac{\text{KL}(\rho_t \parallel \rho_{t-1}^*) + \ln(4T\sqrt{N_t}/\delta)}{N_t} \right), \end{aligned}$$

221 where ρ_{t-1}^* is a distribution on \mathcal{H} informed by $S_{\leq t-1}$. Via Theorem 2.4 this is a PAC-Bayesian
 222 bound on $\mathbb{E}_{\rho_t} [L_t^{\text{exc}}]$ that holds with a probability greater than $1 - \delta/T$, i.e.,

$$\mathbb{P}(\exists \rho_t \in \mathcal{P}_t \text{ such that } \mathbb{E}_{\rho_t} [L_t^{\text{exc}}(h)] \geq \mathcal{E}_t(\rho_t)) \leq \delta/T.$$

223 Applying this construction recursively with T steps therefore gives us a recursive PAC-Bayesian
 224 bound that holds with probability greater than $1 - \delta$.

225 4 Experiments

226 We perform experiments to answer the following three questions: **(Q1)** Can the test-time return of
 227 a policy π be predicted with high precision across a range of environments and policies of varying
 228 expertise? **(Q2)** What is the influence of a PAC-Bayes bound's structure? **(Q3)** How does the
 229 validation set size influence the tightness of the risk certificate guarantee?

230 4.1 Experiment design

231 To evaluate our certificate-generation pipeline at an error tolerance of $\delta = 0.05$, we choose REDQ
 232 [Chen et al., 2021] as a representative state-of-the-art, sample-efficient, model-free continuous control
 233 algorithm. All REDQ hyperparameters follow those in the original paper. We first train a REDQ agent
 234 for 300 000 steps using an ensemble of ten critics, randomly sampling two at each Bellman-target
 235 evaluation for min-clipping. The learned policy is then run in evaluation mode for 100 episodes. The
 236 resulting state transitions and rewards are stored as the data set used for bound fitting. Subsequently,
 237 we run the trained policy for another 100 episodes to obtain a test dataset to compute a proxy for the
 238 generalization performance. We predict the discounted return of the policy on the test set by fitting a
 239 PAC-Bayes bound using observations from the validation set.

Bound vs Test Error

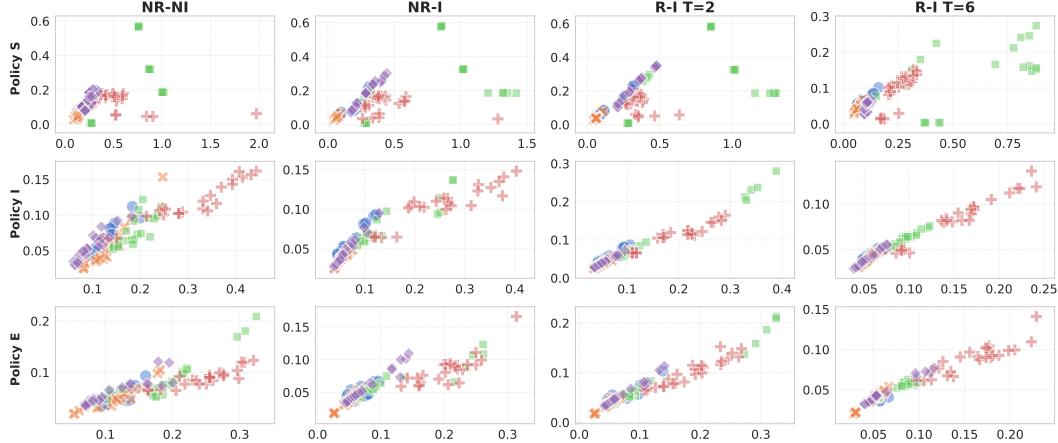


Figure 2: *Correlation plots*. PAC-Bayes bounds, one in each column, are plotted on the x-axis against true test errors on the y-axis for each method across all environments, policy instances, and repetitions to visualize correlation. Environments are color-coded as follows: Ant (blue circle), Half-Cheetah (orange cross), Hopper (green square), Humanoid (red plus), and Walker2d (purple diamond).

240 We evaluate and compare the final posterior loss ρ on the full training data, and on the held-out
 241 test data, alongside the corresponding PAC-Bayes bounds across all methods and environments. To
 242 mitigate the overfitting common in continuous-control settings, where consecutive samples are highly
 243 correlated, we apply a thinning strategy that reduces redundancy while preserving data diversity.
 244 Full details on each experiment are provided in Appendix D. We provide an implementation at
 245 anonymous.

246 **Policy instances.** We define a policy instance as the output of a single policy-training round. In our
 247 experiments, we consider five policy instances, each obtained by running the REDQ algorithm with a
 248 different initial seed. Due to the stochastic nature of initialization and training, each instance follows
 249 a unique trajectory. We construct individual bounds for each instance and report them in Appendix D.
 250 To account for randomness in the risk certificate generation process, we repeat the procedure five
 251 times for every policy instance. To address question (Q2), we create separate risk certificates for
 252 three training stages of each policy, each reflecting a different level of expertise: *Starter (S)* for a
 253 policy trained for 100 000 steps, *Intermediate (I)* for 200 000 steps, and *Expert (E)* for 300 000 steps,
 254 after which no performance improvement observed.

255 **Environments.** We evaluate five MuJoCo environments: Ant, Half-Cheetah, Hopper, Humanoid,
 256 and Walker2d [Todorov et al., 2012] due to their widespread use in the community and the represen-
 257 tative value of the platforms for real-world use cases. Risk certificates may be particularly interesting
 258 for mobile platforms that interact with their surroundings as well as humans.

259 **Baselines.** We design our baselines with the following points in mind: 1. how well a PAC-Bayes
 260 bound predicts test-time performance, 2. whether informative priors yield tighter guarantees, 3.
 261 whether the bound gets tighter when the recursive scheme is used, and 4. whether increasing the
 262 recursion depth improve tightness. As this is the first work to evaluate generalization bounds tailored
 263 for continuous control with deep actor-critics, there are no existing baselines for comparison. We
 264 consider two non-recursive (NR) baselines: *non-informed (NR-NI)*, a PAC-Bayes-kl inverse bound
 265 (see Theorem 2.1) with a non-informative prior that is independent of the training data, and *informed*
 266 (*NR-I*), a data-informed variant in which the dataset is split equally into $\mathcal{D} = \mathcal{D}_{\text{prior}} \cup \mathcal{D}_{\text{bound}}$, allowing
 267 the prior to depend on $\mathcal{D}_{\text{prior}}$ and the empirical loss to be computed on $\mathcal{D}_{\text{bound}}$. We evaluate two
 268 recursion (R) depths, *depth two (R-I T=2)* and *depth six (R-I T=6)*, to test the effect of recursion.

269 **Performance metrics.** We evaluate the bounds based on three metrics: *Normalized bound value*: To
 270 ensure comparability across environments with different reward scales, we normalize the squared
 271 discounted return prediction errors by the maximum observed return during training. A value close to

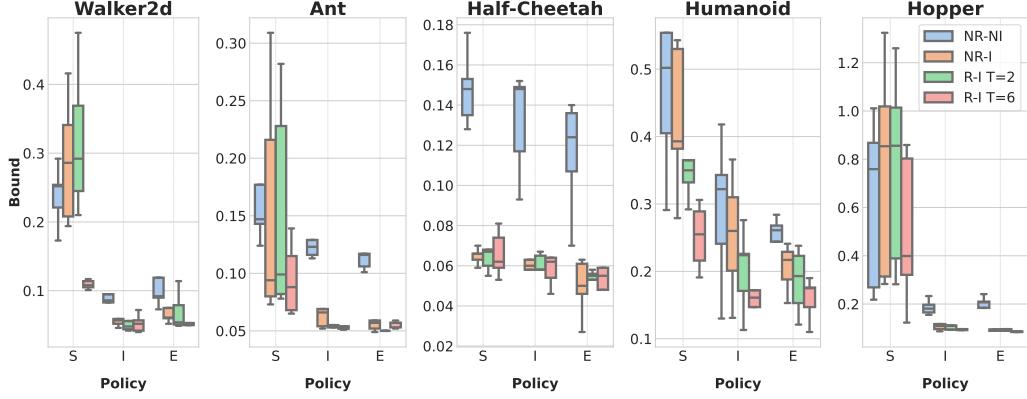


Figure 3: *Bound values*. Normalized bound values for all baselines across five MuJoCo environments over three policy qualities. Results are aggregated over all policy instances and repetitions.

272 zero implies that the bound closely follows the actual returns. *Tightness*: The difference between
 273 the predicted bound and the actual test error; smaller values indicate more accurate estimates of
 274 the discounted return prediction error. *Correlation*: We expect a linear correlation between the risk
 275 certificates and the observed test errors across policy instances.

276 **Computational requirements.** We conduct our experiments on a single computer equipped with a
 277 GeForce RTX 4090 GPU, an Intel(R) Core(TM) i7-14700K CPU (5.6 GHz), and 96 GB of memory.
 278 Training five policy instances to convergence in each environment takes about 30 minutes per instance,
 279 totaling 150 minutes. Collecting validation and test episodes requires around 20 minutes per policy
 280 level, or 60 minutes in total. Model training and PAC-Bayes bound computation across five policy
 281 instances, five repetitions, four baselines, and three policies takes four minutes per run, totaling
 282 roughly 1200 minutes per environment, 7000 minutes in total (about five days).

283 4.2 Results

284 We present full results on every environment, policy instance and repetition in Appendix D and
 285 restrict ourselves to discussing aggregated results in the main text.

286 **Strong correlation between bounds and test errors.** In Figure 2, we present scatter plots of all
 287 the PAC-Bayes bounds discussed in 4.1, policy instances, and repetitions against their respective
 288 test set errors across environments and levels of policy expertise. For every bound, the correlation
 289 between the bound and the test error increases with policy expertise. Within a fixed expertise level,
 290 the correlation also improves as the bound becomes more advanced, a trend that is already evident
 291 in more noisy *starter* policy. For example, in the brittle Hopper environment, which exhibits the
 292 weakest correlations overall, moving from NR-NI to R-I with T=6 raises the Pearson correlation from
 293 0.4 to 0.65. At higher expertise levels, our recursive bounds achieve correlations above 0.9 in almost
 294 all environments. Overall we see a clear linear trend, which demonstrates that our bounds are tight.
 295 There appears an increasing scatter as the expertise level decreases. This is expected, as the effects of
 296 an unconvolved policy function on environment dynamics are less predictable. The bounds therefore
 297 provide a good prediction of the test-time return, answering Q1.

298 **Tightness improves with recursive depth.** In Figure 3 we plot the normalized bounds aggregated
 299 over policy instances and repetitions for each of the five environments. Smaller values reflect tighter
 300 bounds. Data-informed priors improve bounds across all environments for intermediate and expert
 301 policies, though this effect is less clear for the starter level policy. Introducing recursion (R-I, with
 302 T=2 and T=6) further tightens bounds, with deeper recursion generally yielding the tightest results.
 303 These improvements are most evident in environments with brittle dynamics such as Humanoid and
 304 Hopper where the locomotor has to keep its balance and less so in simpler environments such as
 305 Half-Cheetah. We see that while the correlation between bound and test-set error is already high,
 306 better, recursive, bounds provide improved tightness guarantees answering Q2.

307 **Recursion improves sample efficiency.** Collecting validation data from physical robots is often
 308 costly. Hence, the sample efficiency of a risk-certificate generation pipeline is of particular interest.

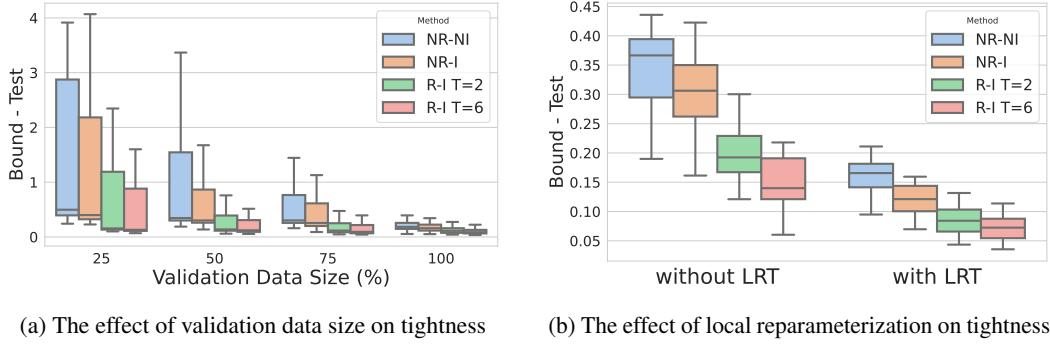


Figure 4: *Bound tightness; smaller is better. Results are provided for the Humanoid environment, using five policy instances and five repetitions.* (a) Tightness scores aggregated across three policy qualities and various validation set sizes, expressed as percentages of the full validation dataset. (b) Effect of the local reparameterization trick on bound tightness, illustrated for the expert-level policy.

309 Figure 4a shows the tightness scores of the bounds across different validation data sizes in the
 310 Humanoid environment, while keeping the test size fixed. As expected, larger validation sets lead
 311 to tighter bounds, but the effect is most pronounced for our proposed recursive bounds. R-I T=6
 312 achieves tightness results comparable to those that the non-informed, NR-NI,
 313 and data-informed, NR-I) attain with twice as many data points. These findings demonstrate the
 314 ability of recursive bounds to significantly improve sample efficiency, addressing Q3.

315 **Local reparameterization improves tightness.** To train our model, we use a Bayesian neural
 316 network (BNN) that represents uncertainty by learning distributions over neural network parameters.
 317 To our knowledge, prior work on PAC-Bayesian risk certificate building with BNNs has relied
 318 exclusively on Blundell et al. [2015]’s *Bayes by backprop* approach [see, e.g., Pérez-Ortiz et al.,
 319 2021]. We show with Figure 4b that using the *local reparameterization trick* (LRT) [Kingma et al.,
 320 2015] to compute the empirical risk term in the bound calculation greatly improves bound tightness
 321 of all four evaluated bounds. This effects holds even in the already saturated expert-level policy of
 322 the challenging Humanoid environment. Further details can be found in Appendix D.

323 5 Limitations, future work, and broader impact

324 We restricted our empirical investigation to a single actor-critic algorithm and a single physics engine.
 325 This was a conscious choice to facilitate interpretation and maintain feasibility. Given the brittleness
 326 of the MuJoCo locomotion environments, we do not expect meaningful additional information to
 327 come from extending the same pipeline to RL suites with a similar level of fidelity. The next major
 328 step forward would be to implement our pipeline on a physical platform under controlled conditions.
 329 We considered only dense-reward locomotion scenarios with rigid locomotors, as this is the natural
 330 first step. The applicability of our findings to more advanced control settings, such as sparse-reward
 331 scenarios that require goal-conditioned or hierarchical RL algorithm design is subject to further
 332 investigation. We leave this enterprise to future work as the deep learning-based solutions for such
 333 setups have not yet reached the level of maturity to move beyond simulations. Another significant leap
 334 would be to proceed from our current self-certified policy evaluation approach to self-certified policy
 335 optimization in an online setting. This would necessitate training the policy via a PAC-Bayes bound.
 336 However, RL is a feedback-loop system in which assuring convergence, numerical stability, and
 337 optimal trade-offs between exploration and exploitation are major determinants of a stable training.
 338 While promising preliminary results exist [Tasdighi et al., 2024a,b], the problem is fundamental and
 339 requires a dedicated research program—an effort that goes beyond the scope of a single paper.

340 Our work contributes to the trustworthy development of agentic AI technologies, thereby promoting
 341 their adoption by society. Public concerns about such technologies will be even more pronounced
 342 when they are deployed on physical systems that are in direct contact with humans. Thanks to reliable
 343 risk certificates, such safety-critical technologies are likely to receive wider adoption. This, in turn,
 344 will further accelerate their development by expanding the pool of practice and observations.

345 **References**

346 P. Alquier et al. User-friendly introduction to PAC-Bayes bounds. *Foundations and Trends in Machine*
347 *Learning*, 2024.

348 A. Ambroladze, E. Parrado-Hernandez, and J. Shawe-Taylor. Tighter PAC-Bayes bounds. In *Advances*
349 *in Neural Information Processing Systems (NeurIPS)*, 2006.

350 C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in neural network.
351 In *Proceedings of the 32nd International Conference on Machine Learning*, 2015.

352 X. Chen, C. Wang, Z. Zhou, and K. Ross. Randomized ensembled double q-learning: Learning fast
353 without a model. *International Conference on Learning Representations (ICLR)*, 2021.

354 P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei. Deep reinforcement learning
355 from human preferences. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2017.

356 DeepSeek-AI et al. Deepseek-v3 technical report, 2025. URL <https://arxiv.org/abs/2412.19437>.

358 G. Dziugaite and D. Roy. Computing non-vacuous generalization bounds for deep (stochastic) neural
359 networks with many more parameters than training data. In *Proceedings of the Conference on*
360 *Uncertainty in Artificial Intelligence (UAI)*, 2017.

361 G. K. Dziugaite, K. Hsu, W. Gharbieh, G. Arpino, and D. Roy. On the role of data in PAC-Bayes
362 bounds. In *Proceedings on the International Conference on Artificial Intelligence and Statistics*
363 (*AISTATS*), 2021.

364 A. Foong, W. Bruinsma, D. Burt, and R. Turner. How tight can PAC-Bayes be in the small data
365 regime? *Advances in Neural Information Processing Systems (NeurIPS)*, 34:4093–4105, 2021.

366 A. Y. Foong, W. P. Bruinsma, and D. R. Burt. A note on the chernoff bound for random variables in
367 the unit interval. *arXiv preprint arXiv:2205.07880*, 2022.

368 S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation error in actor-critic methods.
369 In *Proceedings of the International Conference on Machine Learning (ICML)*, 2018.

370 P. Germain, F. Bach, A. Lacoste, and S. Lacoste-Julien. PAC-Bayesian theory meets Bayesian
371 inference. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2016.

372 T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft Actor-Critic: Off-policy maximum entropy deep
373 reinforcement learning with a stochastic actor. In *Proceedings of the International Conference on*
374 *Machine Learning (ICML)*, 2018a.

375 T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
376 P. Abbeel, et al. Soft actor-critic algorithms and applications. *arXiv preprint arXiv:1812.05905*,
377 2018b.

378 D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse control tasks through world models.
379 *Nature*, 2025.

380 D. P. Kingma, T. Salimans, and M. Welling. Variational dropout and the local reparameterization
381 trick. *Advances in Neural Information Processing Systems (NeurIPS)*, 28, 2015.

382 I. Kostrikov, L. M. Smith, and S. Levine. Demonstrating a walk in the park: Learning to walk in 20
383 minutes with model-free reinforcement learning. In *Robotics: Science and Systems*, 2023.

384 J. Langford. Tutorial on practical prediction theory for classification. *Journal of Machine Learning*
385 *Research (JMLR)*, 6(3), 2005.

386 T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous
387 control with deep reinforcement learning. In *International Conference on Learning Representations*
388 (*ICLR*), 2016.

389 S. Lotfi, M. Finzi, S. Kapoor, A. Potapczynski, M. Goldblum, and A. G. Wilson. PAC-Bayes com-
390 pression bounds so tight that they can explain generalization. In *Advances in Neural Information*
391 *Processing Systems (NeurIPS)*, 2022.

392 A. Maurer. A note on the PAC bayesian theorem. *arXiv preprint cs/0411099*, 2004.

393 D. McAllester. PAC-Bayesian model averaging. In *Proceedings of the Conference on Learning*
394 *Theory (COLT)*, 1999.

395 Z. Mhammedi, P. Grünwald, and B. Guedj. PAC-Bayes un-expected bernstein inequality. *Advances*
396 *in Neural Information Processing Systems (NeurIPS)*, 32, 2019.

397 M. Pérez-Ortiz, O. Rivasplata, J. Shawe-Taylor, and C. Szepesvári. Tighter risk certificates for neural
398 networks. *Journal of Machine Learning Research (JMLR)*, 22(227):1–40, 2021.

399 M. Puterman. *Markov decision processes: discrete stochastic dynamic programming*. John Wiley &
400 Sons, 2014.

401 D. Reeb, A. Doerr, S. Gerwinn, and B. Rakitsch. Learning Gaussian processes by minimizing PAC-
402 Bayesian generalization bounds. *Advances in Neural Information Processing Systems (NeurIPS)*,
403 2018.

404 M. Seeger. PAC-Bayesian generalisation error bounds for Gaussian process classification. *Journal of*
405 *Machine Learning Research (JMLR)*, 2002.

406 J. Shawe-Taylor and R. Williamson. A PAC analysis of Bayesian estimator. In *Proceedings of the*
407 *Conference on Learning Theory (COLT)*, 1997.

408 R. Sutton and A. Barto. *Reinforcement learning: An introduction*. MIT Press, 2018.

409 B. Tasdighi, A. Akgül, M. Haussmann, K. K. Brink, and M. Kandemir. PAC-Bayesian soft actor-critic
410 learning. In *Advances in Approximate Bayesian Inference (AABI)*, 2024a.

411 B. Tasdighi, M. Haussmann, N. Werge, Y.-S. Wu, and M. Kandemir. Deep exploration with PAC-
412 Bayes. *arXiv preprint arXiv:2402.03055*, 2024b.

413 E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In *IEEE/RSJ*
414 *International Conference on Intelligent Robots and Systems (IROS)*, 2012.

415 Y.-S. Wu and Y. Seldin. Split-kl and PAC-Bayes-split-kl inequalities for ternary random variables.
416 *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.

417 Y.-S. Wu, Y. Zhang, B.-E. Chérif-Abdellatif, and Y. Seldin. Recursive PAC-Bayes: A frequentist
418 approach to sequential prior updates with no information loss. In *Advances in Neural Information*
419 *Processing Systems (NeurIPS)*, 2024.

420 W. Zhang, G. Wang, J. Sun, Y. Yuan, and G. Huang. Storm: Efficient stochastic transformer based
421 world models for reinforcement learning. In *Advances in Neural Information Processing Systems*
422 *(NeurIPS)*, 2023.

423 D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei, P. Christiano, and G. Irving.
424 Fine-tuning language models from human preferences. 2019.

425 **NeurIPS Paper Checklist**

426 **1. Claims**

427 Question: Do the main claims made in the abstract and introduction accurately reflect the
428 paper's contributions and scope?

429 Answer: [\[Yes\]](#)

430 Justification: We summarize our claims and approach in the last paragraph of the introduction
431 and provide extensive evidence for them in Section 4.

432 Guidelines:

- 433 • The answer NA means that the abstract and introduction do not include the claims
434 made in the paper.
- 435 • The abstract and/or introduction should clearly state the claims made, including the
436 contributions made in the paper and important assumptions and limitations. A No or
437 NA answer to this question will not be perceived well by the reviewers.
- 438 • The claims made should match theoretical and experimental results, and reflect how
439 much the results can be expected to generalize to other settings.
- 440 • It is fine to include aspirational goals as motivation as long as it is clear that these goals
441 are not attained by the paper.

442 **2. Limitations**

443 Question: Does the paper discuss the limitations of the work performed by the authors?

444 Answer: [\[Yes\]](#)

445 Justification: We discuss the limitations in Section 5.

446 Guidelines:

- 447 • The answer NA means that the paper has no limitation while the answer No means that
448 the paper has limitations, but those are not discussed in the paper.
- 449 • The authors are encouraged to create a separate "Limitations" section in their paper.
- 450 • The paper should point out any strong assumptions and how robust the results are to
451 violations of these assumptions (e.g., independence assumptions, noiseless settings,
452 model well-specification, asymptotic approximations only holding locally). The authors
453 should reflect on how these assumptions might be violated in practice and what the
454 implications would be.
- 455 • The authors should reflect on the scope of the claims made, e.g., if the approach was
456 only tested on a few datasets or with a few runs. In general, empirical results often
457 depend on implicit assumptions, which should be articulated.
- 458 • The authors should reflect on the factors that influence the performance of the approach.
459 For example, a facial recognition algorithm may perform poorly when image resolution
460 is low or images are taken in low lighting. Or a speech-to-text system might not be
461 used reliably to provide closed captions for online lectures because it fails to handle
462 technical jargon.
- 463 • The authors should discuss the computational efficiency of the proposed algorithms
464 and how they scale with dataset size.
- 465 • If applicable, the authors should discuss possible limitations of their approach to
466 address problems of privacy and fairness.
- 467 • While the authors might fear that complete honesty about limitations might be used by
468 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
469 limitations that aren't acknowledged in the paper. The authors should use their best
470 judgment and recognize that individual actions in favor of transparency play an impor-
471 tant role in developing norms that preserve the integrity of the community. Reviewers
472 will be specifically instructed to not penalize honesty concerning limitations.

473 **3. Theory assumptions and proofs**

474 Question: For each theoretical result, does the paper provide the full set of assumptions and
475 a complete (and correct) proof?

476 Answer: [\[Yes\]](#)

477 Justification: We either cite the original work or provide a proof ourselves for every theoretical
478 statement in the paper.

479 Guidelines:

480 • The answer NA means that the paper does not include theoretical results.
481 • All the theorems, formulas, and proofs in the paper should be numbered and cross-
482 referenced.
483 • All assumptions should be clearly stated or referenced in the statement of any theorems.
484 • The proofs can either appear in the main paper or the supplemental material, but if
485 they appear in the supplemental material, the authors are encouraged to provide a short
486 proof sketch to provide intuition.
487 • Inversely, any informal proof provided in the core of the paper should be complemented
488 by formal proofs provided in appendix or supplemental material.
489 • Theorems and Lemmas that the proof relies upon should be properly referenced.

490 4. Experimental result reproducibility

491 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
492 perimental results of the paper to the extent that it affects the main claims and/or conclusions
493 of the paper (regardless of whether the code and data are provided or not)?

494 Answer: [\[Yes\]](#)

495 Justification: Yes, we provide all required details required to guarantee reproducibility in
496 the Appendix C.

497 Guidelines:

498 • The answer NA means that the paper does not include experiments.
499 • If the paper includes experiments, a No answer to this question will not be perceived
500 well by the reviewers: Making the paper reproducible is important, regardless of
501 whether the code and data are provided or not.
502 • If the contribution is a dataset and/or model, the authors should describe the steps taken
503 to make their results reproducible or verifiable.
504 • Depending on the contribution, reproducibility can be accomplished in various ways.
505 For example, if the contribution is a novel architecture, describing the architecture fully
506 might suffice, or if the contribution is a specific model and empirical evaluation, it may
507 be necessary to either make it possible for others to replicate the model with the same
508 dataset, or provide access to the model. In general, releasing code and data is often
509 one good way to accomplish this, but reproducibility can also be provided via detailed
510 instructions for how to replicate the results, access to a hosted model (e.g., in the case
511 of a large language model), releasing of a model checkpoint, or other means that are
512 appropriate to the research performed.
513 • While NeurIPS does not require releasing code, the conference does require all submis-
514 sions to provide some reasonable avenue for reproducibility, which may depend on the
515 nature of the contribution. For example
516 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
517 to reproduce that algorithm.
518 (b) If the contribution is primarily a new model architecture, the paper should describe
519 the architecture clearly and fully.
520 (c) If the contribution is a new model (e.g., a large language model), then there should
521 either be a way to access this model for reproducing the results or a way to reproduce
522 the model (e.g., with an open-source dataset or instructions for how to construct
523 the dataset).
524 (d) We recognize that reproducibility may be tricky in some cases, in which case
525 authors are welcome to describe the particular way they provide for reproducibility.
526 In the case of closed-source models, it may be that access to the model is limited in
527 some way (e.g., to registered users), but it should be possible for other researchers
528 to have some path to reproducing or verifying the results.

529 5. Open access to data and code

530 Question: Does the paper provide open access to the data and code, with sufficient instructions
531 to faithfully reproduce the main experimental results, as described in supplemental
532 material?

533 Answer: [Yes]

534 Justification: The environments we use are publicly available, we reference the respective
535 python packages in the appendix. We additionally provide a pytorch implementation of our
536 proposed approach.

537 Guidelines:

- 538 • The answer NA means that paper does not include experiments requiring code.
- 539 • Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 540 • While we encourage the release of code and data, we understand that this might not be
541 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
542 including code, unless this is central to the contribution (e.g., for a new open-source
543 benchmark).
- 544 • The instructions should contain the exact command and environment needed to run to
545 reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 546 • The authors should provide instructions on data access and preparation, including how
547 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- 548 • The authors should provide scripts to reproduce all experimental results for the new
549 proposed method and baselines. If only a subset of experiments are reproducible, they
550 should state which ones are omitted from the script and why.
- 551 • At submission time, to preserve anonymity, the authors should release anonymized
552 versions (if applicable).
- 553 • Providing as much information as possible in supplemental material (appended to the
554 paper) is recommended, but including URLs to data and code is permitted.

557 6. Experimental setting/details

558 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
559 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
560 results?

561 Answer: [Yes]

562 Justification: We provide all experimental details in Appendix C.

563 Guidelines:

- 564 • The answer NA means that the paper does not include experiments.
- 565 • The experimental setting should be presented in the core of the paper to a level of detail
566 that is necessary to appreciate the results and make sense of them.
- 567 • The full details can be provided either with the code, in appendix, or as supplemental
568 material.

569 7. Experiment statistical significance

570 Question: Does the paper report error bars suitably and correctly defined or other appropriate
571 information about the statistical significance of the experiments?

572 Answer: [Yes]

573 Justification: We report error bars for all experiments and define them in Appendix C.

574 Guidelines:

- 575 • The answer NA means that the paper does not include experiments.
- 576 • The authors should answer “Yes” if the results are accompanied by error bars, confi-
577 dence intervals, or statistical significance tests, at least for the experiments that support
578 the main claims of the paper.
- 579 • The factors of variability that the error bars are capturing should be clearly stated (for
580 example, train/test split, initialization, random drawing of some parameter, or overall
581 run with given experimental conditions).

582 • The method for calculating the error bars should be explained (closed form formula,
 583 call to a library function, bootstrap, etc.)
 584 • The assumptions made should be given (e.g., Normally distributed errors).
 585 • It should be clear whether the error bar is the standard deviation or the standard error
 586 of the mean.
 587 • It is OK to report 1-sigma error bars, but one should state it. The authors should
 588 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
 589 of Normality of errors is not verified.
 590 • For asymmetric distributions, the authors should be careful not to show in tables or
 591 figures symmetric error bars that would yield results that are out of range (e.g. negative
 592 error rates).
 593 • If error bars are reported in tables or plots, The authors should explain in the text how
 594 they were calculated and reference the corresponding figures or tables in the text.

595 **8. Experiments compute resources**

596 Question: For each experiment, does the paper provide sufficient information on the com-
 597 puter resources (type of compute workers, memory, time of execution) needed to reproduce
 598 the experiments?

599 Answer: [\[Yes\]](#)

600 Justification: We discuss the required computational resources in the main paper in Section 4
 601 and in Appendix C.

602 Guidelines:

603 • The answer NA means that the paper does not include experiments.
 604 • The paper should indicate the type of compute workers CPU or GPU, internal cluster,
 605 or cloud provider, including relevant memory and storage.
 606 • The paper should provide the amount of compute required for each of the individual
 607 experimental runs as well as estimate the total compute.
 608 • The paper should disclose whether the full research project required more compute
 609 than the experiments reported in the paper (e.g., preliminary or failed experiments that
 610 didn't make it into the paper).

611 **9. Code of ethics**

612 Question: Does the research conducted in the paper conform, in every respect, with the
 613 NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

614 Answer: [\[Yes\]](#)

615 Justification: We carefully checked the guidelines and follow them in this submission.

616 Guidelines:

617 • The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
 618 • If the authors answer No, they should explain the special circumstances that require a
 619 deviation from the Code of Ethics.
 620 • The authors should make sure to preserve anonymity (e.g., if there is a special consid-
 621 eration due to laws or regulations in their jurisdiction).

622 **10. Broader impacts**

623 Question: Does the paper discuss both potential positive societal impacts and negative
 624 societal impacts of the work performed?

625 Answer: [\[Yes\]](#)

626 Justification: Please see Section 5 for the discussion.

627 Guidelines:

628 • The answer NA means that there is no societal impact of the work performed.
 629 • If the authors answer NA or No, they should explain why their work has no societal
 630 impact or why the paper does not address societal impact.

631 • Examples of negative societal impacts include potential malicious or unintended uses
632 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
633 (e.g., deployment of technologies that could make decisions that unfairly impact specific
634 groups), privacy considerations, and security considerations.
635 • The conference expects that many papers will be foundational research and not tied
636 to particular applications, let alone deployments. However, if there is a direct path to
637 any negative applications, the authors should point it out. For example, it is legitimate
638 to point out that an improvement in the quality of generative models could be used to
639 generate deepfakes for disinformation. On the other hand, it is not needed to point out
640 that a generic algorithm for optimizing neural networks could enable people to train
641 models that generate Deepfakes faster.
642 • The authors should consider possible harms that could arise when the technology is
643 being used as intended and functioning correctly, harms that could arise when the
644 technology is being used as intended but gives incorrect results, and harms following
645 from (intentional or unintentional) misuse of the technology.
646 • If there are negative societal impacts, the authors could also discuss possible mitigation
647 strategies (e.g., gated release of models, providing defenses in addition to attacks,
648 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
649 feedback over time, improving the efficiency and accessibility of ML).

650 **11. Safeguards**

651 Question: Does the paper describe safeguards that have been put in place for responsible
652 release of data or models that have a high risk for misuse (e.g., pretrained language models,
653 image generators, or scraped datasets)?

654 Answer: [NA]

655 Justification: The submission poses no such risks.

656 Guidelines:

657 • The answer NA means that the paper poses no such risks.
658 • Released models that have a high risk for misuse or dual-use should be released with
659 necessary safeguards to allow for controlled use of the model, for example by requiring
660 that users adhere to usage guidelines or restrictions to access the model or implementing
661 safety filters.
662 • Datasets that have been scraped from the Internet could pose safety risks. The authors
663 should describe how they avoided releasing unsafe images.
664 • We recognize that providing effective safeguards is challenging, and many papers do
665 not require this, but we encourage authors to take this into account and make a best
666 faith effort.

667 **12. Licenses for existing assets**

668 Question: Are the creators or original owners of assets (e.g., code, data, models), used in
669 the paper, properly credited and are the license and terms of use explicitly mentioned and
670 properly respected?

671 Answer: [Yes]

672 Justification: We credit the python environments and packages we rely on in the appendix.

673 Guidelines:

674 • The answer NA means that the paper does not use existing assets.
675 • The authors should cite the original paper that produced the code package or dataset.
676 • The authors should state which version of the asset is used and, if possible, include a
677 URL.
678 • The name of the license (e.g., CC-BY 4.0) should be included for each asset.
679 • For scraped data from a particular source (e.g., website), the copyright and terms of
680 service of that source should be provided.
681 • If assets are released, the license, copyright information, and terms of use in the
682 package should be provided. For popular datasets, paperswithcode.com/datasets
683 has curated licenses for some datasets. Their licensing guide can help determine the
684 license of a dataset.

685 • For existing datasets that are re-packaged, both the original license and the license of
686 the derived asset (if it has changed) should be provided.
687 • If this information is not available online, the authors are encouraged to reach out to
688 the asset's creators.

689 **13. New assets**

690 Question: Are new assets introduced in the paper well documented and is the documentation
691 provided alongside the assets?

692 Answer: [NA]

693 Justification: The submission does not introduce any new assets.

694 Guidelines:

695 • The answer NA means that the paper does not release new assets.
696 • Researchers should communicate the details of the dataset/code/model as part of their
697 submissions via structured templates. This includes details about training, license,
698 limitations, etc.
699 • The paper should discuss whether and how consent was obtained from people whose
700 asset is used.
701 • At submission time, remember to anonymize your assets (if applicable). You can either
702 create an anonymized URL or include an anonymized zip file.

703 **14. Crowdsourcing and research with human subjects**

704 Question: For crowdsourcing experiments and research with human subjects, does the paper
705 include the full text of instructions given to participants and screenshots, if applicable, as
706 well as details about compensation (if any)?

707 Answer: [NA]

708 Justification: The submission does not rely on human subjects.

709 Guidelines:

710 • The answer NA means that the paper does not involve crowdsourcing nor research with
711 human subjects.
712 • Including this information in the supplemental material is fine, but if the main contribu-
713 tion of the paper involves human subjects, then as much detail as possible should be
714 included in the main paper.
715 • According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
716 or other labor should be paid at least the minimum wage in the country of the data
717 collector.

718 **15. Institutional review board (IRB) approvals or equivalent for research with human
719 subjects**

720 Question: Does the paper describe potential risks incurred by study participants, whether
721 such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
722 approvals (or an equivalent approval/review based on the requirements of your country or
723 institution) were obtained?

724 Answer: [NA]

725 Justification: The submission does not rely on human subjects.

726 Guidelines:

727 • The answer NA means that the paper does not involve crowdsourcing nor research with
728 human subjects.
729 • Depending on the country in which research is conducted, IRB approval (or equivalent)
730 may be required for any human subjects research. If you obtained IRB approval, you
731 should clearly state this in the paper.
732 • We recognize that the procedures for this may vary significantly between institutions
733 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
734 guidelines for their institution.
735 • For initial submissions, do not include any information that would break anonymity (if
736 applicable), such as the institution conducting the review.

737 **16. Declaration of LLM usage**

738 Question: Does the paper describe the usage of LLMs if it is an important, original, or
739 non-standard component of the core methods in this research? Note that if the LLM is used
740 only for writing, editing, or formatting purposes and does not impact the core methodology,
741 scientific rigorousness, or originality of the research, declaration is not required.

742 Answer: [NA]

743 Justification: The submission does not rely on LLMs for any of its research.

744 Guidelines:

745 • The answer NA means that the core method development in this research does not
746 involve LLMs as any important, original, or non-standard components.

747 • Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>)
748 for what should or should not be described.