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Abstract. Dominance analysis methods compare pairs of states in a
planning task to prove that one is at least as close to the goal as other.
Existing methods compute fact-dominance relations, which identify
facts that are at least as good as others in any situation. However,
this is only possible when a fact is at least as good as another in
every single possible context. We introduce a new notion of condi-
tional dominance, which can identify that a fact dominates another
under certain conditions. We extend previous methods to compute
dominance by taking into account a set of “contexts” in order to find
maximal dominance relations. We propose several strategies to find
relevant contexts automatically and show that even with one single
condition, one can achieve significant pruning in certain domains.

1 Introduction

Dominance analysis is concerned with identifying when one state is
guaranteed to be at least as close to the goal as another [17, 13]. This
has many applications in the context of automated planning [5] such
as pruning dominated nodes [17, 15], deriving contrastive heuris-
tics [12], eliminating irrelevant actions [18], ranking states [14], and
policy testing [4]. In principle, one could determine dominance by
directly computing the goal distances of both states and compar-
ing them. However, computing exact goal distances is generally in-
tractable. The central question, then, is under which conditions dom-
inance can be established efficiently (in polynomial time) without
necessarily computing goal distances. For instance, if states dif-
fer only in a resource such as energy or fuel, the state with more
resources dominates, since additional resources can only increase
available actions.

Existing dominance methods are compositional: they construct a
relation for each component of the planning task (often called a state
variable). These relations compare alternative values of a variable
(also called facts) and identify when one value is always at least as
good as another, in the sense that replacing it can never increase the
goal distance. A state dominates another if this holds for all vari-
ables. This goes beyond identifying resource variables such that hav-
ing more (or less) is always better. For example, in a logistics task
where the goal is to deliver several packages using a truck, having a
package already at the destination is always at least as good as having
it at the origin.

Compositional methods are very powerful because, after identi-
fying dominance among facts, this can be used to prove that expo-
nentially many states dominate other states (e.g. all states that only
differ on that fact). However, this is also a limitation because, for a
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fact to dominate another, it needs to be as good in all possible con-
texts. In some tasks, this simply does not hold for any pair of distinct
facts, rendering current dominance analysis methods entirely unin-
formative. This can be alleviated by considering sets of variables at
once [17]. However, the runtime of dominance analysis grows ex-
ponentially with the number of variables. And sometimes, there are
dependencies on most variables (e.g. in the example above which po-
sition is preferable for the truck depends on where all packages are).

We introduce conditional fact-dominance, where one fact domi-
nates another but only under specific restrictions on the values of
other variables. We represent restrictions as per-variable relations,
specifying which pairs of values may appear in the states being com-
pared. This is very flexible, as it does not require the two states to
share the same value. Furthermore, a condition considers the value
of all variables, addressing the main limitation of previous methods.
We show that, given a predefined set of conditions, conditional dom-
inance relations can be computed in polynomial time. Moreover, the
framework leverages synergy across multiple conditions, so that fact-
dominance under multiple conditions can strengthen one another.

The result is a highly expressive framework for defining domi-
nance relations, capable of identifying strong dominances in plan-
ning tasks and domains where previous methods fail to find any. We
demonstrate this both theoretically — by showing conditions under
which our approach discovers powerful dominances in a running ex-
ample where unconditional dominance yields no pruning — and em-
pirically, as our method is the first to detect dominance in certain
IPC domains such as Blocksworld. However, selecting useful condi-
tion sets is challenging, as their number grows doubly exponentially
with the number of variables. As a first step, we introduce methods
to automatically generate single conditions. While these strategies do
not yet exploit the full potential of the framework, they already yield
informative dominance across several domains.

2 Background
A transition system (TS) is a tuple Θ = ⟨S,L, c, T, sI , SG⟩ where
S is a finite set of states, L is a finite set of labels, c : L 7→ Q+

0 is a
label cost function, T ⊆ S ×L× S is a set of transitions, sI ∈ S is
the initial state, and SG ⊆ S is the set of goal states. We use s ℓ−→ t

as a shorthand for (s, ℓ, t) ∈ T . A path π = s
ℓ1−→ . . .

ℓk−→ t from
s to t ∈ S is a sequence of k ≥ 1 transitions (si−1, ℓi, si) ∈ T for
i ∈ {1, . . . , k}, starting in s = s0 and ending in t = sk. The cost
of π is c(π) :=

∑
i∈{1,...,k} c(ℓi). The empty path is a path from s

to s, and has length k = 0 and cost 0. A plan for s is a path from s
to any s′ ∈ SG. The minimum cost of any plan for s is denoted by
h∗(s). A plan for s is optimal if its cost equals h∗(s).
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Figure 1. Factors representing the position of a package vp2 , the truck vt, and the capacity vc of our running example.

2.1 Representation of Planning Tasks

We consider planning tasks in a factored representation, where states
are described in terms of finite-domain variables, and each variable
(also called factor) is described as a TS [9, 19, 11, 2].

Definition 1. A factored task T = ⟨Θ1, . . . ,Θn⟩ is a tuple of tran-
sition systems with a common set of labels, L, and cost function c,
such that Θi = ⟨Si, L, c, Ti, s

I
i , S

G
i ⟩ for i ∈ {1, . . . , n}.

We use a tuple instead of a set to refer to the individual factors by
their index. To differentiate states in a factored task and in each of the
factors, Θi, we refer to the states in the individual factors si ∈ Si as
facts. A state in the planning task is a tuple of facts s = ⟨s1, . . . , sn⟩,
one for each factor, si ∈ Si. The state space of a factored task is
the synchronized product of all its factors. This is another transition
system ΘT = Θ1 ⊗ . . . ⊗ Θn = ⟨ST , L, c, TT , sIT , SG

T ⟩, where
ST = S1 × · · · × Sn is the Cartesian product of each factor’s states,
TT = {(⟨s1, . . . , sn⟩, ℓ, ⟨t1, . . . , tn⟩) | (si, ℓ, ti) ∈ Ti for i ∈
{1, . . . , n}}, sIT = ⟨sI1, . . . , sIn⟩, and SG

T = SG
1 × · · · × SG

n . Note
that the order of the factors is fixed, but arbitrary, as the resulting
products for different orderings are all isomorphic. Throughout the
paper, we consistently use subscripts to differentiate states in ST
(e.g., s, s′, t) and their corresponding facts Θi (e.g., si, s′i, ti).

Figure 1 shows the task of our running example in which a truck
with limited capacity of one package must deliver two packages from
A to B. The task has 4 factors, ⟨vt, vp1 , vp2 , vc⟩. The factors of vp1
and vp2 are identical, except for switching “1” and “2” in all labels.
vc models that the truck must have capacity (C1) to load a package.
Unloading does not require C0, as this is always the case when a
package has been loaded.

We use the factored representation because it is convenient to de-
scribe dominance analysis methods, and more expressive than other
standard representations, such as STRIPS [3] and SAS+ [1].1

2.2 Dominance Analysis

A relation ⪯ on a transition system Θ is a set of pairs of states, i.e.,
⪯ ⊆ S × S. The identity relation is denoted by ⪯id := {(s, s) |
s ∈ S}. A relation ⪯ is reflexive if ⪯id ⊆ ⪯. Dominance analysis
methods take as input a planning task T without zero-cost labels2

and automatically derive a dominance relation for ΘT .

Definition 2. A relation ⪯ is a dominance relation for a TS Θ if
s ⪯ t implies h∗(t) ≤ h∗(s) for all s, t ∈ S.

To prove that a relation is a dominance relation, one typically
shows that it is a goal-respecting cost-simulation. A relation is goal-
respecting if whenever s ⪯ t, s ∈ SG implies that t ∈ SG. A
relation is a cost-simulation if whenever s ⪯ t, for every transition

1 STRIPS/SAS+ can be compiled in polynomial time into a factored task
with equal state space, but not vice versa [2].

2 We assume c(ℓ) > 0 to simplify the definition of dominance relation,
though extending our work to support zero-cost actions is straightforward.

s ℓ−→ s′, there exists a transition t ℓ′−→ t′ such that s′ ⪯ t′ and
c(ℓ′) ≤ c(ℓ). We always consider a noop transformation, adding a
0-cost label noop with a transition s noop−−−→ s for all s ∈ S. This
allows to reply to any transition s ℓ−→ s′ with t noop−−−→ t if s′ ⪯ t.

In order to represent a relation over the exponentially many states
in the planning task, we use a compositional representation based on
having a tuple of fact relations ⟨⪯1, . . . ,⪯n⟩, one for each factor
⪯i ⊆ Si × Si. A fact relation ⪯i is called admissible when, for all
s, t ∈ S with si ⪯i ti and sj = tj for every j ̸= i, we have h∗(t) ≤
h∗(s). Then, we define the product

⊗
⟨⪯1, . . . ,⪯n⟩ := {(s, t) |

∀i ∈ {1, . . . , n} : si ⪯i ti}. The resulting
⊗
⟨⪯1, . . . ,⪯n⟩ is a

dominance relation if all ⪯i are admissible.
Although deciding whether a fact relation is admissible is hard, we

can compute informative admissible relations in polynomial time in
the size of the task using label-dominance simulations.

Definition 3. Let Θj be a TS,⪯j ⊆ Sj ×Sj , and ℓ, ℓ′ ∈ L. ℓ′ dom-
inates ℓ in Θj given ⪯j if ∀sj ℓ−→ s′j : ∃sj ℓ′−→ t′j : s′j ⪯j t′j . Given
a factored relation ⟨⪯1, . . . ,⪯n⟩ for a task T = ⟨Θ1, . . . ,Θn⟩, we
define ⊑i := {(ℓ, ℓ′) | c(ℓ′) ≤ c(ℓ) ∧ ∀j ∈ {1, . . . , n}, j ̸= i : ℓ′

dominates ℓ in Θj given ⪯j }.

Intuitively, the meaning is that ℓ′ is at least as good as ℓ in all re-
maining factors, so that when we compare transitions on Θi, a tran-
sition with ℓ′ can be used to reply to a transition with ℓ.

Definition 4. Let T = ⟨Θ1, . . . ,Θn⟩ be a factored task. A tuple ⟨⪯1

, . . . ,⪯n⟩ of relations⪯i ⊆ Si×Si is a label-dominance simulation
for T if all ⪯i are goal-respecting and whenever si ⪯i ti:

∀si ℓ−→ s′i : ∃ti ℓ′−→ t′i : s
′
i ⪯i t

′
i ∧ ℓ ⊑i ℓ

′

The maximal relations satisfying the conditions of a label-
dominance simulation are denoted by ⪯LD= ⟨⪯LD

1 , . . . ,⪯LD
n ⟩. Such

a maximal label-dominance simulation always exists and can be
computed in polynomial time by a fix-point algorithm [17]. Consider
for a moment a variant of the example of Figure 1 without the capac-
ity factor (i.e., the truck can fit all packages). In that case, ⪯LD is
{(TA, TA), (TB , TB)} for vt, and {(P i

A, P
i
A), (P

i
A, P

i
T ), (P

i
A, P

i
B),

(P i
T , P

i
T ), (P

i
T , P

i
B), (P

i
B , P

i
B)} for the packages vpi . For example,

(P 1
T , P

1
B), because for any transition with unload(1, ∗) from P 1

T ,
there exists a transition P 1

B
noop−−−→ P 1

B such that P 1
∗ ⪯ P 1

B and noop
dominates unload(1, ∗) in all other factors (vt and vp2 ).

3 Conditional Dominance
While considering fact relations is key for an efficient representation
of dominance relations, requiring them to be admissible imposes a
severe limitation on the dominance relations that can be obtained.
Specifically, whenever a fact dominates another (si ⪯i ti), we re-
quire that ti is at least as good as si in all circumstances. Here, we
are interested in restricting the set of circumstances under which we
consider ti to be at least as good as si. For example, TB is not always
at least as good as TA, but it is when no package remains at A.



In our example with capacity (vc), ⪯LD is {(P i
A, P

i
A), (P

i
T , P

i
T ),

(P i
B , P

i
B)}, {(TA, TA), (TB , TB)}, and {(C0, C0), (C1, C1),

(C0, C1)}. That is, the only thing discovered beyond the identity
relation is that having capacity (C1) is always good. However, that
does not lead to any pruning because no two states during the search
can differ only in the truck’s capacity, as larger capacity implies
that a package is not in the truck. We would like to find out that
having a package at the destination is at least as good as anywhere
else ({(P i

A, P
i
B), (P

i
T , P

i
B)}), as happened without the capacity con-

straint. This is not the case in ⪯LD because P i
T

unload(i,B)−−−−−−−→ P i
B can-

not be simulated by P i
B

noop−−−→ P i
B , as unload(i, B) has a positive

side effect on the capacity and noop does not. Indeed, this would
lead to an inadmissible fact relation, where s = ⟨TB , P

1
T , P

2
A, C0⟩ ⪯

⟨TB , P
1
B , P

2
A, C0⟩ = t but the truck cannot perform any load/unload

actions starting from t, so h∗(t) =∞ > h∗(s) = 4.3

3.1 Compositional Relations Under Conditions

As a starting point, we take a factored task T = ⟨Θ1, . . . ,Θn⟩ and a
label-dominance simulation ⟨⪯LD

1 , . . . ,⪯LD
n ⟩. Then, we choose one

factor i and attempt to find a new relation on the facts of that factor
⪯i ⊆ Si × Si such that ⪯i ̸⊆⪯LD

i . In other words, ⪯i contains a
pair of facts si ⪯i ti such that ti is not at least as good as si in all
circumstances, but only under certain conditions on the other factors.
We assume, without loss of generality that i = 1. This simplifies
the notation: we find a relation for Θ1 and conditions refer to factors
Θ2 . . .Θn.

Definition 5. Let T = ⟨Θ1, . . . ,Θn⟩ be a factored task. An exter-
nal condition for Θ1 is a tuple of non-empty relations ⟨C2, . . . , Cn⟩
where Cj ⊆ Sj × Sj for all j ∈ {2, . . . , n}.

In our example, to compute a new relation for vp1 , we consider
the conditions shown in Table 1. With CY , for example, we show
that having the package at the goal location B is at least as good as
having it at A whenever the truck has full capacity, regardless of the
position of the truck and other packages (provided they are not in the
truck).

The condition derived from the label-dominance simulation is de-
noted by CLD := ⟨⪯LD

2 , . . . ,⪯LD
n ⟩ and the identity condition is de-

noted by Cid := ⟨⪯id
2 , . . . ,⪯id

n ⟩. Note that each condition refers to
all factors except one, and for each factor we can select any subset
of pairs of facts, so we have exponentially many possible conditions
in the number of factors as well as their size. For now, we assume
that we are given a predefined set of external conditions as input.
Section 4 introduces strategies to automatically choose conditions.

Given a factor Θ1, an external condition C , and a relation ⪯C
1 on

states of Θ1, we can construct a relation for the entire state space.

Definition 6. Let T = ⟨Θ1, . . . ,Θn⟩ be a factored task, let C =
⟨C2, . . . , Cn⟩ be an external condition for Θ1, and let ⪯C

1 ⊆
S1 × S1. Then, the conditional composition of ⪯C

1 and C is ⪯C

:=
⊗
⟨⪯C

1 , C2, . . . , Cn⟩.

Then, we can identify when such a composition results in a domi-
nance relation.

Definition 7. Let T = ⟨Θ1, . . . ,Θn⟩ be a factored task. A relation
⪯C

1 ⊆ S1 × S1 is admissible for T under a condition C if for each
s, t ∈ ST if (s1, t1) ∈⪯C

1 and (sj , tj) ∈ Cj for all j ∈ {2, . . . , n},
then h∗(t) ≤ h∗(s).

3 In this case, t is unreachable suggesting that we could focus on conditions
that approximate the set of reachable states. However, our framework al-
lows arbitrary conditions, so there is no direct relation with mutexes.

vp2 vc ⪯C
1 (vp1 )

CX = ⟨{(P 2
A, P 2

A), (P 2
B , P 2

B)},{(C0, C1)}⟩ {(P 1
T , P 1

B)}
CY = ⟨{(P 2

A, P 2
A), (P 2

B , P 2
B)},{(C1, C1)}⟩ {(P 1

A, P 1
B)}

CZ = ⟨ {(P 2
T , P 2

T )}, {(C0, C0)}⟩ {(P 1
A, P 1

B)}

Table 1. Three conditions for our running example and conditional
dominance relation for vp1 . The factor vt is omitted as it is the identity

relation ({(TA,TA), (TB ,TB)}) for all conditions.

In other words,⪯C
1 is admissible for T under a condition C if and

only if the composition ⪯C is a dominance relation for ΘT . This
generalizes the previous notion of admissible fact relation, which we
get if we choose the identity condition Cid . Previous (unconditional)
dominance analysis methods always assumed that all fact relations
needed to be compositional with such an identity condition because
“every fact is as good as itself”. Indeed, it holds that label-dominance
simulations are always reflexive (⪯id ⊆⪯LD). This assumption has
some advantages as shown by the following theorem.

Theorem 1. Let T = ⟨Θ1, . . . ,Θn⟩ be a factored task, and R =
⟨⪯1, . . . ,⪯n⟩ a relation for each factor. If for all i ∈ {1, . . . , n},
⪯i is admissible for T under ⪯id , then for all i ∈ {1, . . . , n} ⪯i is
admissible for T under ⟨⪯1, . . . ,⪯i−1,⪯i+1, . . . ,⪯n⟩.

Proof. As all ⪯i are admissible for T under ⪯id , their composition
is a dominance relation [17], which in turn implies admissibility un-
der R.

That is the reason why label-dominance simulation methods com-
pute relations for all factors simultaneously. However, this is no
longer the case for the general case of conditional dominance when
some of the relations are not reflexive.

3.2 Conditional Label-Dominance Simulation

We now introduce our approach to compute additional state domi-
nances based on external conditions. We are given a factored task T ,
a label-dominance simulation⪯LD, and a predefined set of conditions
C = {C1, . . . , Ck} for Θ1, where Ci = ⟨Ci

2, . . . , C
i
n⟩. Whenever

the identifier of the condition is not relevant, we simply write C ∈ C
to refer to some condition in the set.

As with the standard label-dominance simulation method, we
compute a relation ⪯C

1 for Θ1 for each C ∈ C such that for each
s1 ⪯C

1 t1 and transition s1
ℓ−→ s′1, t1 has a response t1

ℓ′−→ t′1 where
t′1 “is at least as good as” s′1 and ℓ′ “is at least as good as” ℓ. There
are two key changes in how transitions from s1 and t1 are compared.
On the one hand, we can ignore all transitions s1 ℓ−→ s′1 such that ℓ
is not applicable in any state consistent with the current context es-
tablished by C . The set of relevant labels is defined as L(C ) = {ℓ |
∀i ∈ {2, . . . , n} : ∃si, s′i, ti ∈ Si : si

ℓ−→ s′i ∧ (si, ti) ∈ Ci}. In
other words, a label is relevant under a condition if, for every fac-
tor, there exists at least one fact consistent with the condition where
the label is applicable. Note that considering this was unnecessary in
label-dominance simulation, as L(C ) = L if all Ci are reflexive.

On the other hand, we change how to compare transitions (i.e.,
formally define “at least as good” to determine if s1

ℓ−→ s′1 can
be simulated by t1

ℓ′−→ t′1). This depends on two conditions (Cbef

and Caft ), used to compare the states before and after applying the
transition. Cbef ∈ C is the condition that restricts the states before
applying the transition (as we are computing whether s1 ⪯bef t1).
Caft ∈ C ∪ {CLD} is used to compare the states after the transition
to determine if t′1 is at least as good as s′1. So, when comparing the



labels ℓ and ℓ′ we must ensure that, if we start in any two states s,t
where Cbef holds (i.e. (si, ti) ∈ Ci for all i ∈ {2, . . . , n}), and
apply any ℓ-labelled transition on s, we can choose an ℓ′-labelled
transition on t such that condition Caft necessarily holds for the re-
sulting states s′ and t′. As conditions are factored, this is tested inde-
pendently for each factor:

Definition 8 (Conditional Label-Dominance). Let Θi be a factor,
let ⪯bef ,⪯aft ⊆ Si × Si, and let ℓ, ℓ′ ∈ L. Then, ℓ′ conditionally
dominates ℓ in Θi with respect to ⪯bef and ⪯aft if and only if

∀s ⪯bef t : ∀s ℓ−→ s′ : ∃t ℓ′−→ t′ :
(
s′ ⪯aft t′

)
For each pair of conditions Cbef , Caft ∈ C we define a label rela-

tion ⊑Caft

Cbef ⊆ L× L such that ℓ ⊑Caft

Cbef ℓ′ if and only if c(ℓ′) ≤ c(ℓ)
and for all i ∈ {2, . . . , n}, ℓ′ conditionally dominates ℓ in Θi with
respect to Cbef

i and Caft
i .

This generalizes the standard notion of label dominance (Def. 3),
which we get by choosing Cbef = Cid , and Caft = CLD. Intuitively
Cbef represents under which situations ℓ′ is at least as good as ℓ. If
Cbef = Cid , we are considering whether ℓ′ dominates ℓ (a) in all
circumstances, and (b) when starting from the same place. Condi-
tional label-dominance allows us to challenge (a) and ask whether ℓ′

dominates ℓ in some specific circumstances. For example, by choos-
ing Cbef ⊂ Cid , the analysis of whether ℓ′ is at least as good as ℓ
is restricted only to certain situations. Thus, only transitions with ℓ
that are possible in all factors under the current context Cbef need
to be considered. The condition CY in our running example, has a
single pair (C1, C1) for vc, so only states where the truck capacity is
available are considered.

We can also challenge (b) with some Cbef ̸⊆ Cid (i.e., where
(si, ti) ∈ Cbef for some si ̸= ti). When we do that, we are
able to say that ℓ′ conditionally dominates ℓ when we consider
if ti dominates si. Consider for example, the condition CX from
Table 1 containing the pair (C0,C1). This allows us to express
that unload(1, B) ⊑CLD

CX noop, i.e., noop conditionally dominates
unload(1, B) in the context of CX because the truck capacity is al-
ready available when we apply noop.

Finally, Caft is used to compare the resulting states after applying
ℓ and ℓ′. Normally, we should set this to CLD, i.e., states that we have
already proven to be at least as good in every circumstance. However,
sometimes, we want to be more specific. When we use Caft ̸= CLD,
we can guarantee that by applying ℓ′ we can reach some state for
which Caft holds in all other factors. For example, we can say that the
transition P 1

T
unload(1,A)−−−−−−−→ P 1

A is simulated by P 1
B

noop−−−→ P 1
B under

CX because P 1
A is dominated by P 1

B under CY and after applying
those transitions CY is guaranteed to hold.

One needs to be careful because ⊑Caft

Cbef is no longer always reflex-
ive if Cbef or Caft are not reflexive. That is, to show that t1 domi-
nates s1 under a certain condition C we cannot always reply to some
transition s1

ℓ−→ s1 with the same transition t1
ℓ−→ t1. This may be

counter-intuitive as in traditional simulation relations a self-loop can
always be answered by another self-loop with the same label. But
there is a good reason for this: if for example transition s1

ℓ′−→ s1
was ignored due to ℓ′ not being applicable in context C , then it
would be problematic because s1 could have an applicable sequence
s1

ℓ−→ s1
ℓ′−→ s1 for which t1 does not have a response. This can

happen if after applying the transition ℓ, we can reach some state in
which the condition C does not hold for some other factor. It is im-
portant to observe that this does not apply to noop, and it is always
the case that noop ⊑C

C noop for any C ∈ C. This means that any

transition s1
noop−−−→ s1 can be simulated by t1

noop−−−→ t1. Therefore, as
in previous work, adding noop transitions is never detrimental and in
practice any transition s1

noop−−−→ s1 can be ignored.
Finally, while LD simulations require that all relations are goal-

respecting, this is only necessary for goal-relevant conditions.

Definition 9. A relation ⪯ is goal-relevant if ∃s ⪯ t : s ∈ SG.
A condition C = ⟨C2, . . . , Cn⟩ is goal-relevant (goal-respecting) if
all Cj ∈ C are goal-relevant (goal-respecting).

Any reflexive relation (as the ones in LD simulation) is always
goal-relevant, but now we can use conditions that are not goal-
relevant so that we are not required to always be goal-respecting.

With this, we have all the ingredients we need to introduce our
notion of conditional label-dominance simulation.

Definition 10 (Conditional LDS). Let T = ⟨Θ1, . . . ,Θn⟩ be a fac-
tored task, ⟨⪯LD

1 , . . . ,⪯LD
n ⟩ be a label-dominance simulation for T ,

and C = {C1, . . . , Ck} be a set of external conditions for Θ1 where
Ci = ⟨Ci

2, . . . , C
i
n⟩. Then, a set of relations {⪯C1

1 , . . . ,⪯Ck

1 }
with ⪯Ci

1 ⊆ S1 × S1 for all i ∈ {1, . . . , k} is a conditional
label-dominance simulation (CLDS) for Θ1 under C if for all i ∈
{1, . . . , k} (1) if Ci and ⪯Ci

1 are goal-relevant, then Ci and ⪯Ci

1

are goal-respecting, and (2) whenever s1 ⪯Ci

1 t1:

∀s1 ℓ−→ s′1 s.t. ℓ ∈L(Ci) : ∃t1 ℓ′−→ t′1 : ∃Caft ∈ C ∪ {CLD} :

s′1 ⪯Caft

1 t′1 ∧ (ℓ, ℓ′) ∈⊑Caft

Ci

To obtain a dominance relation, we simply compute the union of
all relations as per Def. 6, ⪯LD ∪

⋃
Ci∈C ⪯

Ci

.
The equation is similar to that of label-dominance simulation

(Def. 4) in that, for every possible transition that s1 can make to s′1,
t1 must be able to reply reaching some t′1 that dominates s′1. How-
ever, here the notion of label-dominance depends on the condition;
s′1 and t′1 are compared in the context of another condition; only tran-
sitions with relevant labels are considered from s; and ⪯Cj

1 is only
required to be goal-respecting if Cj is goal-relevant.

In the example of Table 1, the relations in the right hand-side sat-
isfy Def. 10. But crucially, all three conditions depend on each other,
and cannot be proven individually. For example, in CX , the transi-
tion P 1

T
unload(1,A)−−−−−−−→ P 1

A is simulated by P 1
B

noop−−−→ P 1
B , relying on

the fact that P 1
A ⪯CY

1 P 1
B and unload(1, A) ⊑CY

CX noop. This is not
a problem, as we can still prove that the union of all these relations
is a valid dominance relation for the planning task.

Theorem 2. Let T be a factored task with a conditional LD simu-
lation for Θ1 under {C1, . . . , Ck}. Then, ⪯LD ∪

⋃
Ci∈C ⪯

Ci

is a
goal-respecting cost-simulation for ΘT .

Proof. Let s = (s1, . . . , sn), t = (t1, . . . , tn) ∈ S and i ∈
{1, . . . , k} such that (s, t) ∈⪯Ci

.
First, we show that it is goal-respecting (s ∈ SG =⇒ t ∈ SG).

If s ∈ SG, then sj ∈ SG
j . As Ci and ⪯Ci

1 are goal-relevant, so by
Def. 10 both Ci and ⪯Ci

1 are goal-respecting. Therefore, tj ∈ SG
j

for all j ∈ {1, . . . , n}, so t ∈ SG.
To show that it is a cost-simulation, let (s1, . . . , sn)

ℓ−→
(s′1, . . . , s

′
n) be any transition from s. By the definition of the syn-

chronized product, sj ℓ−→ s′j for all j ∈ {1, . . . , n}. As s1 ⪯Ci

1 t1,
there exists a transition t1

ℓ′−→ t′1 that satisfies the equation of Defi-
nition 10. Since ℓ ⊑Caft

Ci ℓ′, there also exists a transition tj
ℓ′−→ t′j for

every j ∈ {2, . . . , n} such that (s′j , t
′
j) ∈ Caft

j . Therefore, the pair



Algorithm 1: Conditional LDS
Input: Factored Task T = ⟨Θ1, . . . ,Θn⟩
Input: ⪯LD: label-dominance simulation for T
Input: C: external conditions for Θ1

Output: ⪯C
1= {⪯C

1 | C ∈ C}: maximal cond. LDS
1 foreach C ∈ C do
2 if C is goal-relevant and goal-respecting then
3 ⪯C

1 ← {(s1, t1) | s1, t1 ∈ S1, s1 /∈ SG
1 ∨ t1 ∈ SG

1 }
4 else if C is goal-relevant but not goal-respecting then
5 ⪯C

1 ← {(s1, t1) | s1, t1 ∈ S1, s1 /∈ SG
1 }

6 else
7 ⪯C

1 ← {(s1, t1) | s1, t1 ∈ S1}
8 while ∃C ∈ C, s1, t1 ∈ S1 s.t. s1 ⪯C

1 t1 and the equation of
Definition 10 does not hold under ⪯LD, ⪯C

1 , and C do
9 remove (s1, t1) from ⪯C

1

10 return {⪯C
1 | C ∈ C};

(
(s′1, . . . , s

′
n), (t

′
1, . . . , t

′
n)
)

is contained in ⪯Caft

and consequently

in the union ⪯LD ∪
⋃

Ci∈C
⪯Ci

.

We call ⪯C= {⪯C1

1 , . . . ,⪯Ck

1 } the maximal conditional label-
dominance simulation for Θ1 under the set of conditions C =
{C1, . . . , Ck} if for all other conditional label-dominance sim-
ulations {⪯′C1

1 , . . . ,⪯′Ck

1 } for Θ1 under C, it is the case that
⪯′C

1 ⊆⪯C
1 for all C ∈ C.

Theorem 3. There exist families of planning tasks under which prun-
ing is possible with conditional dominance using polynomially many
conditions, and no pruning is possible with label-dominance simula-
tion under polynomial merge transformations.

Proof Sketch. Our running example, scaling the number of pack-
ages, is such an example. Using conditional dominance it suffices to
add an additional condition per package similar to CZ but with a dif-
ferent package in the truck each time. However, this depends on the
position of all packages so to achieve a similar relation with label-
dominance simulation, one needs to consider the product of all the
packages and the capacity of the truck, which grows exponentially
with the number of packages.

3.3 Computing Conditional LD Simulations

Algorithm 1 shows how to compute the maximal conditional label-
dominance simulation in polynomial time. The procedure resembles
how label-dominance simulations are computed: initializing all rela-
tions to an over-approximation and iteratively removing any pair that
does not satisfy the conditions established in Definition 10.

Theorem 4. For a given condition set C, a maximal conditional
label-dominance simulation always exists and can be computed in
polynomial time in the size of T , and C.

Proof sketch. A unique maximal CLDS exists, because if any two
sets of relations satisfy Def. 10, then their union does too. For (1),
we distinguish three cases. If Ci is not goal-relevant, then (1) holds
trivially. If Ci is goal-relevant but not goal respecting, then both⪯Ci

1

and ⪯′Ci

1 must also be not goal-relevant, and their union is there-
fore not goal-relevant. If Ci is goal-relevant and goal-respecting,
then both ⪯Ci

1 and ⪯′Ci

1 must be goal-respecting (since any non-
goal-relevant relation is always goal-respecting), and so their union
is goal-respecting as well.

For condition (2), enlarging the relations by adding pairs cannot
invalidate pairs that already satisfy the condition. Thus, if two sets of
relations satisfy the conditions, the set of their unions does too.

Algorithm 1 always terminates as a pair (s1, t1) is removed in
each iteration and there are finitely many of them. The final result
satisfies the condition of Definition 10 (as the empty relation always
does). The result is maximal because removing pairs from each ⪯Ci

1

can only cause other pairs to be removed, and each ⪯C
1 is initialized

with an over approximation, so any pair removed cannot be part of
any conditional label-dominance simulation.

4 Finding Sets of External Conditions
Finding external conditions is a complex problem, as the space of
possible conditions is exponential both in the number of factors as
well as in the size of those factors. Sampling such a space randomly
is hopeless, as most conditions result in empty dominance relations.
Therefore it is important to guide the search of conditions by con-
sidering the impact of including/excluding a given fact pair on the
conditional label dominance. However, this creates conflicting ob-
jectives. As with standard label-dominance simulations, we prefer to
have as many pairs as possible in each condition C because (a) that
makes C hold in more states therefore maximizing the size of the
resulting dominance relation and (b) the more pairs are included in
⪯aft , the more label dominances we can find. However, we also need
to keep conditions ⪯bef small to find more label dominances and re-
duce the set of relevant labels. As those objectives are conflicting,
there is no monotonicity property to apply a fix-point algorithm in
the same way as we had for label-dominance simulations.

We introduce three strategies to compute conditions. They make
several simplifying assumptions that bias the type of conditions that
can be found. We focus on generating a single condition for every
factor. While Definition 10 benefits from computing relations for
multiple conditions at the same time (as shown by our running ex-
ample), we leave the exploration of that idea for future work. The
main idea is to compute the external condition simultaneously with
⪯C

1 , making greedy commitments in order to ensure termination.

4.1 Conditions Underapproximating LDS

Algorithm 2 shows our first approach, which computes the exter-
nal condition within the loop of Algorithm 1. The set of external
conditions C is initialized with a single condition, C , equal to the
label-dominance simulation. The main modification with respect to
Algorithm 1 is that if a pair (s1, t1) does not fulfill the condition of
Def 10, we attempt to remove fact pairs from C instead of removing
the pair. The algorithm also keeps a list of greedily committed label
dominances. Whenever it was necessary that ℓ ⊑C

C ℓ′ in order to keep
(s1, t1) ∈⪯C

1 , we store the pair (ℓ, ℓ′). Any change to C negatively
affecting these dominances is forbidden. Note that the same is not
necessary for ⊑CLD

C . As the LD simulation is fixed, s′1 ⪯LD
1 t′1 will

always hold, and all conditional label dominances in ⊑CLD

C will al-
ways be preserved because C can only get smaller and CLD remains
unchanged. To reduce the amount of commitments, we consider four
possibilities to simulate each transition s1

ℓ−→ s′1 in order:

1. Use ⪯LD (line 8), which does not require any commitment.
2. Use ⪯C

1 (line 11), committing to preserve ℓ ⊑CLD

C ℓ′.
3. Modify the condition C . First, “almost dominances” are identi-

fied, i.e., label pairs (ℓ, ℓ′) such that if ℓ′ would dominate ℓ then
t1 could simulate s1

ℓ−→ s′1 and the condition can be changed by



Algorithm 2: Conditions Underapproximating LDS
Input: T : factored task
Input: ⪯LD: label-dominance simulation for T
Output: External condition for Θ1

1 C ← ⟨⪯LD
2 , . . . ,⪯LD

n ⟩;
2 label_dominances ← {} ;
3 ⪯C

1 ← {(s1, t1) | s1 /∈ SG
1 ∨ t1 ∈ SG

1 };
4 while ∃(s1, t1) ∈⪯C

1 and the equation of Definition 10 does
not hold under ⪯LD, ⪯C

1 , and C do
5 select one such (s1, t1);
6 Save C and label_dominances ;
7 forall s1 ℓ−→ s′1 such that ℓ ∈ L(C ) do
8 if ∃t1

ℓ′−→ t′1. s
′
1 ⪯LD

1 t′1 ∧ ℓ ⊑CLD

C ℓ′ then
9 continue;

10 if ∃t1 ℓ′−→ t′1. (s
′
1, t

′
1) ∈⪯C

1 ∧ℓ ⊑C
C ℓ′ then

11 select one such transition t1
ℓ′−→ t′1 preferring

those such that (ℓ, ℓ′) ∈ label_dominances ;
12 add (ℓ, ℓ′) to label_dominances;
13 continue;
14 if ∃(t1 ℓ′−→ t′1). (s

′
1, t

′
1) ∈⪯C

1

∧AlmostDom(ℓ′, ℓ,⪯LD, label_dominances) then
15 remove pairs from Ck and Ck′ until ℓ ⊑CLD

C ℓ′;
16 continue;
17 if ∃(t1 ℓ′−→ t′1). (s

′
1, t

′
1) ∈⪯C

1

∧AlmostDom(ℓ′, ℓ, C, label_dominances) then
18 remove pairs from Ck and Ck′ until ℓ ⊑C

C ℓ′;
19 add (ℓ, ℓ′) to label_dominances;
20 continue;
21 Remove (s1, t1) from ⪯C

1 ;
22 Restore C and label_dominances (as per line 6);
23 break;
24 return C, ⪯C

1 ;

affecting at most two factors Ck and Ck′ , without breaking any
of the previously committed label dominances. Then, we remove
from Ck and Ck′ any pairs (sk, tk) or (sk′ , tk′) failing the test of
Definition 8. We first use ⪯LD to avoid commitments.

4. Same as 3., but using ⪯C
1 .

If this process fails, we give up on the pair s1, t1, and restore C
and the committed label dominances to their previous state. The algo-
rithm is guaranteed to terminate for the same reasons as Algorithm 1.
At the end of the process,⪯C

1 is guaranteed to be a conditional label-
dominance simulation for the returned C . A problem with this ap-
proach is that it makes a lot of greedy commitments, and we lack
good “heuristics” to guide the process (i.e., decide what pairs s1, t1
to focus first). Therefore, the algorithm is often time consuming and
can often fail, finishing with an empty relation.

4.2 Conditions based on Fact Pairs

Our second approach is parameterized by a fact pair (s1, t1) ̸∈⪯LD
1

and attempts to find a condition C such that s1 ⪯C
1 t1. We run

this from every such pair. The condition is initialized to the label-
dominance simulation, but in this case ⪯C

1 is initialized as a single
pair (s1, t1) and more pairs are inserted on demand. For example,
if t1 ℓ−→ t′1 is the only possible response to s1

ℓ−→ s′1, then (s′1, t
′
1)

is added to ⪯C
1 . The algorithm iterates over all pairs added to ⪯C

1

and, similarly to Algorithm 2, attempts to modify the condition C
and/or add pairs to ⪯C

1 in order to meet the definition. Every time
that we insert a pair on ⪯C

1 , it is a commitment, so if the conditions

of Definition 10 cannot be met for such a pair the algorithm ends in
failure.

4.3 Online Conditions based on State Pairs

The previous strategies are agnostic to the states generated during
the search. This causes that, even if some fact-dominance relations
are found, they may be useless due to never encountering during the
search a pair of states (s, t) that meets the condition.

Our third strategy, CLDS Online, is triggered during the search,
when two states s, t are compared and t dominates s in all factors
except one (here, we assume wlog Θ1). The question is whether we
can find an external condition C such that s ⪯C t to prune s. There-
fore, any successful condition will at least be useful to prune a state.
Of course, we still desire C to contain as many fact-pairs as possible
so that it can be used to prune other states during the search.

By targeting a specific pair s, t, CLDS Online can initialize the
condition of each factor with a single pair Ci = {(si, ti)} for i ∈
{2, . . . , n}. The algorithm then attempts to prove that under such a
condition s1 ⪯C

1 t1. If such a check fails, due to a transition s1
ℓ−→ s′1

not being simulated by any t1
ℓ′−→ t′1, new fact pairs are added to C

so that ℓ ⊑CLD

C ℓ′ or ℓ ⊑C
C ℓ′. Note that, at the beginning of the

algorithm, C is non-reflexive so most labels do not even dominate
themselves.

5 Empirical Evaluation

We implemented our conditional dominance approach in Fast Down-
ward [7] with the existing implementation for computing label-
dominance simulations [17]. As benchmark set we use the optimal-
track instances from the International Planning Competitions from
1998 to 2018, ignoring domains with conditional effects. We ran ex-
periments using Lab [10] with a time limit of 30 minutes and a mem-
ory limit of 4 GB. Source code and results are publicly available [20].

The main purpose of our experiment is to test whether conditional
label-dominance simulation can yield more informative dominance
relations than the standard LD simulation. To that end, we compare
the amount of nodes expanded by uniform-cost search with domi-
nance pruning. Whenever a state s is generated during the search we
compare it to the initial state, its parent, and its siblings with lower or
equal g-value. If any of them dominates s we prune it without insert-
ing it into the open list. In principle, nodes could also be compared
against all other previously seen states [17], but that would require
new data structures and is left for future work.

Figure 2 shows that the three strategies are able to find use-
ful conditions. Even with the restrictions imposed by our strate-
gies for finding external conditions, and only comparing each state
against a few other states, conditional label-dominance simulations
can achieve pruning in several domains. The domain with most prun-
ing is Blocksworld. This is a very good example to showcase the
power of conditional dominance. As in our running example, label-
dominance simulation methods do not find any useful pruning in that
domain, even when considering sets of variables. In Blocksworld,
however, a single condition suffices to show that having a block on
the table is at least as good as on some non-goal block. Our strategies,
specially CLDS Online, are able to capture this, heavily reducing the
search space by up to two orders of magnitude.

The method’s effectiveness depends heavily on the strategy for
generating conditions. The online configuration generally performs
best, as offline configurations lack knowledge of which states will
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Figure 2. Expansions until last f-layer of uniform-cost search (above) and A∗ with LM-cut (below) using dominance pruning with LD-simulation versus
conditional LD simulations. Every plot uses conditions derived with one of our three strategies: Offline indices (left), offline pairs (middle), and online (right).

In parenthesis we indicate in how many tasks we achieve more pruning than the baseline.

be compared during the search. However, they can still be useful in
certain domains, such as Miconic.

Our current implementation does not yet improve the efficiency
of optimal planners. To test this, we applied dominance pruning with
A∗ [6] using the LM-cut heuristic [8] (see the lower part of Figure 2).
The number of tasks where conditional dominance has an impact is
comparable to that of uniform-cost search. However, when using a
heuristic the impact of pruning diminishes, as the heuristic already
avoids the expansion of some of the states that would be pruned. The
two offline configurations are most affected, as they do not take into
consideration what kind of states are encountered during the search.
Consequently, Blocksworld is the only domain where coverage in-
creases and only when using the online configuration.

In many other domains the overhead of computing dominance de-
creases the performance significantly. While computing conditional
dominance relations is not much more expensive than computing
label-dominance simulations, the additional search for conditions
and their respective conditional dominance relations only pays off
when pruning yields a substantial reduction in expanded states. The
overhead is largest in the online configuration, as it performs com-
putation at each expansion during the search. However, the results in
Blocksworld show that, in domains where dominance pruning is suc-
cessful at significantly reducing the number of expanded states, the
resulting savings can outweigh the overhead and increase coverage.

6 Conclusions

In this paper, we have introduced conditional dominance, as a new
way of comparing states on any planning task. Previous methods
looked for facts that are always at least as good as others in every
situation. However, in some domains there is no such pair of facts, so
they cannot derive useful dominance relations. Reasoning about mul-
tiple variables together can help, but the computational cost grows
exponentially in the number of variables. In conditional dominance,
we use a set of conditions, which identify relevant contexts under
which it can be shown that certain facts are better than others. These
contexts take into account all other variables of the task and find
dominance relations in domains where the previous methods could
not. A challenge is how to automatically derive useful conditions.
We provided several approaches that can find relevant conditions au-
tomatically in many domains.

Our experiments serve as a proof of concept, demonstrating that
conditional dominance can derive useful information beyond pre-
vious dominance analysis methods for classical planning. However,
more research is required to effectively take advantage of conditional
dominance to speed-up search. This opens many avenues for future
work. The space of conditions is huge, and better methods are needed
to systematically find good conditions. Also, the method could be
combined with other extensions of dominance analysis, such as quan-
titative dominance [13] and contrastive analysis [16, 12].
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