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ABSTRACT

Encoder—decoder models, which transform input data into latent variables, have
achieved a significant success in machine learning. Although the generalization
capability of these models has been theoretically analyzed in supervised learning
focusing on the complexity of latent variables, the contribution of latent variables in
generalization and data generation capabilities are less explored theoretically in un-
supervised learning. To address this gap, our study leverages information-theoretic
generalization error analysis (IT analysis). Using the supersample setting in recent
IT analysis, we demonstrate that the generalization gap for reconstruction loss can
be evaluated through mutual information related to the posterior distribution of
latent variables, conditioned on the input data, without relying on the decoder’s in-
formation. We also introduce a novel permutation-symmetric supersample setting,
which extends the existing IT analysis and shows that regularizing the encoder’s
capacity leads to generalization. Finally, we guarantee the 2-Wasserstein distance
between the true data distribution and the generated data distribution, offering
insights into the model’s data generation capabilities.

1 INTRODUCTION

Encoder—decoder models have achieved a significant success in machine learning (Goodfellow et al.,
2016)). Typically, the encoder extracts information from input data to generate latent variables, called
representations, and the decoder uses these representations to output predictions. In supervised
learning, these models are trained by minimizing the empirical loss, and the regularization of latent
variables helps prevent overfitting, thereby improving generalization performance. As detailed in
Sec[I.} studies on encoder-decoder models have focused on not only learned parameters but also on
the complexity of latent variables, through principles such as the minimum description length (MDL)
(Grnwald et al.l 2005)), PAC-Bayes theory (McAllester, |1998)), information-theoretic generalization
error analysis (IT analysis) (Xu & Raginsky, [2017), and the information bottleneck (IB) hypothesis
(Tishby et al.,[2000). These approaches have demonstrated, both numerically and theoretically, that
generalization can be characterized by the complexity of latent variables (Sefidgaran et al., [2023)).

Encoder—decoder models are also popular in unsupervised learning, particularly in deep generative
models. When training these models, we minimize the reconstruction loss, which measures the
difference between the original data and the regenerated data obtained by compressing data into
latent variables by the encoder and regenerating the data by the decoder. Similarly to supervised
learning, the regularization of the latent variables plays a critical role. For example, in the variational
autoencoder (VAE) (Kingmal 2013)), the objective function corresponds to the lower bound of the
log-likelihood. In the case of a Gaussian likelihood, the reconstruction loss corresponds to the squared
loss, and the regularization term is the Kullback-Leibler (KL) divergence between the prior and
posterior distributions of the latent variables. Despite experimental studies examining this relationship
using the IB hypothesis, as noted in Sec there is a lack of theoretical analysis focusing on latent
variables. Most research has concentrated on encoder and decoder parameters, resulting in a limited
understanding of how latent variables contribute to model performance. This study addresses this gap
by applying IT analysis to clarify the roles of latent variables in generalization and data generation.
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1.1 RELATED WORK

The IB hypothesis (Tishby et al.l [2000; Shamir et al.| [2010)) is the most well-known concept for
learning meaningful representations in latent variable models. It suggests that representations that
retain essential information for prediction while minimizing mutual information (MI) between input
data and latent variables lead to better generalization. Such MI in the IB hypothesis has been used as
an empirical tool to understand deep learning mechanisms (Tishby & Zaslavsky} 2015} [Shwartz-Ziv &
Tishbyl 2017; |Saxe et al.,[2019; |Goldfeld et al.| 2019; |Achille & Soatto, [2018aib). However, debates
persist about whether MI alone fully captures generalization. Sefidgaran et al.| (2023) provided a
detailed discussion of these concerns. For example, (Geiger & Koch| (2019), |Geiger| (2021)), and
Amjad & Geiger (2019) raised both numerical and theoretical concerns, whereas |Vera et al.| (2018)),
Hafez-Kolahi et al.| (2020), Kawaguchi et al|(2023)), and [Vera et al.|(2023) provided theoretical upper
bounds on the generalization error for classification using such MI. However, these studies have
several limitations, such as assuming discrete data, the exponential dependence of the bound on MI,
and the entropy of input data.

In contrast, in IT analysis (Xu & Raginskyl 2017)), the generalization error is evaluated on the basis
of the MI between learned parameters and training data. This approach is closely related to the PAC-
Bayes theory and has been extended through supersample settings (Steinke & Zakynthinoul 2020) to
exploit the symmetry between test and training data. This setting has been applied to the study of
generalization based on outputs of functions (Harutyunyan et al.| 2021), losses (Hellstrom & Durisi,
2022; Wang & Mao, |2023)), and hypothesis entropy (Dong et al., [2024)). The relationship between
IT analysis and the IB hypothesis has been discussed from numerical and algorithmic perspectives
(Wang et al., 2022; [Lyu et al.,[2023). More recently, Sefidgaran et al.[|(2023) theoretically studied
latent variable models using IT analysis, demonstrating that generalization can be characterized by
the complexity of the encoder and latent variables without relying on decoder information. They also
developed a theoretical link among IT analysis, the IB hypothesis, and MDL by using compression
bounds (Blum & Langford, 2003)).

In unsupervised learning, there have been numerous empirical and qualitative studies to explore model
performance using the IB hypothesis and rate-distortion theory (Cover & Thomas|, 2012) (Alemi
et al.| 2018} Blau & Michaeli, [2019; |Tschannen et al., 2020; Bond-Taylor et al.,[2021)), but theoretical
advances remain limited. For instance, PAC-Bayes bounds for the reconstruction loss were proposed
by |Chérief-Abdellatif et al.| (2022)) on the basis of the PAC-Bayes theory of supervised learning
using prior and posterior distributions over the encoder and decoder parameters. Similarly, Epstein
& Meir (2019) proposed parameter-based bounds. However, these works fall short of explaining
the theoretical role of latent variables. [Mbacke et al.[(2023) have recently introduced PAC-Bayes
bounds that use priors and posteriors over the latent variables, aligning the PAC-Bayes posterior
with the variational posterior. Their approach allows for using the posterior distribution, which is
conditionally independent between data points, providing guarantees for generalization under the
reconstruction loss and data generation capabilities. However, in their work, they assumed fixed
encoder and decoder parameters, without considering learning these parameters.

1.2 OUR CONTRIBUTIONS

On the basis of existing research findings, we provide a theoretical analysis that guarantees the
generalization and data generation capabilities of unsupervised learning models, focusing on latent
variables. However, simply extending the analysis of VAEs (Mbacke et al., 2023) results in gener-
alization bounds that depend on learned decoder parameters, obscuring the role of latent variables.
Similarly, directly using the IT analysis from supervised learning (Harutyunyan et al.,|[2021; [Hellstrom
& Durisil 2022)) is challenging owing to the difficulty in decoupling the encoder—decoder relationship.
Furthermore, the techniques used for classification in latent variable models (Sefidgaran et al.| [2023)
are insufficient for analyzing the reconstruction loss or data generation, as these require reusing input
data and handling conditionally independent posterior distributions.

To address these challenges and advance the theoretical analysis of unsupervised learning with
a focus on latent variables, we propose a novel information-theoretic generalization error bound
(Theorem [2) for models with finite latent variables, such as vector quantized VAEs (VQ-VAEs) (Van
Den Oord et al.| [2017)) (detailed in Section @) This extends the supersample setting in existing
IT analysis (Steinke & Zakynthinou, [2020) incorporating techniques from [Mbacke et al.| (2023)
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and [Sefidgaran et al.|(2023)). Furthermore, we introduce a novel permutation-invariant supersample
setting, ensuring that the generalization gap vanishes when the encoder’s capacity is appropriately
regularized (Theorems [3]and ). Even without such a constraint, we show that generalization can
still be guaranteed if the posterior distribution of latent variables is sufficiently stable (Section [3.3).
Finally, we provide a guarantee for the data-generating capability by deriving the upper bound on
the 2-Wasserstein distance between the true data distribution and the generated data distribution
(Theorem [5)). These findings provide the first comprehensive theoretical understanding of how
encoders and latent variables contribute to generalization and data generation capabilities.

2 PRELIMINARIES

For a random variable (RV) denoted in capital letters, we express its realization with corresponding
lowercase letters. Let p(X) denote the distribution of X, and let p(Y'| X) represent the conditional
distribution of Y given X. We express the expectation of a random variable X as E,x) or Ex.
The symbol I(X;Y") represents the MI between X and Y, while I(X;Y|Z) is the conditional MI
(CMI) between X and Y given Z. The Kullback—Leibler (KL) divergence between p(X) and p(Y")
is denoted by KL(p(X)||p(Y")). We further define [n] = {1,...,n} forn € N.

2.1 SETTINGS OF THE LATENT VARIABLE MODEL

This work focuses on encoder—decoder models for unsupervised learning, specifically those with
discrete latent spaces, including models such as the VQ-VAE (Van Den Oord et al.,|2017) and its
stochastic extensions (Williams et al., [2020; [Takida et al., |2022; |Sgnderby et al., 2017} [Roy et al.,
2018). Let X C R? be the data space and we assume an unknown data generating distribution D. We
express the latent space Z C R%, with both X and Z equipped with the Euclidean metric || - ||. In
the discrete latent space, there are K distinct points, represented as e = {e; }le € ZX, which are
collectively referred to as a codebook learned from the training data, as explained below.

Encoder—decoder models consist of two components: the encoder network f4 : X — Z and the
decoder network gg : Z — X, parameterized by ¢ € ® C R and § € © C R4, respectively. For
a given data point z, the encoder network transforms it into f;(x) and selects the corresponding
discrete representation e; from the codebook e. The posterior categorical distribution over the index
is given as ¢(J = jle, ¢, x) for j = 1,..., K. We will introduce examples of this distribution later.
Using the selected latent representation e, the decoder network reconstructs the data as gg(es). To
generate new data, the index J is drawn from a prior distribution, such as a uniform distribution, and
the decoder network returns gg (e ).

Given the training dataset S = (S1,...,S,) € X™, where each data point S,,, € X is independent
and identically distributed (i.i.d.) from D, we jointly learn the parameters of the encoder, decoder, and
codebook. We denote the set of parameters as W = {e, ¢,0} € W := Z% x & x ©. We assume that
these parameters are learned using a randomized algorithm and the learning process is represented by
the conditional distribution e, ¢, § ~ ¢(e, ¢, 8|.S). The learning algorithm typically minimizes the
reconstruction loss. For a given data point x and the corresponding latent variable e;, the quality of
the reconstructed data is measured by the loss function [(z, gg(e;)), where [ : X x X — R™. Then,
the reconstruction loss for the input  and parameter w is defined as lp : W X X — R, lp(w, z) =
Eq(sle,6,2)!(x, go(er)). In this work, we focus on the squared distance for the loss function /, so we

aim to minimize lo(w, 2) = Eq(Jje,4.2) /|2 — go(es)||? over the training dataset = € S.

Finally, we provide examples of the posterior distribution g(.J|e, ¢, x), fo the original VQ-VAE (Van
Den Oord et al.,2017), the following deterministic mechanism was used:

. 1 for j = arg min x) — exl,
0 otherwise,

using the distance between the outputs of the encoder and codebook. Recently, stochastic selection
methods have become popular. For instance, Williams et al.[|(2020) proposed the distribution

q(J = jle, ¢,x) o exp (=B fo () — e;]%) . )
where the softmax function is used, and 3 € R is a temperature parameter that controls the level of

stochasticity. Beyond this, using stochastic encoders has become common in several other works,
including those by S@nderby et al.[|(2017),|Roy et al.|(2018)), and [Takida et al.| (2022).



Under review as a conference paper at ICLR 2025

2.2 INFORMATION-THEORETIC GENERALIZATION ERROR ANALYSIS

We now briefly outline the IT analysis using the supersample that we utilize in our study (Steinke
& Zakynthinoul, 2020} [Harutyunyan et al., 2021 |Hellstrom & Durisi, [2022). Note that the existing
IT analysis is used for supervised learning and the notation in this section is slightly different from
our main results in Section (3| Let X be the domain of data and let us suppose D represents an
unknown data distribution. We consider a randomized algorithm A : X™ — W, where w € W C
R?w is a parameter. Given the training dataset S = (Si,...,S,), the learning algorithm can be
characterized by q(W|.S). We evaluate the quality of the learning algorithm using the loss function
[:Wx X — [0,1], where I(A(s), z) is the loss for fixed S = s and X = z. Then the training

loss is defined as Lg = LS L U(A(S), Sp) and the population loss is L = ExI(A(S), X).
In the supersample setting, we define X € X"*2 as an n x 2 matrix, where each entry is drawn
i.i.d. from D. We refer to this matrix as a supersample. Each column of X has the indexes {0,1}
associated with U = (U1, ..., Uy,) ~ Uniform({0, 1}") independent of X. We denote the m-th
row as X,, with entries (X M0 X, m,1)- We consider Xy = (an,Um):Ln:l as the training dataset
and XU = (meU )7 _, as the test dataset, where U,, = 1 — U,,. Using the supersamples,
the training loss is expressed as L ¢ = LS UAXy), Xpm,v,,) and the test loss is Ly =
D D I(A(Xp), Xm,Um)' Furthermore, [(A(Xy), X) denotes the n x 2 loss matrix obtained by
applying [(A(X{y ), -) elementwise to X. The described setting collectively called the supersample
setting lead to the following generalization error bound:

Theorem 1 (Hellstrom & Durisi| (2022))). Under the supersample setting, we have

Bsx(L L)l = g o (L ~ L)l £ 2H0(ACE), $):01%),

3 GENERALIZATION OF THE RECONSTRUCTION LOSS

In this section, we aim to analyze the generalization capability of encoder—decoder models using
IT analysis. Following the notation in Section given the training dataset S = (S1,...,S,), we
define the generalization error of the reconstruction loss as

1 n
gen(n,D) = ES,XEq(e,¢,0|S) (Eq(J\e,c;/),X)l(X gg eJ g Z E ] |e @, Sm)l(vagG(eJm))) ‘
m=1

To proceed with the analysis, we assume the following condition regarding the data space:

Assumption 1. There exists a positive constant A such that sup,, ¢y ||v — o'| < AY/2,

This assumption implies that for any z, e;, and 6, the loss function [(z, gg(e;)) is bounded by A.

We now restate the settings from Sectlonnunder the supersample setting. Given a supersample X =
(Xo, X1) € X™*2, we define Xy := (X,n.v,, )", as the training dataset and X := (Xm’Um)m_1
as the test dataset. Then, treating lo(w,z) ‘= Eq(jje,p.2) /| — go(es)||* as [ in Section. [2.2{and
rewriting the generalization error using supersample, we can directly apply the generalization bound
in Theorem[I] We refer to this generalization bound as the naive IT-bound (See Appendix [B]for the
formal statement.). As discussed in Section[I.T] the naive IT-bound does not clearly capture the role
of the learned representation ey in generalization because the CMI term is entangled with both the
learning of W = {e, ¢, 0} and the posterior distribution ¢(.J|e, ¢, z). See Appendix [B]for a detailed
discussion about this point. In this section, we aim to extend the naive IT analysis to the bound that
explicitly captures the role of representation.

3.1 THE GENERALIZATION ERROR UNDER THE EXISTING SUPERSAMPLE SETTING

We introduce the notations of the joint distributions used in our theory. Given the supersample X, we
define g(Jle, §, Xp) = [Tiy 4(Tmle. 6. Xn1,). a(le. 6, Xu) = [Tey a(mle, & Xon ),
and Q(J|e7 (ba X) = Q(J7 J|ea ¢a XU? XU) = Q(J|ea ¢7 XU)q(J‘e7 ¢7 XU)
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The following is our first main result, the proof is shown in Appendix [C|
Theorem 2. Under Assumption|l|and the supersample setting, we have

Ij;Ue, ,X +Ez yE, (e - KL P
sonn. D) SM\/< 06 X) + B 1 Byiosms KL@IP) &
n \/,ﬁ

where the CMI is defined as
1(J;Ule, ¢, X) = Eg 1B, o 520 KL(a(T]e, ¢, X)|[Evrq(I, Ile, ¢, X, X)) ()

The distributions of KL divergence are defined as
N n 5 n
Q =q(e,$.0|Xv) [[ a(mle. ¢, X)), P =qle,,08) [[ a(Jimle. ¢
m=1 m=1

and q(Jy,|e, @) is any prior distribution that does not depend on the training data.

The bound does not depend on the decoder’s information; This means that we can use a complex
decoder network to reduce training reconstruction loss, and it does not worsen the generalization
gap. The CMI and KL terms are affected solely by the posterior distribution of the latent variables,
conditioned on the learned ¢ and e.

Role of the representation in our bound: Denoting Xy=68= (S1,...,Sn), the KL divergence
term can be rewritten as

E KL(Q|P 1 &
Q(e@ae‘s,)n (Q| ) = ﬁ Z Eq(e7¢\S)KL(q(']nL‘ea ¢7 Sm)”Q(‘]mJea ¢))

m=1

This is referred to as the empirical KL divergence by Mbacke et al.|(2023)), which is often used as
the regularization in the variational inference. For the CMI term, we have the following relation,

0,10 )+ EsEyeis) Y KL(a(Tmle, 6, Sm)l|a(Tmle, $))-(5)

m=1

I(j;U‘ea(bv ZIG},
m=1

See Appendix for its proof. Since Xy are i.i.d., all {I(ey; X’mﬂgm e, @)} _, are equivalent,
thus, we express the first term of Eq. @) as 3°,, I(e; X, e, ¢) = nl(es; X|e, ). This CMI is
commonly used in the IB hypothesis. As pointed out by [Sefidgaran et al.|(2023)), the empirical KL,

term can be regarded as the “empirical mutual information” I (J; X|e, ¢) by choosing the marginal
distribution under ¢(.J,,,|e, ¢, Sy,) as the prior distribution. This leads to the generalization bound

gen(n, D) < 2A\/I(e; Xle, &) + 2EsI(J; X[e, 0) + ©)

A
Vi
This bound clearly highlights the role of the information encoded in the latent representations in the
context of generalization. However, as discussed by [Sefidgaran et al.|(2023)), the bound of Eq. (6)
does not vanish as n — oco. Therefore, the following discussion suggests that utilizing the symmetry
of the prior distribution (concerning the supersample) is important to address such issues.

Dependency on sample size: Next, we study the dependencies of the CMI and KL terms on n
in Theorem [2} The CMI term is similar to the fCMI from the existing IT analysis (Harutyunyan
et al.,|2021)), but here, the conditioning on all other parameters distinguishes it from typical fCMI
bounds, see Appendix.|[D.3|for the detailed discussion. Since the latent space is discrete, we have
I(J;Ule, ¢, X) < 2nlog K, ensuring that the bound is always finite, although it may be vacuous.
When using the deterministic decoder f, : X — [K], we can directly use the existing result
(Theorem 8§ in Hellstrém & Durisi|(2022)); if f, belongs to a class of functions with a finite Natarajan
dimension, I(J; Ule, ¢, X) = O(logn) (see Appendleor details). Thus, by regularizing the
encoder model’s capacity, the first term inside the square root in Theorem 2] scales as O(log n/n).
Comparing this with Eq. (3), where I(e;; X|¢) does not vanish as n — oo, this highlights the
importance of using symmetry in the prior distribution for supersamples to achieve meaningful
bounds, as discussed by [Sefidgaran et al| (2023)). For a stochastic encoder, such as that in Eq. (2)),
regularizing the encoder’s capacity similarly bounds the CMI (see Appendix[Fand Theorem ] below).
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Regarding the empirical KL term, it is much larger than the CMI term (see Section [5|for the numerical
validation), and it does not necessarily vanish as n — oo, as pointed out by |Geiger & Koch|(2019) and
Sefidgaran et al| (2023). As discussed in Appendix [C.3] this arises from the limited flexibility of the
supersample setting, which leads to the introduction of the novel supersample setting in Section[3.2]

Finally, we point out that the following data-dependent prior can be used for Theorem

P = a(e,6.0) [ 3 walimle. 6,5).

m=1m'=1
This is an empirical approximation of the marginal distribution, a type of prior that appears in the
Vamp prior VAE (Tomczak & Welling, 2018). See Appendix [C.3|for the detailed proof.

3.2 GENERALIZATION UNDER THE PERMUTATION SYMMETRY SETTINGS

As discussed in Section[3.1] the existing supersample setting leads to an empirical KL term that does
not necessarily vanish as n — co. As discussed by |Sefidgaran et al.|(2023)), the existing supersample
setting utilizes the specific symmetry of the test and training datasets (they referred to it as type-1
symmetry) and demonstrated that such symmetry is insufficient to analyze latent variable models.
We extend their results by introducing a new symmetry, which eliminates the empirical KL term.

To establish this new symmetry, let us denote a random permutation of [2n] as T = {717, ...,Ts,},
where each permutation appears with uniform probability, P(T) = 1/(2n)!. Given a supersample
X = (X'l, ey Xgn) € X?", a set of 2n random variables drawn i.i.d. from D, we reorder the
samples using T expressed as Xp = (X7, ..., X1, ). The first n samples (X1, , ..., X7, ) are used
for the test dataset and the remaining n samples (f( Tog1re s X T,, ) are used for the training dataset.
We further express T = {To, T1}, and X1, = (X1,,..., Xr,) and X, = (X1, ..., X1,.)
represent the test and training datasets, respectively. Unlike the existing supersample setting discussed
in Section[2.2] where U, are independent, the components of T are dependent.

We express the joint distibution as follows: g¢(Jle,¢, Xx,) = [I[h_,a(Jmle,é,X71,),
Q(‘i”ea ¢7 )ng) = H:Ln:~1 q(Jm‘e, ¢7 XTn+m)9 and q(J|ea ¢7 X) = q(‘]a J|ev d)v XToa XTl) =
q(Jle, ¢, X1,)q(J|e, ¢, X1,). We refer to these settings as the permutation symmetric (super-
sample) setting. The following is our main result, and the proof is shown in Appendix

Theorem 3. Under Assumptions|[I|and the permutation symmetric setting, we have

[(J; Tle, ¢, X) 24

D) < 4AE
gen(na ) = X n \/ﬁ’

where the CMI is defined as

1(J;Tle,p,X)=E E KL(@gJle,¢,X)| E ¢(J.Ile,¢, Xr;, X10)). (D)
X, T q(e,¢|XT,) P(T)

Compared to Theorem the empirical KL term is eliminated, and a new CMI term, Eq. , emerges,
which leverages the symmetry of index T in the prior distribution. So this theorem puts its basis on
the careful choice of prior distribution. We will show that this CMI term will vanish as n — oo; thus,
Theorem 3] successfully characterizes the generalization. As discussed in Section [3.1} when using the
sufficiently regularized deterministic decoder f, : X — [K], this CMI scales as O(log n); thus, the

bound behaves as O(/logn/n). See Appendix for more details.

To analyze the role of the capacity of stochastic encoders such as that in Eq. (2), we extend Theorem 3]
by incorporating the concept of metric entropy. Assume g(J|e, ¢,z) = g(J|e, f4(x)). Let F be
the encoder function class equipped with the metric || - ||co. Given z™ = (z1,...,2,) € X",
define the pseudo-metric d,, on F as d,,(f,g) = maxcpy) | f(2:) — g(2i)||co for f,g € F. The
§-covering number of F with respect to d,, is denoted as N(d, F, z"), and we define N'(6, F,n) =
SUPynexn N (9, F, ™).

Theorem 4. Assume that there exists a positive constant A, such that sup, ¢z ||z — 2'|| < A..
Then, when using Eq. (2) and under the same setting as Theorem Sforany § € (0, 1], we have

1 2 2A
gen(n, D) < Ay/8BndA, + 4A M + N
n
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In the proof, we first approximate f, using the §-cover of F, leading to an approximation error in the
first term. Then, the CMI (Eq. (7)) of the d-cover is bounded by the metric entropy. See Appendix [F
for the complete proof, including a more general stochastic encoder beyond Eq. (Z). When F
is sufficiently regularized (such as with the Natarajan dimension with a margin, see Appendix [F]
for details), the metric entropy scales as O(log(n/d)), and by setting § = O(1/n?), we achieve
gen(n, D) = O(y/logn/n). This result demonstrates that regularizing the encoder’s capacity leads
to better generalization, where as the deconder’s capacity does not affect the generalization gap.

3.3 DISCUSSION ABOUT THE STOCHASTICITY OF THE ENCODER

Here, we discuss the role of the stochasticity of the encoder in generalization. Proofs of this section
are given in Appendix [Gl Theorems [2] and [3] suggest that, in addition to the encoder’s capacity,
its stochasticity is critical in enhancing generalization. For instance, in the setting of Theorem [2}

let Z = f4(x) and q(J|e, é,2) = q(J|e, f5(x)). This formulates the Markov chain U — Z — e
conditioned on X . From the data processing inequality (Cover & Thomas), 2012)), the CMI between

U and e is smaller than that between U and Z. A similar argument holds in Theorem 3| implying
that composing the conditional distribution reduces the CMI, thereby improving generalization.

An example of this composition can be found in the stochastic quantized VAE (SQ-VAE) proposed
by Takida et al.|(2022)). In this model, the input data x is compressed as Z= fo(z), and then, using
a conditional distribution p(Zq\Z ) (e.g., a Gaussian distribution), a noisy version of Z is obtained.
Then, the latent variable e s is obtained using ¢(J = j|Z,, e) o« exp (—f||Z4 — ¢;|*), which forms

the Markov chain U — Z — Z4 — €. From the data processing inequality, the CMI between U and Z
or U and Z,, is larger than that between U and e, thus improving generalization.

Next, we examine the stability of the latent variables. The CMI in Eq. (@) is bounded as

I(ij|e7¢7X) S 5 E E~ KL(q(jvJ|ea¢5XUvXU)|q(jv']|e7¢v XU_/7XU’))' (8)
X, UU’ q(e,¢|Xv)

The upper bound implies the stability of KL divergence under different data points, suggesting
that improving the stability of the posterior distribution of latent variables enhances generalization.
Generalizing this, we define the following type of stability; for fixed ¢ and e, assume that for all
x,x' € X and for any j € [K], ¢(J = jle,¢,x) < e‘q(J = jle, ¢, x’) holds, where € € R may
depend on ¢ and e. This leads to the e-KL stability, and from Theorem [2} we have

A
v
This result illustrates the importance of the stability of the latent variables. The introduced stability
is conceptually similar to differential privacy (DP) (Dwork et al.,|2006)), but with a key difference;

whereas DP is defined for all datasets, the stability here applies to individual data points. This
distinction arises because the posterior distribution is conditionally independent of each data point.

gen(n, D) < 2A4/3EsEqe g/5)€ + 9)

Note that the posterior distribution in Eq. (Z) corresponds to the exponential mechanism in the privacy
context (McSherry & Talwar, [2007). Conditioned on ¢ and e, assume that for any x € X and any
J € [K], there exists Ay e € R such that || f5(z) — €;]|* < Ay.e. Then Eq. (@) satisfies the stability
condition of Eq. (O) with ¢ = 28A o and we have gen(n, D) < 2A,/3BESE (e ¢/5)A¢.c + %.
This bound provides a natural interpretation of the temperature parameter /3, which controls the level
of stochasticity. As 8 — oo, Eq. (2) becomes deterministic, causing the bound to become vacuous.
On the other hand, if 8 — 0, Eq. (2) approaches a uniform distribution that ignores the input data,
thereby improving generalization with an increased reconstruction loss on the training data.

3.4 COMPARISON WITH EXISTING BOUNDS

Here, we compare our bounds with those in existing work. Theorem 2]resembles the results of Mbacke
et al.| (2023) since both bounds include the empirical KL term in the upper bounds, and the posterior
distribution corresponds to the variational posterior distribution. The key difference is that Mbacke
et al| (2023) assumed fixed encoder and decoder parameters, whereas our analysis incorporates
the learning process under the assumption of a finite latent space and a squared reconstruction loss.
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Another distinction is that their generalization bound does not become 0 as n — oo due to two reasons.
One is the presence of the empirical KL term, which we address in Theorem [3using permutation
symmetry. Our technique can be regarded as developing the appropriate prior distribution in PAC-
Bayes bound. The second reason is the presence of the average distance % >ome1 Ex[|X — Sy in
the existing bound, which is inherent to the data distribution and may not vanish as n — oco. Our use

of the squared loss in the analysis mitigates this problematic term, as detailed in Appendix [C]

Our proof techniques are based on|Sefidgaran et al.[(2023). However, we could not directly apply
their methods, as the reconstruction loss reuses input data, unlike in classification settings. We
resolve this by combining the data regeneration technique used in the proof of [Mbacke et al.| (2023)).
Additionally, we introduced a new permutation symmetric setting, leading to a bound that controls
mutual information in Theorem[3] Our setting is closely related to the type-2 symmetry proposed
in|Sefidgaran et al.| (2023)), which involves random permutations selecting n indices from 2n with
a uniform distribution 1/ (2:), whereas our setting requires the consideration of the order of the
permutation index to evaluate the exponential moment (see Appendix [E). Finally, we theoretically
studied the behavior of the CMI (Theorem [) focusing on the complexity of the encoder, whereas
Sefidgaran et al.| (2023) provided the bounds based on the CMI without such discussion.

The existing analyses based on the IB hypothesis (Vera et al., 2018} |[Hafez-Kolahi et al.| 2020;
Kawaguchi et al.| [2023} Vera et al., [2023) assumed that both the latent variables and data are discrete,
and their obtained bounds explicitly depend on the latent space size or show exponential dependence
on the MI. In contrast, we assume that only latent variables are discrete and the resulting bound does
not explicitly depend on the number of discrete states nor exhibit exponential dependence on MI.

4 DATA GENERATION GUARANTEE FOR THE ENCODER-DECODER MODEL

The primary interest of latent variable models often lies in their data generation capability rather than
their generalization under the reconstruction loss. Specifically, the aim is to generate realistic data by
sampling from the latent variable distribution and transforming it via the decoder. We expect that the
generated data distribution is close to the true data distribution.

Let p represent a distribution on Z, and let us assume that for any 6 € ©, the decoder go(-) : £ — X
is measurable. The pushforward of the distribution p by the decoder, denoted as gy#p, defines a
distribution on X as go#p(A) = p(g, ' (A)) for any measurable set A C X. When generating data,
we first draw an index using the prior distribution p(.J|e, ¢), which is typically independent of the
training dataset. This corresponds to selecting a latent variable e ; from {ey, ..., ex }, and we denote
the associated prior distribution over Z as p(ele, ¢). The resulting generated data distribution is then
represented as [i '= gp#p(e|e, @). Next, given the posterior distribution ¢(J,,|e, ¢, Sy,) conditioned
on the m-th training data point .S,,, we express the corresponding posterior distribution over Z
as q(e(m) le, ¢, Sm), where we simply express e, as e(m)- Here, we evaluate the 2-Wasserstein
distance (see Appendix [A]for the definition) between the data distribution D and the generated data
distribution /i, denoted as W4 (D, ji). The following is our main result:

Theorem 5. Let S = (S1,...,S5,) € X" be a training dataset, where S,,, € X are drawn i.i.d. from
D. Under Assumption|l|and for any prior q(ele, ¢) that does not depend on S, we have

X 2 ¢
EsEq(e,0,015 W3 (D, 1) < EsEqee.0.015) D Boleqm o650 1m — g0 (e(m) 12

m=1

2y 2A
280 > EsEyesis)KL(a(eqmle; ¢, Sm) laleqm)le, 8)) + 7

m=1

This theorem shows that the 2-Wasserstein distance is upper-bounded by the reconstruction loss on
the training dataset and an empirical KL term. The result is similar to the bound obtained by [Mbacke
et al.| (2023)), where the fixed parameters are assumed, that is, learning is not considered as discussed
in Section[I.1] In contrast, our bound incorporates the learning process of parameters. If the marginal
distribution of ¢(e|e, ¢, z)were used as the prior distribution, the empirical KL term would become
the empirical MI as discussed in Section[3.1] Furthermore, if a prior distribution with the symmetry
introduced in Section were used, the empirical KL term would become the CMI appearing in
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TheoremE} However, such priors are impractical in real-world scenarios, where uniform distributions
are typically used to sample latent variables.

Theorems 2] [3] and [5 offer important insights into the roles of the encoder and decoder. To improve
the generalization and data generation capabilities, it is desirable to use a complex decoder, as it can
lower the training reconstruction loss without increasing the KL. or CMI terms in the upper bound,
regardless of the sample size. However, using the complex encoder increases the KL. and CMI,
requiring careful adjustment according to the sample size. This characteristic is specific to latent
variable models, highlighting the critical role of the latent variables as the regularization.

5 EXPERIMENTS

In this section, we present experimental results on MNIST (LeCun et al.l [1989) to analyze the

behavior of the CMI term (I(J; Ule, ¢, X)/n) and the KL term (E¢ K, 4 5%, KL(Q|[P)/n)
in our generalization error bound and to confirm the validity of our provided in Theorem [2and to
confirm the validity of the discussions based on it. These values were empirically evaluated using
15 models trained under five supersample settings prepared based on three different combinations
of training and test datasets. We also measured the generalization gap, which is the absolute value
of the difference in the empirical reconstruction loss calculated using the training and test data as
the estimated value of the generalization error. In our experiments, we adopted the SQ-VAE model
proposed by Takida et al.| (2022) with the ConvResNets architecture. The SQ-VAE utilizes a posterior
distribution similar to Eq. (I), based on the Gumbel-Softmax relaxation Jang et al| (2017); Maddison
et al.| (2017), enabling efficient optimization of discrete latent variables and resulting in the excellent
generalization performance. The details of our experimental settings are provided in Appendix I}

We first conducted experiments to elucidate the behavior of the CMI and KL divergence terms
in our bound as n increases. Here, we adopted the following sample-size settings: n =
{250, 1000, 2000, 4000}. The results are presented in Figure[l| From these results, it is evident that
the CMI term (center plot) decreases as n increases. Moreover, we observe a correlation between
the generalization gap (left plot) and the CMI term. In addition, the CMI term values are quite
close to the generalization gap. In contrast, the values of the KL divergence term (right plot), which
employ a uniform distribution as the prior, take extremely large values, do not correlate well with the
generalization gap, and do not necessarily decrease as n increases. This observation aligns with our
discussion in Section [3.1|regarding the importance of evaluating the generalization error through the
construction of an appropriate prior using supersamples.

Next, to analyze the behavior of the CMI and KL term in response to changes in model complexity,
we fixed the number of training samples at n = 4000 and evaluated models trained with K =
{16, 32, 64, 128}. The results are presented in Figure This result indicates that our bound increases
only by log K. In contrast, existing studies (Hafez-Kolahi et al., 2021 show that generalization
bounds depend exponentially on MI or entropy, which possibly shows O(K). These differences
highlight the superiority of our bound.

6 CONCLUSION AND LIMITATIONS

We conducted the first comprehensive analysis of the generalization and data generation capabilities of
encoder—decoder models in unsupervised learning based on the IT analysis. Our work highlights the
role of encoder capacity and the posterior distribution of latent variables through a novel permutation
symmetric supersample setting. However, our analysis has two limitations. First, it assumes a discrete
latent space, limiting its applicability to models such as VAEs with continuous latent variables.
Second, it relies on the squared loss for reconstruction. Addressing these limitations in future work
is crucial for developing a more accurate understanding of encoder—decoder models. Furthermore,
from our observations in Section 5] our bound expressed by the CMI term without the KL term in
Theorem 3| may be more reasonable compared to that in Theorem 2] However, it is challenging to
estimate I(J;T|e, ¢, X) since T is a high-dimensional random variable (2n dimensions), which
prevent us verifying its validity through numerical experiments. Exploring estimation methods for
such a CMI term with high-dimensional random variables, or deriving a bound based solely on the
CMI through alternative approaches, constitutes an important direction for future research.
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Figure 1: The behavior of the generalization gap (left), the CMI term (I (j ;Ule, ¢, X )/n) (center),
and the KL term (B¢ /E, 9%, KL(Q[P)/n) (right) when the number of training samples n is

increasing (K = 128, d, = 64).
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Figure 2: The behavior of the generalization gap (left), the CMI term (I(J; Ule, ¢, X)/n) (center),
andthe KLterm (E¢ /E, o 4 9, KL(Q|[P)/n) (right) when the size of a codebook K is increasing

(n = 4000, d, = 64).
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the details of our experimental settings in Appendix |} including the URLSs for the source code we
downloaded, hyperparameter settings, and information about the computational resources used. In
addition, we will make our experimental source code publicly available on GitHub upon publication
of this paper. Therefore, the reproducibility of our numerical experiments is adequately ensured.
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A AUXILIARY DEFINITIONS AND LEMMAS

Here we define the Wasserstein distance. Given a metric d(-, -) and probability distributions p and ¢
on X, let II(p, ¢) denote the set of all couplings of p and ¢. The 2-Wasserstein distance is defined as:

p€ell

Wa(p,q) = \/inf /X . d(x,x")2dp(x,x’).

In this work, we use the Euclidean metric | - | as d(-, -).

We also rely on the following type of exponential moment inequality, which is often used in the proof
of McDiarmid’s inequality. A function f : X™ — R has the bounded differences property if for some

nonnegative constants ¢y, . . . , ¢,, the following holds for all i:
sup ‘f(xlv"wxn)7f(x17"'azi—lvgjgvgji-i-lv"wl‘n”Scia 1§’LSTL
Ty, TLEX
Assuming X1, ..., X,, are independent random variables taking values in X', we have the following
lemma:

Lemma 1 (Used in the proof of McDiarmid’s inequality). Given a function f with the bounded
differences property, for any t € R, we have:

2

E |:€t(f(X1;uan)_]E[f(Xl7"'7X"L)]) S e% Z?:l c? .

B DISCUSSION ABOUT THE NAIVE IT BOUND

As discussed in Sec[3] by applying the existing IT analysis bound in Theorem [T} we can derive a
naive IT bound for the reconstruction loss as follows:
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Theorem 6. Under Assumption|l|and the supersample setting, we have

gen(n, D) < A\/il(lo(W,f(); U|X).

where lo(w, z) = Ey(jje.6.2)l|z — go(es)||? and W = {e, $,0} ~ q(e, ¢, 0| Xv).

Proof. Note that the generalization error can be expressed as the supersample

gen(n, D)

m=1

1 n
Es xEq(e,0,015) (Eq(J\e@,X)l(X’ gele) = > Equme,qﬁ,snL)l(vage(eJm)))‘

1 n
E (= hlert X 5l Xm0, 90(€1,)

1 n
=2 Eq(Jm|e,¢,Xm,Um)l((Xm,Um,ge(e.zm)))‘
m=1

Given that the loss is bounded by [0, A], it follows a A-subGaussian property. Thus, using Theorem'
we obtain the result.

It is important to note that this upper bound is characterized by the CMI I(lo(W, X); U|X). This
CMI depends on the decoder and encoder information, distinguishing it from the results presented in
our main Theorems 2]and 3] which do not require the decoder’s information.

To clarify this distinction, let us introduce the necessary notation. Following the notation in Sec-
tion[3.1] we define the regenerated data as:

Y = (go(ez1)s--->90(e3,):90(e31), ..., g0(ean)) = golez),

which represents the elementwise application of the decoder gy (e(.)) to the selected index Jon X
(Recall that g(J|e, ¢, X) = q(J,J|e, ¢, X, Xv) = q(JI|e, ¢, Xp)q(Jle, ¢, Xv7) ).

Under these notations, we have the following relations:
I(lo(W, X); U|X) < I(Y;U|X) < I1(6;U|X) + I(e5;U|X, 0)

where the first inequality is obtained by the data processing inequality (DPI) and the second inequality
is obtained by the chain rule of CMI and the DPI. This result demonstrates that the decoder information
cannot be eliminated from the naive IT bound, which clarifies the fundamental difference compared
to our result (Theorems@]and E]) Moreover, since the decoder and encoder are learned simultaneously
using the same training data, they are not independent. This makes it unclear how the latent variables
and the encoder’s capacity affect generalization, as it is difficult to eliminate the decoder’s dependency
on them.

C PROOF OF THEOREM 2]

We express g(Je, ¢, X) = q(J,I|e, ¢, Xg, Xv) = q(JI|e, b, X5 )q(Ie, ¢, Xvy). Hereinafter, we
simplify the notation by expressing X as X. For simplification in the proof, we omit the absolute
operation for the generalization gap. The reverse bound can be proven in a similar manner. We first
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express the generalization error of the reconstruction loss using the supersample as follows

K n

1
> D Elaled X0, ales0%0) (Xm0, 90(e8)) Lz,
k=1

m=1

K n
1
- n > Egtmlend Xom o ate6.01x0) ((Xim 00> 90 (€x)) L=,
k=1 =1

K 1 n
=> - > Eanles X, o yate.s.81x0) [ Xm0, — 90(en) P Li_s,

=1 m=1
K 1 n
-2 o Y Bgmlend Xom o aesd.01x0) 1 Xm0 = go(en) P L=, (10)
k=1 m=1

where the first term corresponds to the test loss and the second term corresponds to the training loss.
Recall the learning algorithm and posterior distribution:

€, ¢7 0~ q(ea ¢7 9|XU)7

Jk ~ q(Je, ¢, xy).

Here e = {ey,...,ex} is the codebook, and j and J = {J1, ..., j, } represents the index of the
codebook that the test and training data are represented.

Conditioned on X and U, we then decompose Eq. (TI0) as follows

K

M=

Eq(e.0.01x0) (Xm0, 96 (€x)) By (70,6, X, 5 ) Lb= T
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I

1

3
Il

Sl
NE

Eq(e,0,01x0) (Xon,0,,5 90 (€6)) Eq( s le,6, Xm0, ) L= Tom

3
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n

> Bote.s01x) (Xm0, 90 (€6 Eq(s, 106X 1) Lome
1

S|
i

+
M5 T 1M = e
S|
M:

Eqe,4,01x0) (Xm0, > 96 (€8 )) g (11006, Xm0, ) L= - (1

o
i
3
[

1

We will separately upper bound these terms.

C.1 BOUNDING FIRST AND SECOND TERMS

The decomposition of the generalization error, as shown in Eq. (TT)), allows us to bound the first and
second terms as follows.

We apply Donsker-Varadhan’s inequality between the following two distributions:

Q = P(U)q(67 ¢70|XU)Q(37‘]|e7 ¢a XUvXU)
PS = P(U)Q(ea ¢7 0|XU) P%(Ej’) q(j7 J|ea ¢a X(j’a XU/)' (12)

Then, for any A € RT, we have

K n

1
> :; > " Eglop01x0) (Xm0, 96 (er)) (Equ‘m\e,as,xm,gm)ﬂk:fm —Eq(Jm\e,¢,xm,Um,>1k:Jm)
k=1 =1

K n
1 1 A
< XKL(Q|PS) +3 log Ep exp (n ;;Z(Xm’gm,gg(ek)) (Lpey, — ]lkzjm)> )
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To simplify the notation, we express J = Jg, J,,, = 'm0, J = J1,and Jp, = Jp 1. Let U” be a
random variable taking 0, 1 with a uniform distribution. Since P g is symmetric with respect to the
permutation of Jy and J;, we can bound the exponential moment as:

K n
A
log Ep(v)q(e,¢,01x0) B, aodiled X, Xyr) OXP (n DD X, 90(er) (Lhmso — ]11«=Jm,1)>
P’ k=1m=1

= logEp(v)g(e.0.01x0) PU) B, aQ0.Tuled Xy Xy ) PO

K n
A
exp (n Z Z X0, 90(ex)) <]]-]<::Jm,(j// ﬂk_J,,L,U,J)

k=1m=1

= log Ep(u)g(e,4,0/x0) E, 0(Jo.T1le,6, X 5, Xy Epr

K n
exp (2 Z Z U X0, 90(ek)) <]lk:Jm’g,// - ]lk—Jm,U//>> -

k=1m=1

In the final line, we apply McDiarmid’s inequality since U™ are n i.i.d. random variables. To use
McDiarmid’s inequality in LemmalI] we use the stability caused by replacing one of the elements of n

i.i.d. random variables. To estimate the coefficients of stability in Lemma letU"™ = (UY,...,Ux),
then
A K n
s |23 S UK, 9000) (Lims, oy — ke, ) (13)
{U,:,/,y ?n:l U//// n 1 me1 m m

n

> UKo 0, 90(e8)) (L, 0~ Limt )

m#m/

= sup
{U// n U////

mIm=1>Y,,

3
n
k=1
PR
T Zl(Xm',U%,’ge(ek)) (]lszm,’D//,, - ]lk=Jm/YUW/> ‘
k:l m m
K

X 0, 90(ew)) (Lhma g = L o)
m m! T m!

b
Il
—

20A
< 7=

A
- g Z l(Xm’,U{na gO(ek)) (]lk:Jm’,fJ;y’L', - ]lk:Jm/,U:,/L/,) n
k=1

Here, the maximum change caused by replacing one element of U” is 2A\A /n, thus, its log of the
exponential moment is bounded by (2AA/n)?/8 x n = A\2A?/2n. Thus from Lemmal[I] we have

K n
A
log Er)ate.s01Xe) &, allodules Xy Xyr) P (n DD X, 90(er)) Lizso —lk:Jm,l)>

k=1m=1

A2A?
< .
2n
Finally, by noting that
ExKL(Q|Ps)
:EX E KL(q(j7J|ea¢7XUaXU)|]EU'Q(jvJ‘e7¢7XU’7XU/)) :I(jaJ7U|ea¢aX)7
P(U)q(e,0|Xv)

the first and second terms in Eq. (TT) are upper bounded by

AA?

1 —
—I ; X
A (J7J7U|ea¢7 ) + m

(14)
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C.2 BOUNDING THIRD AND FOURTH TERMS

Next, we upper bound the third and fourth terms in Eq. (IT));

1 n
n Z E q(e, o, 9|XU)Z( m Um7ge(ek))Eq(Jm\e,d),Xm,Um)]]-k:Jm
k=1 m=1
K 1 n
- — 2 Bate.s,01x0) (Xm0, 96 (k) Eq (1,6, X 01,) L= (15)
k=1 m=1

m

We simplify the notation by expressing Ey(;,.je,¢, X0, ) Lk=1,, 8 Pk m and use the square loss:
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?__
I

3
Il
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S
S
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(||Xm,Um||2 ||XmU H ) e¢>9|XU)ZPk m

m=1 k=1
n K

+Es= Y (ExX — Xu) Egepols) Y go(ex) Pem

m=1 k=1

9 n K

=Es > (BxX — Xm) Eqes.019) Y 96(ek) P, (16)

m=1 k=1
where we express S = (X1.u,,...,Xnu,) = (S1,...,5y,) as the training samples. In the last

inequality, we used Y p | Pyon = 1and Ex 2 5" ([ X, 0. 112 = | Xm0, [?) = 0 since X
and U are i.i.d.

To evaluate the final line, we use the Donsker-Valadhan inequality between

Q = Q(e7 ¢7 0|S) H Q(Jm|ev ¢a Sm)7

m=1
Ps = q(e,,05) [] a(Jmle, ),
m=1

where g(Jp,|€, ¢) is the prior distribution, which never depends on the training data. Then we have

n K
2
ﬁ Z (ExX — X)) 'Eq(e7¢,9|S)de(€k)Pk,m
m=1 k=1
1 2\ K
< ES)\KL(Q“?S) + ES)\ log Ep exp (n m§::1 (ExX — Xon) - Eqe,0,015) kz_:lge(ek)]lk_‘lm>
1
< ESXKL(Q|PS)
1 2\ & X
+ESX10gEPS exp (n Z (ExX Xm) -;gg( )(]lk J P ))
D) n K
EsBes s 3 (ExX = Xn) 3 00(e) Pl (17)
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where P/, = K, |¢,e) 1=, - Clearly, this does not depend on the index m, so we express
P/, = P;. Then the last term becomes

n K n K
1 1
EsEp,— > (ExX = Xp)- Y go(er) P < EsEpg |[ExX — =3 Xl || Y go(er) By |
m=1 k=1 m=1 k=1

17L
<Eg||ExX — — Xm A
<E[Exx -1y

m=1

IN

1 n
AVar (n mZ:l Xm>

< AVar (X)

[ A A
< %\F: ﬁa (18)

where we used the fact that the variance of random variables with bounded in (a, b] is upper bounded
by (b — a)?/4n (the extension to the d-dimensional random variable is straightforward) and thus,
Var (X) < A/4. Then the exponential moment term becomes

n

K
1 2A
Es logEp, exp (n > (ExX - Xp)- ;ga(ek)(]lk:m - Pig,m)>

m=1

n K
2
= ]ES/\ log Ep exp ( " Z (ExX — X,,) - de(ek)(ﬂk:J - P}i’)) ~

m=1 k=1

Here we use the McDiarmid’s inequality for n random variables J. Then we estimate the stability
coefficient similarly to Eq. (T3], which is upper bounded by AA/n. Then from Lemma 1], the
exponential moment is bounded by (2AA/n)?/8 x n = AA?/2n Thus, the second term is upper
bounded by

1 AAZ A

—KL(QP —_— 4 —. 19
)\(Q|S)+2n+\/ﬁ (19)

By optimizing the first and second terms of Egs. and (T9), we have

n N

where we used the fact that X, are i.i.d. Thus, we use McDiarmid’s inequality for n random variables
of X, to upper bound the exponential moment. We estimate the stability coefficient similarly to
Eq. (13), which is upper bounded by as follows. where

» ¢ (I3, 3:Ule . X) + EsEye.50KLQIPs)) A

Q = q(e, 6,015) [ a(Jmle, 6, 5m),
m=1

Ps = q(e, ¢,0|9) HqJ|e
m=1

C.3 DISCUSSION ABOUT THE LIMITATION OF THE EXISTING SUPERSAMPLE SETTING

The empirical KL divergence in Theorem [2] originates from the third and fourth terms of Eq. (L)), as
discussed in Appendix [C.2] After applying the Donsker-Valadhan lemma in the proof, it is crucial to
ensure that the probability P/’ = does not depend on the sample index m to control the exponential

moment in Eq. (T7). To achleve this, we employ the prior distribution ¢(J,,,|e, ¢), which eliminates
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the sample index dependency and leads to P,/

W o = P}, As aresult, we can use a distribution of the
form: ,

PS = q(e,¢,9|S) H Z %q(Jm|ea¢),Sm’)a

m=1m'=1
which provides an empirical approximation of the marginal distribution using available samples.
Since this distribution does not explicitly depend on the sample index, we can bound the exponential
moment similarly as done in Appendix [C.2]

However, using the prior distribution in Eq. to bound the third and fourth terms of Eq. is
not feasible. The reason is that applying the Donsker-Valadhan lemma with Eq. (I2)) to these terms
does not yield a bound of order O(1/+/n) as achieved in Eq. (T8). This is because the dependency on
the sample index in Eq. prevents us from leveraging the symmetry between the test and training
datasets through the supersample index U. Consequently, the prior distribution’s symmetry cannot be
exploited to simplify the bounds for these terms.

D PROOF OF LEMMAS AND EQUATIONS
D.1 PROOF OF EQ. [B))

We define g(Jle,¢) = TT,_; a(Jmle, @), a(Ile,¢) = [Tp—; a(Jmle, @), and ¢(Ile, ¢, X) =
q(J,Je, ) = q(J|e,b)q(I|e,p) where each ¢(J,|e,d) is the marginal distribution of
Q(J7n‘e7 ¢7X7n)-

Then by the definition of the CMI, we have

I(J;Ule, ¢, X)

=E3 1By o0150) KL(a(T]e, ¢, X)|[Evrq(T, Ile, ¢, Xpv, Xur))

< Ex 0By (os50) KL(a(]e, ¢, X)a(T, e, )

= EX,UEq(e,¢|XU)KL(Q(j|97 ®, XU)||Q(3|97 })) + EX,U]Eq(e,(z)\XU)KL(Q(ﬂ& b, XU)HQ(J|97 ?))

= EXﬂUEq(e,qﬂf(U) Z KL(q(jm|ea d)? Xm,Um)||q(jm|e? (b))
m=1

n
+E; vEqe01%0) Z KL(q(Jmle, ¢, Xm,v,.)la(Imle, ¢))

m=1

1 n
=nl(J; Xle, ¢) + IESIF«;(e,qﬂS)% Z KL(q(Jmle, ¢, Sm)lla(mle, @)

m=1

1 n
< nl(es; X|e,6) + EsEq(egi5)— > KL(a(Imle, 6, Sm) (e, ).

m=1
D.2 DISCUSSION ABOUT THE CMI OF THE DETERMINISTIC ENCODER

Here, we consider the case where f, : X — [K] represents a deterministic encoder that maps
input data to one of the K indices. This scenario can be interpreted as a K-class classification
problem, allowing us to directly apply the results from Harutyunyan et al,| (2021). In their work,
they demonstrated that the CMI for multi-class classification problems can be upper-bounded using
the Natarajan dimension. The Natarajan dimension is a combinatorial measure that generalizes the
VC dimension to a multiclass classification setting. Using this concept, we can derive the following
characterization:

When using a deterministic encoder network fy : X — [K], belonging to a class with finite Natarajan
dimension dg, and assuming 2n > dx + 1, we have the following bound:

I(J;Ule,¢,X)<dKlog<<§)Ze”>. (20)
K
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The proof follows exactly as in Theorem 8 of |[Harutyunyan et al.[(2021]).

Thus, by regularizing the capacity of the encoder model (via the Natarajan dimension), the CMI term
scales as O(logn), ensuring controlled generalization behavior. Examples of models that satisfy the
finite Natarajan dimension are shown in Jin|(2023) and Daniely et al.| (2011). Also, see Bendavid
et al.| (1995), which shows that the VC dimension of the multiclass loss function characterizes the
graph dimension, and the graph dimension upper bounds the Natarajan dimension. For the discussion
of the stochastic encoder that uses ¢(J e, ¢, z) = q(Je, f4(x)), see Appendix[F2]

Finally, we remark the CMI of Eq. (7). We show that
- - K\ 2
I(J; Tle, ¢, X) < dx log =), 1)
2 ) dg
By the definition of the CMI, the CMI is expressed as the difference of entropy and conditional
entropy. Since J is discrete, the entropy is always larger than 0. Thus, we have

I(J;Tle, ¢, X) < H(J|e, ¢, X].

where H is the Shannon entropy. Note that the entropy is bounded by the growth function, i.e., the
maximum number of different ways in which a dataset of size 2n can be classified in K. And such
quantity is bounded in the proof of Theorem 8 of |Harutyunyan et al.|(2021), thus Eq. holds

similarly to Eq. (20).

Thus, by regularizing the capacity of the encoder model (via the Natarajan dimension), the CMI term
of Eq. (7) scales as O(logn).

D.3 COMPARISON WITH THE FCMI

Here, we examine the relationship between our CMI and existing forms of fCMI in more detail. As
highlighted in the main paper, a key difference is that our CMI is conditioned on all model parameters,
whereas existing fCMI approaches marginalize the parameters.

To explore this further, we consider marginalizing over the encoder parameter, ¢. In the proof of
Theorem[2] we perform this marginalization over ¢ in Eq. (I0), and obtain

K n

1
D= D Ealles X 0, ate:01X0) (Xm0, 90(€8)) L,
k=1 =1

K n
1
-3 - > Eqn et Xomi (e8] o) (Xm0, 98 (€1)) L=,

=1 m=1

n

K
1
= Z -~ Ey(7ni0.0.%,0 0 Yateo1xo) 1 Xm0, — 1G] T

=1 m=1

K 1 n
-> - > Eglt. Xm0 )a(e01X0) 1 Xm0 — g0(€x)]*Lr=,,.,
k=1 m=1

and proceed with the proof in the same way. We apply the Donsker-Varadhan inequality between the
following distributions, instead of Eq. (12):

Q= P(U)P(U')q(e,0|Xy)q(J, I, e.0, X, Xu)

P = P(U)q(e, 0| Xv)Epwna(J, e, 0, X7, Xur).
This incorporates marginalization over ¢ in Eq. (I2), resulting in the following KL divergence in the
upper bound:

]EXKL(Q|P) =Ex E KL(q(jaJ|e707Xf]7XU)|EP(U’)q(j7J|ea07XU’3XU’))
P(U)q(e,4|Xuv)
=1(3,J;Ule, 6, X).
Unlike Theorem 2] this CMI explicitly involves the decoder parameter §. By marginalizing over ¢,

decoder information is integrated into the upper bound, making Theorem [2] distinct from existing
fCMI bounds.
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E PROOF OF THEOREM 3]

We define T = {Ty, T}, where X1, = (X1,,...,Xr,) serves as the test dataset and X, =

(X7, R ., Xr,,) serves as the training dataset. We further express X, = (Xr,,...,X7,) =
(XTOJ,...,XTM) and Xp, = (XTM,...,XTM). To emphasize the dependence of the
dataset on T, we write the posterior distribution as ¢(J|e, ¢, X1) = ¢(J,J|e, ¢, X1) =

Q(ja J|e7 d)v XToa XTl) = q(j|e7 (ba XTo)q(J|e7 d)v XTl)-

Hereinafter, we express X as X to simplify the notation. Under the permutation symmetric settings,
the generalization error can be expressed as

:\'—‘

S, X

E Eg(e.015) (Eq(Je,¢,x)l(X ge(er)) Z Eq(s,, |e¢Sm)l(vagG(eJm))>
m=1

1
—EXTZ Z 4(Tmles, Xy, Jale,0,0) X1, ) (X0 0 (€1)) Lim g,

k=1 m_l

K n
1
~ExT) - Y Egnles Xr, , aes 01X )UXTy 00 go(er) Li=,,

k=1 m=1

K
1
= EX’T Z E E’I(jm|ev¢7XT0,m)Q(ev¢79‘XT1) ||XT0,m — 9 (ek) ||21k'=jm
k=

1 m=1
K 1 n
—ExT ) - D Egnlesd Xy, ated 01 xe) | X1 = o) Lr=,,- (22)
k=1 m=1

gen(n, D) (23)

K
1
=Ext), — 2 Ba(inle.s.Xx, , a(e.0.61Xe) 1 XT0.0 = go(ex)*1_j,,
k=

K n
1
—Ex,T Z - Z Eq(mless X, ) ate:,01X7,) 1 X To.0m — go(ex)|*Lr=,,
m=

k=1 m=1
K 1 n

~Exr) - > Eqnles Xr, , ates Xz IXT1 . — go(er)IPLi=s
k=1 m=1

First, we upper bound the first two terms by applying the Donsker-Varadhan inequality. Consider the
joint distribution and the prior distribution, defined as follows:

Q = P(T)q<ea 97 ¢|XT1 )Q(j7 J|e7 (ba XT)7
P = P(T)q(e, 6, | Xr,) P(IrEr/)q(j,J\% ¢, X1).

Then we then obtain

n

1
Ex T Z Z Eqg(e.6.01xx,) 1 X0, —g0(er)|I” (Eq(‘7m|e,¢,Xlem)]lk:jm ~Eo(snled,.Xzy.,) ]lszm)
k=1 m=1

K n
A
< EX/\KL(Q|P)+IEX/\ log Ep exp (n S S IXr,,, — golen)|l? (]1k_JnL—ILk_Jm)> .

k=1m=1
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Note that E ¢(J,J|e, ¢, X1) is symmetric with respect to the permutation of T. Thus, we have
P(T)

b
08 Ep(ryg(e.01x2,) £, a3 300, X7) 5P <n > Xy g0(en)) (i, — ]lk—Jm)>

k=1m=1

= logEp(1)q(e,0,61X1,) P&, AT Tle:d Xz ) P(T")

K n
exp (2 > UXr,... g0(er)) (ﬂk:JTg,m - lk—JTacm)>

k=1m=1

= log EP(T)q(e,9,¢|XT1) (E/) a(3,3le,0,Xp)

Ep(rr) exp ( > z (X, 90(€x)) (Jlk:JTgm - lk_JT/llm>> :

k=1m=1

To simplify the notation, we define T = {T(,T{} = {T(,,..., Ty, T{,,...,T{,}. Note
that T’ ! L form=1,...,nandj = 0,1 are not independent of each other due to the permutatlon

that generates them. Therefore we cannot directly apply standard concentration inequalities, as is
possible in the existing supersample setting.

To address this, we use the results from Joag-Dev & Proschan|(1983)), which concern the negative
association of permutation variables. From Theorem 2.11 in Joag-Dev & Proschan| (1983)), the
distribution P(T) satisfies negative association. Additionally, as discussed in Section 3.3 of|Joag-Dev
& Proschan| (1983)) and further in Proposition 4 and 5 of Dubhashi & Ranjan|(1996), we have that

10g Ep(1)q(e.0,6/Xr,) (ra,)q@ne,aXT/)

E P(T") exp ( Z Z l XTO m 90 €k)) (]lk:JT&m - 1k_JT/1’,m>>

k=1m=1

< 108Ep(myg(e0.61X7,) B, a3.3le.0X1)

EHL 1m0 P(TY exp( Z Z l XTO mr 90 ek)) (ﬂk:JTgrm _]lk_JT’l’)m)> ’

k=1m=1

where P(T7 ) is the marginal distribution, implying that T’/ , are now 2n independent random
variables. Intumvely, the results in Joag-Dev & Proschan (1983) indicate that the elements of the
permutation index, which follow the permutation distribution, are negatively correlated. As a result,
the expectation of the marginal distribution is larger than that of the joint distribution.

Since {T’,, } are independent, we can apply McDiarmid’s inequality, which leads to the results in

L8 Ep(m)gte s ol xm)) B, a3 Tle0 X

exp ( Z Z (Xmo.,.090(en)) (L, — ﬂk—Jm)>

k=1m

SlOng(T)q(e,e,¢|XT1) E q(3Jle¢,X1r)
P(T’)

K n
A
Er_, My—0, P(TY,,) €XP (n > D UXwy,. g0(ex)) (M:JT;;,M - lk—JTg,m)>

k=1m=1
)\2A2
< . (24)
n
which is estimated similarly to Eq. . Note that there are 2n variables so the calculation of the

upper bound is (2A\/n)%/8 x 2n = A\?A?/n.
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Next we focus on the third and fourth terms in Eq. (23). Similarly to Eq. (T6)), we have

n
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Ext ) - > Ey(rmled.Xr, ) ate.d.0 X)) | X0, — go(en) 1P L=,
k=1 m=1

K 1 n
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m=1 k=1

We first evaluate the expectation of the exponential moment;

n K
2
Q:=Eprygie0.01xr,) > (X, — Xr,..) 'EP(%,)q(j,ﬂe,qS,XT/) > go(er) k=, -(26)
m=1 k=1

Let us now focus on the expectation T ¢(J,J|e, ¢, X1/). Due to the permutation symmetry,
P(T")

K .
E 5 4@3ledxp) 21 90(€r)ly=y, is the same for all m.
P(T’)

For instance, when n = 2, the possible permutations of T are T =
(1,2,3,4),(1,2,4,3),(1,3,2,4), ..., resulting in 24 distinct patterns and thus

P =E 4
T

P(T/
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P(T

Thus, all P,, does not depend on the index m. So we express
E g ¢@dles.Xp) S go(er)1x—y, as Py. Then Eq. (26) can be written as
P(T’)

n n K
1 1
EXEP(T)q(e.0.61X,) (n PR D XTo,m> > g0(ex) Py
m=1 m=1 k=1

n n K
1 1
SEXEp(ryg(essixe,) || D XTuw = = D X0, || Ep(ryg(es.oixe,) || D 9o(er) P
m=1 m=1 k=1
1 & 1 &
<ExEp(r) o Z X1, — o Z X, || VA
m=1 m=1

1 & 1 & JA

SEXE[L o P, || D X7 — = D Xmo || VA,
m=1 m=1
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where we used the negative association property of the permutation distribution. We bound the above
exactly same ways as Eq. (T8), that is, we can upper bound the above by the variance of bounded

random variable and thus, we have
AN
< 24/ —.
- 4n
Thus, we have

2 & 2 & K 2A
= ExEp(r)q(e0,6/xr,) <n > Xty - - > XTo,m> Y goler) Py < Nk
m=1 m=1 k=1

Ex BT, T POTY,

3
1 m
: Tl ,m - z XTO,WL
n
m=1

Let us back to the evaluation of the exponential moment in Eq. 23], we will evaluate the following

n K
1 1 2\
ExKL(QIP) + Ex 1 logEp exp (n mzzjl (X1, ., — X1y,.) ;gg(ek)nk:JW - AQ) + Q.

We then evaluate this similarly to Eq. (24), which uses the negative association of the permuta-
tion distribution and McDiarmid’s inequality. The the exponential moment is upper bounded by
(2AN/n)?/8 x 2n = A2A? /n We then obtain

K n
1
Ext) n Y Eqnles Xr, . ateo 01Xz 1XT1 . — go(er) P Li=,,
k=1 m=1

K n
—Exr Z D Eqnled Xy, )aed01xw) | XTo . — o) iz,

m:l
1 A o &
<Ex;KL(QIP) + IEX)\ log Ep exp <n Zl X, — X, I;gg(ek)lkjm—)\ﬂ> +0
1 AAZ2A
<Ex-KL(Q|P — 4+ —= 27
x 7 KLQIP) + —— + T 27)
In conclusion, from Eqgs. (24) and we have
2 20A2  2A
gen(n,D) < Ex XKL(Q|P) + + 7
and optimizing the A, we have
KL(Q[P) 2A \/I(j,.]; Tle,, X) 2A
D) < 4AE —— 4+ — =4A —.
gen(n, D) < X + Jn + NG

F PROOF OF THEOREM [4]

Here, we present the results for a general stochastic encoder. For fixed ¢ and e, assume that for
all x € X, for any j € [K], and for a fixed § € R*, the following holds: ¢(J = jle, f4(z)) <
e"Og(J = jle, f(z))) with b : RT — RT.

Theorem 7. Assume that there exists a positive constant A such that sup, ez ||z — 2'|| < A..
Then, when using Eq. @) and under the same setting as Theorem forany b € (0,1], we have

log N (8, F, 2n) N 2A

To prove this lemma, we first replace the output of the encoder with that obtained using the d-cover
of the encoder network. Since we assumed that ¢(J = jle, ¢, z) = ¢(J = jle, f4(x)), we need to

gen(n, D) < Av/nh(d) +4A
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approximate the error caused by ¢(.J = jle, f(z)) approximating ¢(.J = jle, ¢, z). To evaluate this
gap, we apply the Donsker-Valadhan lemma between the two distributions

Q = q(Jle, fo(X)) [] a(Jmle, fo(Sm)),
m=1

q(Jle, f(X)) [T a(Imle, f(Sm)). (28)
m=1

Then we have

gen(n, D)

1 n
= E Eqeo09) < a(le.fo () UX, go(e)) = — > Eglensa(sm ))l(5m799(€Jm))>
’ m=1

1 n
< E Egesis) (Eqme,f(X))l(X goles)) = Z Eorne.fes Z(Sm’ge(e%))>
’ =1

1
E, oy 05 ~KL(Q|P
+ SEX a(e.0,6015) (Q[IP)

1 P
+ E Eq(e,q&,@\S)X log Ep exp (/\Z(X7 gelers)) — -~ Z l(Sm,ge(eJm))>

m=1
n

< E Eqe.0/9) (Equw,f(xnl(Xv goles)) = — Equ,ue,f(s?n))l(sm’99(6‘%)))

(n+1)h(5) = AAZ
+ A + 2’
where we used the following relation

m=1

KL(Q|P) < (n+1)loge"® = (n+1)h(9),

which is proved by the assumption of the stability. We also used the fact that —A\A < M(X, go(ey)) —
AN U(Sm»g6(es,,)) < AA to uuper bound the exponential moment.

By optimizing A\, we have

gen(n, D)
1 n
= & Eqte0.019) (EﬂJle,f"(X))l(X’ 96(€)) = n ) Eq(Jmef(Sm))l(Sm’g(’(eJm»)
s m=1
W R0
5 :

This implies that the first term corresponds to the generalization bound when using the d-cover of the
encoder network. We can bound this term similarly to Theorem 3]

When applying the result of Theorem 3] we utilize the Donsker-Valadhan inequality for Eq. (22)).
Instead of using Eq. (Z8)), we consider the following distributions:

Q = q(J,Ile, fo(Xr)) HqJ le, f(Xr,,) HqJ le, f(X,..,..))
m=1 m=1

n

P :=qJ,Jle f(X1)) = [] a(Jmle, f(Xz,) [] a(Imle, f(Xz,,..))-
m=1

m=1

From assumption, we have

KL(Q|P) < 2nloge™® = 2nh(s),
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Then from Eq. (22)), we have

gen(n, D)
K 1 n )
<Exr Z n Z ]Eq(fm\e,f(xm,m))q(e,¢>,e|xT1>”XTM = go(er) "Ly,
k=1 m=1
K1 ) 2nh(6)
“Exw ) =D Eoe foxe, , nates o X = 90(er) P Timu, + A/ =5
k=1 m=1

n vn 2 7

<4A\/I(37J;T|e,f(X)) L 28 AL [2000)

where
X, T q(e,0|XT,) P(T7)
Note that we consider the CMI for the discrete variable, it is upper bounded by the entropy (Cover &
Thomas|, 2012)), and we have
1(3,3;Tle, f(X)) < H[T, I|e, f(X)] < log N (6, F, 2n).

The first inequality follows from the fact that MI is defined as the difference between the entropy
and the conditional entropy, and the entropy of discrete variables is always non-negative. The
second inequality arises because J, J are outputs of a function evaluated at 2n points. Thus, we
considered the covering number at 2n points, defined as (8, F,n) = sup,zn ¢ 20 N (6, F, z2").
Since the entropy is bounded above by the logarithm of the maximum cardinality, we obtain the
second inequality.

Thus, we have

log N'(6, F,2n) 2A

v Av/nh(3).

gen(n, D) < 4A
n

F.1 BEHAVIOR OF EQ. (2)
Finally, we show that Eq. (2) satisfies h(J) = 83A. ¢ because

q(J = jle, fs(x))
q(J = jle, f(x))
e Bl fs(@)—esll? y 22{:1 e Blf(z)—ex|?
e=Blf@=esl> " SK  o=Blfo(@)—exll?
K Tr)—€g 2
_ Bl e @) ey Pl @)=y P o Sz €17
S eBllf@—enl?

< PU@—1s@) (F@)+fo(@)=28e;-(F@) =16 (@) 5 qup A @) —exl*+B17s (@) —exl)®
ke[K]

< BB o ABALS

Thus we have h(5) = 88A .6 and by substituting this into above Theorem, we obtain Theorem

F.2 DISCUSSION ABOUT THE METRIC ENTROPY FOR REGULARIZED MODEL

Here we discuss the upper bound of metric entropy in our setting. Since the latent variable lies in
R9=, the encoder network operates as f, : R — R9, making it a multivariate function.

To evaluate the complexity of the metric entropy for such multivariate functions, the concept of
Natarajan dimension with margin has been employed (Guermeur, 2007). According to Lemma 39
(and also Lemma 37 and 38), if a multivariate function has a finite Natarajan dimension with margin,
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then its metric entropy scales as O(log n). To explore the properties of the Natarajan dimension with
margin, Guermeur| (2018)) demonstrated that it can be bounded by the fat-shattering dimension of each
component of the original multivariate function (Lemma 10) under the certain margin assumption.
Additionally, |Guermeur| (2017) showed in Lemma 1 that the covering number of the multivariate
function can be bounded by the covering number of each of its components under the certain margin
assumption. To further bound the covering number of each dimension, one can rely on the fat-
shattering dimension of each function, as discussed in Lemma 3.5 of |Alon et al.| (1997). Thus, it is
essential to bound the fat-shattering dimension in both cases. Examples of fat-shattering dimension
evaluations can be found, for instance, in Bartlett & Maass|(2003)), which discusses neural network
models, and |Gottlieb et al.|(2014])), which addresses the fat-shattering dimension of Lipschitz function
classes. If our encoder network adheres to these properties, we can bound its covering number
accordingly.

In conclusion, if the log of the covering number satisfies O(logn), by setting § = 1/n?, we obtain

that gen(n, D) = O(y/logn/n).

G PROOFS FOR THE STATEMENTS IN SECTION 3.3

G.1 PROOF OF EQ. (8)

Eq. (§) is derived by applying the Jensen inequality to the definition of the CMI in Eq. (@).
Similarly to Eq. (8), we have

I(J;Tle,,X)=E E_ KL(g{Jle,¢,X)| E ¢(J,I|e, ¢, Xy, X17))
X, T q(e,¢|XT;) P(T)

< E E  KL(g(Jle, ¢, X)[la(J, Ile, ¢, Xry, Xr;)),
X,T,T q(e,8| X1y )

which also implies the KL stability.

G.2 PROOF OF EQ. (9)

Since for all x,x" € X and for any j € [K], ¢(J = jle, ¢,x) < e°q(J = jle, ¢,x’), we have

I(j;U|e7¢a X) < B E E KL(q(jv']|ea¢7 XU7XU)|Q(jaJ‘e>¢7XU/7XU’))
X, U U’ q(e,¢| Xv)
<2nE E e
S q(e,4|S)

Similarly, the empirical KL term can be bounded by setting the marginal distribution as the prior
distribution,

Eqe,6,09KL(QP) 1
a(e.0.015) *Z q(eqﬁ\S)KL (Jm‘ey¢7Sm)||q(t]m|ea¢))

n n -
1 n
< =D Eyesis EXKL(a(Jmle, 6, Sm)a(mle, 6. X))
m=1
<nE E e
S q(e,0]9)

Substituting these upper bounds into Eq. (3), we obtain Eq. (9).

G.3 DISCUSSION ABOUT THE STABILITY OF EQ. (2))

The posterior distribution in Eq. (2) corresponds to the exponential mechanism in the privacy
context (McSherry & Talwar, 2007)) and McSherry & Talwar| (2007) proved that Eq. satisfies the
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€ = 23A4-DP. For the completeness, we provide the proof. From Eq. (), we have that

q(J = jle, o, x) e Bl fo(z)—e;ll? lec(:l e Bl ") —erl?

= X
o(J =jle.d,a) e PlHa@I=alP " K plify () —enl?

K eBlfole)—exl?

SK | eBllfole)—erl?

< PPoe x sup e Bllfo (@) —exrlI*+B] fo () —ex |
ke[K]

— e Blfs(@) =i P +B1fs(z")—es]1* o

S ezﬁA¢,e

Then combining Eq. (9), we obtain the generalization error bound.

H PROOF OF THEOREM

Define the distribution obtained by the training dataset as follows; conditioned on e, ¢, .S, we have
1 n
= > go#talemle, ¢, Sm)
m=1

From the triangle inequality, we have
WQ(Da :[l‘) < WZ(DMELS) + WQ(ﬂSvﬂ) (29)

The first term of Eq. (29) is bounded as follows;

A 1O
EsEq(e.0.019)Ws (D: fis) < EsBq(e 6015~ D ExEoteq o5 1T = goleqm)) I
m=1

1 n K
= ESEq(e,¢,9|S)E Z Z 2 = go(ex) I’Eg(s,. le.6,50m) Li=1,, - (30)
m=1 k=1
The first inequality is obtained by the definition of the Wasserstein distance.

The expression inside the square root corresponds to the first term of Eq. (13). We can verify this
by noting that Eq. (30) represents the squared error at the test data point x under the prediction e,
which is derived using the training dataset. Meanwhile, the first term of Eq. (I3)) represents this error
when the test data is replaced by the supersample U.

Therefore, Eq. (30) can be upper-bounded by applying Eq. (T9), which serves as the upper bound for
Eq. (T3).
EsEy(e,s.05) W5 (D, jis) 31)

1 o , 1 M2 A
< EsBqe.s.019) > Egleimle.t S 1Sm — goleam)II* + FKLQP) + =+ ok
m=1

where

=

Q = qle, 4,0]9) [[ a(Jmle. ¢, Sm) = qle, 6,6]5) H (e(m)le; &, Sm),

m=1

=

P = q(e, ¢,0/9) [ a(Jmle.d) = ale.6,019) [] alewmle, ).
m=1

Il
—

m
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Next, the second term of Eq. (29) is bounded as follows; We express [, _; q(e(m)le, ¢) = q(e) for
simplicity, then we have

EsEq(e,,015) W3 (fis, V) (32)

n

1
< ES]Eq(e,qﬁ,ms)ﬁ Z Eq) Eqe(mle.d.Sm) 190(€) — golemy)

m=1

1 n
= EsEq(e,0.0/5) (n > Eq@ll90(@)II* + Eqeqmyle.s,5)
m=1

I?

I

go(e(m))

—2Eq(e)90(€) - Eq(e(m>|e,¢,sm>ge(e(m))>

1 AA2?
< ZKL(Q|P) + —
< {KLQP) + -,

where we used the Donsker Valadhan lemma for the first and third terms, changing the expectation
from Q to P.

Combining Egs. (31)) and (32), we have
EsEq(e.0,015) W5 (D, 1)

1 2
<2 <E5Eq(e,¢,0|5)n D EglemylestsSm 1Sm — go(em))|I” + YKL@QP) + —— + —=

- AAZ A
7

m=1

Then by optimizing A, we have

EsEq(e,0,015) W5 (D, i)
2 — ) 2 2A
S EsBote001) 5y 2 Bateles s 1S = 90(em) I + 284/ TKLQIP) + 72

I EXPERIMENTAL SETTINGS

In this section, we summarize our experimental settings in Section[5] Our experiments were based
on the Gaussian stochastically quantized VAE (SQ-VAE) model proposed by Takida et al.|(2022]),
and were conducted by adapting the code from their GitHub ﬂo suit our experimental configurations.
Therefore, we first introduce the basics of (Gaussian) SQ-VAE in Sections E] and @] and finally
explain our experimental settings in Section

1.1 OVERVIEW OF SQ-VAE

The SQ-VAE is a generative model that, similar to VQ-VAE, employs a learnable codebook e =
{ex £, € ZK. The objective of SQ-VAE is to learn the stochastic decoder x ~ pg(x|Z,)
using latent variables Z, to generate samples belonging to the data distribution pgaa (), Where
po(z|Zy) = N(99(Z,),0°1), N'(m, o1) is the Gaussian distribution with mean and equal variance
parameter {m, 0°I}, 0? € R, and I is the identity matrix. Here, Z, is sampled from a prior
distribution P(Z,) over the discrete latent space e?:.

In the main training process of SQ-VAE, we assume P(Z,) to be an i.i.d. uniform distribution,
identical to VQ-VAE, meaning each codebook element is selected with equal probability (P(z,; =
by) = 1/K for k € [K]). Subsequently, a second training stage is conducted to learn P(Z,).
Since computing the posterior pg(Z,|z) exactly is intractable, we utilize an approximate posterior
distribution g4 (Z,|x) instead.

At the encoding process, directly mapping from x to the discrete Z, is challenging due to the discrete
nature of Z,. To overcome this issue, Takida et al.|(2022) proposed to construct a stochastic encoder
by introducing the following two processes:

'https://github.com/sony/sqvae/tree/main/vision
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* Stochastic Dequantization Process: The transformation function from Z, to the auxiliary
continuous variable, Z, denoted as p,,(Z|Z,), where 1 is its parameters.

* Stochastic Quantization Process: The transformation from Z to Z; is given by

Py(2,Z) «x py(Z|Z,)P(Z,) obtained via Bayes’ theorem, which is represented as the
categorical distribution ¢(.J|e, ¢, x) through the softmax function as in Eq. (2).

We can obtain Z, from a deterministic encoder f,(z), where we expect that Z, is close to Z,.

Therefore, we can similarly define the dequantization process of Z, as Z|Z, ~ py(Z|Z,). By
combining this process with the stochastic quantization process, we can establish the following

stochastic encoding process from x to Z,: By (z) [P4(Z,4|Z)], where w == {¢, v} and q,(Z|z) =

Py (Zfs(x))-

According to these facts, we can derive the following evidence lower bound (ELBO) for SQ-VAE:
—Lgq(z;0,w,e)

—F A 1o po(21Zy)ps(Z|Z,)
T e (Z]2), Py (24| 2) 4w (Z)z)

+Eqw(Z\w)H(P¢(Zq|Z)) + (Const.),

=KL(Q|P)
where H(Py(Z,|Z)) is the entropy of P, (Z,|Z).

From the above, the optimization problem of SQ-VAE is minimizing E, data(m)[ﬁsQ (z;0,w,e)]
w.r.t. {0, w, e}. This approach eliminates the need for heuristic techniques traditionally required, such
as stop-gradient, exponential moving average (EMA), and codebook reset (Williams et al.| 2020).

Moreover, the categorical posterior distribution Py(Z,|Z) = q(J|e, ¢, x) can be approximated using
the Gumbel-Softmax relaxation (Jang et al.,[2017; Maddison et al.| 2017), where the Gumbel-Softmax
function is defined as, for all k (1 < k£ < K),

exp(—B|lfo(x) — exl” + Gr)/7)
K k)
> =1 exp(=Blfo(x) — €;l* + G5)/7)
where Gy, is an i.i.d. sample from the Gumbel distribution and 7 is the temperature parameter that is

deferent from 3 in Eq. (2). This allows the application of the reparameterization trick from VAEs
during backpropagation, enabling efficient gradient computation and model training.

1.2 GAUSSIAN SQ-VAE

Gaussian SQ-VAE assumes that the dequantization process py, (Z|Z,) follows a Gaussian distribution.
In this paper, we set the following Gaussian distribution: py,(Z|Z,) = N'(Zy:, 0,,1), where o7, €
R . Then, the stochastic decoder and the stochastic dequantization process in SQ-VAE can be written
as po(]Z,) = N(g6(Zy),0°1) and py(Zi| Z4) = N (Zy,i, 0 1).

1.3 DETAILS OF EXPERIMENTAL SETTINGS

Dataset: We used the MNIST dataset (LeCun et al.l[1989), which is 28 x 28 gray scale images
with 10 classes. We prepared the subset dataset with {1000, 2000, 4000, 8000} samples from the
default training dataset (60000 samples). Then, we split it as the training and the validation datasets
following the supersample setting as in Section [2.2]

Model architecture and training procedure: We adopted the ConvResNets with the architecture
provided by Google DeepMind|| We summarize the details of this model in Table

Regarding the training procedure, we adopted the settings in [Takida et al.|(2022) as follows. We used
the Adam optimizer with 0.001 initial learning rate. The learning rate was halved every 3 epochs if
the validation loss is not improving. We trained the model 200 epochs with 32 mini-batch size. As
for the annealing schedule for the temperature parameter of the Gumbel-softmax sampling, we set
7 = exp(107° - t) as in Jang et al.| (2017), where ¢ is the global training step size.

2https://github.com/deepmind/sonnet/blob/vZ/examples/quae_example.
ipynb
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Table 1: Experimental settings on MNIST.

Experimental setup for MNIST experiments

Model

Gaussian stochastically quantized VAE (SQ-VAE) (Takida et al.|[2022)

Network archtecture

ConvResNets with three convolutional layers, two transpose convolutional layers, and one ResBlocks.

The size of a codebook (K) and the dimension of the latent space d.

K = {16,32,64,128); d, = 64

Optimizer Adam with 0.001 initial learning rate

Batch size 32

Num. of training/validation samples [250, 1000, 2000, 4000]

Num. of epochs 200

Num. of samples for CMI estimation 3

Num. of samplings for U 5
GPU environment: We used NVIDIA GPUs with 32GB memory (NVIDIA DGX-1 with Tesla
V100 and DGX-2) in our experiments.

Mutual information estimation:

To estimate the mutual information 1(J; Ule, ¢, X) in Eq. (3),

we developed a plug-in estimator for it, which is computed using estimators for the probablhty
density of J and X, as well as their joint probability density, employing k-nearest-neighbor-based
density estimation (Loftsgaarden & Quesenberryl [1965)). The estimation strategy is incorporated into
the sklearn.feature_selection.mutual_info_classif function El Weset k = 3
following the default setting of this function and Kraskov et al.|(2004); Ross|(2014).

3https ://scikit-learn.org/stable/modules/generated/sklearn. feature_
selection.mutual_info_classif.html
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