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Abstract

The goal of our model is to compress a set of images to specified bitrates while preserving high
perceptual quality, particularly at low bitrates. To this end, we employ a simple yet efficient mean-
scale-hyperprior model, which effectively captures spatial dependencies in the latent representation
through a hyperprior structure. We finetune the model using a perceptual quality-oriented loss
function to enhance visual fidelity. To accommodate a range of target bitrates, we train four
distinct models corresponding to different rate-distortion trade-off parameters, and dynamically
select the most appropriate model for each input image based on its complexity and target bitrate.

1 Introduction

Learned image compression has advanced rapidly in recent years, demonstrating competitive or even
superior performance compared to traditional codecs such as H.264 [WSBLO03], H.265 [SOHW12] and
H.266 [BWY*21].

In response to the image track of the 7th Challenge on Learned Image Compression (CLIC), we
adopt a simple yet highly effective architecture based on the variational image compression framework
with a scale hyperprior [BMST18]. The model consists of an analysis transform encoder g,, a synthesis
transform decoder g4, and a hyperprior-based entropy model that utilizes a second-level latent variable
z to model the spatially varying scale parameters of the main latent representation y. This structure
enables the model to capture spatial dependencies in y through side information, effectively improving
entropy coding efficiency.

To enhance perceptual quality—especially under low-bitrate conditions—we employ a composite
loss function that combines multiple objectives: mean squared error (MSE), multi-scale structural
similarity (MS-SSIM) [WSB03], learned perceptual image patch similarity (LPIPS) [ZIET18], and
bit-rate (BPP) regularization. The overall training objective is formulated as:

L£L=R+\-(a-MSE+ - MS-SSIM + v - LPIPS)) (1)

where A controls the rate-distortion trade-off, and «, 3, v balance the contributions of the perceptual
components and were set 1, 0.1 and 0.1 separately in our case.

2 Implementation Details

Our model is built upon CompressAI [BRFP20]. We trained the models using the training split of
the Vimeo-90k [XCW™19] dataset, with a batch-size of 8. Each input frame was randomly cropped
into patches of size 256x256. we finetuned the model for 50 epochs with the learning rate of le — 5
to optimize perceptual quality and compression efficiency. All the experiments were conducted on
a sinlgle NVIDIA RTX 3090. To address diverse bitrate requirements, we trained four independent
models, each configured with a distinct A value (specifically, A € {128,256, 1024,2048}). This multi-
model setup enables flexible adaptation to a wide range of compression targets. During inference, we
select the most suitable model for each input image by considering two key factors: the desired target
bitrate and the image’s content characteristics. This adaptive selection strategy ensures an optimal
balance between compression efficiency (bitrate) and perceptual quality for every image.
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