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Abstract
Deep spiking neural networks (SNNs) are promis-
ing neural networks for their model capacity from
deep neural network architecture and energy ef-
ficiency from SNNs’ operations. To train deep
SNNs, recently, spatio-temporal backpropagation
(STBP) with surrogate gradient was proposed. Al-
though deep SNNs have been successfully trained
with STBP, they cannot fully utilize spike informa-
tion. In this work, we proposed gradient scaling
with local spike information, which is the rela-
tion between pre- and post-synaptic spikes. Con-
sidering the causality between spikes, we could
enhance the training performance of deep SNNs.
According to our experiments, we could achieve
higher accuracy with lower spikes by adopting
the gradient scaling on image classification tasks,
such as CIFAR10 and CIFAR100.

1. Introduction
Deep learning with deep neural networks (DNNs) have been
rapidly advancing artificial intelligence (AI) technology in
various fields (LeCun et al., 2015; Tan & Le, 2019). How-
ever, as AI technology continues to progress, it demands
more energy and computing resources, raising concerns
about sustainable development and application. Spiking
neural networks (SNNs) have received considerable atten-
tion as a solution to this problem. SNNs, which have been
considered third-generation artificial neural networks, en-
able event-based computing, resulting in sparse operations
compared to DNNs (Maass, 1997). Furthermore, SNNs
hold great importance as the basis for neuromorphic com-
puting, which imitates the operations of the human brain for
its exceptional energy efficiency (Davies et al., 2018; Roy
et al., 2019).
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Deep SNNs have been actively studied to combine the fea-
tures of both DNNs and SNNs: the model capacity of the
former and the energy efficiency of the latter. Deep SNNs
have a similar synaptic topology to DNNs, with intercon-
nected spiking neurons. While deep SNNs can leverage the
advantages of both DNNs and SNNs, they face challenges
in training. As an indirect training method for deep SNNs,
DNN-to-SNN conversion has been proposed. Although this
approach has enabled the implementation of various deep
SNN models (Park et al., 2019; Kim et al., 2020; Park et al.,
2020; Li et al., 2021; Bu et al., 2022), it has introduced
issues, such as long inference latency (Han et al., 2020).

Recently, to improve the training performance, a gradient-
based training algorithm, which is a successful training ap-
proach for DNNs, has been applied to training deep SNNs,
such as spatio-temporal backpropagation (STBP) (Wu et al.,
2018). This method with surrogate gradient, which can han-
dle the non-differentiability of spiking neurons, has proven
to be effective in training deep SNNs. Based on the suc-
cessful training, gradient-based training approaches have
inspired further research about improving the training per-
formance of deep SNNs (Zheng et al., 2021; Deng et al.,
2022; Yang et al., 2022). Furthermore, it has enabled the
expansion of deep SNNs in various applications and algo-
rithms, including Transformer models (Zhou et al., 2023)
and neural architecture search algorithms (Na et al., 2022).

Gradient-based training algorithms have allowed deep SNNs
to utilize their model capacity sufficiently. However, these
algorithms cannot exploit the dynamic characteristics of
SNNs as they are derived from DNNs. Unlike DNNs, SNNs
have spatio-temporal features, and spiking neurons trans-
mit information in the form of spikes. Thus, to maximize
the training performance of deep SNNs, we proposed a
training algorithm, called gradient scale, that can consider
the spike dynamics in SNNs. We were inspired by spike-
timing-dependent plasticity (STDP), which is a biologically
plausible training algorithm of SNNs with local spike causal-
ity (Diehl & Cook, 2015). While utilizing the training perfor-
mance of gradient-based algorithms, we adjusted gradients
depending on the local spike relationships, which can be
defined by the causality between spikes of pre- and post-
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synaptic neurons. The proposed algorithm was evaluated on
ResNet architectures (He et al., 2016) with image classifica-
tion tasks, such as CIFAR10 and CIFAR100 (Krizhevsky,
2009).

2. Related Works
2.1. Spiking Neural Networks

SNNs consist of spiking neurons and synapses that connect
them. Mimicking the behavior of the brain, spiking neurons
exchange information with binary spikes through synapses.
Because of the spike-based operation, SNNs have been
expected to enable event-driven computing, which is a next-
generation and energy-efficient computing paradigm. Thus,
SNNs are promising neural networks for energy-efficient
artificial intelligence as a fundamental component of neuro-
morphic computing that mimics the operations of the human
brain.

Although there are various types of spiking neurons, such
as izhikevich, leaky integrate-and-fire (LIF), and integrate-
and-fire (IF) neuron models (Izhikevich, 2004), neurons
commonly operate in an integrate-and-fire manner. Spiking
neurons integrate incoming information into the internal
state, called membrane potential, and fire spikes whenever
the potential exceeds a threshold voltage. Due to the low
complexity of computation, most deep SNNs adopt rela-
tively simple spiking neuron models, such as IF and LIF.
Thus, in this work, we used an LIF neuron model, which is
described as

ul
j(t) = τul

j(t-1) + zlj(t), (1)

where τ is a leak constant, ul
j(t) and zlj(t) are the mem-

brane potential and incoming information of the jth spiking
neuron in lth layer at time step t, respectively. The incoming
information, called post-synaptic potential (PSP), is caused
by pre-synaptic spikes (input spikes) as

zlj(t) =
∑
i

wl
ijs

l-1
i (t) + blj , (2)

where w and b are the synaptic weight and bias, respectively.
When the accumulated information on the membrane poten-
tial exceeds a certain threshold, spikes are generated, and
the information is transmitted to adjacent neurons through
synapses. Spike generation can be expressed as

slj(t) = H(ul
j(t)− vlth,j(t)), (3)

where H is the Heaviside step function, and vth is a threshold
voltage. When a spike is generated, the membrane potential
is reset. There are mainly two reset methods: soft and hard
reset can be stated as

ul
j(t) =

{
ul
j(t)− slj(t)v

l
th,j(t) (soft)

(slj(t)− 1)ul
j(t) + slj(t)v

l
r,j(t) (hard),

(4)
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Figure 1. Spike trace and proposed gradient scaling (GS).

where vr is a rest potential.

2.2. Training Methods of deep SNNs

Training algorithms of deep SNNs can be categorized into
two approaches: indirect and direct training. Indirect train-
ing, which is represented by DNN-to-SNN conversion, trans-
forms a pre-trained DNN model into deep SNN with the
same topology, and the converted SNN only performs in-
ference. This approach has been successfully applied to
various neural network architectures (Sengupta et al., 2019;
Han et al., 2020), applications (Kim et al., 2020), and neural
codings (Park et al., 2019; Zhang et al., 2019; Park et al.,
2020). However, it had drawbacks, such as long inference
latency, due to disregarding features of SNNs during the
training of DNNs. Certain studies have attempted to ad-
dress these limitations with calibration (Li et al., 2021) and
SNN-aware DNN training (Bu et al., 2022), but there still
remain limitations that it is challenging to directly consider
the dynamics of deep SNNs.

Direct training is a promising approach for high-
performance and efficient deep SNNs. It can be mainly
divided into unsupervised and supervised learning; which
are represented by STDP and stochastic gradient descent
(SGD), respectively. STDP is a biologically plausible train-
ing algorithm that considers the causal relationship between
the spikes of pre- and post-synaptic neurons (Diehl & Cook,
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Table 1. Accuracy and spikes on various configurations with CIFAR10
(training results of four times repetitions)

Methods Reset Accuracy (%) # of Spikes (K)
Mean Max Mean Max

ResNet20

Baseline soft 94.91 94.97 497 520
Gradient scale soft 95.05 95.11 492 506

Baseline hard 93.68 93.86 463 470
Gradient scale hard 93.58 93.69 451 475

ResNet32

Baseline soft 95.00 95.16 814 879
Gradient scale soft 95.12 95.22 783 822

Baseline hard 90.52 90.71 555 572
Gradient scale hard 90.57 90.91 563 571

2015). While it takes into account the characteristics of
SNNs, its low training performance compared to other algo-
rithms has limited its application in deep SNN training.

The gradient-based training algorithm of deep SNNs lever-
ages successful training algorithms from DNNs, such as
SGD and error backpropagation. One of the significant
obstacles to training deep SNNs with a gradient-based al-
gorithm was the non-differentiability of spiking neurons as
depicted in Eq. 3. To overcome this, STBP with a surrogate
gradient, which approximates the gradient, was proposed
and could train deep SNNs successfully (Wu et al., 2018).
Since then, subsequent studies on improving the training
performance of deep SNNs have been published, such as
threshold-dependent batch normalization (tdBN) (Zheng
et al., 2021), temporal effective batch normalization (Duan
et al., 2022), and temporal efficient training with time-
variant target distribution (Deng et al., 2022). However,
these training algorithms did not utilize local information
that can improve the training performance. Recently, a study
using local information for training was published, but it did
not utilize relationships between spikes (Yang et al., 2022).

3. Methods
With the introduction of scalable training algorithms, such
as STBP, deep SNNs have become trainable with gradi-
ents. However, these existing gradient-based algorithms for
deep SNNs have a limitation in that they do not effectively
consider the causal relationship between spikes of pre- and
post-synaptic neurons. Thus, in this work, we propose a
method to exploit the local spike information in training
deep SNNs with the gradient-based algorithm.

Before explaining the proposed method, we should define
the relational expression of spikes. There are various rep-
resentations for spike relation, but, in this work, we adopt

Table 2. Accuracy and spikes on various configurations with CI-
FAR100 (training results of four times repetitions)

Methods Reset Test Accuracy # of Spikes (K)
Mean Max Mean Max

ResNet20

Baseline soft 74.83 75.18 641 649
Gradient scale soft 75.20 75.88 634 642

Baseline hard 72.26 72.37 562 573
Gradient scale hard 72.29 72.42 542 555

ResNet32

Baseline soft 75.57 75.79 959 984
Gradient scale soft 75.45 75.73 954 979

Baseline hard 61.96 62.12 769 782
Gradient scale hard 62.03 62.19 759 788

trace-based representation for its low computational com-
plexity, which is suitable for deep SNNs (Morrison et al.,
2008). An example of the representation is shown in Fig. 1.
Spre and Spost indicate pre- and post-synaptic spike trains,
respectively. The history of spike generation in each neuron
is recorded in the spike trace x as follows:

xl
i(t) = e-1xl

i(t-1) + sli(t). (5)

The spike trace increases by a spike when the neuron fires
and exponentially decreases at each time step of the forward
(blue dotted line in Fig. 1) Each layer has pre- and post-
synaptic traces (X l

pre, X
l
post) according to its connection.

With these two spike traces, we defined the relationship of
spikes R as

Rl(t) = f l(X l
pre(t), X

l
post(t)), (6)

where f l is a relationship function of lth layer. During
training, it is calculated in the backward path (orange dotted
line in Fig. 1). We used convolution and outer product
operations for the relationship function f of convolution
and fully connected layers, respectively.

We proposed a gradient scale that adjusts the gradient of
synaptic weight according to the local relationship of the
spike. Inspired by STDP, the proposed algorithm encourages
training with the gradient when there is a causal relationship
between pre- and post-synaptic spikes. Otherwise, if there
is less relationship, the algorithm hinders the training. We
implemented this encouragement and hindrance by scaling
the gradients of synaptic weights obtained from STBP as
follows:

∆W l = −ηg(
δL

δW l
, Rl) = −η(α

δL

δW l
◦Rl+(1−α)

δL

δW l
),

(7)
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Table 3. Comparisons with previous methods on CIFAR10 (KD: Knowledge Distillation)

Methods Training Architecture Neuron Reset T ANN SNN
Acc. (%) Acc. (%)

Calibration (Li et al., 2021) conversion ResNet20 IF soft 32 95.46 94.78
SNN-aware training (Bu et al., 2022) conversion ResNet18 IF soft 4 96.04 90.43
tdBN (Zheng et al., 2021) direct ResNet19 LIF hard 4 - 92.92
TET (Deng et al., 2022) direct ResNet19 LIF hard 4 - 94.44
Local tandem (Yang et al., 2022) KD ResNet20 LIF soft 16 95.36 94.76
Gradient scale (Ours) direct ResNet20 LIF soft 4 - 95.11
Gradient scale (Ours) direct ResNet20 LIF hard 4 - 93.69

where L is a loss, η is a learning rate, g is a gradient scaling
function, α is a interpolation coefficient, and ◦ is element-
wise multiplication (Hadamard product). The gradient scal-
ing function g receives the gradients and spike relationship
as inputs. As described in Eq. 7, we adopted a simple linear
interpolation function for the scaling. In this work, we set
the coefficient α to 0.1 empirically.

4. Experiments
4.1. Experimental Setup

To evaluate the effectiveness of the proposed gradient scal-
ing, we set STBP (Wu et al., 2018) and tdBN (Zheng et al.,
2021) as a baseline training algorithm. For each configu-
ration, we trained deep SNN models for 300 epochs using
SGD. We adopted a learning rate schedule in which the
learning rate decreased to 0.1 times every 100 epochs. We
used LIF neurons with the leak constant τ of 0.9, and the
time step was fixed to four. We constructed deep SNN
models based on ResNet20 and ResNet32 architectures
and trained them on image classification datasets, such as
CIFAR10 and CIFAR100. For data augmentation, Cut-
mix (Yun et al., 2019) was used, and for input encoding, real
value encoding was applied as in other studies (Wu et al.,
2018; Zheng et al., 2021).

4.2. Experimental Results

The experimental results on CIFAR10 and CIFAR100 are
presented in Tables 1 and 2, respectively. We compared
the training results of the baseline and proposed methods in
various configurations of the model architecture and reset
method of spiking neurons. For fair and precise evalua-
tions, we recorded the mean and maximum results for test
accuracy and spike count after training four times on each
configuration. For the accuracy on CIFAR10 dataset, the
mean and maximum accuracy were improved when the pro-
posed gradient scale was applied in all cases except for the
case of ResNet20 with the hard reset, as shown in Table 1.
Furthermore, the proposed approach can reduce the number

of spikes in most cases. There are similar trends in training
results on CIFAR100, as depicted in Table 2. The accu-
racy and spike counts are improved in most cases except
ResNet32 with the soft reset and the hard reset, respectively,
with the proposed methods.

Table 3 presents the comparisons of the proposed method
with other deep SNN training methods. For a fair compari-
son, we compared the results of a model structure similar to
ResNet20 on the CIFAR10 dataset. Overall, the proposed
approach shows higher training performance than the recent
previous methods. In the case of soft reset, when the pro-
posed method is applied, we achieve higher accuracy with
shorter time steps than the conversion methods (Li et al.,
2021; Bu et al., 2022) and local tandem learning (Yang et al.,
2022). In the case of hard reset, it shows higher accuracy
than tdBN (Zheng et al., 2021), but lower training perfor-
mance than TET (Deng et al., 2022). It was difficult to
compare other metrics, such as spike counts, in this study
as they were not commonly reported in previous works.

5. Discussion
The proposed training algorithm can be further improved
with optimization of relation function f , scaling function g,
and hyperparameters, such as α in Eq. 7. In this paper, a
simple spike relation function, which only considers the pos-
itive relation between the spike traces, and scaling function
was used to show the feasibility of enhancement training
performance with local spike information. In order to the
improvement, we can consider more complicated relation
functions of pre- and post-synaptic spike traces, which con-
sider a negative relation of the spike traces as the STDP
learning rule. Furthermore, we can use other scaling func-
tions based on theoretical analysis of deep SNNs, instead of
linear interpolation as in this work.

6. Conclusion
In this paper, we proposed a training method for deep
SNNs with spike-dependent local information. The pro-
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posed method, which is compatible with gradient-based
training algorithms, such as STBP, scales the gradient of
synaptic weight according to the relationship between spike
traces of adjacent neurons. We verified the effectiveness
of the proposed approach with ResNet architecture on CI-
FAR datasets. In the future, we will improve the proposed
algorithm through exploration and optimization of the spike
relation function and gradient scaling function. In addition,
we will evaluate the algorithm with other model architec-
tures and datasets. We believe that by taking into account
the characteristics of SNNs and utilizing local information,
the training performance of deep SNNs can be improved.
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