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ABSTRACT

We propose DRAGO, a novel approach for continual model-based reinforcement
learning aimed at improving the incremental development of world models across
a sequence of tasks that differ in their reward functions but not the state space
or dynamics. DRAGO comprises two key components: Synthetic Experience
Rehearsal, which leverages generative models to create synthetic experiences from
past tasks, allowing the agent to reinforce previously learned dynamics without
storing data, and Regaining Memories Through Exploration, which introduces an
intrinsic reward mechanism to guide the agent toward revisiting relevant states
from prior tasks. Together, these components enable the agent to maintain a com-
prehensive and continually developing world model, facilitating more effective
learning and adaptation across diverse environments. Empirical evaluations demon-
strate that DRAGO is able to preserve knowledge across tasks, achieving superior
performance in various continual learning scenarios.

1 INTRODUCTION

Model-based Reinforcement Learning (MBRL) aims to enhance decision-making by developing a
world model that captures the underlying dynamics of the environment. A robust world model allows
an agent to predict future states, plan actions, and adapt to new situations with minimal real-world
trial and error. For MBRL to be effective in dynamic, real-world applications, the world model
must incrementally learn and adapt, continually integrating new information as the agent encounters
diverse environments and tasks.

Imagine an agent initially exploring a small, confined part of a complex world, like a robot navigating
a single room in a large building. At first, the robot learns the dynamics specific to that room, such
as the layout of obstacles and how to maneuver around them. As it moves to different rooms and
floors, it must learn new dynamics (i.e., new layouts, different lighting conditions, varying types
of obstacles), while retaining its understanding of the previously explored areas. Over time, as the
robot encounters more and more distinct environments, it becomes familiar with a broader range of
settings, eventually developing a comprehensive understanding of the building’s overall structure.
This incremental learning process aligns with the principles of continual learning, where the agent
must progressively acquire new knowledge across a sequence of tasks without forgetting earlier
experiences (Lange et al.,|2022). Developing world models that can grow their understanding from
one small part of the world toward encompassing an ever broader array of different environments
remains a critical and underexplored area in MBRL.

In principle, continual MBRL would allow agents to learn a generalizable model that captures the
dynamics needed to support a universal set of tasks. If data from all previous tasks are available,
this problem could be tackled effectively using multitask learning strategies (Fu et al.,[2022)). The
agent could leverage the shared structure and learn a comprehensive model that generalizes across
tasks. However, in real-world scenarios, agents often do not have access to the data collected from
earlier tasks due to storage constraints, privacy concerns, or the evolving nature of the environment.
In such cases, standard MBRL methods struggle to maintain performance across tasks; as illustrated
in Figure|l|and shown in the experiment section, naive model-based RL approaches tend to suffer
from catastrophic forgetting, where knowledge acquired from earlier tasks is lost when encoding new
experiences. Ideally, as the agent encounters more tasks and diverse environments, its world model
should become increasingly complete, accumulating a richer understanding of the dynamics across
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different scenarios. To achieve this goal, we require a strategy that retains the essential knowledge
from prior environments, ensuring that the model builds upon its past experiences even when direct
access to earlier data is no longer available.
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Figure 1: Comparison between the world model learned by naive continual MBRL and MBRL without
forgetting. Each task requires the agent to move from the corner of one room to a specific point in the
same room. Shaded areas represent the world model’s coverage after finishing each task. Naively
continually training MBRL (Left) tends to suffer the catastrophic forgetting problem—the agent
forgets almost everything about the first room after training in the second room (our experimental
results support this claim). Our project identifies a continual MBRL method (Right) that helps the
world model preserve the knowledge of previous tasks even when the old data is no longer available.

Specifically, we propose DRAGO, a novel continual model-based reinforcement learning approach
designed to address catastrophic forgetting and incomplete world models in the absence of prior
task data. DRAGO consists of two key components: Synthetic Experience Rehearsal and Regaining
Memories Through Exploration. Synthetic Experience Rehearsal uses a continually learned generative
model to enable the agent to simulate and learn from synthetic experiences that resemble those from
prior tasks. This process allows the agent to synthesize representative transitions that resemble prior
experience, reinforcing its understanding of previously learned dynamics without requiring access to
past data. In the Regaining Memories Through Exploration component, we introduce an intrinsic
reward mechanism that encourages the agent to actively explore states where the previous transition
model performs well. This exploration bridges the gap between tasks by discovering connections
within the environment, leading to a more comprehensive and cohesive world model. By integrating
these two strategies, DRAGO enables the agent to incrementally build a complete understanding
of the environment’s dynamics across a sequence of tasks while effectively mitigating catastrophic
forgetting. Our empirical results clearly demonstrate that DRAGO achieves superior performance on
challenging continual learning scenarios without retaining any data from prior tasks.

2 BACKGROUND

In reinforcement learning, an agent interacts with an environment modeled as a Markov Decision
Process (MDP). An MDP is defined by a tuple (S, .4, T, r,~), where S is the state space, A is the
action space, T'(s’ | s,a) represents the transition dynamics, (s, a) is the reward function, and
v € [0,1) denotes the discount factor.

In continual model-based reinforcement learning, the agent is presented with a sequence of tasks
Ti, T2, ..., Tn. We assume the agent knows when the task switches. Each task 7; is associated with
its own MDP, M; = (S, A, T,r;, pi,7), Where r;(s, a) is the task-specific reward function, and
pi(s) denotes the initial state distribution for task 7;. Importantly, all tasks share the same transition
function T'(s" | s, a), which defines the probability of reaching state s’ € S from state s € S after
taking action a € A. In this paper, we consider the case where, in each task, the agent tends to be
exposed to distinct aspects of the transition dynamics and different termination states.

The objective in continual MBRL is to efficiently solve the sequence of tasks, while learning a
world model Ty (s | s, a), parameterized by 1), that captures the shared dynamics across all tasks,
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allowing the agent to adapt to the task-specific objectives defined by r; and p;. A challenge arises
because, during training on a new task 7;, the agent in our setting only has access to the replay buffer
B; = {(s,a,s’)}. We argue that not being able to use data 5., from previous tasks is common in
real world problems, especially due to storage constraints and privacy issues when the number of
tasks significantly increases.

3 DYNAMICS-LEARNING WHILE REGAING MEMORIES

The central question in this paper is: how do we aggregate the knowledge from previous tasks and
learn a increasingly complete world model without forgetting, while trying to solve a sequence of
tasks using MBRL? As shown in previous works (Fu et al.| |2022), the agent can easily learn a general
world model in a multitask/meta-learning way as long as the access to previous tasks’ memories is
given. Thus, a straightforward way is to figure out an approach that is able to regain the old memories
that had to be discarded. We propose DRAGO, a continual MBRL approach is composed of two
main components: dreaming and rehearsing old memories while training on new tasks (§3.1), and
regaining memories via actively exploration (§3.2). Then we introduce the overall algorithm and
more detailed implementation of DRAGO in §3.3]

3.1 SYNTHETIC EXPERIENCE REHEARSAL

To help the agent retain knowledge from previous tasks without direct access to past data, we introduce
a method called Synthetic Experience Rehearsal. This approach enables the agent to internally
generate and learn from synthetic experiences that resemble those from prior tasks, effectively
reinforcing its understanding of the environment’s dynamics and mitigating catastrophic forgetting.

The concept of Synthetic Experience Rehearsal draws inspiration from how humans and animals
replay and consolidate memories during sleep (Wilson & McNaughton, |1994). Just as dreaming
allows for the consolidation of memories and learning in biological systems, our method helps the
agent retain and reinforce knowledge of previous dynamics by generating and learning from synthetic
experiences. Imagine a robot that has navigated through several rooms in a building. As it progresses
to new rooms, it may begin to forget the layouts and navigation strategies of earlier ones due to limited
memory capacity and the inability to revisit those rooms. By internally generating and rehearsing
synthetic experiences that mimic its interactions in earlier rooms, the robot can maintain and reinforce
its knowledge of how to navigate them. This internal rehearsal helps it integrate past experiences
with new ones, ensuring a more comprehensive understanding of the entire environment.

Our method leverages a generative model (which is also continually learned) to produce synthetic
data that aids in training the dynamics model, thereby preventing forgetting of previously learned
dynamics. Note that for real-world tasks, retaining the model (neural nets) usually costs much less
than retaining all the training transitions, especially when the task number grows larger and larger.

Specifically, we employ a generative model G that encodes and decodes both states and actions,
capturing the joint distribution of state-action pairs encountered in previous tasks. Including actions is
crucial, especially in continuous action spaces where randomly sampled actions may not correspond
to meaningful behaviors. Throughout the continual learning process, we also keep one copy of the
“old” world model learned after finishing the last task (only one for all the previous task, not one
for each). Then after generating the state-action pair, we feed it into this frozen old world model and
generate a synthetic next state. The synthetic data used for training the transition model is generated
through the following steps:

‘§/ = Told(gad)v (‘§7d) NPG(37a§€)7 (1)

where pg (s, a; 6) is the distribution modeled by the generative model Gy with parameters 6. Tyq is
the frozen old transition model, capturing the dynamics up to a previous task.

We can express the likelihood of the entire dataset, including both real data D; for current task 7; and
synthetic data D, given the parameters ¢ and 6, as follows:
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where p(s’ | s, a; 1)) is the likelihood of observing s’ given s and a under the transition model T,
pa (8, a; 0) is the likelihood of generating synthetic state-action pairs from the generative model Gy.
This joint likelihood captures the dependencies of the synthetic data on both the generative model
parameters 6 and the frozen transition model Tgyg.

The posterior distribution over the transition model parameters ) and the generative model parameters
0 is given by Bayes’ theorem:

p(®,0 | Dy, D) o< p(Dy, D | ,0) () p(0), 3
where p(v) and p(6) are the prior distributions over the parameters.

Taking the negative logarithm of the posterior (and ignoring constants independent of ) and ), we
obtain the joint loss function:

Liowt (¥, 0) = —log p(Di, D | 4,60) — log p(vh) — log p(6)

== Y logp(s'|s,a) —> logpa(s,a;:0)— > logp(s |3, a;1)
(s,a,5")E€D; (3,a) (5,a) “)

Loss on current task data Synthetic data likelihood
— log p(¢) — log p(6).

The dynamics model is trained by minimizing the prediction loss over the combined dataset:
[:dyn(w) = E(S,G,S’)N'Di |:HSI - TZ(87 a; 1/1)"2] + AIE:(S,&)NPG(s,a;e) [||Told(§7 d) - Tl(’§7 d; lb)”?} ) ()

where \ is a weighting factor controlling the importance of the synthetic data loss. While this
enables the agent to learn from synthetic old experience, the generative model itself (minimizing
— > logpa(8,a;0)in Ean]) also requires accumulate the knowledge of different tasks as the training
goes on. Retaining such a generative model for every task will also introduces huge additional cost.

Continual learning for the generative model. To prevent forgetting within the generative model
itself, we adopt a continual training strategy. We generate synthetic state-action pairs using the
previous generative model G;_1:

(5,a) = Gi—1(2), 2 ~ p(=2),

and combine these with real data from the current task to form the training dataset for the new
generative model: Dye, = D; U D, where D = {(5,a)}. The new generative model G; — we use
Variational AutoEncoder (VAE) (Kingma & Welling| [2014) — is then trained by minimizing the loss
over Dgep:

ﬁgen(ei) = E(s,a)nge“ _EZngi(Z‘S,a) [logpei (87 a | Z)] + KL (qei (Z ‘ 870‘) ||p(Z)) : (6)

This continual learning procedure ensures that the generative model retains its ability to produce
state-action pairs representative of all previous tasks.

Our method is general and can be applied with other types of generative models. Additionally,
integrating more sophisticated generative models, such as diffusion models, could further enhance the
quality of synthetic experiences and improve knowledge retention in high-dimensional environments.
We leave this for future work.

3.2 REGAINING MEMORIES THROUGH EXPLORATION

While generating synthetic data via a generative model helps mitigate forgetting, it may not fully
capture the richness of real experiences and it is subject to model error. In the meantime, to eventually
build a complete world model, we would like to find a way that can ‘“‘connect” knowledge gained
from different tasks if they are disjoint. Thus, to further enhance the agent’s retention of prior
knowledge and make the world model more complete, we propose an intrinsic reward mechanism
that encourages the agent to actively explore states where the previous transition model performs
well, effectively “regaining” forgotten memories through real interaction with the environment, and
fill in the gap between knowledge of different tasks.
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Figure 2: The two-step process of how DRAGO retain and aggregate the knowledge learned from
prior tasks for the world model. Step 1 involves Synthetic Experience Rehearsal, where synthetic
state-action pairs are generated from the previous tasks’ generative model G;_1 (z), and next states
§' are predicted using the previous transition model T;_;. Step 2 introduces Regaining Memories
through Exploration, where an intrinsic reward r’_,, encourages the agent to explore states where
the previous transition model T;_; performs well, while penalizing states that the current model
T; already predicts accurately. Together, these components allow the agent to retain and transfer
knowledge across tasks.

Our approach is inspired by the need to complement the generation-based rehearsal method with
actual exploration that bridges the gap between different tasks. The generative model can produce
states from prior tasks, but these imagined states might not be naturally encountered or connected
within the current task. Consider the earlier example of a robot exploring different rooms within a
building. The method introduced in the last section can generate imagined states from previously
visited rooms, but without actual exploration, the robot might not find the doorways or corridors
connecting these rooms to its current location. Our intrinsic reward incentivizes the robot to search
for these connections, enabling it to discover pathways that link the new room to the old ones.
Without exploring the actual environment to find these connections, the agent’s world model remains
fragmented, lacking a cohesive understanding of how different regions relate.

To overcome this, we propose an intrinsic reward that guides the agent to:

* Revisit Familiar States: Encourage exploration of states where the previous transition
model T;;_ predicts accurately, indicating familiarity from earlier tasks.

* Discover New Connections: Incentivize the agent to find pathways that connect current
and previous task environments, enriching the world model’s completeness.

» Balance Learning Dynamics: Deter the agent from spending excessive time in regions
where the current model 7; already performs well, promoting efficient learning.
Specifically, during training on task 7;, we introduce an intrinsic reward r’_, designed to guide the
agent towards states that are familiar to the previous transition model 7T;_ (trained and froze after
task 7;_1) but less familiar to the current model 7;. The intrinsic reward is defined as:

Teont(8t5 @, St41) = 0 (—log [T;_1(s¢, a¢) — s¢41]) — - o (= log |Ti(s¢,a¢) — seq1l), ()
where o denotes the sigmoid function, and « is a weighting coefficient that balances the two terms.

Intuitively the first term assigns higher rewards when the previous transition model 7;_; predicts the
next state s;4; accurately. This incentivizes the agent to revisit states that were well-understood in
previous tasks. The second term penalizes the agent for visiting states where the current model T;
already has low prediction error. This encourages the agent to explore less familiar areas to improve
the current model’s understanding.

By actively exploring and connecting different regions, the agent’s world model becomes more com-
prehensive, capturing the dynamics across tasks more effectively. Revisiting familiar states reinforces
prior knowledge, reducing the tendency of the model to forget previously learned information. This
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approach complements the synthetic data generation in Section[3.1|by providing actual experience
that reinforces the agent’s knowledge. Compared to novelty-seeking exploration strategies (Pathak
et al.| 2017), our method emphasizes revisiting and reinforcing previously learned dynamics.

3.3 OVERALL ALGORITHM

We implement DRAGO on top of TDMPC (Hansen et al.|[2022)) and the overall algorithm is described
in Algorithm[I] Compared to regular TDMPC algorithm, we additionally train an encoder and decoder
for the state-action pair as part of the generative model in §3.1} To integrate the intrinsic reward for
regaining memories proposed in §3.2} we train an additional reward model, value model, and policy
as a “reviewer” that aims to maximize the cumulative intrinsic reward, besides the original “learner”
that aims to maximize the cumulative environmental reward. Note that the reviewer and the learner
share the same world model, which is also trained using data from both.

During the inference step, DRAGO leverages Model Predictive Path Integral (Williams et al., [2015)
as the planning method. Given an initial state and task 7;, DRAGO samples N trajectories with the
world model T; and estimates the total return J.- of each sampled trajectory 7 as:

H—1
Jr =B [> V' Rea +77Q(sm,an)), sei1 ~ Ti(se, ar ), ®)
t=0

where ()(-) is the learned value function. Then a trajectory with the highest return is picked and the
agent will execute the first action in the trajectory.

During training, the dynamics model and the generative model are trained together with the re-
ward&value prediction of the learner and reviewer. At the beginning of each new task, For each new
test task, we randomly initialize the reward and value models and reuse only the world model (dy-
namics).For each new test task, we randomly initialize the reward, policy and value models and
reuse only the world model (dynamics).. Moreover, unlike the original TDMPC, the gradients from
updating Q function and reward model are detached for updating the dynamics model in DRAGO.
More implementation details can be found in the appendix.
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designed to test the agent’s ability to retain knowledge from previous tasks, as solving them requires
understanding multiple tasks.

MiniGrid. We evaluated the performance of DRAGO in the MiniGrid (Chevalier-Boisvert et al.,
2023)) domain using a sequence of four tasks, each set in one of the four rooms of a 27 x 27 gridworld.
In each task, the agent starts from a fixed corner of one room, with the objective of reaching a
specified goal position within that room. The obstacles vary across tasks and the agent can only
access other rooms by passing through a door located at the center of the gridworld, which creates
a bottleneck that the agent must learn to navigate effectively in transfer tasks. Each task requires
exploring a small and mostly non-overlapping portion of the world, ensuring that knowledge from
one task does not directly overlap with others. To assess transfer performance, we evaluated the
models learned at different stages of the continual learning process (i.e., after completing 2, 3, and
4 tasks). The evaluation was conducted on four new tasks that require the agent to move between
different rooms (e.g., start in room 1 and move to the goal position in room 2). The tasks are designed
such that solving them requires understanding multiple rooms.

Deepmind Control Suite. We also evaluated the performance of DRAGO in the Cheetah and Walker
domains from the Deepmind Control Suite (Tassa et al.,|2018). For each domain, we define a sequence
of tasks that share the same dynamics but with different task goals, which requires the agent to learn
different parts of the state space of dynamics. Similarly, to assess transfer performance, we evaluated
the models learned at different stages of the continual learning process. The evaluation was conducted
on several new tasks that require the agent to quickly change to different locomotion modes from
another mode (jump, run forward etc.), except for two tasks in Cheetah, jump and runforward &
Jjump and runbackward, where the agent will get the maximum reward if it runs forward/backward
and jumps at the same time.

We compared to baselines including: Training TDMPC from scratch for each task, continual
TDMPC, where we initialize the world model with the one learned in the previous task at the
beginning of the new task and train it with the task reward, and EWC (Kirkpatrick et al.| 2016), a
regularization-based continual learning method as we introduced in the related work section. We use
TDMPC as the base model-based reinforcement learning (MBRL) algorithm for all the baselines.
More experimental results can be found in appendix [D] & [C]

4.1 QUALITATIVE RESULTS

In Figure[d] we also visualize the prediction accuracy of the learned world models across the whole
gridworld, comparing just naively continually training TDMPC and our method. The prediction
score is calculated based on the states predictions’ mean square error (MSE). The results are aligned
with our intuition. Without other counter-forgetting techniques, world models easily forget almost
everything learned in previous tasks and are only accurate in the transition space related to the current
task. By contrast, DRAGO is able to retain most of the knowledge learned in previous tasks and have
a increasingly complete world model as training continues, leading to the performance gain on new
tasks shown in Figure[5] Note that DRAGO’s performance without Synthetic Experience Rehearsal
(so only has the Regaining Memories Through Exploration Component) drops a bit compared to
the full version, but it still exhibits better knowledge retention to some extent in post-task3 and
post-task4, compared to naive continual TDMPC. As we also show in the ablation study, combining
two components of DRAGO together eventually achieves the best overall transfer performance.

4.2 OVERALL PERFORMANCE

As shown in Figure 5] we find that the proposed method DRAGO achieves the best overall per-
formance compared to all the other approaches across three domains. The results demonstrate its
advantage in continual learning settings by effectively retaining knowledge from previous tasks and
transferring it to new ones. We can also see that naively continual Model-based RL may suffer
from severe plasticity loss: Continual TDMPC constantly performs worse than learning from scratch
baseline. Equipped with EWC, it can achieve better overall performance but still not as good as
DRAGO. But DRAGO does not fully alleviate the plasticity loss, in Cheetah Jump and runbackward
(Last plot in the mid row of Figure[3)), learning from scratch still has the best performance, but we
can see that DRAGO still improves a lot compared to Continual TDMPC — the Continual MBRL
baseline it is built on.
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Figure 4: Prediction score of the learned world models across the entire gridworld after each task.
Light color indicates higher prediction accuracy. The heatmaps compare the performance of naive
continual training of TDMPC (top row), DRAGO without Synthetic Experience Rehearsal (mid
row), with our proposed full DRAGO method (bottom row) after Tasks 1 to 4. The results show that
continual MBRL suffers from significant forgetting, maintaining accuracy only in regions relevant to
the current task, whereas DRAGO effectively retains knowledge from previous tasks, leading to a
more comprehensive world model and improved performance in new tasks.
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Figure 5: We evaluate the continual learning transfer performance on 12 tasks (3 domains, 4 tasks
each) that are not seen during the agent’s previous training. Each plot corresponds to a single test
task, and the agent’s performance is tracked as it learns that task from scratch, using the retained
world model. For each test task of MiniGrid, the agent starts in one room and have to move to the
goal in another room. E.g., Transfer 3to4 after 4 means that after sequentially training on four tasks,
the agent is tested on a new task where it starts in room 3 and the target position is in room 4. For
each test task of Cheetah & Walker, the agent has to start from a state in one locomotion mode and
the goal is to switch to another mode. E.g., Jump2runforward after Jump means that after training on
Cheetah-Jump, the agent is tested on a new task where it starts in one state of the jumping mode, and
the goal is to run forward.
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4.3 ABLATION STUDY

This section evaluates the essentiality of DRAGO’s components. Specifically, we evaluate DRAGO’s
performance without Synthetic Experience Rehearsal and Regaining Memories Through Exploration
(reviewer) separately in four transfer tasks of Cheetah and MiniGrid. As we show in Figure [6]
while DRAGO w/o. Rehearsal achieves similar performance with the full version in Cheetah-
Jjumpandrunforward, the full DRAGO still has the best overall performance across domains. If
we compare the performance with Continual TDMPC shown in Figure [5] one single component
of DRAGO consistently improves continual learning performance. These results highlight the
complementary roles of both components and demonstrate that each contributes significantly to
mitigating forgetting and enhancing transfer capabilities in continual model-based RL settings.
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Figure 6: Ablation study results on four transfer tasks in the Cheetah and MiniGrid domains, compar-
ing the performance of DRAGO without individual components (Synthetic Experience Rehearsal and
Regaining Memories Through Exploration) to the full method. While removing Rehearsal results
in competitive performance in the Cheetah-jumpandrunforward task, the full version of DRAGO
achieves superior overall performance across all tasks.

4.4 FEW-SHOT TRANSFER PERFORMANCE

We also evaluated the agent’s few-shot transfer performance during the continual learning process
and compared the results of DRAGO with the other baselines. The setting is useful and common in
real world tasks, especially for robotics, where the number of steps to interact with the environment
is limited. Specifically, for each test task in Cheetah and Walker domains, we let the agent train by
interacting with the environment for only 20 episodes and evaluate its average cumulative reward
after training. As shown in Table [T} DRAGO outperforms the other baselines in 6 out of 8 tasks. In
the two tasks where DRAGO does not outperform, it remains competitive, highlighting its robustness
and efficiency in continual learning scenarios.

Average Reward | DRAGO EWC | Continual TDMPC | Scratch
Cheetah jump2run 106.78 + 32.01 54.72 4+ 62.72 93.96 + 39.29 26.54 + 2.67
Cheetah jump &run 248.92 + 15.38 156.98 4+ 99.68 128.58 + 100.14 182.77 + 28.58
Cheetah jump2back 331.85 +11.05 29.93 £ 7.15 73.98 4+ 38.45 45.15 + 4.92
Cheetah jump&back 147.30 + 34.29 117.92 + 1.20 140.82 + 28.00 129.75 + 20.44
Walker walk2run 332.38 £+ 20.07 287.02 £ 37.80 229.14 £+ 33.71 52.11 + 3.41
Walker run2back 145.98 + 17.96 150.19 + 2.77 128.56 +9.47 60.49 + 9.40
Walker back2run 229.79 £ 9.77 254.09 4+ 70.29 241.39 £ 42.64 40.76 £+ 18.34
Walker stand2run 265.50 + 8.40 177.02 4+ 62.48 182.71 + 30.74 64.02 + 31.54

Table 1: Comparison of few-shot transfer performance on eight test tasks in Cheetah and Walker. We
report the mean and standard deviation of the cumulative reward at the end of training. Bold value
indicates the best result.

5 RELATED WORK

5.1 MODEL-BASED REINFORCEMENT LEARNING

Model-based reinforcement learning (MBRL) focuses on learning a predictive model of the envi-
ronment’s dynamics (Sutton, |1991). Learning world models (Ha & Schmidhuber, 2018}, [Hafner|
et al.,2019) specifically enables agents to accumulate knowledge about the environment’s dynamics
and generalize to new tasks or situations. By utilizing this model to simulate future states, agents
can plan and make informed decisions without excessive real-world interactions. Most MBRL
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approaches can be categorized into two main categories in terms of how the learned model is used.
The first category consists of methods that use the learned model to generate additional data and
explicitly train a policy (Sutton, [1991};|Pong et al., 2018} |Ha & Schmidhuber, [2018; |Sekar et al., |2020;
Hafner et al.| [2020; [2021}; 2023), these approaches leverage the learned dynamics model to simulate
experiences, which are then used to augment real data for policy optimization; the second category
includes methods that learn the dynamics model and use it directly for planning to assign credit to
actions (Ebert et al.,[2018; Zhang et al.,|2018; Janner et al., |2019; [Hafner et al.l 2019} Lowrey et al.,
2019; [Kaiser et al., [2020; |Yu et al., 2020b; |Schrittwieser et al.,[2020; Nguyen et al.,|2021; Zhang et al.,
2024)). These methods perform online planning by simulating future trajectories using the learned
model to select actions without explicitly learning a policy. Recent approaches (Hansen et al., 2022}
2024) combine both techniques and achieves superior performance on various continuous control
tasks. TD-MPC2 (Hansen et al.| 2024) especially demonstrates the possibility of train a single world
model on multiple tasks at once using MBRL.

5.2 CONTINUAL REINFORCEMENT LEARNING

Continual reinforcement learning (CRL) aims to develop agents that can learn from a sequence of
tasks, retaining knowledge from previous tasks while efficiently adapting to new ones (Khetarpal
et al.,2022; |Abel et al.,2023; |Anand & Precup, |2023). Many recent papers investigate the plasticity
loss in continual learning (Lyle et al., 2023 |Abbas et al., 2023} Dohare et al., 2024)). This paper
focuses more on how we better retain and aggregate knowledge learned from previous tasks in
Continual MBRL, which is related to another central challenge in CRL, catastrophic forgetting,
where learning new tasks causes the agent’s performance on earlier tasks to degrade due to the
overwriting of important knowledge (McCloskey & Cohen, [1989). To address catastrophic forgetting,
several strategies have been proposed: Regularization-Based Methods (Kirkpatrick et al., [2016;
L1 & Hoiem, 2016} Zenke et al., [2017; |[Nguyen et al., [2017; [Yu et al.| |2020a): these approaches
introduce constraints during training to prevent significant changes to parameters important for
previous tasks. Elastic Weight Consolidation (EWC) (Kirkpatrick et al. [2016) is a prominent
example that uses the Fisher Information Matrix to estimate parameter importance and penalize
updates accordingly. However regularization-based methods often struggles in practice, especially in
reinforcement learning scenarios, due to challenges in accurately estimating parameter importance and
scalability issues with large neural networks (Huszar, [2017; |Farquhar & Gal, [2018). Replay-Based
methods (Riemer et al.,[2019; Rolnick et al.,|2019; Oh et al., [2022; Henning et al., [2021; Lampinen
et al.,|2021)): these methods maintain a buffer of experiences from previous tasks and interleave them
with new experiences during training. This is not always possible; in fact, in many scenarios the
storage requirements of retaining all prior information along make such approaches infeasible. Our
work is therefore focused on alleviating the catastrophic forgetting problem and learn a complete
world model without prior data. In terms of Continual MBRL specifically, [Fu et al.|(2022) show
that the agent can benefit from a joint world model for adapting to new individual tasks. Similarly,
Nagabandi et al.| (2019) propose a meta-learning approach where a dynamics model is trained to
adapt quickly to new tasks by learning a prior over models. Hypernetwork-based methods (Huang
et al.;2021) have been proposed to minimize forgetting while learning task-specific parameters in
the multitask setting. |[Liu et al.|(2024) introduces locality-sensitive sparse encoding to learn world
models incrementally in a single task online setting. [Kessler et al.|(2023) investigate how different
experience replay methods will affect the performance of MBRL. Our approach for continual learning
of generative models also shares some similarity with knowledge distillation works (Gou et al., 2021}
Lesort et al.,|2019; | Masip et al.| 2023)).

6 CONCLUSION

We proposed DRAGO, a novel approach for continual MBRL that effectively mitigates catastrophic
forgetting and enhances the transfer of knowledge across sequential tasks. By integrating Synthetic Ex-
perience Rehearsal and Regaining Memories Through Exploration, DRAGO retains and consolidates
knowledge from previous tasks without requiring access to past data, resulting in a progressively more
complete world model. Our empirical evaluations demonstrate that DRAGO performs well in terms
of knowledge retention and transferability, making it a promising solution for complex continual
learning scenarios. Future work will explore extending DRAGO to larger-scale environments and
more diverse task distributions.
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A  ALGORITHM DETAILS

Algorithm 1 DRAGO (Training process for each task)
Require: ¢, 9,0, ¢, ¢~ : randomly initialized network parameters

1: Towd, Eowd, Goa: transition network and VAE up to the previous task

2 0,7, A, Bl, B": learning rate, coefficients, learner buffer, reviewer buffer

3: Ty < Tou > load transition model from the previous task
4: By < Eoq > load VAE encoder from the previous task
5: Gg < Gou > load VAE decoder from the previous task
6: while not tired do

7 /I Collect episode with learner and reviewer models from sg ~ pg:

8 forstept =0,...,7 do

9: ar ~ L (-] s¢) > Sample with learner model
10 (S¢+1,7¢) ~ ENV (s¢,a¢) > Step environment
11: Bl <+ B'U (s, a¢,7¢,5011) > Add to learner buffer

12: end for
13: forstept =0,...,7 do

14: ar ~ II5(+|s¢) > Sample with reviewer model
15: (8t41,-) ~ ENV (s, at) > Step environment
16: r¢ =CALCULATE_INTRINSIC_REWARD(S¢, G¢, St+1) > Equation [7]
17: B" <+ B" U (s, at,Tt, St41) > Add to reviewer buffer
18: end for

19: UPDATE_LEARNER_AND_REVIEWER(B!, B", 0, ¢, 1,0, T, \) > Algorithm
20: UPDATE_VAE(#, Go1q) > Algorithm
21: UPDATE_TRANSITION_FROM_SYNTHETIC_DATA (%, Toiq, God) > Algorithm 4|

22: end while

The DRAGO algorithm combines synthetic experience rehearsal and exploration-driven memory
regaining to facilitate continual learning in model-based reinforcement learning (MBRL). This section
provides a detailed, step-by-step breakdown of DRAGO, outlining how it maintains and updates
both the dynamics and generative models throughout a sequence of tasks. For the first task, DRAGO
exclusively trains the learner model and the rehearsal encoder-decoder pair using only online data.

A.0.1 INITIALIZATION

For each task 7;, DRAGO begins by randomly initializing the policy networks 7":"4, the Q networks
Qé"r, and the reward networks Rﬁ’r for both the learner and reviewer models. These components are
initialized separately, but they share a common transition network 7;.

The transition network T}, along with the synthetic experience rehearsal encoder E; and decoder
G, are initially randomly initialized for the first task. For subsequent tasks, these networks are
loaded with the weights from the previous task’s networks (7;_1, F;_1, and D;_1). Notably, these
previously trained components (7;_1, F;_1, and D;_1) are employed as fixed modules for generating
synthetic data, thereby supporting the rehearsal process without further updates.

A.0.2 DATA COLLECTION

During each episode, both the learner agent and reviewer agent interact with the environment for
the same number of time steps. The experiences (s, a, s, r) encountered by each agent are stored in
separate replay buffers: 3! for the learner and B! for the reviewer. While the learner agent’s rewards
are directly sourced from the environment, the reviewer agent’s intrinsic rewards are computed using
the methodology outlined in Equation [/} This intrinsic reward mechanism drives the reviewer’s
exploration and memory regaining.

A.0.3 INFERENCE

The inference process in DRAGO is inspired by TD-MPC (Hansen et al.| [2022), utilizing the Cross-
Entropy Method (CEM) (Rubinstein, |1997) for action selection. During this process, a fixed number
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Algorithm 2 update_learner_and_reviewer

Require: B!, B": Learner and reviewer buffers
¥, ™, 0, ¢, ¢ : Network parameters
n, T, A\: Learning rate, coefficients

{Sév a’év Ti, Sé-&-l}tit-ﬁ-H ~ B!

{5;7 a:’ 7’;7 5:+1}t:t+H ~ B"

rh, . < calculate_reviewer_reward (., , ;)

Jo, J¢, Jw +~0,0,0

Qe(sp all)

qA{/ - QQ(SDGD

(jll _Qr(shall) ,

LQ - value(qll) + value((ﬂ) + »Cvalue(qul )
7 = Ry (s}, a1)

: 7“1 = RT(SDGD

c il = (81, al)

: LR - Ereward(rl) + Ereward("“{) + Ereward(fll/)

cJo—=Jo+ Lo+ Lp

C 8l = sl 8 =]

: fori =t,...,t +Hdo
z+1 - tw(s al)
z+1 - tw( i :)

a; = my(3, )

a; = 7T¢(Sz )54 i)

Jp — Jy + AT t([:-,r(&é) + Lr(al))

Jy — Jy + A~

: end for

: ¢ — (;5 }%ngqs

Y=Y — 5 Vedy

P (1—7’)(;57 +T7¢

YT (=T 4Ty

—_ =
T?P?PE'QH‘:'?.":‘!\?T‘

(N2 (SN O RN (O I (ST (S I S I S R & R el e e e

> Sample trajectory from learner buffer
> Sample trajectory from reviewer buffer

> Initialize loss accumulation

> Calculate value loss at the first observation

> Calculate reward loss at the first observation
> Only update reward and value functions at the first step

> Initialize the estimated first observations

¢ (Acdynamics (§é+1 ) + Ldynamics (ér_i,_ 1 ) )

> Update online network
> Update online network
> Update target network
> Update target network

Algorithm 3 update_vae

Requlre 0: VAE parameters

Glolg: Previously trained VAE decoder
h ~N(0,1)
ssynth7 asymh) — Gold(h>
hsymh Y EQ(Ssynth, asynth
(gsynth, dsymh) — Gg(hSymh)
h < Eg(st,a)
(8,a) < Go(h)
Jo=Jyp + ﬁgen(s a) + C
0+ 60— ng Jog

synth Assynth
n (870, @)

WReRADUN RN

> Generate synthetic observations and actions
> reconstruct synthetic observation and action
> reconstruct sampled observation and action

> Update online network

Algorithm 4 update_transition_from_synthetic_data

Require: ¢/: Transition network parameters

I: Toia: Previously trained transition network
2: Gog: Previously trained VAE decoder
3: h~N(0,1)
4: (Ssynth %ymh) . Gold(h)
5 5 = Told(ssynth asynth)
. )
6: é/ — Td)(ssynth, asynth)
7. Jw — Jw + Edynamics(§/7 S/)
8 Y1 — %Vg) Jy

> Generate synthetic observations and actions

> generate next observation from old transition model

> Update online network
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of trajectories of predetermined length are sampled and simulated using the current transition model
T;. For each trajectory, the cumulative return is calculated. The trajectories with the highest returns,
referred to as elite trajectories, are selected to reshape the distribution of the initial actions. This
iterative process is repeated for a fixed number of iterations, ultimately yielding a refined distribution
over actions, which informs the final action selection. All the hyperparameters releated to the CEM
algorithms is the same with TD-MPC (Hansen et al., 2022).

A.0.4 UPDATING

DRAGQO updates after each episode of rollouts for the same iterations as the number of rollout
time-steps The updates tries to minimize the training objective, which is the sum of several losses
wegihted temporally by a discount factor A. Below is a detailed description of the loss functions used
in the updates:

The transition model is updated using data from both the learner agent and the reviewer agent, as
well as the synthetic observation-action pairs generated by the previous VAE decoder (G;_1) and the
subsequent observations generated by the previous transition model (7;_1). This process maintains
the transition model’s accuracy for transitions encountered in previous tasks, thereby mitigating
catastrophic forgetting of the world model. Given an observation s, an action a, and a target next state
s', the loss function calculates the mse between the predicted next observation using the transition
model 7" and the next state provided:

£dynamics =C HT,/)(S, Cl) - S/”%

However, synthetic data updates for T; only occur at fixed intervals of steps to cope with the noise
arising from inaccuracies in G;_ and T;;_;. This periodic updating strategy helps avoid noisy updates
that can result from relying on outdated or inaccurate synthetic data.

Continual learning of the VAE (F; and G;) occurs concurrently with the agent’s updates. Data for
this learning comes from both the state-action pairs obtained from the learner model’s rollouts and
the generated state-action pairs from G;_;. The associated loss function for the VAE Ly, is shown
in Equation [6]

The reward function R which estimates the immediate reward from a given observation. The reward
model enables the agent to estimate total return from a trajectory, and stabilizes the update for Q
functions. It is updated using the following loss function:

Lieward = Cal| Ry (21, a:) — 7|3
Additionally, the ) functions for both agents are updated using the TD-objective shown as follows:
Luae = ¢3]|Qp (515 ai) = (ri + Qg (si41, T (si41))) |13
Q@ and R update only using the first steps of the horizons sampled, rather than using the complete

horizon as in the original TD-MPC algorithm. This reduces the risk of noisy updates resulting from
inaccuracies in the initial transition model.

The policy networks for both learner and reviewer agents are updated to maximize the expected )
value using

Lr=—Qg(s,m4(5))

In the above loss functions, c1, co, c3 are hyper parameters as weights for each losses.
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A.1 HYPERPARAMETERS

Hyperparameter Value (minigrid, cheetah, walker)
action repeat 1,4,2
discount factor 0.99
batch size 512
maximum steps 100, 1000, 1000
planning horizon 10, (25, 15), 15
policy fraction 0.05
temperature 0.5
momentum 0.1
reward loss coef 0.5
value coef 0.1
consistency loss coef 2
vae recon loss coef 1
vae kl loss coef 0.02
temporal loss discount (p) 0.5
learning rate le-3
sampling technique PER(0.6, 0.4)
target networks update freq 40,2,2
temperature (7) 0.01
cost coef for reviewer reward («) 0.5
vae latent dim 64, 256, 256
vae encoding dim 128
mlp latent dim 512
gumble softmax temp 1.0
steps per synthetic data rehearsal 10, 20

Table 2: Here we list the hyperparameters used for MiniGrid World, DM-Control cheetah, and
DM-Control walker. Unlisted hyperparameters are all identical to the default parameters in TD-MPC.

B TASKS SPECIFICATIONS

Here we describe the specifications of the tasks included in this paper:

For MiniGrid World domain, all the tasks are to reach a goal. The pre-training tasks are dense-reward,
and all fine-tuning tasks are sparse-reward.

* Room1to2: In this task we initialize the agent inside room 1 (top left, [11, 8]) and the goal
inside room 2 (top right, [14, 9]).

* Room1to3: In this task we initialize the agent inside room 1 (top left, [8, 11]) and the goal
inside room 3 (bottom left, [9, 14]).

* Room3to4: In this task we initialize the agent inside room 3 (bottom left, [11, 18]) and the
goal inside room 4 (bottom right, [14, 17]).

For Deep Mind Control domain, all the pre-training tasks are from TD-MPC2 (Hansen et al., 2024),
and the new fine-tune tasks are described below:

* cheetah jump2run: In this task we initialize the observation as a random state when the
agent is performing the task ”jump”, then initialize the objective to be “cheetah run”.

¢ cheetah jump2back: In this task, we initialize the observation as a random state when the
agent is performing ~jump”, then initialize the objective to be ’cheetah run backwards”.

* walker walk2run: In this task, we initialize the observation as a random state when the
agent is performing the task ”walk”, then initialize the objective to be "walker run”.

¢ walker run2back: In this task, we initialize the observation as a random state when the
agent is performing the task “run,” then initialize the objective to be ”walker run backwards”.
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¢ walker back2run: In this task, we initialize the observation as a random state when the
agent is performing “run backwards”, then initialize the objective to be “walker run”.

¢ walker stand2run: In this task, we initialize the observation as a random state when the
agent is performing the task “’stand”, then initialize the objective to be "walker run”.

* cheetah jump&run In this tasks we encourage the agent to move forward in a high speed
while their feet are both above the ground for a longer period of time. We averaged the
rewards from cheetah run and cheetah jump with a lower threshold for speed and height.

* cheetah jump&back In this tasks we encourage the agent to move backwards in a high
speed while their feet are both above the ground for a longer period of time. We averaged
the rewards from cheetah run backwards and cheetah jump with a lower threshold for speed
and height.

C ADDITIONAL RESULTS OF CONTINUAL TRAINING

We investigate whether the two components we proposed have side effect on the continual training
tasks, where each two of them has relatively small overlap of transition dynamics and covers different
state space. As shown in Table 3] DRAGO achieves similar performance with Continual TDMPC in
all the training tasks, which is the MBRL baseline it is built upon, demonstrating that the proposed
approaches will not deteriorate the training performance or induce more plasticity loss.

Episode Reward | Cheetah run | Cheetah jump | Cheetah backward

DRAGO 652.53 587.24 624.09
Continual TDMPC 675.31 646.30 580.59

Walker run | Walker walk | Walker backward | Walker stand
708.74 ‘ 954.56 ‘ 953.8 ‘ 972.46

693.61 959.31 956.42 982.69

Table 3: Average Episode Return of the Continual training tasks after training for 1M steps.
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D MORE ABLATION STUDY RESULTS

When trying the continual learning version for TDMPC, we find two interesting results. As shown in
Figure[/|left, since we only transfer the dynamics model not the Q function, we thought excluding
the Q value estimation in the planning process may yield better transfer results, but the result is the
opposite. Without using the Q value in the planning process causes a performance drop. Moreover, in
the original TDMPC implementation, a multi-step ahead prediction loss is used for updating the Q
function and reward model, in the continual learning setting, we find that one-step prediction is better
in complex environments like Deep Mind Control Suite as shown in the results of Cheetah-jump,
which is the second one in Cheetah’s continual training tasks.

We also investigate the influence of the frequency of synthetic experience rehearsal, the results are
shown in Figure [7]s second subfigure (from left to right).

In Figure [7]s third subfigure, we show that if we also load Cheetah run’s policy&value&reward,
our method can reach even better results. However, this in practice requires prior knowledge that
jump2run’s reward function is similar to that of cheetah run. So it’s not a scalable approach for now.

In Figure [7]s last subfigure, we show a comparison of the effect of the planning horizon to the
performance of DRAGO on Cheetah jump2back.

Cheetah-Jump Cheetah-Run Cheetah-Jump2runforward after Jump 500 Cheetah-Jump2runback after runback
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Figure 7: More ablation study results for continual TDMPC and DRAGO.

In Table 4] we compare with another baseline: Continual TDMPC + Curiosity, where we add the
curiosity-based intrinsic reward to the continual TDMPC policy to increase exploration. We can see
that DRAGO still outperforms this new continual MBRL baseline in all the four tasks. We should
note that while this is a reasonable baseline, the comparison is a little unfair for our method as
DRAGO can also be combined with any exploration method in a straightforward way. Specifically,
while we have a separate reviewer model that aims to maximize our proposed intrinsic reward, our
learner model that aims to solve each specific task can also be directly added with any intrinsic reward
method like curiosity to encourage exploration, which does not contradict with the intrinsic reward of
the separate reviewer.

Average Reward | DRAGO | Curiosity + Continual TDMPC | EWC | Continual TDMPC | Scratch
Cheetah jump2run 106.78 + 32.01 88.36 + 25.81 54.72 + 62.72 93.96 + 39.29 26.54 £+ 2.67
Cheetah jump&run 248.92 + 15.38 165.35 + 67.01 156.98 4+ 99.68 128.58 4+ 100.14 182.77 4+ 28.58
Cheetah jump2back 331.85 + 11.05 133.81 4+ 23.07 29.93 £ 7.15 73.98 + 38.45 45.15 + 4.92
Cheetah jump &back 147.30 4+ 34.29 138.77 + 45.55 117.92 +1.20 140.82 4+ 28.00 129.75 + 20.44

Table 4: Comparison of few-shot transfer performance on four test tasks in Cheetah. We report the
mean and standard deviation of the cumulative reward at the end of training.

We also try directly calculating the intrinsic reward of the reviewer and adding to the total reward
of the learner, thus we do not need an additional reviewer model. As shown in Table [5] we see a
large drop of performance for the continual training tasks, and this performance gap becomes larger
and larger as the agent encounters more tasks, since it is encouraged to visit more and more possibly
irrelevant states. Directly adding our intrinsic reward to the external reward and training only one
single learner model makes it hard for the agent to complete the original task goal. If we only have one
agent model (one policy), the intrinsic reward can have a side effect that 1. discourages the agent to
visit places that it is already familiar with, thus hinders it to find the optimal solution to solve the task.
2. Encourages it to visit places that the previous mode is familiar with, which could be completely
irrelevant for solving the current task. By having a separate reviewer policy that maximizes the
intrinsic reward, we decouple the objectives. The learner policy focuses on maximizing the external
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reward to solve the current task effectively, while the reviewer policy explores states that help in
retaining knowledge and connecting different regions of the state space. This separation allows both
policies to operate without hindering each other’s performance.

Episode Reward | Cheetah run | Cheetah jump | Cheetah backward
DRAGO 652.53 ‘ 587.24 624.09

DRAGO (Learner w. reviewer reward) 583.13 403.70 330.73

Table 5: Average Episode Return of the Continual training tasks after training for 1M steps.

While in all our experiments above we evaluated DRAGO using TDMPC as the MBRL baseline, we
also tried to combine DRAGO with another popular model-based RL baseline PETS (Chua et al.,
2018), and show the preliminary results on the same MiniGrid tasks but with dense reward (we are
not able to make PETS work on sparse reward settings unfortunately) in Table[5} DRAGO-PETS
outperforms the baseline in 3 out of 4 tested tasks.

Average Reward (Dense) | DRAGO-PETS | Continual PETS

MiniGridlto3 after3 233.21 +£21.07 | 150.84 £ 62.37
MiniGridlto2 after2 101.03 £116.21 | 161.70 + 44.31
MiniGridlto3 afterd 138.26 £=99.05 | 43.04 £111.93
MiniGrid3to4 afterd 234.65 +41.71 | 147.80 £ 105.84

Table 6: Comparison of few-shot transfer performance of PETS based methods on four test tasks in
MiniGrid. We report the mean and standard deviation of the cumulative reward at the end of training.

E LIMITATIONS

We only maintain one generative model throughout the continual training process, and this could
potentially have mode collapse problem as the number of the tasks grows. The generative model is
expected to capture the distribution of all prior tasks, which also relies on its own generated data.
Thus the forgetting issue of the generative model will appear as its memory becomes “blurry” when
the task number grows. To some extent, mixing the synthetic data with real world data will help
mitigate this (note that the real world data can also come from the data collected by our reviewer,
which connects to the previous tasks), but the question of how we can better do continual learning for
generative models remains and we leave it for future works. The current tasks tested in the paper
are not highly complex, and there is a limited number of tasks, which can be the reason why we do
not observe this problem in our setting. Developing continual generative models can be much more
challenging, but also rewarding towards the goal of real continual agent.
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