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Abstract

Deep neural networks are vulnerable to adversarial noise. Adversarial training (AT)1

has been demonstrated to be the most effective defense strategy to protect neural2

networks from being fooled. However, we find AT omits to learning robust features,3

resulting in poor performance of adversarial robustness. To address this issue, we4

highlight two characteristics of robust representation: (1) exclusion: the feature of5

natural examples keeps away from that of other classes; (2) alignment: the feature6

of natural and corresponding adversarial examples is close to each other. These7

motivate us to propose a generic framework of AT to gain robust representation,8

by the asymmetric negative contrast and reverse attention. Specifically, we design9

an asymmetric negative contrast based on predicted probabilities and generate10

adversarial negative examples by the targeted attack, to push away examples of11

different classes in the feature space. Moreover, we propose to weight feature by12

parameters of the linear classifier as the reverse attention, to obtain class-aware13

feature and pull close the feature of the same class. Empirical evaluations on three14

benchmark datasets show our methods greatly advance the robustness of AT and15

achieve the state-of-the-art performance.16

1 Introduction17

Deep neural networks (DNNs) have achieved great success in academia and industry, but they18

are easily fooled by carefully crafted adversarial examples to output incorrect results [13], which19

leads to potential threats and insecurity in application. Given a well-trained DNN and a natural20

example, an adversarial example can be generated by adding small perturbation that is invisible to21

the human eyes to the natural example. The natural example can be correctly classified before the22

perturbation and the adversarial example is incorrectly classified after the perturbation. In recent23

years, there are many researches exploring the generation of adversarial examples to cheat models in24

various fields, including image classification [13, 26, 5, 9], object detection [33, 8], natural language25

processing [27, 2], semantic segmentation [28, 25], etc. The vulnerability of DNNs has aroused26

common concerns on adversarial robustness.27

Many empirical defense methods have been proposed to protect DNNs from adversarial perturbation,28

such as adversarial training (AT) [26, 36, 30, 18, 39, 37, 31], image denoising [24], defensive29

distillation [38, 6] and so on. The mainstream view is that AT is the most effective defense, which has30

a training process of a two-sided game. The "attacker" crafts perturbation dynamically to generate31

adversarial data to cheat the "defender", and the "defender" minimizes the loss function against32

adversarial samples to improve robustness of models. Existing work [38, 6, 37, 11, 18, 20, 39] has33

improved the effectiveness of AT in many aspects, but few studies pay attention to learning robust34

feature. The overlook may lead to potential threats in the feature space of AT models, which does35

harm to robust classification. Besides, there are no criteria for robust feature. In addition, adversarial36
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Figure 1: Frequency histograms of the L2 distance and cosine similarity of the feature that belongs to
natural examples, AEs and OEs. The four figures show the cosine similarity of the feature between
natural examples and OEs (a), the L2 distance of the feature between natural examples and OEs (b),
the cosine similarity of the feature between natural examples and AEs (c), the L2 distance of the
feature between natural examples and AEs (d), respectively. The feature denotes the feature vector z
before the linear layer. We train ResNet-18 [15] models on CIFAR-10 [22] with three AT methods:
PDG-AT [26], TRADES [36] and MART [30]. In the calculation, we use all samples labeled as class
0 in the test set as natural examples and generate AEs by PGD-10 [26].

contrastive learning (ACL) and robust feature selection (RFS) are techniques to optimize feature37

distribution. ACL [21, 12, 35] is a kind of contrast learning (CL) [7, 17, 14] that extends to AT. RFS38

mostly modifies the architecture of models [32, 1, 34] to select important feature. However, the target39

problems of them are not to learn robust feature.40

To demonstrate AT is indeed deficient in the representation which causes limited adversarial robust-41

ness, we conduct a simple experiment. We choose the L2 distance and cosine similarity as metrics.42

And we measure the distance and similarity of the feature between natural examples, adversarial43

examples (AEs) and examples of other classes (OEs). The frequency histograms of the distance and44

similarity is shown in Figure 1. Figure 1 (a) and Figure 1 (b) show that the cosine similarity of the45

feature between natural examples and OEs shows a Gaussian distribution between 0.4 and 0.8, and46

the L2 distance shows a skewed distribution between 2.0 and 12.0, which indicates there are very47

close pairs of natural examples and OEs that are not distinguished in the feature space. In Figure 148

(c) and Figure 1 (d), it is shown that there are a skewed distribution between 0.9 and 0.99 for the49

cosine similarity of the feature between natural examples and AEs, and a skewed distribution between50

0.5 and 2.5 for the L2 distance, which indicates that the feature of natural examples and AEs is not51

adequately aligned. Thus, there is still large room for optimization of the feature of AT.52

Based on the observation, we propose two characteristics of robust feature: exclusion: the feature53

of natural examples keeps away from that of other classes; alignment: the feature of natural and54

corresponding adversarial samples is close to each other. First, exclusion confirms the separability55

between different classes and avoids confusion in the feature space, which makes it hard to fool the56

model because the feature of different classes keep a large distance. Second, alignment insures the57

feature of natural examples is aligned with adversarial one, which guarantees the predicted results of58

the natural and adversarial examples of the same instances are also highly consistent. And it helps to59

narrow the gap between robust accuracy and clean accuracy.60

To address the issue, we propose an AT framework to concentrate on robust representation with the61

guidance of the two characteristics. Specifically, we suggest two strategies to meet the characteristics,62

respectively. Treat a natural example and corresponding AE as a positive pair (PP), and treat a natural63

example and corresponding OE as a negative pair (PP). For exclusion, we propose an asymmetric64

negative contrast based on predicted probabilities, which freezes natural examples and pushes away65

OEs by reducing the confidence of predicted class when predicted classes of NPs are consistent. In66

particular, we find OEs generated by the targeted attack are more beneficial for correct classification67

than those selected carefully. For alignment, we use the reverse attention to weight the feature of PPs68

by partial parameters of the linear classifier, which contains the importance of feature to target classes69

during classification. Because the feature of the same class gets the same weighting and feature of70

different classes is weighted disparately, PPs are aligned and each example of PPs becomes close71

to each other in the feature space. Empirical evaluations show that AT methods combined with our72

framework can greatly enhance robustness, which means the neglect of learning robust feature is73

one of the main reasons for poor robust performance of AT. In a word, we propose a generic AT74

framework with the Asymmetric Negative Contrast and Reverse Attention (ANCRA), to learn robust75

representation and advance robustness. Our main contributions are summarized as follows:76
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• We suggest improving adversarial training from the perspective of learning robust feature,77

and two characteristics are highlighted as criteria of optimizing robust representation.78

• We propose a generic framework of adversarial training, termed as ANCRA, to obtain robust79

feature by the asymmetric negative contrast and reverse attention, with the guidance of two80

characteristics of robust feature. It can be easily combined with other defense methods.81

• Empirical evaluations show our framework can obtain robust feature and greatly improve82

adversarial robustness, which achieves the of state-of-the-art performances on CIFAR-10,83

CIFAR-100 and Tiny-ImageNet.84

2 Related work85

Adversarial training Madry et al. [26] propose PGD attack and PGD-based adversarial training,86

forcing the model to correctly classify adversarial samples within the epsilon sphere during training87

to obtain robustness, which is the pioneer of adversarial learning. Zhang et al. [36] propose to learn88

both natural and adversarial samples and reduce the divergence of classification distribution of both89

to reduce the difference between robust accuracy and natural accuracy. Wang et al. [30] find that90

misclassified samples during training have a negative impact on robustness significantly, and propose91

to improve the model’s attention to misclassification by adaptive weights. Zhang et al. [37] propose92

to replace fixed attack steps with attack steps that just cross the decision boundary, and improved the93

natural accuracy by appropriately reducing the number of attack iterations. Huang et al. [18] replace94

labels with soft labels predicted by the model and adaptively reduce the weight of misclassification95

loss to alleviate robust overfitting problem. Dong et al. [11] also propose a similar idea of softening96

label and explain the different effects of hard and soft labels on robustness by investigating the97

memory behavior of the model for random noisy labels. Chen et al. [6] propose random weight98

smoothing and self-training based on knowledge distillation, which greatly improve the natural and99

robust accuracy. Zhou et al. [39] embed a label transition matrix into models to infer natural labels100

from adversarial noise. However, little work has been done to improve AT from the perspective101

of robust feature learning. Our work shows AT indeed has defects in the feature distribution, and102

strategies proposed to learn robust feature can greatly advance robustness, which indicates the neglect103

of robust representation results in poor robust performance of AT.104

Adversarial contrastive learning Kim et al. [21] propose an adversarial training method of105

maximizing and minimizing the contrastive loss. Fan et al. [12] notice that the robustness of ACL106

relies on fine-tuning, and pseudo labels and high-frequency information can advance robustness. Kucer107

et al. [23] find that the direct combination of self-supervised learning and AT penalizes non-robust108

accuracy. Bui et al. [3] propose some strategies to select positive and negative examples based on109

predicted classes and labels. Yu et al. [35] find the instance-level identity confusion problem brought110

by positive contrast and address it by asymmetric methods. The idea of these methods motivates us111

to further consider how to obtain robust feature by contrast mechanism. We design a new negative112

contrast to push away NPs and mitigate the confusion caused by negative contrast.113

Robust feature selection Xiao et al. [32] take the maximum k feature values in each activation114

layer to increase adversarial robustness. Zoran et al. [40] use a spatial attention mechanism to identify115

important regions of the feature map. Bai et al. [1] propose to suppress redundant feature channels and116

dynamically activate feature channels with the parameters of additional components. Yan et al. [34]117

propose to amplify the top-k activated feature channels. Existing work has shown enlarging import118

feature channels is beneficial for robustness, but most approaches rely on extra model components and119

do not explain the reason. We proposes the reverse attention to weight feature by class information120

without any extra components, and explain it by alignment of feature.121

3 Methodology122

This section explains the instantiation of the our AT framework from the perspective of the two123

characteristics of robust feature. To meet exclusion, we design an asymmetric negative contrast based124

on predicted probabilities and propose to craft OEs by the targeted attack, to push away the feature of125

NPs. To confirm alignment, we propose the reverse attention to weight the feature of the same class,126

by the corresponding weight of target class in parameters of the linear classifier, so that the feature of127

PPs is aligned and the gap of the feature between natural examples and AEs becomes small.128
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3.1 Notations129

In this paper, capital letters indicate random variables or vectors, while lowercase letters represent130

their realisations. We define the function for classification as f(·). It can be parameterized by131

DNNs. Linear(·) is the linear classifier with a weight of Ω (C, R), in which C denotes the class132

number and R denotes the channel number of the feature map. g(·) is the feature extractor, i.e.,133

the rest model without Linear(·). Let B = {xi, yi}Ni be a batch of natural samples where xi134

is labeled by yi. Given an adversarial transformation Ta from an adversary A (e.g., PGD attack135

in [26]), and a strategy To for selection or generation of OEs. For data, we consider a positive pair136

PP={xi, x
a
i |xi ∈ B, xa

i = Ta(xi)}Ni , and a negative pair NP={xi, x
o
i |xi ∈ B, xo

i = To(xi)}Ni . Let137

N(x, ϵ) represent the neighborhood of x : {x̃ : ∥x̃− x∥ ≤ ϵ}, where ϵ is the perturbation budget. For138

an input xi, we consider its feature zi before Linear(·), the probability vector pi = softmax(f(xi))139

and predicted class hi = argmax(pi), respectively.140

3.2 Adversarial training with asymmetric negative contrast141

Firstly, we promote AT to learn robust representation that meets exclusion. We notice that ACL has142

the contrastive loss [29] to maximize the consistency between PPs and to minimize the consistency143

between NPs. Motivated by the contrast mechanism, we consider to design a new negative-contrast144

term and combine it with AT loss, which creates a repulsive action between NPs when minimize the145

whole loss. Thus, we propose a generic pattern of AT loss with a negative contrast. Let TRADES146

[36] represent AT in the following paper as a example.147

LCAL(x, y, xa, xo) = LTRADES + Sim (x, xo) = LCE(x, y) +DKL(x, x
a) + Sim (x, xo) , (1)

Where x denotes natural examples with labels y, xa are AEs generated by untargeted PGD [26],148

xo are negative examples of other classes (OEs), Sim is a similarity function, LCE denotes the149

cross-entropy loss and DKL denotes divergence of Kullback-Leibler. AEs generated by maximizing150

LCE typically have wrong predicted classes, given by:151

xa
t+1 := Π

N(x,ϵ)
(xa

t + ϵ sign (∇xLCE ((f(xa
t ) , y))) , (2)

where ϵ denotes the L∞-norm of perturbation, xa
t denotes adversarial positive samples after the tth152

attack iteration, Π denotes a clamp function, sign denotes a sign function and ∇xLCE denotes the153

gradient of LCE with respect to x. When minimizing the loss in Eq 1, LTRADES learns to classify154

natural examples and AEs correctly, and additional negative contrast prompts the inconsistency of155

NPs, which keeps the feature of NPs far away from each other. The whole loss guides the model to156

learn correct classification from TRADES and push away NPs from each other to ensure exclusion.157

Although we have a generic pattern of AT loss with a negative contrast, there are several problems158

about details to address. To refine the negative contrast and address problems, we further propose a159

method to calculate the negative contrast and strategy to generate OEs.160

3.2.1 Asymmetric negative contrast based on probabilities161

The work in [35] has indicated that when the predicted classes of the adversarial positive examples162

(i.e., AEs) and negative samples (i.e., OEs) are the same, the positive contrast may lead to a conflict163

between the positive and negative contrast, resulting in wrong classification. On the basis, we find164

a similar conflict can also be caused by the negative contrast when the predicted classes of AEs165

and OEs are different, which we named by class confusion. As shown in Figure 2, when AEs and166

OEs have different predicted classes, natural examples are subject to the attraction of AEs and the167

repulsion of OEs at the same time. And it is likely to move near the decision boundary or even into168

the wrong class space under the actions, which does harm to exclusion.169

In order to alleviate the problem of class confusion, We should reasonably control the effect of the170

repulsion of negative contrast between natural examples and OEs. we propose an asymmetric method171

of the negative contrast, Simα(x, xo), to decouple the repulsive force into an one-side push from the172

natural example to the OE and an one-side push from the OE to the natural example, given by:173
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Figure 2: Illustrations of class confusion when the classes of positive examples (i.e., AEs) and
negative examples (i.e., OEs) are different. (a) shows the normal situation before the optimization.
(b) shows the situation of class confusion after the optimization. In each circle, data points have the
same predicted class. In (a), AEs locate in the wrong predicted class different from natural example
and OEs. The TRADES loss narrow the gap of classification between natural examples and AEs,
and thus AEs in the wrong class pull natural examples to move toward the wrong class and the
negative contrast pushes natural examples to leave from the original class. With these actions, natural
examples come to the decision boundary and even into the wrong class easily as (b) shows.

Simα(x, xo) = α · Sim(x, xo) + (1− α) · Sim(xo, x), (3)

where Sim(x, xo) denotes the one-sided similarity of x and xo. When minimizing Sim(x, xo), we174

stop the back-propagation gradient of x and only move xo away from x. α denotes the weighting175

factor to adjust the magnitude of the two repulsive forces. When α = 0, OEs are frozen and only the176

feature of natural samples is optimized to push far away from the feature of OEs. As α increases, the177

natural sample becomes more repulsive to the OE and the OE pushes the natural example less. To178

mitigate the class confusion problem, we should choose α that tends to 1 to reduce the repulsive force179

from the OE to the natural example, to prevent the natural example from being pushed into the wrong180

class. Experiments show that α =1 leads to the best performance provided in our supplementary181

material), which pushes away NPs by only pushing off OEs and follows what we have expected.182

Then we propose the negative contrast based on predicted probabilities, Simα
cc(x, x

o), to measure183

the repulsive force of NPs pushing away from each other. It pushes away NPs by decreasing the184

corresponding probabilities of the predicted classes when the predicted classes of NPs are consistent.185

Simα
cc(x, x

o) =
1

∥Bi∥

n∑
i=1

I (hi = ho
i ) ·

[
α
√
p̂i(hi) · poi (hi) + (1− α)

√
pi(hi) · p̂oi (hi)

]
, (4)

where ∥Bi∥ denotes the batch size, I(·) denotes the Indicator function and p̂ denotes freezing the186

back-propagation gradient of p. hi and hn
i denote the predicted classes of the NP. And pi and pni187

denote the probability vectors of the NP. Under the negative contrast, the model pushes the natural188

example in the direction away from the predicted class of the OE and push the OE in the direction189

away from the predicted class of the natural example when and only when two predicted classes of190

the NP are consistent. This ensures that the action of exclusion not only pushes away the feature of191

NPs in the feature space, but also reduces the probabilities of NPs in the incorrect class. Since the192

negative contrast has only directions to reduce the confidence and no explicit directions to increase193

the confidence, it does not create any actions to push the natural example into the feature space of194

wrong classes even in the scenario of class confusion, which can effectively alleviate the problem.195

3.2.2 Generate negative samples by targeted attack196

To obtain OEs, previous negative sampling strategies [19] simply screen natural samples and pick up197

the negatives from them, but rarely consider generating special negative samples to assist learning.198

We innovatively propose a strategy to craft OEs by the targeted attack: natural negative examples with199

labels that is different from those of natural examples are attacked to the labeled classes of natural200

examples by targeted PGD-10 [26], to manufacture hard negatives containing adversarial noise.201

xo
t+1 := Π

N(xo,ϵ)
(xo

t − ϵ sign (∇xoLCE ((f(xo
t ) , y))) , (5)
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Where ∇xoLCE denotes the gradient of LCE with respect to xo. By this strategy, clean OEs randomly202

chosen from other classes are attacked to the labeled classes of natural examples and become negative203

adversarial examples. The motivation makes intuitive sense. 1) The negative adversarial sample204

generated by the targeted attack will be classified as the labeled class of the natural example with205

high confidence, but its ground truth label is not that, which makes it a very hard negative sample206

and is beneficial for the negative contrast. 2) The negative adversarial sample contains adversarial207

noise, which is special feature that natural negative samples do not have. And this feature helps the208

model learn the paradigm of adversarial noise and improve the robust performance. In particular, we209

demonstrate that negative samples with adversarial noise do improve robustness better in Table 4.210

3.3 Adversarial training with reverse Attention211

Secondly, we continue to improve TRADES to learn robust representation that meets alignment.212

Consider the calculating process of the model f(·). First, the feature vector z is obtained by g(x),213

and then the output vector Ωz is obtained by a linear mapping Linear(z). Each element zi in z214

represents the activation level of the feature channel that may be helpful for classification, with larger215

values representing more feature information extracted from that channel; ωi,j in Ω represents the216

importance of the ith feature channel to the jth class, with higher values representing the greater217

contribution of the feature channel to the class. Motivated by [1, 34], we exploit the importance218

of feature channels to target classes to align the feature of examples of the same classes and pull219

close the feature of PPs, which is named by reverse attention. To be specific, we take the Hadamard220

product (Kronecker product) of partial weight of the classifier Ωj and the feature vector z. It can221

weight feature channel by channel according to its contribution to being classified as the target class222

j, and gain a class-aware feature vector z′ containing the information of the target class j.223

z′i =

{
zi ⊙ ωi,y, (training phase)
zi ⊙ ωi,h(x), (testing phase)

(6)

where ⊙ denotes the Hadamard product operation, which is the method of multiplying two matrices of224

the same size element by element to obtain a new matrix of the same size. To ensure parameters used225

for weighting have the correct feature-to-class importance, we use the unweighted feature vector z to226

go through Linear(·) to obtain the auxiliary probability vector p , and z′ to get the final probability227

vector p′ . Finally, we use both p and p′ to train the model. During the training phase, we use the true228

label y as an indicator to determine the importance of channels, i.e., Ωj = Ωy. And in the testing229

phase, since the true label is not available, we simply choose a sub-vector of the linear weight by the230

predicted class h(x) as the importance of channels. We add the reverse attention to the last feature231

layer in the model, which generally contains two blocks. The model with the reverse attention does232

not need any extra modules, but module interactions are changed.233

Let’ s make a detailed analysis and explanation of the principle of this method. The class information234

from labels guides the input image to be mapped from the feature to the classification vector during235

training, establishing an feature-to-class mapping relationship. In the model, the feature extractor236

captures the representation that is helpful for classification until the feature vector contains enough237

information that allows the classifier to classify the sample as the target class. Among all the modules,238

the classifier is the closest to labels and learns which feature channel plays an important role in being239

classified as the target class (i.e., the feature importance). Since the classifier is unique, the importance240

of the feature channels of one example is exactly the same with that of the other samples in the same241

class, benefiting the generalization and robustness of the model in the target class. We propose the242

reverse attention to utilize this information to improve feature rather than classification. The feature243

vectors are weighted by partial parameters of the linear layer that belong to the target class, which244

can change the activation of each channel adaptively according to the feature importance, acting as an245

attention with the guidance of the class information. After the attention, the important channels in the246

feature vector are boosted and the redundant channels are weakened, i.e., the information contributes247

to the target class will become larger and more significant, which is helpful for correct classification.248

Considering from the perspective of the feature distribution, the weighted feature has gained extra249

class information, which induces changes in the feature distribution. Feature vectors with the same250

target class get the same weighting, and thus the weighted feature becomes more similar. Moreover,251

feature vectors with different target classes are weighted according to different weights, and the252

weighted feature distributions become more inconsistent. Therefore, the reverse attention guides253
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the alignment of the feature of the examples in the same class, pulling the feature of PPs closer and254

pushing the feature of NPs far away, which benefits alignment and drops by to promote exclusion and255

classification. Aligned feature has similar activations in every feature channel, which helps the model256

narrows the gap between feature of natural examples and AEs.257

4 Experiments258

To demonstrate the effectiveness of the proposed approach, we show feature distribution of trained259

models firstly. Then we evaluate our framework against white-box attacks and adaptive attacks, and260

make a compare with other defense methods. We conduct experiments across different datasets261

and models. Because our methods are compatible with existing AT techniques and can be easily262

incorporated in a plug-and-play manner, we choose three baselines [26, 36, 30] to combine with our263

framework for evaluation: PGD-AT-ANCRA, TRADES-ANCRA, and MART-ANCRA.264

4.1 Settings265

Implementation On CIFAR-10 and CIFAR-100 [22], we train ResNet18 [15] with a weight266

decay of 2.0× 10−4. On Tiny-ImageNet [10], we use PreActResNet18 [16]with a weight decay of267

5.0× 10−4. We adopt the SGD optimizer with a learning rate of 0.01, a momentum of 0.9, epochs of268

120 and a batch size of 128 as [30]. For the trade-off hyperparameters β, we use 6.0 in TRADES269

and 5.0 in MART, following the original setting in their papers. For other hyperparameters, we tune270

the values based on TRADES-ANCRA. We generate adversarial example for training by L∞-norm271

PGD [26], with a step size of 0.007, an attack iterations of 10 and perturbation budget of 8/255. We272

use single NVIDIA A100 and two GTX 2080 Ti in the experiments.273

Baseline We compare the proposed PGD-AT-ANCRA, TRADES-ANCRA, and MART-ANCRA274

with the popular baselines: PGD-AT [26], TRADES [36], MART [30] and SAT [18]. Moreover, we275

also choose three state-of-the-art methods: AWP [31], S2O [20] and UDR [4]. We keep the same276

settings among all the baselines with our settings and follow their original hyperparameters.277

Evaluation We choose several adversarial attacks to attack the target models, including PGD [26],278

FGSM [13], C&W [5] and AutoAttack [9] which is a powerful and reliable attack and an ensemble279

attack with three white-box attacks and one black-box attack. We notice that our methods use the280

auxiliary probability vector p in the training and testing phase, so we design two scenaios: 1) train281

with p and test without p; 2) train with p and test with p. 1) denotes evaluation against white-box282

attacks and 2) denotes evaluation against adaptive attacks. Following the default setting of AT, the283

max perturbation strength is set as 8. / 255. for all attack methods under the L∞. The attack iterations284

of PGD and C&W is 40 (i.e., PGD-40), and the step size of FGSM is 8. / 255. unlike 0.007 for other285

attacks. The clean accuracy and robust accuracy are used as the evaluation metrics.286

4.2 Comparison results of feature distribution287

(a) (b) (c) (d)

Figure 3: Frequency histograms of the L2 distance and cosine similarity of feature of natural examples,
AEs and OEs. We train ResNet-18 models on CIFAR-10 with four defense techniques: PDG-AT,
TRADES, MART and TRADES-ANCRA. Other details are the same with Figure 1
Frequency histograms of feature distribution is shown in Figure 3. It is shown that our methods can288

greatly improve feature distribution, which follows the characteristics of exclusion and alignment. In289

Figure 3 (a) and Figure 3 (b), it shows that the cosine similarity of the model trained by our method290

between natural examples and OEs shows a skewed distribution between -0.05 and 0.1, and the L2291
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distance with our method shows a Gaussian distribution between 5.5 and 10.0, which indicates natural292

examples and OEs have been fully distinguished in the feature space and exclusion has been met. In293

Figure 3 (c) and Figure 3 (d), it shows that in the model trained by our method there are a uniform294

distribution between 0.95 and 0.99 for the cosine similarity of the feature between natural examples295

and AEs, and a skewed distribution between 0.05 and 1.5 for the L2 distance of the feature, which296

indicates the feature between natural examples and AEs is very close to each other and alignment has297

been confirmed. Thus, our framework successfully helps AT to obtain robust feature.298

4.3 Comparison results against white-box attacks299

Table 1: Robustness (%) against white-box attacks. Nat denotes clean accuracy. PGD denotes robust
accuracy against PGD-40. FGSM denotes robust accuracy against FGSM. C&W denotes robust
accuracy against C&W. AA denotes robust accuracy against AutoAttack. Mean denotes average
robust accuracy against these four attacks. We show the most successful defense with bold.

Defense
CIFAR-10 CIFAR-100

Nat PGD FGSM C&W AA Mean Nat PGD FGSM C&W AA Mean
PGD-AT 80.90 44.35 58.41 46.72 42.14 47.91 56.21 19.41 30.00 41.76 17.76 27.23
TRADES 78.92 48.40 59.60 47.59 45.44 50.26 53.46 25.37 32.97 43.59 21.35 30.82

MART 79.03 48.90 60.86 45.92 43.88 49.89 53.26 25.06 33.35 38.07 21.04 29.38
SAT 63.28 43.57 50.13 47.47 39.72 45.22 42.55 23.30 28.36 41.03 18.73 27.86
AWP 76.38 48.88 57.47 48.22 44.65 49.81 54.53 27.35 34.47 44.91 21.98 31.18
S2O 40.09 24.05 29.76 47.00 44.00 36.20 26.66 13.11 16.83 43.00 21.00 23.49
UDR 57.80 39.79 45.02 46.92 34.73 41.62 33.63 20.61 24.19 33.77 16.41 23.75

PGD-AT-ANCRA 85.1085.1085.10 89.0389.0389.03 87.00 89.2389.2389.23 59.15 81.10 59.73 58.10 58.45 58.58 34.44 52.39
TRADES-ANCRA 81.70 82.9682.9682.96 82.74 83.01 59.7059.7059.70 77.10 53.73 51.24 52.17 52.55 35.8135.8135.81 47.94

MART-ANCRA 84.88 88.56 87.9587.9587.95 88.77 59.62 81.2381.2381.23 60.1060.1060.10 58.4058.4058.40 58.7458.7458.74 59.4159.4159.41 35.05 52.9052.9052.90

We train ResNet-18 by different defense on CIFAR-10 and CIFAR-100 to evaluate them under300

white-box attacks. And more results in PreActResNet18 on Tiny-ImageNet are provided in our301

supplementary material. The results on CIFAR-10 and CIFAR-100 are shown in Table 1. First, on302

CIFAR-10, our approaches improve the clean accuracy of based approaches by 5.2%, 3.2% and 5.9%,303

and also improves the robust performance under all the attacks (e.g., increase by 44.7%, 34.6% and304

39.7% against PGD). Compared with state-of-the-art defense, the robust accuracy against different305

attacks of our methods is almost two times as large than theirs (e.g., 81.23% VS 49.81%). Second, on306

CIFAR-100, our approaches also greatly improve the robustness and advance the clean accuracy. The307

clean accuracy of our methods has been increased by 3.5%, 0.3% and 6.8% compared with based308

methods, and the lowest average robust accuracy of ours is larger than the best one among other309

methods by 16.8%. In general, our three approaches gain the best performance both in the natural and310

attacked scenaios. To our surprise, MART-ANCRA and PGD-ANCRA rather than TRADES-ANCRA311

gain the best performance in a lot of cases without hyper-parameter tuning. Besides, our approaches312

not only improves robustness but also enhances clean accuracy, though there is always a trade-off313

between clean and robust accuracy. These results indicate that our approaches can vastly boost the314

robustness of models against white-box attacks.315

4.4 Comparison results against adaptive attacks316

We train several ResNet18 models on CIFAR-10 by PGD-AT-ANCRA, TRADES-ANCRA, MART-317

ANCRA and test the same models without p. In addition, we report vanilla based approaches as318

baseline. Results are in Table 2. It indicates that our approaches can still maintain superb performance319

after adaptive attacks, e.g., the robust accuracy against PGD of our methods without p are larger than320

those of baseline by 13.28%, 10.08% and 8.06%.321

4.5 Ablation studies322

Two defense methods. We train four models by TRADES, TRADES with the asymmetric nega-323

tive contrast (TRADES-ANC), TRADES with the reverse attention (TRADES-RA) and TRADES-324

ANCRA, respectively. The results of evaluation against adaptive attacks are shown in Table 3. First,325
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Table 2: Robustness(%) of ResNet-18 trained with our approaches and attacked with or without p.

Approach Nat
Attack with p Attack without p

PGD FGSM C&W PGD FGSM C&W
Vanilla TRADES 78.92 \ \ \ 48.40 59.60 47.59

TRADES-ANCRA 81.70 61.68 61.56 72.36 82.96 82.74 83.01
Vanilla PGD-AT 80.90 \ \ \ 44.35 58.41 46.72

PGD-AT-ANCRA 85.10 54.43 58.23 66.36 89.03 87.00 89.23
Vanilla MART 79.09 \ \ \ 48.90 60.86 45.92

MART-ANCRA 84.88 56.96 60.43 71.06 88.56 87.95 88.77

when incorporating the asymmetric negative contrast only, the performance of robustness against all326

the attacks and clean accuracy have been improved compared with vanilla TRADES (e.g., 48.36% VS327

54.18% against PGD-40). Next, when incorporating the reverse attention only, the performance on328

clean and adversarial data is also improved greatly compared with TRADES (e.g., 48.36% VS 61.69%329

against PGD-40). Thus, it shows each method contributes to robustness and generalization. Besides,330

when Trdeas-ANCRA is compared with TRADES-RA, the clean accuracy and robust accuracy331

against all the attacks except AA have been enhanced, which indicates that the two strategies are332

compatible and the combination can alleviate the side effect of independent methods.333

Strategy of negative samples We compare our strategy of the targeted attack with other strategies334

to select negative samples, including Random, Soft-LS and Hard-LS proposed by Bui et al. [3]. The335

details of them are provided in our supplementary material. The results are shown in Table 4. To make336

a comprehensive compare, we show results of both the best models and last models with different337

strategies. It shows that our strategy have the best performance of robustness and clean accuracy in338

the last models, and achieve the best robust accuracy in the best models.339

Table 3: Clean and robust accuracy (%) of ResNet-18 trained by TRADES, TRADES-ANC, TRADES-
RA and TRADES-ANCRA on CIFAR-10 against various attacks.

Defense Nat PGD FGSM C&W AA
TRADES 78.92 48.40 59.60 47.59 45.44

TRADES-ANC 80.77 54.18 63.44 49.84 48.51
TRADES-RA 80.46 61.59 61.48 72.15 61.02

TRADES-ANCRA 81.70 61.68 61.56 72.36 59.70

Table 4: Results of the best and last with four strategies of negative example. Best- denotes results in
the best models and Last- denotes results in the last models. We show the best results with bold.

Strategy Best-Nat Best-PGD Last-Nat Last-PGD
Random 81.44 62.64 81.78 61.71
Soft-LS 82.10 61.83 80.62 58.47
Hard-LS 82.3082.3082.30 62.53 82.13 60.98

Targeted attack 81.36 63.0863.0863.08 82.1882.1882.18 62.0262.0262.02

5 Conclusion340

This work addresses an overlook of robust representation learning in the adversarial training by a341

generic AT framework with the asymmetric negative contrast and reverse attention. We propose342

two characteristics of robust feature to guide the improvement of AT, i.e., exclusion and alignment.343

Specifically, the asymmetric negative contrast based on probabilities fixes natural examples, and only344

pushes away adversarial examples of other classes in the feature space. Besides, the reverse attention345

weights feature by parameters of the linear classifier, to provide class information and align feature of346

the same class. Our framework can be used in a plug-and-play manner with other defense methods.347

Analysis and empirical evaluations demonstrate that our framework can obtain robust feature and348

greatly improve robustness and generalization.349
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