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ABSTRACT

Geospatial information and its associated inferences play a critical role in nu-
merous real-world applications. Although large language models (LLMs) acquire
extensive general knowledge through large-scale pretraining, they typically lack
explicit representations of geospatial data. In this study, we propose a novel frame-
work for enabling LLMs to acquire and utilize geospatial knowledge. By introduc-
ing a set of specialized tokens designed to represent geospatial entities—such as
coordinates, locations, and addresses—we effectively embed geospatial informa-
tion into the model’s token space. Building upon this enhanced representation, we
conduct supervised fine-tuning (SFT) and reinforcement learning (RL) on a pre-
trained geospatially augmented model to evaluate its performance across multiple
downstream tasks. Our approach demonstrates a systematic method for integrat-
ing structured geospatial knowledge into LLMs, thereby extending their reasoning
capabilities to spatially informed domains.

1 INTRODUCTION

The rapid advancement of large language models (LLMs) has significantly influenced various do-
mains, including natural language processing, code generation, and multimodal reasoning. Never-
theless, the integration of LLMs into geospatial research remains underexplored, presenting substan-
tial challenges and unmet user requirements. When endowed with strong geospatial understanding,
LLMs can perform tasks such as generating precise locations—not solely based on learned textual
descriptions, but by utilizing high-dimensional geospatial data. Furthermore, geospatial information
can function as a novel modality, aligning with other modalities such as images or videos, thereby
enabling models to perform localization from visual inputs and fully incorporate geographical and
spatial information into their reasoning processes.

Achieving these goals requires not only architectural innovations but also the development of spe-
cialized training paradigms and benchmark datasets tailored for geospatial applications. To this
end, we propose a novel method to inject geospatial knowledge into language models, along with
a systematic workflow comprising geospatial encoding, pretraining, fine-tuning, and post-training
stages, to develop a domain-specialized LLM with embedded geospatial intelligence. Our approach
builds upon the Qwen2.5-7B-Instruct architecture, enhanced through targeted adaptation to geospa-
tial data modalities and knowledge sources. After training, our model successfully recognizes the
introduced special tokens and their associated geospatial information, enabling effective application
to real-world problem-solving.

2 RELATED WORK

In recent years, large language models (LLMs) have garnered significant attention due to their strong
performance in natural language processing and wide applicability across domains such as health-
care, finance, and law. However, research on LLMs in the geographic domain remains limited and
is still in its early stages.

Early studies Roberts et al. (2023); Mai et al. (2023) evaluated the capabilities of advanced closed-
source models—such as ChatGPT and GPT-4—in geospatial tasks, primarily focusing on perfor-
mance assessment and identifying key limitations in complex, context-sensitive geographic reason-
ing. GeoGPT enhances LLMs by integrating retrieval-augmented generation (RAG) and geospatial

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

libraries to support GIS workflows and satellite image analysis (Zhang et al., 2023). Similarly, Ge-
oLLM employs fine-tuning techniques to extract geospatial knowledge from pre-trained LLMs for
solving specific geospatial problems (Manvi et al., 2023). (Ding et al., 2023) try to do the POI-query
matching task with LLM pretraining. Recent work (Liang et al., 2025; Zhang et al., 2025; Hsu et al.,
2024) has explored multimodal approaches that leverage remote sensing imagery, maps, and textual
data through vision-language large models to improve geospatial understanding.

Nevertheless, most existing studies focus on macro-scale or statistical applications—such as pop-
ulation density estimation, environmental and disaster monitoring, and urban traffic analysis.We
aim to incorporate geospatial modality information as a novel modality representation, which, upon
alignment with other modalities, enables the emergence of a large-scale model inherently capable of
sophisticated geospatial reasoning and expression.

3 METHOD

This section outlines the key techniques and methodologies employed in this work. Section 3.1
presents the encoding algorithm we designed in this study. Section 3.2 elaborates on the continuous
pre-training procedure aimed at equipping the model with general geospatial awareness, including
data construction strategies and principles of knowledge integration; the resulting model, GSLLM-
Base, is obtained through training in this phase. Section 3.3 presents a real-world application of our
geospatial model. We designed a tailored pipeline comprising continuous pretraining, supervised
fine-tuning, and reinforcement learning to enhance the model’s performance on the geocoding task.
The overall workflow is illustrated in Figure 4.

Figure 1: Overall workflow

3.1 GS-ENCODING

For LLMs, the original tokenization mechanism is ill-suited for effectively representing geographic
coordinate information, specifically latitude and longitude. Hence, it is essential to design a
more appropriate encoding method to enhance the model’s understanding of spatial data. In this
domain, Geohash is the most widely adopted algorithm. Building upon this foundation, we propose
an improved encoding algorithm with enhanced expressive power that explicitly incorporates
directional information. The overall encoding process is illustrated in Figure 1. The procedure
proceeds as follows: First, starting from the entire Earth, we define west longitude and south
latitude as negative, resulting in an initial longitude interval of [-180,180] and latitude interval of
[-90,90]. This initial interval is then recursively subdivided into four equal quadrants–northeast
(NE), southeast (SE), northwest (NW), and southwest (SW)—by bisecting both horizontally and
vertically. The current bit of the encoding is determined according to which quadrant contains
the target coordinate. Subsequently, the selected quadrant becomes the new interval and is further
partitioned in the same manner to compute the next bit. This recursive partitioning continues un-
til the desired encoding length is reached. For clarity, each bit in the encoding is formally defined as:

[GEO]{direction}-{i} {direction} ∈ {NE,SE,NW,SW}, {i} ∈ {1, 2, ...n}
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where n denotes the target encoding length, set to a maximum of 20 in our work, yielding 80 distinct
token values across all positions and directions. These tokens are incorporated into the model’s
tokenizer to expand its vocabulary. After generating the sequence of encoding bits, we delimit the
entire sequence using two special tokens, <|area_start|> and <|area_end|>, to form a
structured representation of the geographic area. Figure 2 illustrates the complete encoding process.

Figure 2: our encoding algorithm

According to the aforementioned principles, an increase in encoding bits leads to higher spatial
accuracy. For instance, a 20-bit encoding corresponds to a rectangular area of approximately 20
meters × 40 meters, which meets the accuracy requirements of real-world applications. Moreover,
since areas sharing a common prefix are hierarchically contained within larger areas, our experi-
ments primarily adopt 20-bit encoding for high-precision positioning, while shorter encodings are
utilized to represent broader areas, thereby preserving hierarchical spatial relations.

Our encoding algorithm overcomes the limitations of the GeoHash algorithm in preserving local
proximity. As illustrated in Figure 3, two small areas (blue and yellow) are deemed distant under
the GeoHash scheme due to a discrepancy in a high-order bit. However, in reality, these areas
progressively converge through subsequent subdivisions and ultimately become adjacent, with a
minimal actual spatial distance between them. By incorporating directional information at each bit
level, our encoding enables the model—after training—to recognize the gradual spatial convergence
of such areas, thereby effectively mitigating the boundary distance error inherent in GeoHash.

Figure 3: boundary distance error issue

3.2 GENERNAL CONTINUOUS PRE-TRAINING

In this stage, we aim to inject diverse geographic knowledge into a large language model (LLM) via
continuous pre-training, thereby endowing it with robust geospatial perception capabilities. Specif-
ically, the model should be able to recognize containment relations between addresses and areas,
spatial distributions and positional relationships between areas and roads, as well as directional, dis-
tance, and containment relations among different areas. Building upon the POI data and encoding
algorithm introduced in Section 3.1, we design multiple types of geospatially informative training
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samples to facilitate the acquisition of these capabilities. Our data is primarily sourced from the
company’s internal POI database. A POI (Point of Interest) constitutes a fundamental geographic
entity in online mapping services, representing specific physical locations and including attributes
such as name, address, coordinates, and entity type. The detailed data construction methodology is
outlined as follows:

3.2.1 ADDRESS-AREA RELATION

Injecting knowledge about the relationship between addresses and areas into large language models
(LLMs) is crucial for enabling effective localization tasks. For each POI data entry, we first extract
its address information and then apply our encoding algorithm to determine the corresponding area.
To reinforce this relationship, we employ a bidirectional approach. Based on this framework, we
construct a comprehensive set of templates to enhance linguistic diversity through matching. The
specific template designs are detailed in Section A.1.

3.2.2 ROAD-AREA RELATION

For maps, roads or streets serve as their ”meridians and collaterals,” linking individual addresses.
Thus, incorporating knowledge about the spatial distribution and positional relationships between
roads and areas into large language models (LLMs) is crucial. For each area, we employ two meth-
ods to identify nearby roads: first, we utilize Qwen2.5-32B-Instruct(Team, 2024) to extract po-
tential road names directly from the addresses within the area; second, we retrieve roads located
within a 200-meter radius of the area’s geographic coordinates. The results from both approaches
are then merged and deduplicated. Similarly, we enhance the relational representation through dual-
directional integration. The detailed construction methodology is provided in Section A.1.

3.2.3 DISTANCE AND DIRECTION RELATION BETWEEN AREAS

We also need to inject knowledge regarding the directional and distance relationships between areas
into the LLM to enhance its perception of the overall geographic space. The data format is as
follows: for any two areas, one can reach the other by moving a specific distance in a given direction.
Through extensive learning of such relational knowledge, the model can effectively address the
boundary distance error issue described in Section 3.1.

3.2.4 HIERARCHICAL INCLUSION RELATION BETWEEN AREAS

We further require injecting knowledge regarding the size of areas and their hierarchical inclusion
relationships into the LLM. In addition to employing 20-bit encoding for fine-grained address lo-
calization, our model must also be capable of identifying larger areas, such as major commercial
pedestrian streets. Specifically, we collect co-located addresses within a broader area and extract the
common prefix from their 20-bit encodings to derive a shorter representation for the encompassing
area. These hierarchical relations are then described in natural language to construct the pre-training
dataset.

3.3 APPLICATION: GEOCODING

In order to evaluate the effectiveness of our pretrained model, we fine-tuned it on a representative
downstream task based on GSLLM-base. The geocoding task is one of the most fundamental and
critical tasks in the geographic domain, aiming to convert textual addresses into geographic coordi-
nates for spatial localization. (Zandbergen, 2008)

3.3.1 DOMAIN-ADAPTIVE PRETRAINING

In our framework, the model localizes an address to an area represented by a 20-bit encoding, which
is then converted back into coordinates to yield the final location. However, due to the data dis-
tribution and hierarchical inclusion relationships among areas, the localization error rate tends to
increase with the number of encoding bits, as higher bit counts correspond to finer spatial subdi-
visions. More significantly, errors at higher-order bits result in greater positional inaccuracies. To
mitigate this issue, we propose a method that enables the model to focus on error-prone bit positions
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Figure 4: Overall workflow

during training by prioritizing their optimization. Specifically, we introduce weighted positions in
the autoregressive loss calculation. Figure 5 illustrates the workflow of the weighting algorithm, and
Section A.2 provides detailed weight specifications.

Figure 5: the weight algorithm

3.3.2 SUPERVISED FINETUNING(SFT)

In this phase, we construct high-quality and well-structured reasoning process data to facilitate the
model’s acquisition of the reasoning format. Our objective is to emulate the cognitive process em-
ployed by humans when determining a location. Through analysis of prevalent address formats in
the dataset, we observe that the majority of addresses adhere to specific patterns. Statistical analysis
reveals that over 80% of addresses can be classified into two distinct formats:

(1) A specific number on the road (e.g., No. 5 Chaoyang North Road).

(2) A certain distance in a particular direction from the reference position (e.g., 50 meters east of
the intersection of Chaoyang North Road and Chaoyang West Road).

We can construct the reasoning process for these patterned addresses in a reasonable and efficient
manner. Specifically, we first identify a reference address associated with the destination address
and determine its corresponding area. Subsequently, by leveraging the distance and directional re-
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lationship between the destination address and the reference address, we infer the area in which the
destination address is located. A concrete construction example is illustrated in Figure 6. Further-
more, the model exhibits a certain level of accuracy when generating direct answers without explicit
reasoning. To preserve this capability during reinforcement learning, we include a portion of non-
reasoning samples in the cold-start dataset. This strategy enables the model to maintain a balance
between reasoning-based and direct response generation after the cold-start phase.

(a) Format (1) (b) Format (2)

Figure 6: Example of reasoning process

3.3.3 REINFORCEMENT LEARNING

Following the cold start phase(SFT), we leverage reinforcement learning with the GRPO algo-
rithm (Shao et al., 2024) to further activate the reasoning potential of the models. Specifically, for a
question q from the training dataset D, GRPO samples a group of responses O = {oi}Gi=1 from the
old policy πold and then optimizes the policy model by maximizing the following objective:

J (θ) = E(q)∼D,{oi}G
i=1∼πθold

(O|q)

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{
min

[
γi,t(θ)Âi,t, clip (γi,t(θ), 1− ϵ, 1 + ϵ) Âi,t

]
− βDKL

[
πθ∥πref

]}
,

where γi,t(θ) =
πθ(oi,t|q,oi,<t)

πθold
(oi,t|q,oi,<t)

, πref represents the reference model, and the term DKL intro-
duces a KL divergence constraint to limit how much the model can deviate from this reference.
The advantage estimate Âi measures how much better the response oi is compared to the average
response, which is computed using a group of rewards {r1, r2, . . . , rG} for the responses in set O:
Âi =

ri−mean({r1,r2,...,rG})
std({r1,r2,...,rG}) .

The most crucial part of training GRPO lies in the calculation method of rewards. Unlike common
mathematical reasoning problems, we first introduce a reward model to better evaluate the quality of
the reasoning process, which is trained using artificially constructed pair-wise positive and negative
samples. Specifically, the reasoning process for positive samples is constructed according to the
method described in Section 3.3.2, while negative samples are generated by randomly altering key
nodes in the reasoning process that are prone to errors. The output of the reward model is defined
as Rewardm, which represents the score assigned to the quality of the reasoning process. Next, in
designing the reward function Rewardr for reasoning outcomes, we aim to satisfy the following
criteria:

1. For simple samples where correct answers can be obtained without explicit reasoning, the
model is encouraged to respond directly.

2. For complex samples where direct responses lead to incorrect answers, the model is incen-
tivized to perform step-by-step reasoning to reach the correct solution.
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Accordingly, the input to the result reward function comprises two components: prediction error
distance and response length. Based on these considerations, we formulate the following function:

Rewardr =


Rd(d) +max(Rl(l)) + β 0 ≤ d ≤ 200, l < 100
Rd(d) +max(Rl(l)) 0 ≤ d ≤ 200, l ≥ 100

Rd(d) +Rl(l) 200 < d ≤ 1000, 100 < l < 400
0 d > 1000

where d indicates prediction error distance, l indicates response length, Rd(d) represents error re-
ward function and Rl(l) represents the length reward function. The specific formula is as follows:

Rd(d) =

{
−e(0.000016d

2) + 2 0 ≤ d ≤ 200
− 1

8000d+
1
8 200 < d ≤ 1000

Rl(l) = −(
1

112500
)l2 +

1

255
l − 0.2555 100 ≤ l ≤ 400

Some specific values in the above formula are designed based on practical requirements. For
instance,d < 200 indicates a correct answer, while l < 100 represents a direct response without
reasoning. The peak of Rl(l) is set at (250,0.3) because a response length around 250 typically cor-
responds to a well-structured reasoning process. Additionally, βis a hyperparameter introduced to
encourage the model to prefer direct response when the question can be answered correctly without
reasoning. Experimental results confirm that setting β = 2 achieves a good balance between direct
response and reasoning.

The total reward function is as follows, where the hyperparameter λ is used to control the ratio
between the output of result reward function and the reward model, we set it to 0.01:

Reward = Rewardr + λ ∗Rewardm

Regarding the data used during training, to ensure the model acquires both direct answering capa-
bility and reasoning-based responding, the dataset must be carefully balanced in composition. As
previously discussed, the goal is for the model to answer directly on simple samples while engaging
in reasoning for more challenging ones. However, if the dataset predominantly consists of simple
samples, the model tends to favor direct responses during exploration; experimental results indicate
that the average response length rapidly decreases, eventually converging almost entirely to direct
answers. Conversely, an overabundance of difficult samples may lead the model to over-rely on
reasoning pathways. To address this imbalance, we employ GSLLM-GC prior to cold-start to gen-
erate responses for candidate data intended for reinforcement learning, labeling incorrect outputs as
difficult samples and correct ones as simple samples. We then construct the reinforcement learn-
ing dataset by combining simple and difficult samples in approximately a 1:1 ratio. The overall
construction process is illustrated in Figure 7

Figure 7: Construction method of reinforcement learning training set

4 EXPERIMENTS AND EVALUATION

This section introduces the overall experimental design of our work, as well as the methods and
results for evaluating the model’s capabilities. Section 4.1 introduces the collection and construction
process of our dataset. Section 4.2 describes the specific settings for each experiment. Section 4.3
evaluates the model’s performance on the Geocoding task. The evaluation is divided into two parts:
In-Distribution (ID) testing on addresses seen during continuous pre-training to measure the model’s
memorization ability, and Out-of-Distribution (OOD) testing on addresses unseen during continuous
pre-training to assess its generalization capability.
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4.1 DATASET

We select all POI data from Beijing, China, for our experiments. After applied a series of data
cleansing and filtering strategies, we got approximately 2.8 million addresses. Using our encoding
algorithm, these addresses are assigned to around 1 million areas with 20-bit encoding. From them,
we extract some addresses for OOD testing and for reinforcement learning training. Based on the
data construction method described in Section 3.2, we created a dataset named dateset-CPT, contain-
ing approximately 100 million tokens, for the general continuous pre-training. For the specialized
Geocoding continuous pre-training introduced in Section 3.3, we generated one data entry for each
address used in dateset-CPT according to the required format, thereby constructing a Geocoding
description dataset named dataset-GC for this phase of pre-training. For Section 3.3.2, we first con-
struct about 1w high-quality reasoning process datas for cold-start. Then, approximately 2w pairs of
pair-wise data are constructed using the method described in Section 3.3.3 to train the reward model.
Finally, the balanced dataset with a total of 10w is constructed using the method shown in Figure 7
for reinforcement learning.

4.2 EXPERIMENTS SETUP

We choose Qwen2.5-7B-Instruct(Team, 2024) as the starting base model. For Section 3.2, we per-
form 5 epochs of pre-training on the dateset-CPT dataset based on Qwen2.5-7B-Instruct with the
learning rate set to 1e-4, resulting in GSLLM-Base. For Section 3.3.1, we perform 2 epochs of pre-
training on the dataset-GC dataset based on GSLLM-Base with the learning rate set to 1e-4, resulting
in GSLLM-GC. For Section 3.3.2, we perform 2 epochs of Supervised Fine-Tuning (SFT)(Radford
et al., 2018) on GSLLM-GC using high-quality reasoning process datas with the learning rate set to
5e-6 to complete cold-start. For Section 3.3.3, We first perform 3 epochs of LoRA(Vaswani et al.,
2017) fine-tuning on the cold-started model using pair-wise data with the learning rate set to 1e-5
to obtain the reward model. Then, we conduct 1 epoch of reinforcement learning training on the
constructed balanced dataset, ultimately yielding GSLLM-Think.

4.3 GEOCODING TASK EVALUATION

4.3.1 GC-INDEXING

There is extensive research in this field, most of which relies on various types of POI retrieval
methods, such as (Huang et al., 2024). Our baseline method employs an online geocoding (GC)
service that uses a search engine to match the input address with entries in the database and retrieve
the corresponding coordinates. We did not adopt general-purpose large language models such as
qwen-max because they are fundamentally incapable of accurately retrieving or resolving precise
address information.

4.3.2 RESULTS & ANALYSIS

Task Source GC-Indexing GSLLM-Base GSLLM-GC GSLLM-Think

Geocoding ID 0.89 0.83 0.94 0.92
OOD 0.71 0.71 0.79 0.81

Table 1: result of Geocoding

Table 1 presents the test results of the geocoding task. We adopted a prediction error distance of less
than 200 meters as the criterion for correctness and compared the performance of baseline methods
with our model. Compared to the retrieval-based baseline, our best model achieved approximately a
20% improvement in accuracy. GSLLM-Think demonstrates the capability to reason through com-
plex problems while retaining the ability to provide direct responses to simpler queries, effectively
balancing the thinking and straight-forward answering mode.

For the pretrain phase, we hypothesized that data density could significantly affect the accuracy of
the GC task. To evaluate this hypothesis, we trained our model on multiple datasets with vary-
ing sizes. The results are summarized in Figure 8 and Figure 9. The study area—Chaoyang
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Region address num Accuracy

Chaoyang District

80k 0.32
200k 0.56
450k 0.65
680k 0.73
750k 0.73

Figure 8: Accuracy vs data size. Figure 9: Performance trend.

District(∼ 455 km2), Beijing—contains over one million POIs. Training began with 80,000 ad-
dresses, yielding an accuracy of 32%. As the training sample size increased to 680,000, accu-
racy plateaued at approximately 73%; further increases in data volume did not lead to significant
improvements in OOD inference performance. Consequently, we sampled the training set at this
ratio(∼ 70%) to balance computational cost and accuracy.

5 ABLATION STUDIES

5.1 EFFECTIVENESS OF WEIGHTING METHOD IN GEOCODING CONTINUOUS PRE-TRAINING

In Section 3.3, during the continuous pre-training focused on geocoding using the dataset-GC
dataset, we design a weighting method to achieve finer and more effective optimization. To validate
the effectiveness of this method, we conduct a comparative experiment using the same dataset-GC
dataset for continuous pre-training without the weighting method, while keeping all hyperparameters
identical. Table 2 presents the experimental comparison results. The results show that, compared
to the non-weighting method, the use of the weighting method leads to significant improvements on
both the ID and OOD test sets. This demonstrates that our weighting method is highly effective in
achieving more refined geocoding optimization.

Task Source GSLLM-GC GSLLM-GC
(w weighting) (w/o weighting)

Geocoding ID 0.94 0.88
OOD 0.79 0.76

Table 2: Effectiveness of weighting method

6 CONCLUSION

In this work, we propose a novel method that leverages the separation strategy from GeoHash and a
new encoding system to inject geospatial knowledge into large language models (LLMs). The model
is pretrained on point-of-interest (POI) data—comprising names, addresses, and coordinates—to
obtain GSLLM-base. Subsequently, the model is adapted to several real-world scenarios through
supervised fine-tuning (SFT) and reinforcement learning (RL) based on GSLLM-base. Our results
demonstrate that the proposed approach significantly mitigates the challenge of LLMs learning lo-
cation information from floating-point coordinates.

The framework supports the integration of additional data modalities, such as images, into the work-
flow. Several applications are being developed based on this model, including reverse geocod-
ing—i.e., generating textual addresses from geographic coordinates—and other location-aware
tasks. In this study, we have demonstrated the feasibility of GSLLM; future work will extend its
coverage to broader regions through larger models and more extensive datasets.
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A APPENDIX

A.1 DATA FORMAT

This section introduces some specific details of data construction in the main text. First, in Sec-
tion 3.2.1, we designed over 50 matching templates to construct the relation between address and
area, with several examples illustrated in Figure 10. Then fill in the specific ”area” and ”addresses”
information according to the template.

Figure 10: data templates for Section 3.2.1

For Section 3.2.2, we designed over 20 matching templates to construct the relation between road
and area, with several examples illustrated in Figure 11. Then fill in the specific content as well.
Furthermore, to preserve the model’s natural language ability, we incorporate a portion of data

Figure 11: data templates for Section 3.2.2

generated by advanced LLM like Qwen-Max during the data construction process. This inclusion
enables the model to produce more diverse and rich content, mitigating the risk of over-reliance
on template-matching data that could lead to an excessive focus on fixed formats. ?? illustrates
examples of the prompts used in constructing the data.

A.2 WEIGHT DETAIL

Based on practical requirements, in the weighting algorithm, we assign weights to the
20-bit encoding of the area in descending order of importance, as detailed below:
{2,2,2,2,2,2,2,2,128,128,64,64,32,32,16,16,8,8,4,4}
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