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ABSTRACT

Reinforcement learning (RL) has become the de facto standard practice for se-
quential decision-making problems by improving future acting policies with feed-
back. However, RL algorithms may require extensive trial-and-error interactions
to collect useful feedback for improvement. On the other hand, recent develop-
ments in large language models (LLMs) have showcased impressive capabilities in
language understanding and generation, yet they fall short in exploration and self-
improvement capabilities for planning tasks, lacking the ability to autonomously
refine their responses based on feedback. Therefore, in this paper, we study how
the policy prior provided by the LLM can enhance the sample efficiency of RL
algorithms. Specifically, we develop an algorithm named LINVIT that incorpo-
rates LLM guidance as a regularization factor in value-based RL, leading to sig-
nificant reductions in the amount of data needed for learning, particularly when
the difference between the ideal policy and the LLM-informed policy is small,
which suggests that the initial policy is close to optimal, reducing the need for
further exploration. Additionally, we present a practical algorithm SLINVIT that
simplifies the construction of the value function and employs sub-goals to reduce
the search complexity. Our experiments across three interactive environments—
ALFWorld, InterCode, and BlocksWorld—demonstrate that the proposed method
achieves state-of-the-art success rates and also surpasses previous RL and LLM
approaches in terms of sample efficiency.

1 INTRODUCTION

Trained on the web-scale corpora, Large Language Models (LLMs) have exhibited emergent capa-
bilities and seen tremendous success across various fields, such as code development (Chen et al.,
2021; Roziere et al., 2023; Li et al., 2023) and theorem proving (Yang et al., 2023b; Romera-Paredes
et al., 2023). The recent advances in robotics (Huang et al., 2023b; Liang et al., 2023) and games
(Wang et al., 2023a; Yuan et al., 2023; Wang et al., 2023c; Liu et al., 2023b) further highlight the
potential of LLMs to build effective agents in well-designed interactive environments.

However, the reasoning and planning abilities of LLMs, which are important for intelligent agents,
have been found to be inconsistent and often unreliable (Valmeekam et al., 2023b; Mahowald et al.,
2023; Huang et al., 2023a; Pallagani et al., 2023). Besides, agents powered by LLMs tend to have
limited abilities to explore different strategies, frequently defaulting to repeating established poli-
cies. This limitation becomes particularly pronounced in complex decision-making scenarios that
LLMs are not specifically attuned to, resulting in significant difficulties in refining their strategies
based on environmental feedback by reasoning the environment feedback based solely on its inher-
ent capabilities (Valmeekam et al., 2023a; Shinn et al., 2023; Ivanova, 2023; Zhang et al., 2024).
On the contrary, Reinforcement Learning (RL) is a well-studied methodology for improving future
acting policies with feedback. Unfortunately, improving from scratch without the guidance of prior
knowledge, such as common sense, requires the RL agents to take a huge amount of random interac-
tions to collect useful feedback, leading to poor sample efficiency and even failure in sparse-reward
environments.

Hence, in this paper, we aim to tackle these issues and answer the following question:

Can we improve the sample efficiency of Reinforcement Learning with Large Language Models?
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Task: clean a cloth and
put it on countertop

81: You see a cabinet 1, a drawer 1, a
sinkbasin 1, and a countertop 1.

RL LLM RL with LLM as a Prior
a1: Go to cabinet 1 a;: Go to drawer 1 a;: Go to drawer 1
. ay: Take cd 1 Trai 1 as: Take towel 1 Trai 1 as: Take towel 1
Trajecory 1 4 .. Go to drawer 1 [A]ECOny, a3: Go to drawer 1 [A]ECony, a3: Go to drawer 1
Feedback: Fail to complete the task (R=0). Feedback: Fail to complete the task (R=0). Feedback: Fail to complete the task (R=0).
ay: Go to cabinet 1 ay: Go to cabinet 1 ay: Go to cabinet 1
. as: Go to sinkbasin 1 q az: Go to sinkbasin 1 Traiectory 24 22 Take cloth 1
Trajectory 2 ag3: Go to cabinet 1 Trajectory 2 ag: Take towel 1 J ry a3: Go to sinkbasin 1

... (inefficient random interactions) ... (same hallucination mistakes) Feedback: Success! (R=1).

Able to improve with feedback. Good initial policy. Good initial policy.
© Many random interactions to € Unable to effectively improve Effective policy improvement
collect improvable feedback. the initial policy via feedback. via feedback.

Figure 1: Illustration of the differences and the respective advantages, disadvantages of RL and
LLM agents in an instance of the ALFWorld decision-making task. We propose an RL framework
leveraging the LLM as a policy prior that gets the best of both worlds.

Our primary objective is to develop an algorithm that is both theoretically robust and empirically ef-
fective, utilizing LLMs to enhance sample efficiency. Our pivotal insight is the utilization of LLMs
to define a regularizer, as opposed to directly employing them in decision-making. Leveraging
the properties of regularized-MDPs, we find that sample complexity can be significantly reduced
when the LLM-provided policy closely aligns with the optimal policy. Moreover, our approach
retains the capability to identify the optimal policy even in scenarios where the LLM policy falls
short. An illustration comparing the standard RL algorithms, LLM agents, and the RL framework
with LLM as a prior is shown in Figure 1. To demonstrate this concept, we introduce an algorithm
named Language-INtegrated Value Iteration (LINVIT), which shows a marked improvement in sam-
ple complexity, particularly when the Kullback-Leibler (KL) divergence between the optimal policy
and the LLM policy is minimal.

We further present a practical algorithm called SLINVIT and empirically validate it in various bench-
marks, including ALFWorld (Shridhar et al., 2020), the interactive coding environment InterCode
(Yang et al., 2023a), and the planning benchmark BlocksWorld (Valmeekam et al., 2023b). Experi-
mental results show that the proposed algorithm outperforms previous RL and LLM algorithms by
a large margin, achieving higher success rates with fewer numbers of samples.

2 BACKGROUND

Reinforcement Learning. Consider the problem of learning to optimize a finite H-horizon
Markov Decision Process (MDP) over repeated episodes of interaction. We denote by S and A4 the
state and action space, respectively. When taking an action a € A at a state s € S at timestep h, the
agent receives a reward 7, (s, a) and the MDP transits to a new state s’ according to s’ ~ P;(- | s, a).

We aim to find a policy 7 that maps a state to an action distribution to maximize the expected
cumulative reward. We denote by @)}, : S x A — Rand V" : S — R the state-action value function
and the state value function associated with 7, respectively, which are defined as follows,

Qn(s,a) =rp(s,a) + Z P;;(S/ | s, a)fo+1(S/)7 Vi (s) = Zﬂ-(a’ | 5)Q1(s,a),

s’ a

where s € S, a € A. The objective of the decision-making problem is to maximize the state value
at the initial timestep V;*(s1), where s; € S is the initial state.

Decision-Making with LLMs. To solve decision-making problems, one can prompt the LLM
agent to generate action responses "M (a | s) based on its state s, which consists of the
observation-action history up to the current timestep h in partially observable MDPs, or contains
an additional reasoning step (Yao et al., 2022) in a chain-of-thought (Wei et al., 2022) manner. Un-

fortunately, without the domain knowledge of a specific task or environment, the LLM policy is
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hard to be optimal, especially when the planning problems have long horizons and the LLM lacks
the necessary reasoning abilities. In this work, we explore another manner of leveraging the LLM
policy as the priorin RL.

3 USING LANGUAGE MODEL AS A POLICY PRIOR

In this section, we present an algorithm leveraging LLM to enhance sample efficiency. We begin by
discussing the algorithm’s motivation, followed by a detailed explanation of its procedure.

Motivation. A simplistic approach to using Large Language Models (LLMs) in decision-making
is directly applying the LLM-generated policy to target tasks. However, pretrained and fine-tuned
on the static datasets, LLMs are not inherently attuned to the specific interactive environments of
concern and are unable to modify their policies based on environmental feedback. Consequently,
effectively leveraging LLM information for decision-making remains an unresolved challenge. In-
spired by the property of entropy-regularized MDP (Neu et al., 2017), our approach employs the
large language model as a supplemental regularizer within the original algorithm, rather than using
it as the primary decision-making tool. This methodology significantly improves sample efficiency
when the LLM’s policy is closely aligned with the optimal policy. Moreover, we can still identify
the optimal policy for the original MDP even if the LLM’s policy is suboptimal.

Algorithm 1 Language-INtegrated Value Iteration(LINVIT)

Input: Target precision e, target probability d, bonus function 67, p%-KL,

1: fort =0,...,7 do

: Construct the model estimator P/ and u}, as (3.1).
Compute the optimistic and pessimistic value VZ and K’;L as (3.2) and (3.3).
Compute 7t as (3.4).
forh=1,...,Hdo

Sample aj, ~ 7} (-|s},), and observe sj, , ; from the environment.

end for

8: end for
9: Return 7, which the uniform mixture of {7!}7_;.

AR A T

With the above motivation, we propose a novel algorithm Language-INtegrated Value Iteration
(LINVIT), which is an iterative algorithm that outputs a policy after 7 iterations. In each iteration
t € [T, we first utilize the gathered data to estimate the transition model and calculate the uncer-
tainty associated with our estimation. This estimator is employed to formulate both the optimistic
and pessimistic regularized value functions. The final step of each iteration involves leveraging these
value functions to develop an exploration policy, which is then used to acquire additional data from
the environment. We summarize our algorithm in Algorithm 1. In the following part, we elaborate
each of the above steps in detail.

Model and Uncertainty Estimation. We estimate the transition model as follows. Let n! (s, a)
denote the number of times the state-action pair (s, a) has been visited at step h during the first ¢
episodes, and let n} (s, a, s”) denotes the number of times the state-action-next-state triplet (s, a, s’)
at the same step and episode count. Our dynamics estimator P} (s'[s, a) is defined as P} (s'|s,a) =
nt (s,a,s")/nt (s,a) if nl (s,a) > 0and P}(s'|s,a) £ 1/S for all s’ € S else. We then define the
uncertainty quantifier u}, by

ul (s,a) £ max{QH, \/10g(4HT52A/5)} 3.1)

CACHD)

Intuitively, the uncertainty quantifier u}, is inversely related to the frequency of visits to a state-action
pair; the less frequently a state-action pair is visited, the greater the value of u!. This relationship
means that u}, effectively measures our uncertainty regarding each state-action pair, capturing the
uncertainty of our estimation.
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Regularized Value Functions. After estimating the transition model and the uncertainty, we com-
pute the optimistic and the pessimistic regularized value function by

Q) (s,a) = clip{ra(s,a) + > Pi(s' | 5,a)V 41 (") +ub(s,a)},

s
t

Vils) = max {3 w(als)Q(s) = AKL(x(- | 9)llmk (- | 9)) }, (3:2)

TEA A

with V;_H = V%1 = 0 by convention, and clip(z) = min{max{x, 0}, H} The definition

of @ and V comprise three components: the expected reward, the uncertainty estimator, and the
regularization defined via 7M. It can be viewed as an optimistic estimation of the regularized
value function. We similarly define @ and V as

QZ(s,a) = clip(rn(s,a) + Z Pi(s" | s,a)VZH(s’) — uj,(s,a)),

Vt(s) = max {Zw(am%(s, a) — AKL(r(- | s)[xbM(- | s))}. (3.3)

TEA A

Similar to @ and V, Q and V. can be regarded as pessimistic estimations of the regularized value
function. The primary distinction between () and Q lies in the sign of the uncertainty estimator.

Sampling Policy. We explore the environment and collect data with 7¢*! = {WZH},LH:P which is

defined as

1

Th(- 1) = o 1o = argmax @ (s, @) — Q) (s,a)} + Tt 7| 5), (3.4)

where 7t (- | 5) = aigerilax{ZW(a | $)Qh(5) — AKL((- | 8)[|7E2M(- | 5)) }

.. . —t . L
Intuitively, the difference @, (s,a) — Q' (s,a) captures the uncertainty of the estimation of the

=h
regularized value function. As a result, the policy ), is designed to act predominantly as a greedy
policy concerning the optimistic regularized value function, doing so with a probability of 1 — 1/ H.
Conversely, with a probability of 1/H, it opts for the action associated with the greatest uncertainty.
This approach ensures a balance between exploiting known rewards and exploring actions with
higher uncertainty to refine the value function estimation.

4 RELATED WORK

Reinforcement Learning with Language. Language offers a particularly effective medium for
tackling decision-making challenges due to its succinct and structured format. This quality has
made it a valuable tool for numerous reinforcement learning (RL) algorithms, enabling them to learn
from high-level specifications of goals (Jiang et al., 2019; Lynch & Sermanet, 2020b; Hejna et al.,
2023) or to benefit from the step-by-step instructions provided by large language models (LLMs)
(Ahn et al., 2022; Huang et al., 2022). Additionally, research has ventured into harnessing more
expansive language applications to model the dynamics and reward mechanisms of environments,
employing planning algorithms to guide decision-making processes (Bialystok, 1978; Liu et al.,
2023b). Different from these approaches, our work introduces the novel concept of applying LLMs
as regularizing agents within value-based RL frameworks.

Decision-Making with Language Models. The strong capabilities language models exhibit have
opened a new avenue for LLM agents to interact with the real world autonomously for decision-
making tasks. Inspired by classical planning literature (Bonet & Geffner, 2001; Hoffmann & Nebel,
2001; Chitnis et al., 2016; Gehring et al., 2022) that uses heuristic functions as dense reward genera-
tors to perform informed search, recent works (Lin et al., 2023; Hao et al., 2023) proposed to use the
LLM as the heuristic function. The remarkable programming abilities exhibited by the LLM have
also enabled converting natural language instructions into planning languages and then adopting the
classical planner (Liu et al., 2023a; Liang et al., 2023; Silver et al., 2023; Xie et al., 2023), which,
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however, are constrained in narrowed domains and predefined environments. Moreover, a recent line
of work (Yao et al., 2023a;b; Sel et al., 2023; Zhang et al., 2023) has developed various prompting
schemes to enhance LLM reasoning, though these approaches generally do not integrate feedback
from the environment into the decision-making process.

A large body of previous works focused on prompt engineering by providing the LLM with addi-
tional contextual information and templates to complete the task. Among them, the ReAct (Yao
et al., 2022) agent generates both reasoning traces and task-specific actions in an interleaved man-
ner, Plan-and-Solve (Wang et al., 2023b) improves the Chain-of-Thought (Wei et al., 2022) prompt
to devise a fixed high-level plan before taking actions in the environment, and Huang et al. (2022)
prompt the LLM to extract temporally extended plans in a zero-shot manner. Besides, other works
directly train the model on embodied decision-making data (Suglia et al., 2021; Sharma et al., 2021;
Mezghani et al., 2023; Driess et al., 2023) or multi-modal data (Lu et al., 2019; Li et al., 2019;
Radford et al., 2021; Zellers et al., 2021b) by learning additional downstream networks on top of the
pre-trained LLM (Lynch & Sermanet, 2020a; Akakzia et al., 2020; Zellers et al., 2021a) or finetun-
ing in the environment (Reid et al., 2022; Li et al., 2022; Chen et al., 2023). Similar to our work, Ahn
et al. (2022); Hu & Sadigh (2023); Lin et al. (2023); Hao et al. (2023) also use value functions to
ground the LLM agent, but the sub-problem horizon is set to 1 and the executed actions are one-step
greedy without backtracking, which still suffers from the curse of the long horizon. Works building
on the self-reflection abilities of LLMs (Shinn et al., 2023; Sun et al., 2023; Ma et al., 2023) also
demonstrate limitations in refining initial strategies based on feedback, as shown in our experiments.

Moreover, there are various approaches that fine-tune the LLM policies to maximize the cumulative
reward using RL. Examples include GLAM (Carta et al., 2023) and ETPO (Wen et al., 2024), which
employs a token-level entropy-augmented RL method. Additionally, ILQL (Snell et al., 2022) uses
the LLM as a perturbation for Q-values in offline RL. In contrast, our method integrates value
iterations into the LLM for effective policy improvement via feedback without fine-tuning.

5 EXPERIMENTS

In this section, we conduct empirical studies in several text-based benchmarks, including the em-
bodied environment ALFWorld (Shridhar et al., 2020), the interactive coding environment InterCode
(Yang et al., 2023a), and the standard planning benchmark BlocksWorld (Valmeekam et al., 2023b).
Across these three benchmarks, we measure the algorithm’s effectiveness by its success rate, which
we define as the ratio of the number of task instances the algorithm successfully completes. More
precisely, each task instance is defined by a target state s, € S, and a task is deemed successfully
completed if the algorithm reaches this target state sy = s, at the end.

We will first delve into a detailed discussion of our implementation approach. Following this, we
will present and analyze the results of our experiments.

Algorithm 2 Simplified Language-INtegrated Value Iteration (SLINVIT)

Input: Sub-problem horizon IV, BES breadth k.

1: Construct the value estimator 1 (rule-based or Monte-Carlo)
2: fori=1,...,H/N do

3:  Solve (5.1) with breadth-k BFS

4 Execute the resulting a(;_1)n 414N

5. end for

5.1 IMPLEMENTATION DETAILS

In our experiments, we introduce two primary simplifications to the LINVIT algorithm to enhance its
efficiency and practicality. These modifications lead to a streamlined variant we denote as SLINVIT,
detailed in Algorithm 2. Below, we elaborate on each simplification:

Construction of Value Function and Exploration Policy. In Algorithm 1, we use a bonus in the
construction of the value function and combine the uniform policy with the optimal policy in the
regularized MDP in the exploration policy. This approach, while sample-efficient, introduces sig-
nificant computational complexity. To optimize computation in our experiments, we simplify these
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processes. Specifically, we directly combine the original value estimator V with the log probability
of the LLM policy P, which is the key component in (3.2), to construct the value estimator in the
experiment. Furthermore, we adopt a greedy policy with respect to this adjusted, regularized value
estimator. This simplification enables a simplier computation by focusing on the core elements that
drive the decision-making process.

Using Sub-Goals to Reduce Searching Complexity. Since the complexity of directly searching
for the maximizor of the regularized value function is exponential in the horizon H, we leverage
sub-goal states to reduce the searching complexity. In the experiment, our algorithm works by
decomposing the H-horizon planning problem into H/N' sub-problems, each of which has a sub-
goal and is of horizon N. More specifically, for each sub-problem ¢ € [1, H/N], the corresponding
sub-goal s;n 41 is determined by solving

iN
QLLM(S(i—l)N7a(i—l)N-i—l:iN) = V(sing1) + Z AW;LLLM(CLMSh),
h=(i—1)N+1
— LLM
AGi—1)N+14N = argmax Q" (Si_1)N, A(i—1)N+1:N)- (5.1

QA(;—1)N+1:iN

where V is the estimator of the true value V'™ and A > 0 is a hyperparameter for the regularization.
Compared with the regularized value function V' in Section 3, we remove the logarithm term before
Prrm for stability, such that it has a similar scale with » € [0, 1]. Here, V' can take various forms
depending on both the true policy value it estimates and its own approximators, which we will
discuss in more detail in Section 5.2.

In practice, we implement a breadth-k£ Breadth First Search (BFS) to approximate the actions in
(5.1). Specifically, the following procedure is repeated N times: making k copies of the agent that
execute the top-k outputs of the LLM by querying it “What is the potential next-step
action?”. This will generate & lookahead action sequences and the one with the highest QM
is selected as a(;_1)n1.4v and executed in the environment.

5.2 INSTANTIATIONS OF VALUE ESTIMATOR

In this section, we describe two instantiations of the value estimator V in (5.1), named rule-based
and Monte-Carlo value estimators. An illustration is provided in Figure 2.

Rule-Based Value Estimation. The rule-based value estimator is designed for scenarios where
achieving the goal s, requires fulfilling multiple preconditions, such as in ALFWorld and
BlocksWorld. It outputs the ratio of preconditions currently met by the state s. To achieve
this, we prompt the LLM with “Estimate the value of the task by generating
Python functions” as well as the task description ahead of evaluation. To avoid uncontrol-
lable mistakes of the LLM, its response undergoes a one-time human review. This step is necessary
only once because, although s, is changing during evaluation (e.g., “put a cup on table”
and “put a pen in drawer”), the nature of the task and the structure of the preconditions
(e.g., “pick A” and “place A on B” for any “put” task) do not vary. We provide how we
implement this in Appendix C.

action T;ll
. —n M, [
h She1 —> V(sn)

value function state

e ey Sh state @

value=1/2 S env
task ::> elif state.on(A, B): @ h . rm
. action h
Vi m
A Ve i
value =0 |
(a) Rule-based value estimator. (b) Monte-Carlo value estimator.

Figure 2: Illustration of the proposed two instantiations of the value estimator.

For tasks where the goal’s preconditions are hard to determine, we propose the more general Monte-
Carlo estimator.

"For notation convenience, we assume w.l.o.g. that h can be divided by N.
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Monte-Carlo Value Estimation. At the state s; to be evaluated, by sampling actions from the
LLM policy 7“*M(. | s;,) until the planning horizon H is reached, we obtain a partial trajectory.
The Monte-Carlo value estimation is then given by averaging the cumulative reward received in M
such rollouts to approximate the value of the LLM policy, i.e.,

1 M/(H-h) H

V=u S rn(san). where a ~ mEN (- | ) and sy ~ P | a2,
m=1 n=h

5.3 ALFWORLD

ALFWorld (Shridhar et al., 2020) is an interactive text-based environment with aligned embodied
simulators. The benchmark encompasses 134 virtual household task instances with predefined and
fixed goals, each of which can be categorized into one of the six task types as shown in Table 1.

Task: clean a cloth and put it on countertop

s1| You see a cabinet 1, a drawer 1, a sinkbasin 1, and a countertop 1

[}

¥ i
ar! Go to cabinet 1 1 ! Go to drawer 1
! ‘(=)Estimate the value '

i ) of the clean task.
s2: Youseeacd 1, abread 1, and a cloth 1 i :

M
You see a bottle 1 and a towel 1

Y.

v

H H if state.in_hand(A):
Y M value=1/3 e
i . | elif state.clean(A)
as! Take cloth 1 from cabinet 1 | value=2/3
h ¢ * | elif state.on(A.clean, B)
value = 1
) | else

\3
Take towel 1 from drawer 1 €

Y. %

s3! Cloth 1 is picked up value = 0 Towel 1 is picked up
_,....,....,....,.Y ““““ i ““““““ b K ’ Z Clothispickedup. u ’ L ;'""""""""x -----------------
i D 3 Cloth is cleaned. ] e
V(33) = g ;‘7 Q  Cleaned cloth is placed O i« V(53) = O

. — 2 on countertop. R ;

Figure 3: Demonstration of the SLINVIT algorithm in the ALFWorld environment when N = 2
and the tree breadth of BFS is set to k = 3. The task is to “clean a cloth and put it on
countertop”. The hallucination that LLM faces, i.e., the towel should be taken (instead of cloth),
is addressed by the inherent exploration mechanism in our RL framework.

We provide a visualization of how SLINVIT works in the ALFWorld environment in Figure 3.
Specifically, for each type of the six tasks, we use the rule-based value estimator to generate Python
code that determines the preconditions of the task goal and the current state. The code outputs the
portion of the satisfied preconditions as the estimated value. We set N = 2 in our implementation
for the ALFWorld benchmark.

| Pick Clean Heat Cool Examine PickTwo | Total
BUTLER 46.00 39.00 74.00 100.00 22.00 24.00 37.00
ReAct 66.67 41.94 91.03 80.95 55.56 35.29 61.94
AdaPlanner | 100.00 96.77 95.65 100.00 100.00 47.06 91.79
Reflexion 100.00 90.32 82.61 90.48 100.00 94.12 92.54

SLINVIT 100.00  100.00 91.30 90.48 100.00  100.00 97.01

Table 1: Success rate (%) comparison of SLINVIT and baselines, including LLM agents and RL
algorithms, in the ALFWorld environment.

We compare the success rate of SLINVIT and baselines in the ALFWorld environment in Table 1. We
use GPT-3 (text-davinci-003)in our implementation. All the LLM agent baselines, including
ReAct (Yao et al., 2022), AdaPlanner (Sun et al., 2023), and Reflexion (Shinn et al., 2023), use
GPT-3 that is the same as ours, while BUTLER (Shridhar et al., 2020) is a RL-style imitation learning
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ALFWorld

SQL Sample Number Bash Sample Number
10 20 30 10 20 30

x TryAgain | 4845 50.97 5097 | 3467 4020 50.25
: — sLwi ReAct 5261 5271 53.67 | 2050 21.10 21.61
o e SLINVIT | 52.80 5851 64.02 | 4623 5025 54.27

1000 2000 3000 1000 5000 6000
Sample Number

Table 2: Success rate (%) under different maximum num-

) o bers of samples per episode in the InterCode-SQL and
Figure 4: Success rates with differ- InterCode-Bash environments.

ent numbers of samples.

algorithm. Notably, the inferior performance of BUTLER indicates that RL algorithms may have
difficulties understanding the task and generalize beyond. On the contrary, SLINVIT achieves the
highest success rate in most categories of the task types and outperforms the baselines in terms of
the overall success rate.

We also report the changes in success rate when the numbers of samples are different. The results
are shown in Figure 4. The data points of SLINVIT are obtained by changing the tree breadth when
performing BFS. Specifically, we set the tree breadth to k& = 2,3,---,10 and report the overall
success rate corresponding to different numbers of samples in all the 134 tasks. For the Reflexion
and ReAct baselines, the points in the plot are the results at the end of each trial. The sample number
is calculated as the number of samples taken in the successful tasks in the current trial, plus all the
samples in the previous trials. We observe that the proposed algorithm is able to achieve a higher
success rate with fewer numbers of samples compared to methods that incorporate the environment
feedback summary into the LLM as additional context.

5.4 INTERCODE

InterCode (Yang et al., 2023a) is an interactive coding benchmark with code or command as actions
and the environment feedback after executing an action as observations. It provides two bench-
marks to evaluate the planning abilities of the large language models, namely InterCode-SQL and
InterCode-Bash which use SQL and Bash commands as action spaces, respectively. For each bench-
mark, there are hundreds of tasks with predefined goals, such as “Find the name of airports which
do not have any flight in and out.” and “Find all text files in the testbed directory and subdirectories
and concatenate them into a single file.”.

Unlike the ALFWorld environment where the task goals can be described by preconditions, there is
no straightforward way to directly measure the value of the current state with explicit and simple
rules in the InterCode environment. Therefore, we implement SLINVIT using the Monte-Carlo value
estimator. Besides, we use the original dense reward as proposed in (Yang et al., 2023a). We set the
sub-problem horizon N = 1 and the Monte-Carlo sampling number M = 1. For our method and
all the baselines, we use GPT-3.5 (gpt—-3.5-turbo).

InterCode-SQL Hardness
Easy Medium Hard Extra | Total

M=1 ‘ 90.73  71.08  60.34 50.00 ‘ 70.60
M =

2 | 88.31 7713  65.52 52.42 | 73.89

Table 3: Ablation study on SLINVIT with different M.

The success rates in the InterCode-SQL and InterCode-Bash environments are reported in Table 4.
The baselines we compare include ReAct (Yao et al., 2022), Plan & Solve (Wang et al., 2023b), and
Try Again (Yang et al., 2023a), which is a vanilla LLM-based planning algorithm. We observe that
SLINVIT achieves the highest success rate in all the hardness modes of the InterCode-SQL bench-

mark, all the file systems of the InterCode-Bash benchmark, and has the best overall performance.
In Table 2, we investigate the sample efficiency of the proposed algorithm in the InterCode environ-

ment. Specifically, we set the maximum number of samples in each episode to be 10, 20, and 30
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InterCode-SQL Hardness InterCode-Bash File System
Easy Med. Hard Extra Total | Sys1 Sys2 Sys3 Sys4 Total
TryAgain 75.81 48.65 49.43 21.69 50.97 | 45.00 49.06 45.00 48.15 46.50
Plan & Solve | 77.42 49.78 32.18 22.89 49.13 | 0.00 4528 43.33 22.22 28.00
ReAct 80.24 65.47 47.13 20.48 58.70 | 21.67 5.66  30.00 25.93 20.50
SLINVIT 90.73 71.08 60.34 50.00 70.60 | 55.00 60.38 64.41 66.67 60.80

Table 4: Success rate (%) comparison in the InterCode-SQL and InterCode-Bash environment.

and report the corresponding success rates. For SLINVIT, both the samples taken to maximize (5.1)
and the samples for Monte-Carlo value estimation are counted. The results indicate that SLINVIT
consistently outperforms the baselines with the same sample size and is thus more sample-efficient.

Ablation. We conduct an ablation study on the number of rollouts M and the results are shown in
Table 3. We observe that a more accurate value estimation corresponding to a larger M leads to

higher success rates for harder problems. Therefore, a trade-off can be taken between the sample
number and the performance.

5.5 BLOCKSWORLD

BlocksWorld (Valmeekam et al., 2023b; Liu et al., 2023a) is another planning benchmark that con-
tains various tasks to arrange blocks in specific configurations. The state is the current configuration
of the blocks and the action is an instruction that moves blocks. Specifically, an action is composed
of one of the four verbs (STACK, UNSTACK, PUT, and PICKUP) and the operated block. Similar
to the implementation in ALFWorld, we also adopt the rule-based value estimator. Specifically, the
goal state of each task is defined as the combination of several block arrangements (e.g., “block

1 is on top of block 27). With the current state as input, the value estimator then returns
the proportion of the satisfied arrangements.

Following RAP (Hao et al., 2023), we group the task instances in Valmeekam et al. (2023b) by the
minimum number of actions required, resulting in 57 cases that are solvable within 4 steps, and 114
cases that are solvable within 6 steps. We evaluate our method and the RAP baseline by comparing the
success rates under different numbers of samples. We evaluate the Vicuna-13b (v1.3) model
and the results are shown in Figure 5. Our method consistently outperforms RAP and achieves a
higher success rate with fewer samples.

BlocksWorld (4-step) BlocksWorld (6-step)

1
00 e SLINVIT
3 RAP

80 /\4@

2 00 230

a 40 %15

e SLINVIT
20 RAP ;
0 1000 8000 12000 16000 0 6000 12000 18000 24000 30000

Sample Number Sample Number
(a) 4-step (b) 6-step

Figure 5: Success rate (%) of SLINVIT and baselines on the 4-step and 6-step BlocksWorld tasks.

6 THEORY

In this section, we present the analysis of LINVIT. To begin, we first define the Kullback—Leibler
(KL) divergence between two policies as follows:
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Definition 6.1 (KL-divergence between two policy). For two policies 7 = {Wf}le and Ty =
{mh}H | we define

H

KL(r![72) = 3 B [KL(mh (1) 73 (5n)) ]
h=1

Definition 6.1 provides a quantitative measure of the similarity between two policies. More specif-
ically, the divergence is small when two policies are similar. Building on this foundational under-
standing, we present the following theorem.

Theorem 6.2. We assume that KL(7*||7“"™M) < ey 1,7, and set the tuning parameter
A= 6/(26LLM)7 T= CHGSA4 IOgQ(HSA/(;)GLLM/62

for some absolute constant C. We then have V;*(s;) — V7 (s1) < e with probability as least 1 — 4.
Proof. See Appendix §A for a detailed proof. O

Theorem 6.2 demonstrates that the number of samples required to achieve e-optimality is propor-
tional to the KL divergence, KL(7*||7*™M), given that \ is suitably chosen. This relationship
implies a reduced sample necessity when 7““M closely aligns with the optimal policy 7*. The in-
tuitive rationale behind this is that the demand for exploration diminishes when an initial policy is
nearly optimal. Consequently, this theorem underscores the efficacy of our algorithm in capitaliz-
ing on the policy information provided by the Large Language Model (LLM), thereby validating its
practical utility in decision-making scenarios. Theorem 6.2 further demonstrates that Algorithm 1
is capable of achieving e-optimality, even in cases where ¢ < er1,m, contingent upon the collection
of a sufficient number of samples. This finding underscores the algorithm’s robustness in attaining
a specified level of optimality.

In Theorem 6.2, the regularization coefficient A became bigger as the KL divergence become smaller.
This trend aligns intuitively with the principle of relying more heavily on the information provided
by the Large Language Model (LLM) when there is evidence that the policy it offers is effective.
Essentially, a smaller KL divergence indicates a closer alignment between the LLM’s policy and the
optimal policy, justifying increased reliance on the LLM’s guidance in these scenarios.

Connection Between the Theoretical Analysis and SLINVIT. Although SLINVIT differs from
the algorithm described in our theoretical analysis in several respects, it is crucial to emphasize that
the core objective of our theoretical analysis is to justify the use of log-probability as regularization.
Despite the simplifications made for practical implementation, SLINVIT retains log-probability
regularization. This adherence ensures that the fundamental element of our analysis is preserved.

7 CONCLUSION

Large language models (LLMs) have shown remarkable capabilities in quickly generating viable
initial strategies for decision-making tasks, even with minimal or no prior examples. However, these
LLM-driven agents struggle to iteratively refine their strategies based on feedback from their envi-
ronment, mainly because they lack the ability to effectively explore and reason from the feedback. In
contrast, reinforcement learning (RL) excels at adapting and improving through feedback. However,
it often requires an extensive amount of trial-and-error to gather improvable feedback, hindered by
its inability to leverage common sense reasoning. To improve the sample efficiency of RL algo-
rithms, in this work, we propose a novel RL framework with LLM as a policy prior. We prove that
the number of samples required by our algorithm is proportional to the KL divergence between the
LLM and the optimal policy. This result is further evidenced through experiments in interactive en-
vironments such as ALFWorld, InterCode, and BlocksWorld, underscoring our method’s improved
sample efficiency. For future work, we would like to extend our experiments to more complex and
diverse environments would test the scalability and robustness of our framework. Moreover, ex-
ploring how various model architectures and pre-training tasks in LLMs influence reinforcement
learning performance could provide valuable insights, helping to identify key factors that enhance
or hinder learning efficiency and generalization.

10
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A PROOF OF THEOREM 6.2

Proof. To analyze the property of LINVIT, we introduce the definition of the prior-regularized value
function. The prior-regularized value function QT 5 5» ViLaxn(8k) and Vi, are defined
as

QELM,A,h(Shv an) = ru(sn, an) + EsHleh [VIZTLM,A,h-i-l(Sh-i-l)]a
LLM
VLM R (5h) = By ([50) QL b (ks an) — )‘KL(Wh('|Sh)”7Th (|sh))
VfLM,,\,h(Sh) = max VfLM,,\h(Sh)-
LINVIT can be viewed as an algorithm that maximizes the prior-regularized value function by in-
teracting with the environment. The prior-regularized value function can be viewed as a regularized

version of the original value functions that favors the policies that similar with 7*M_ The following
lemma connects the KL-regularized value with the original value.

Lemma A.1. When KL (7*||7*M) < e 1,01, we have
Vi (s1) = Vi (s1) < Vinman(s1) — Vit (s1) + Aeiu.

Here KL (' |7%) = 331, B [KL(r} (-sn) 7 (| 51).
Proof. See §B.1 for a detailed proof. O

The following lemma show that, our algorithm provably find the optimal policy with respect to the
prior-regularized value function with high probability.

Lemma A.2. With probability 1 — §, we have

Vitmoan(51) — VL%LM,)\,}L(Sl) <e/2.
Proof. See §B.2 for a detailed proof. O

We denote by &; the event in Lemma A.2. We then have P(&;) > 1 — 4. Since we set A =
€/(2¢r1,m), we have

Vi“(s1) — Vf(sl) < VfLM,,\,h(Sl) - VIZ?LM,A,h(Sl) +e/2<e€

by Lemma A.1 when we condition on Event &;. Therefore, we conclude the proof of Theorem 6.2.

O
B PROOF OF AUXILIARY LEMMAS
B.1 PROOF OF LEMMA A.l
Proof. By the definitions of V:L*LM wpand Vi, (s1), we have
Vi (s1) = Viiiw y p (s1) + AKL (7", 7EM)
= Viim y 5 (s1) + AKL(7", .
Therefore, when KL (7*, 7*M) < e 1\, we have
Vi (s1) = Vi (s1) < Viiwan(51) = Viviw sy (s1) + AKL(7*, 725M)
< Vieow y p(51) — Vw%LLM7/\,h(Sl) + AeLim,
which concludes the proof of Lemma A.1. [
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B.2 PROOF OF LEMMA A.2
Proof. The proof of Lemma A.2 consists of two parts. We decompose the regret in the first part,
and upper bound the decomposed regret in the second part.

By the definition of 7 in Algorithm LINVIT, we have

1 b+l

V;LLM,)\J(S) - 71.LLM A, 1 T z:: .,rLLM A, 1 71.LLM A, 1( )} (B.1)

We also have the following lemma.
Lemma B.1. We have

V*LLM,)\J(S) -V LLM ), 1

™ ™

- A ¢ ?
T 7)\2 Ftt1 [max Qh(sha ) QZ(S’“CL)) :|

holds for all (¢, s) € [T'] x S with probability 1 — 6/2.
Proof. See §B.4 for a detailed proof. O

Therefore, we have
—t41 A u —t 2
V7:LLM’A)1(S) — VTZTLLIVIy)\’l(S) < o0 Z Z Eﬁt+1 [?E%Z((Qh(sm a) - QZ(S}“ a)) ] (BZ)

The following lemma upper bounds the decomposed regret.
Lemma B.2. We have

T H )
ZZE?H |:Hl€aj‘( (@Z(sh,a) —QZ(sh,a)) } < 920SA%HC log?(12HTS?A/6)

t=1 h=1

holds with probability at least 1 — §/4.
Proof. See §B.5 for a detailed proof. O

Therefore, we have

t+1

Vs a1 (8) = Viiea s 1 (s) < 460SA*HO log®(12HTS*A/6) /(T N) (B.3)

s s

when the event in Lemmas B.l1 and B.2 hold. Therefore, when A = ¢€/(2eLm) and
T = CSA*HSlog?(HT'SA/d)er /€ for some absolute constant ¢, we have Vi y1(8) —

V;f;; ».1(8) < € which concludes the proof of Lemma A.1. O

B.3 PROOF OF LEMMA B.6

Proof. First, we have the following lemma, which shows that the bonus we define characterizes the
uncertainty of the model estimation with high probability.

Lemma B.3. We have

log(4HTS%A/9)
nk (s, a)

holds for all (¢, h, s,a) € [T] x [H] x S x A with probability at least 1 — §/2.

]lnfl(s7a)>0 TV(P;:( ‘ Saa)aPIi(' | S,Cl)) < A\/

Proof. See §B.6 for a detailed proof. O
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We denote by &5 the event in Lemma B.3. In the following part of the proof, we condition on Event

&s. We prove Lemma B.6 using induction on h. By the definition of @i‘ﬂ-l and QT v g1 (s,a),
Lemma B.6 holds when h = H + 1. We also have the following lemma, which shows that the
prior-regularized value function is bounded.

Lemma B.4 (Boundedness of QELM’ An)- We have
0<Qirman(s,a) <H+F1—h 0 < WViman(s) <H+1—h
holds for all (s,a,h) € S x A x [H +1].

Proof. See §B.7 for a detailed proof. O

By Lemma B.4, Lemma B.6 obviously holds when @Z > H. Otherwise, we have

—t
Qn(s,a) — QfLM,A,h(S a Z Pi(s'" | s G)Vh+1 Z Py(s' | s, a)ViLma, (s §') +uj, (s, a)
s'eS s'eS
> 3 [P | 5,0) = Pi(s' | 5,0)] Viipag e (8) + uf (5. 0)
s'eS

when the induction hypothesis holds. Since [V 5 541 (8")| < H, we have

7t *
Qu(s,a) — QLLM,\h(S a)>uh5a HZ|Ph5 | s,a) Ph(5/|57a)|
s'eS

= ’U/Z(S,(I) - HTV(P;i( | S,(L),PZ(' ‘ 87(1)).
When we condition on £3, we have

log(4HTS%2A/6) } .

HTV(PL(- | s,a), Pi(- | s,a)) < max{2H7\/ n (5.0) = u;(s,a), (B.4)

which implies @}, (s, a) > Qf a1 (8, a). Therefore, we have

Vi(s) = max Z m(a| s)Qy (s, a) — AKL(7(- | s), #“M(- | )
acA

> }Tr(l?llg m(a | S)QELM,A,h(&a) - /\KL(W(‘ | 3)=7TLLM(' ‘ S)) = VL*LM,A,h(S)a
" acA

which concludes the first part of the proof.
By the definition of Q’;IH and Q7 1z zr+1(8:a), Lemma B.6 holds when h = H + 1. By the
boundedness of QF | AR Lemma B.6 obviously holds when Qt < 0. Otherwise, we have

QZ(s,a) QL an(s;a) Z Pi(s' | s, G)Vh+1 Z Py(s' | s, @)Vl ne1(8 s') — up (s, a)
s'eS s'eS
< Z [Pftb(sl | s,a) = Pp(s'| s, a)}VL*LM,,\,hH(S/) - UZ(S’ a)
s'eS

when the induction hypothesis holds. Since [V 5 ,41(8)| < H, we have

Q! (s;0) = Qirapan(s,a) = H Y |Pi(s' | s,0) = Pi(s' | s,0)| — uj,(s,a)
s’eS

= HTV(PftL(' | s,a), Pp(-|s,a)) — UZ(Sva)'

Therefore, we have QZ(S, a) > Qfran(8,a) when we condition on &3 by (B.4). We have

Vi(s) = 713(1?53 Z m(a | S)QZ(S,G) — AKL(7 (- | 5), wL M (| s))
" acA

> f(lil’f% m(a | S)QELM,A,h(S»a) - )\KL(W(' | S)aWLLM(' ‘ 5)) = VL*LM,A,h(S)7
" acA

which conclude the proof of Lemma B.6. O
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B.4 PROOF OF LEMMA B.1

Proof. We have the following lemma.

Lemma B.5. For two vectors © = (1’1, coo,x4) ERYand 7 = (il, ...,TA) € RA we have
Bi Bi
max ;B — A ;1o } max { TP — A ;1o }
YA, Bi=1, ﬁz>0{z & Zﬁ .3 Bi YA Bi=1,8>0 Z P Zﬁ &3
i )+ émax|ac —Z;|?
P 2A [ 7 I

3 A A 3
where {f;} = argmaxs~a g _ 359 {Z'L:l i — Y i, Bilog %}
Proof. See §B.8 for a detailed proof. O

We prove Lemma B.1 using induction on /. The statement obviously holds when h = H + 1.

Viiiaian(5) = Vs yn(5) = Vi s 1 (s) = Vi(s) + Vi(s) = Vi p(s).  (BS)

By the definition of VW*LLM e Vf;;;[ . p, and Lemma B.5, we have

Vi (8) = VZ(s) (B.6)
. A _
< M@ ] ) [ Qs s a(s:@) = Qls,@)] + o3 max|Qiun 5 4(5.0) — Qals, @)
acA
‘We also have
—t —t+1 t+1 t+1
Vh(S) — Vﬂ.LLM A, h Z 7T rh S a/ ﬂ.LLM A, h(S a)] (B7)
acA

Combining (B.5), (B.6) and (B.7), we have
VTr*LLM A, n(s) = VWLLTI A, h( )
1

_ A —t
<D (0] 9)[Qrian (5, @) = Qunan (5, )] + 53 max | Qrasae 4 (5,0) — Qi (s,0)/°
acA
N Ft+1 A At 2
= Exest [Viiim s i1 (Sh15 1) = Vs s gt (St anr1) | sn = s] + o, max | Qi 5 4 (5, @) — Qn(s, a)l

By induction, we easily have

H

Vv s (5) — ;Lt;vll an(8) < % Z Ezets [maax | Q7 rene x g (Shrs an) — GZ’(Sh”ah’”Q | sn= S]
" (B.8)

We also have the following lemma, which shows that Q;LLM7 Ny lies between @Z, and Qt -

Lemma B.6. We have

Q)(5,0) < Qs s (5:0) SQuls.0), V5,() < Viae s als) < V()
holds for all t € N, (h, s,a) € [H] x S x A with probability 1 — §/2.
Proof. See §B.3 for a detailed proof. O

Therefore, by (B.8), we have

7t+1

VT:LLI\/I7)\7h(S) - .,rLLM A, h( > 2)\ Z Eﬂt+1 |:H1&X|Qh/ (Shl ah/) — Qzl(shr,ah/)F ‘ Sp = 5]

(B.9)
when the event in Lemma B.6 holds, which conclude the proof of Lemma B.1.

O
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B.5 PROOF OF LEMMA B.2

Proof. By the definition of 7* in (3.4), we have

o g @ =) <) e @ -

H-1 —
(B.10)
. 2
< eHE t+1 [(QZ(sh,ah) — QZ(S’“ah)) :| .
Next we analyze the expression under the square. First, we have
—t —t
Qn(sn,an) — Q! (sny an) < 2uf,(snyan) + Y Ph(s'|sn, an)[Viyr () = Vit ()]
acA
* <t *
< 2uf,(snyan) + D Pr(s|sny an)[Vigr (8) = Via ()] + HTIV(PL(- | 5,a), P (- | 5,a)).
acA
Therefore, by (B.4), we have
—t * —t
Q(snsan) = @ (snsan) < 3uf,(sn,an) + Y Pl Isny an) Vi1 (s) = Vi ().
acA
Therefore, we have
H
.t . log(4HTS2A/6)
Qn(sn,an) — Q, (sn,an) < 3AH - Ezina Z \/nt(s,a) Sh
h'=h h
H
log(4HTS2A/6
< 9AH 'Eﬂwrl [Z \/Og(t/) S}[|
ny, (s, a)
h'=h h
by induction and the definition of u}, in (3.1). By Cauchy inequality, we have
H
¢ . 3/2 log(4HTS?2A/9)
Q. (sh,an) —Qh(sh,ah) <9AH E t+1 h/z:h —TLZ(&G) Sh | - (B.11)

Combining (B.10) and (B.11), we have

i H
4 . 2 - log(4HTS?A/6)
Ext41 — < 230A“H E e+1 |Eem1 —_—
i {glea} (Qh(sh’a) Qh(sma)) ] =290 " L ™ Luz_:h nk (s, a) o
(B.12)
[ H
log(4HTS?A
= 230A°H'Eren | Y log(AHTS™A/0) |,
Lh/=h (5, @)

We also have the following lemma.
Lemma B.7. We define

EM £ [nh (s,a) > %ﬁ’;(s,a) —log(12SAH/9) for all (s,a, h,t) € S x A x [H] x [T},
Then we have P(E™) > 1 —§/4.

Proof. This is Lemma 3 of Ménard et al. (2021). See Ménard et al. (2021) for a detailed proof. [

When we condition on £, we have
log(4HTS?A/5) < log(4HTS?A/8) + log(12SAH/6) < 2log(12HTS?A/5)
nk (s, a) - n,(s,a) +log(12SAH/9) ~ nl(s,a) +log(125AH/6)
< 4log(12HTS?A/6)
- nl (s, a)
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Therefore, by (B.12), we have

EH: log(12HTS2A/5)

At t 2 2174
Ereia [ggﬁ( (Qh(sh,a) —Qh(sh,a)) } < 920A°H E t+1 L/_h A (5.0)

Therefore, we have

T H T H H
—t — log(12HTS?A/$)

Z P {gleaj{ (Qh(sh’a) ~Q(snra ) } ZZQQOA H s [Z (s, a) o
t=1 h=1 t=1 h= h!'=h

T H

log(12HTS?A/§
22920A2H5E,r,,+1 0g( - 5A/0)|,
t=1 h— nh(57a')
OSA3H6 log(12HTS?A/8)log T,

which concludes the proof of Lemma B.2. O

B.6 PROOF OF LEMMA B.3

Proof. We denote by n!,(s,a) the number of times the state action-pair (s,a) was visited in step
h in the first ¢ episodes, n}, (s, a,s’) the number of times the state action next state -pair (s, a, s”)
was visited in step h in the first ¢ episodes, and define N (s,a,s’) = n}(s,a)Py(s’ | s,a). By
Hoeffding’s inequality, we have

ni(s,a,s") — Nf(s,a,s")

< .
o < /1og(4HTS?A/5) (B.13)

holds for a fix (¢, h, s,a,s") € [T] x [H] x § x A x S with probability at least 1 — 6 /(2HTS?A).
By taking a union bound over all (¢, h, s, a,s’) € [T] x [H] x § x A x S, we have (B.13) holds for
all (t,h,s,a,s") € [T] x [H] x S x A x S with probability at least 1 — §/2. We denote by &, that
(B.13) holds for all (¢, h, s,a,s") € [T] x [H] x S x A x S. When condition on &, we have

nk(s,a,s") — Nl(s,a,s)

ny, (s, a)

]lnfl(s,a)>()

1 nt (s, a)>0TV(Ph( ‘s’a)aPh |s a Z 1, nt (s,a)>0
s'eS

2
A \/log(4HTS A/5)

ny (s, a)

We conclude the proof by noticing that P(€3) > 1 — 4/2. O

B.7 PROOF OF LEMMA B.4

Proof. We prove this using induction. Lemma B.4 obviously holds when h = H + 1. If Lemma B.4
hold for i + 1, we have

Qirmn(8:a) =1a(s,a) + Z Py (s']s, a)ViLmant1(8,a) > 0.
s'eS
We also have
Qtivn(s,a) =ru(s,a) + Y Pr(s|s,a)Vmanii(s,a) <1+ > Pi(s|s,a)(H —h) = H—h+1.
s'eS s'eS

Using the property of constraint optimization, we have

ViLm A n(s) = Alog Z WLLM s) exp(QfLm A, n(s, a)/)\))

acA
since 0 < Qi an(s,a) < H+1—h,wehave 0 < Vpjy, ,,(s) < H + 1 — h. Therefore, we
conclude the proof of Lemma B.4 using induction. O
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B.8 PROOF OF LEMMA B.5

Proof. Forx = (v1,...,24)" and B = (B1,...,84) ", we define

A
fl@.p)=2"B~ A;& log g [ () = zleréﬁ}i,ai>of(w’ﬁ)’ B (x) = ijfg:ﬁ);pof(wﬁ)-
(B.14)
We have the following lemma.
Lemma B.8. We have
A 0 Bi exp(x; /)
[H(®) = Al Bi i/ N, V(@) =B%(x), Bi(x) = 5 — () = —— :
(®) = Mog 3 Frexples/ V], V1 (2) = 5°(@), i) = o) = =S e

Moreover, we have ||V f*(z1) — Vf*(x2)||1 < £ |lz1 — 22| -
Proof. See §B.9 for a detailed proof. O

First, we have

T

[i(x) - [ (@) =V (@) (x—z)+ +/0 (Vf* (tw + (1 —t)E) — Vf*(a?:)) (x — &)dt
< Vi*(@)(@— @)+ +/0 IV (t2+ (1 = 0)@) = V(@) 12 — 2|t
By Lemma B.8, we have
1
@) - @< V@ e-2)+3 [ et -ns-a| o s

A
= Vi@ @-2)+ ylle -z (B.15)

We conclude the proof of Lemma B.5 by combining (B.15) with Lemma B.8. O

B.9 PROOF OF LEMMA B.8

Proof. By the property of constraint optimization, we have % f (:c, ﬁ(w)) =c(1,...,1)T for some
constant c. By direct computation, we have
%f(a:,ﬁ(m)) =z — MlogfB+ /\logg— A1, DT,
which implies 3; () o« 53; exp(z;/)). Since ZiA:1 Bi(x ) = 1, we have
Ni exXplT; A
Bi(z) = f xp(Ti/A) (B.16)
Z]‘:1 Bjexp(x;/A)
By the definition of f*, we have
A wiBiexp(xi/N) S 2B explai/A) A
(@) = f(z,Bi(x)) = 51— i U Mog (D Biexplwi/N))
> iz1 Biexp(xi/A) > iz1 Biexp(xi/A) i=1
A
= )\log(z Bi exp(mi/)\)). (B.17)
i=1

Combining (B.16) and (B.17), we have V f*(x) = B(x). We define A = {3 | Zf‘:l Bi=1,5 >
0}, we have the following lemma.
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Lemma B.9. For any , 8 € A, we have

A
Azmlog >Azﬁ, E_)+xT(ﬁ—ﬂ(w))+Mllﬂ—ﬁ(sc)llf,
where 3(x) is defined in (B.14).

Proof. See §B.10 for a detailed proof. O

By Lemma B.9, we have

A3 i tog 222 5 AZ@ 2 o] (Ba) — Bla)) + 3 18La2) ~ B

i=1 7

23 B o 200 Azm e2)log 252 1 o] (8(w) - B(w) + 5418w - Al

=1 ?

which implies
%Hﬁ(ffz) = B(@1)|7 < (w1 — x2) " (B(m1) — Blm2)) < ||B(2) — Bl1) |1 [|@1 — T2|o0-
Therefore, we have

218(@2) = Bl < o1~ 2l

which concludes the proof of Lemma B.8 O

B.10 PROOF OF LEMMA B.9

Proof. Let 8; be the i-th element of 3, and 5;(x) be the i-th element of 3. We define g(3) =
A Zle Bi log % By the property of the function g, we have

a(8) ~ 9(B(x)) = Vo(B(x)) (8- Bla +Z /() /6 2 Judu,

(@) Y

Since 3; < 1, we have

9(8) — 9(B(x)) > Vg(B(=)) " (B - Bl /ﬁ - /ﬂ ( )1dvdu (B.18)

=Vy(B(z)) (B-B(=x))+ o) Z |Bi(z) — Bi]?

> Vg(Bw)) (8 Bla) + 5 18@) — B}

By the definition of the function g, we have

Vg(B(z)) = (Mog 81 + A — Alog B1,..., Aog Ba + A — Alog Ba) T (B.19)
By the definition of B(x) in (B.14), we can easily obtain
Bi exp(i/N)
Bi(x) = ~ : (B.20)
Z?:l Bi GXP(M/)\)

Combining (B.19) with (B.20), we have

A
Vo(B(z)) =z + /\(1 ~10g(>" i exp(xi//\))) 1,1,...,1)7.

i=1
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Therefore, we have

(Vo(B(z) ~=) " (8~ )
A A
= /\<1 - log(z Bi exp(xi//\))> (1,1,...,1)"8 - /\<1 — log(z B; exp(xi//\))) (1,1,...,1) " B(=).

By the definition of the region A in Lemma B.8, we have (1,1,...,1)'8 = (1,1,...,1)"8(x) =
1. Therefore, we have

T
(Vg(B(x)) —x) (B-B(x)) =0. (B.21)
We conclude the proof of Lemma B.9 by combining (B.18) and (B.21). O

C EXPERIMENT DETAILS

We first describe how the rule-based value estimator is implemented. For the “put” task, we prompt
the LLM with the following prompt:

Given the following successful trajectory, output sub-goals that are
needed to complete the task ““put A on B" and write code to determine
how many sub-goals are satisfied at the current state.

Looking quickly around you, you see a shelf 6, a safe 1, and a drawer
4. Your task is to: put some vase in safe.

> go to shelf 6

On the shelf 6, you see a vase 2.

> take vase 2 from shelf 6

You pick up the vase 2 from the shelf 6.

> go to safe 1

The safe 1 is closed.

> open safe 1

Safe 1 is open. In it, you see a keychain 3.
> put vase 2 in/on safe 1

Vase 2 1s in/on safe 1.

The LLM responds as follows:

Sub-goals needed to complete the task "put A on B" are

- Locate object A
- Find B
- Ensure B 1is accessible

def check_subgoals (state, a, b):

subgoals_satisfied = 0

if f"You pick up the {a}" in state:
subgoals_satisfied += 1

if f"You arrive at" in state and b in state:
subgoals_satisfied += 1

if £"{b} is open" in state:
subgoals_satisfied += 1

return subgoals_satisfied

Since the LLM is only prompted with one example, it makes a mistake at the last step, which can be
fixed by prompting the LLM with “No need to check if b is open since we only need to put a on b.”.
Then the LLM generates a correct rule-based value estimator as follows:
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Correct rule-based value estimator

def check_subgoals (state, a, b):

subgoals_satisfied = 0

if £"You pick up the {a}" in state:
subgoals_satisfied += 1

if f"You arrive at" in state and b in state:
subgoals_satisfied += 1

if f"{a} is in/on {b}" in state:
subgoals_satisfied += 1

return subgoals_satisfied
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