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ABSTRACT

Downsampling layers are crucial building blocks in CNN architectures, which
help to increase the receptive field for learning high-level features and reduce the
amount of memory/computation in the model. In this work, we study the general-
ization of the uniform downsampling layer for group equivariant architectures, e.g.,
G-CNNs. That is, we aim to downsample signals (feature maps) on general finite
groups with anti-aliasing. This involves the following: (a) Given a finite group and a
downsampling rate, we present an algorithm to form a suitable choice of subgroup.
(b) Given a group and a subgroup, we study the notion of bandlimited-ness and
propose how to perform anti-aliasing. Notably, our method generalizes the notion
of downsampling based on classical sampling theory. When the signal is on a cyclic
group, i.e., periodic, our method recovers the standard downsampling of an ideal
low-pass filter followed by a subsampling operation. Finally, we conducted experi-
ments on image classification tasks demonstrating that the proposed downsampling
operation improves accuracy, better preserves equivariance, and reduces model size
when incorporated into G-equivariant networks.

1 INTRODUCTION

Computer vision models, such as ConvNets (He et al., 2016; Liu et al., 2022) or Vision Transform-
ers (Dosovitskiy et al., 2021; Liu et al., 2021; Wu et al., 2021) consist of striding and pooling layers
used for downsampling a feature map. These subsampling layers play a crucial role in learning the
spatial hierarchy of features, building in translation invariance, and reduction in computation (Zhang
et al., 2023). Concepts from signal processing (Vetterli et al., 2014), such as bandlimited-ness and
anti-aliasing, have also been introduced to design better downsampling (anti-aliasing followed by
subsampling) operations (Zhang, 2019; Zou et al., 2020; Vasconcelos et al., 2021).

Given additional prior knowledge, group equivariant ConvNets and Transformers have been proposed
to incorporate additional structure into the models (Cohen & Welling, 2016; Tai et al., 2019; Romero
& Cordonnier, 2021; Rojas-Gomez et al., 2022; Xu et al., 2023). These models have guarantees
that the output is transformed predictably when the input is transformed. A canonical example is
shift-equivariance in image segmentation, where the output mask is shifted accordingly when the
input image is shifted.

Interestingly, subsampling layers are not as common in group equivariant architectures. Most models
only subsample over the translation group. One limitation is that existing subsampling layers (Cohen
& Welling, 2016; Xu et al., 2021) over groups require knowing the subgroup to downsample to. That
is, there is no notion of “subsampled by a factor of two”. From a practitioner’s point of view, it is
often unclear how to choose such a subgroup Al4 . Furthermore,
these subsampling layers are not designed with proper anti-aliasing, which hurts the equivariance
guarantees (Gruver et al., 2023).

In this work, we propose a generalization of uniform downsampling of signals (features maps)
on general finite groups with anti-aliasing. We present an algorithm to form a suitable choice of
subgroup given a finite group and an integer downsampling factor. Next, we define the sampling
theorem and bandlimited-ness for subgroup subsampling of signals on groups. To ensure the signal is
bandlimited, we propose an anti-aliasing operation following the introduced bandlimited definition
while maintaining equivariance. We point out that our proposed algorithm and definitions intuitively
generalize the notion of downsampling based on classical sampling theory.



Under review as a conference paper at ICLR 2025

Beyond the theoretical aspects, we conduct experiments to test the proposed downsampling operation.
First, we numerically validate the proposed claims. Second, we conduct experiments on the MNIST
and CIFAR-10 datasets to evaluate the performance of the proposed downsampling layer on image
classification tasks over different symmetries. We show that our proposed subsampling layer selects
suitable subgroups for , and the proposed anti-aliasing operation further
improves the models’ performance both in task performance and equivariance. Our contributions are
as follows:

* We generalize the uniform subsampling operation to signals on finite groups, allowing subsam-
pling at a desired rate, yielding signals on subgroups.

* We introduce the Subgroup Sampling Theorem and the concept of bandlimited-ness for subgroup
subsampling. It guarantees the perfect reconstruction of the signal on the whole group from the
subsampled signal on the subgroup.

* We propose an equivariant anti-aliasing operation to ensure the signals are bandlimited before
subgroup subsampling. Empirically, we demonstrate the efficacy and advantages of the proposed
downsampling operation.

2 RELATED WORKS

Downsampling layers (subsampling & anti-aliasing). The idea of subsampling has rooted in
striding and pooling as early as the seminal works of CNNs (Fukushima, 1980; LeCun et al., 1999).
To downsample a high-resolution feature map to a low-resolution one, e.g., by a factor of two, one
can simply discard every other element in a feature map. More recently, anti-aliasing has been
incorporated into deep nets, inspired by signal processing, where they propose to blur the feature
map before subsampling using a low-pass filter (Zhang, 2021; Karras et al., 2021; Rahman & Yeh,
2024). Later, subsampling has also been extended to groups (Cohen & Welling, 2016; Xu et al., 2021).
However, the term “every other” is ambiguous here, resulting in a definition that assigns groups to
specific subgroups without adequately addressing the subsampling rate. Additionally, the anti-aliasing
operation is not tailored for groups. In contrast, this work addresses these limitations by creating a
theoretical foundation for subsampling by a specified factor within groups and proposing an effective
anti-aliasing method that extends the sampling theorem, which we discuss next.

The Sampling theorem is the basis of digital signal processing, which studies how to sample, inter-
polate, and manipulate signals sampled at different rates (Vetterli et al., 2014). The sampling theorem
guarantees that bandlimited signals can be perfectly reconstructed given a high enough sampling rate.
This idea has been extended to graph signals and the field of graph signal processing (Chen et al.,
2015b;a). Dodson
2007: Faridani, 1994; McEwen et al.. 2015: Napolitano & Spooner. 2001: Vaidyanathan & Kirac
1999

Different from these works, we present a generalization
of the sampling theorem for any finite groups, propose a downsampling layer, and show how the
layer can be incorporated into group equivariant deep-nets.

Equivariant deep-nets. Incorporating equivariance into deep-nets has been found to be an effective
approach to designing deep nets (Cohen & Welling, 2017; Bekkers et al., 2018; Worrall & Welling,
2019) across many applications in multiple domains, e.g., sets (Ravanbakhsh et al., 2017; Zaheer
et al., 2017; Hartford et al., 2018; Yeh et al., 2019), graphs (Maron et al., 2019; Liu et al., 2020; Morris
et al., 2022; Liao & Smidt, 2023; Du et al., 2023), etc. We foresee that our proposed downsampling
layer can be incorporated into this rich literature of group equivariant architectures to build more
effective and efficient models.

3 PRELIMINARIES

We now review the necessary background and definitions. For further details, please refer to §A 1.

Downsampling of sequences. Given a subsampling factor R and a signal & € R¥, the subsampling
operation is defined as

Subg : RN — R/l YN € 7% where Subg(x)[n] £ x[Rn). 1)
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When we subsample a signal following Eq. (1), it can often result in a distorted signal due to
aliasing. To avoid this, an anti-aliasing filter is used to remove high-frequency content, i.e., to obtain
a bandlimited signal, before subsampling. An ideal anti-aliasing filter, denoted as h, is used to
remove all frequency content above the Nyquist frequency (Shannon, 1949). In summary, the ideal
downsampling can be expressed as an anti-aliasing filter followed by the subsampling operation as:

Dwng(x)[n] = (x * h)[Rn], where F(h)[i] = 1if i < fyyquist else 0. 2)
Here, F : R™ — C™ denotes the discrete Fourier transform.

Remarks: Subsampling a finite sequence involves retaining the signal at every R-th factor. At a glance,
it is not obvious how to generalize this subsampling strategy to a finite group G. As G is a set, there
is no notion of “every R™” element. Naively sorting the elements and applying the subsampling for
sequences would also not work, e.g., the subsampled set may not be a subgroup.

G-Equivariance. In deep learning, imposing equivariance on the layers is often desirable. We say
a linear map (layer) W € R™ %™ jg equivariant with respect to a group G with representation
v G = GL(U)andp,, : G — GL(U') with U C R" and U’ C R™" if

W, (9)u=p, (9Wz Vg€ G,Yu e U. 3)

Generating set. A subset S of group G is said to be the generating set if any element g € G can
be expressed as a product of the elements of S. We use the notation G = (S) to denote that G is
generated by S and assume identity element e ¢ S. The set S is called the minimal generating set
when (S\{s}) # G Vs € S, i.e., every element of S is necessary to generate the group G.

We call the k™ power of an element s € S
non-redundant if s* cannot be expressed as a product of the rest of the generating elements S\ {s}
when s* # e.

Cayley graph. To better understand the abstract structure of a group, one approach is to represent it
as a graph, namely, Cayley graph. Given a group G and its generating set .S, a Cayley graph I'(G, S)
consists of vertices V" and edges E. The vertices correspond to each element g € G, and there exists
an edge (a,b) € E, if there exists an s € S such that b = a - s. In the directed Cayley graph, edges
are directed from a to b. Any element g € G can be represented as a path on the I'(G, S) starting
from the identity node e.

Fourier transform for finite groups. The notion of Fourier transform has also been studied on
groups (Folland, 2016; Stankovic et al., 2005). For a finite group G, let G be the set of complex

unitary irreducible representations (complex irreps). We denote the dimensionality of an irrep ¢ € G
as d,, such that p(g) € C% >4 Vg € G. The Fourier transform of a square-integrable function

feL?G)is
Fer) = e X VIl (0) Yo € Gand 1< mn < d,,. *
geG

where " (g) denotes the entry at m™ row and n™ column for matrix ¢;(g). Next, f(¢7") denotes
the Fourier coefficient corresponding to irrep component ;™. Similarly, the inverse Fourier transform

on a group can be expressed as
=3 Y f@rmVdeel )

L,D,GG mngd

where we denote the set of orthonormal Fourier basis as {\/d,, ¢ |¢; € Gandm,n < d,.}
following the Peter-Weyl theorem (Peter & Weyl, 1927). For real-irreps, the orthonormal basis set is
constructed by only taking non-redundant columns of ¢; (see Supp C of Cesa et al. (2021)).

4 METHOD

In this work, we consider signals € X5 = {z : G — R?} to be an unconstrained real-valued
function over a finite group G. For readability, we describe the content with d = 1, which can be
easily generalized. A group element g acts on the space X via a regular representation p, ., L.e.,

(Pag; (9)2) () = (g™ u) Yu € G. ©)
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Our goal is to design a downsampling operator Dwn& : Xg — X., which resamples the sig-
nal on a group G to be on a subgroup G* C G. This involves addressing the following: (a)
Given a group G and a subsampling rate R, what is an appropriate subgroup G*? (b) Given a
group and a subgroup, what is the notion of bandlimited-ness to guide the design of anti-aliasing?
We answer these questions by proposing a downsampling operation that generalizes the exist-
ing notion of subsampling (§4.1) and sampling theorem (§4.2) from sequences to finite groups.

4.1 UNIFORM GROUP SUBSAMPLING Algorithm 1 Uniform group subsampling

1: Input: Group G, Generators .S, subsam-
pling rate R, generator sq

2: Output: Subsampled group G+

3: // Get directed Cayley

z¥ = Sub%(z) with 2*[¢'] = z[¢/] V¢ € GY, (7)  greph

A natural generalization from subsampling of se-
quences in Eq. (1) to signals on a group is to keep
the signal on a subgroup G+ and discard the rest:

4: V, E + DiCay(G,S)

where the downsampled signal is denoted by z+ :  5: E’ < E.copy()
Gt — R. However, it is not obvious how to obtain ~ 6: for eachv € V do
such G and how to relate it to the rate R. 7: // remove generator Sq

. . 8 FE. U -
Given a group G and a subsampling rate R, we ) remove((v, v - 54))

. ¢ . 9: // add generator s
propose the uniform group subsampling, which re- , R
1 . : 10:  E'.add((v,v-sy))

turns a subgroup G*. Our subsampling algorithm 11: end for
intuitively generalizes from the traditional subsam- )

. . 12: // BFS traversal from e
pling and is guaranteed to return a subgroup under

. .. A 13: Q+ 9
mild conditions (details in Clm. I). Our approach 1 (o
breaks subsampling into two parts: subsampling 15 Q.enqueue(e)

on a group for a specific generator (Alg. 1), and

how to choose the generator. ig Whv;lf_QQ% dfqggue 0

The key idea behind Alg. | is to leverage the 18: GY.add(n)

structure of the Cayley graph to perform the 19: for each (n,m) € E’ do
subsampling. Consider a generating set S = 20 if m ¢ @ then

{51, 82,...8,} for a group G = (S). Let each 21I: Q.enqueue(m)
generator s; € S to have an order o;, i.e., s7' =e 22 end if

and Isaacs. 2009). We  23:  end for

view the uniform subsampling of G by a factor of 24: end while

R for a generator s is to uniformly discard ele- 25: Return G*

ments along the path (e, s}, s3,...,s5'"") on the
Cayley graph of G. This can also be viewed as adding the generator sf} to the generating set .S while
removing the generator s4. In Example 1, we illustrate the proposed Alg. | applied to a sequence.

Example 1. Discrete-time periodic signal of period 4. The domain corresponds to the translation
group on a periodic 1D grid of size 4, with the generator 1 representing discrete time translation
(At). The group action is addition modulo 4, indicating a periodic time shift. Its Cayley graph is
shown in Fig. | (left). When downsampling by a factor of 2, the generator At combines to 2At.
Observe that this is equivalent to the subsampling in Eq. (1) by discarding every other element.

20t

@
(b) (c)
Figure 1: (a) Cayley graph of the group with generator At. (b) Edges corresponding to the generator

At = 1 are removed (dotted edges) and new edges corresponding to the element 2A¢ are added.
(¢) The resultant cyclic subgroup of size 2 obtain by the traversing the new graph from node 0.
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Equipped with the intuition, we now introduce two lemmas before going into the conditions and show
why Alg. | returns G* that is a subgroup of G.

Lemma 1. For the set G* returned by Alg. 1, v € G* if and only if v can be expressed as a product
of the elements of the set S* = (S/{sq}) U {s}.

Lemma 2. For the set S* in Lemma I, each element s; € S* = s;' € G*.

Please see §A3.1 and §A3.2 for the complete proof of the lemmas. With some mild assumptions,
using the above lemmas, we can show that the set G* returned by Alg. | is a subgroup of G (see
§A3.3). To guarantee that we are indeed downsampling, additional conditions are required such that
G' is a proper subset of G, i.e., the size of G* is smaller. Specifically, we need conditions to ensure
that the discarded group elements cannot be regenerated from the remaining ones.

Claim 1. [f S% = {sk : k € ZT and k mod R # 0} are non-redundant powers of sq, 04
mod r = 0, and the elements of S 5 can not be represented as a product of the elements of the left
cosets of the subgroup G, = (S/{sa}) generated by the set {s" : n € Z} then Alg. | returns
a proper subgroup G+ C G.

Proof. We show that G+ forms a group by verifying closure (using Lem. 1), the existence of inverses
(using Lem. 2), and that associativity and identity hold by construction. We then prove that G¥ is a
proper subset of G by showing that, under the assumptions, elements can only be discarded in Alg. 1.
The formal proof is provided in §A3.3. O

Clm. | imposes conditions that restrict the regeneration of discarded elements by Alg. 1, ensuring a
proper subgroup. For a better understanding of the implications of this claim, we provide a visual
illustration in §A4. With Alg. |, we can subsample a group given a specific generator. If there are
multiple generators, then different subgroups can be formed. We now discuss how to choose among
these subgroups.

Choice of subgroups. The choice of subgroup matters. Choosing a generator s; with a small order to
subsample may lead to the complete exclusion of transformations associated with it; see Example 2.

Example 2. Subsampling of dihedral group Dg. Here, we illustrate the effect of the choice of
generators while subsampling the group Dg = (s,r|s? = r* = e, sr = r35). While subsampling
by a factor of 2, we can subsample along the generator s, resulting in a cyclic subgroup of rotation
Cy. Or, according to our proposed algorithm, we can subsample along r, resulting in subgroup D,.
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Figure 2: Subsampling group Dg along the generator s (on leff) and r (on right). The edges
corresponding to the subsampling generators are dotted in the Cayley graph.

Based on this intuition, we propose a heuristic for selecting a set of generators Dy to subsample G
with sampling factors I, along each generator in Dg. Given the subsampling rate 12, we decompose
it into prime factors, i.e., R = R; - Ry - R3 - - -, sorted in descending order. For each R;, starting
from ¢ = 1, we select the generator with the maximum order satisfying the constraint outlined
in Clm. 1. Subsampling by the factor R can be conceptualized as a sequential subsampling, each by
R;. The algorithms for a generalized approach to subsampling and their time complexity analysis are
provided in §A5. With subsampling defined, we will next generalize the notion of bandlimited-ness
and propose an equivariant anti-aliasing operator to signals on a group.

Remarks: The proposed algorithm and heuristic offer a general framework for uniformly subsampling
subgroups from any finite group, extending the concept of sampling rate to groups. The heuristic
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seeks to maximize the number of generators in the subgroup. In practice, choosing the subgroup is a
key hyperparameter influenced by the application and may require domain expertise.

4.2 THE SUBGROUP SAMPLING THEOREM FOR SIGNALS ON GROUPS

In multi-rate signal processing, the sampling theorem states a sufficient condition (bandlimited-ness)
on a signal such that perfect reconstruction can be achieved given the signal sampled at a lower
rate (Vetterli et al., 2014), i.e., how to sample and interpolate between finite-dimensional vectors. In
this section, we propose a sampling theory for signals on finite groups, i.e., a condition that allows
for perfect reconstruction from subgroups, and an anti-aliasing filter to ensure that the signal satisfies
the condition. We now establish a vectorized notation of the signal to aid the discussion.

Recall, we are considering a signal z € Xg = {z : G — R}, where G is a finite set with size N,
then 2 can be equivalently expressed by a finite-dimensional vector x € R™ such that x[i] £ z[g;],
where g; denotes the i*” element of the group G in an arbitrary fixed order.

Using this notation, the Fourier transform for a finite group G in Eq. (4) can be expressed as a matrix
multiplication X = FgX, where X € C¥ denotes the Fourier coefficients. Similarly, the inverse
Fourier transform can be expressed as x = F Iz Note, F, L and F¢ are orthonormal bases.

Next, the sampling operation in Eq. (7) and the interpolation operation can be expressed as matrix
multiplications:

Sampling: xt = Sx, x' = Ix' = I8x, ®)
where S € RM*N (with M < N) is the sampling matrix and T € RN*M denotes the interpolation
matrix. A perfect reconstruction is achieved when x' = x, which is not true in general. 8

Vetterli et al., 2014; Chen et al., 2015a

We now define the sufficient condition, i.e., “bandlimited-ness”, for signals on groups where perfect
reconstruction is possible from signals on the corresponding subgroups.

Bandlimited functions for subgroup subsampling. Our main insight is based on the observation
that for any bandlimited function x we need to establish a map M € CV*M from the Fourier
coefficients of the subsampled signal X+ £ F..x* to the Fourier coefficients %, which results in the
following dependencies between

X = M Fo'x=Fi' Mzt xt = SF; Mz )

Combining Eq. (9) and the fact that x* = F_ k¥, we establish the following relationship between
M, S and the Fourier bases:

ol =S(Fg'M) =SB (10)

Eq. (10) can be informally viewed as “choosing” a set of vectors B = F, c ! M defined on G such
that when subsampled to the subgroup G*, they generate the Fourier basis for the subgroup G* .
Consecutively, we define the interpolation matrix as Z = BF ..

We now state our proposed definition of bandlimited signals in the context of subgroup subsampling.

Claim 2. Subgroup Sampling Theorem. For any signal x on G, if the Fourier coefficients X are
in the 1-eigenspace of M = M(MTM)™XMT then it can be reconstructed perfectly from the
subsampled signal x¥ on G*. The superscript T denotes the conjugate transpose.

Proof. To prove the claim, we show that

x = MMIM)"TMTx x = B(B'B)"'Bix X = Ppx. (11)

Here, Ppq £ B(B'B)~' B! denotes the projection matrix to the column space of B £ Fg ! M. This

means that x is in Span(B), i.e., we can express x = BX,. for some set of coefficient vector X..
Perfect reconstruction from the subsampled signal x* is now possible, i.e.,

Ixt = (BFgi)(Sx) = (BFquS)(BX,) = BFgui Fgl k. = BX, = x. (12)

The complete proof is provided in §A3.4. O

"The construction of such an M for an arbitrary group G and its subgroup G** is nontrivial, as the irreps of
the group and the subgroup that constitutes the corresponding Fourier bases often differ in dimensions.
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To provide some intuition, let’s study how this definition applies to Cyclic groups.

Example 3. Bandlimited-ness for Cyclic Groups. For real-valued functions over the fi-
nite cyclic group Cp, the real Fourier bases consist of the constant function ﬁl and

{\/% cos 2k 5, ﬁ sin2rkg : k < L%J ,Vn € Z/NZ} where k represents the frequency,

and n € Z/NZ represents the elements of Cn. If N is even, there is an additional basis
\/% cos 2m 5. Assuming the Fourier coefficients are arranged in an ascending frequency and
uniform downsampling by a factor of 2 (with N mod 2 = 0), we have

Ix
M‘/i[oi]’ (13)

%, as the Fourier bases of C N are formed by sinusoidal of

lower-frequencies. The corresponding M &
Mi; = L ifi=jandi< T
0 otherwise

where O n is a zero matrix of size % X
2
CNXN is:

(14)

The vector x lies in the 1-eigenspace if X[i] = 0 fori > % aligning precisely with the conventional
concept of bandlimited-ness.

Remarks: We have now defined what it means for signals on a finite group to be bandlimited
with respect to a given M that satisfies Eq. (10). To ensure that the signal is bandlimited before
subsampling, we can use the projection matrix P, to ensure that the signal satisfies the condition
in Clm. 2, i.e., perform an ideal anti-aliasing. However, it is easy to observe that the M is not
unique. While many M achieve perfect reconstruction, they may not be suitable for feature learning.
Specifically, the anti-aliasing operation should be equivariant to group actions and preserve some
notation of smoothness. We now discuss how to find such an M.

Equivariant anti-aliasing operator. We denote the ideal anti-aliasing operator P, in the Fourier

space as P & FoP MmFo !, Our goal is to find a M that achieves perfect reconstruction, performs
an equivariant anti-aliasing operation, and extracts smooth features. We formulate this goal as an
optimization problem:

M* = argA;nin Hvec(’ﬁM) — Tvec(ﬁM)Hj +A17 (Diag(falTLfél)Ml")T (15)

Equivariance Objective Smooth Selection Objective
subject to .7:(;1 = 8.7:51./\/1 (Perfect ReconstructionConstraint).

Here, A > 0 is a hyperparameter balancing equivariance and smoothness, the superscript | - | denotes
the elementwise absolute value, Diag returns the diagonal elements as a row vector and the details of
T and L are described below.

To be an G-equivariant the anti-aliasing operator, P needs to satisfy the following equivariant
constraint:

Prtbr, (9)% = pu, (9)PrX, Vg€ G, % €Cm. (16)
Here, we describe the equivariance constraint in the Fourier domain where g, . (g) corresponds to

the action of the group G on the Fourier coefficients formed by the direct sum of the corresponding
irreps (see §A 1.2 for details).

Next, Mouli & Ribeiro (2021) show that linear operators that are contained within the 1-eigenspace
of the Reynolds operator T corresponding to the tensor product representation

ﬁXG®XG = ﬁxc (9)® ﬁxc (gil)T (17)
satisfy Eq. (16), i.e., are equivariant, where

a1 - A —1\T

T2 decpxc (9) @ pa, (g7 )" (18)

Hence, the equivariance constraint of P A can be written as vec(?sM) = Tvec(ﬁM) (see §A1.3). Fi-
nally, we relax this equality condition as a penalty term to form the equivariance objective in Eq. (15).
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Next, the smooth selection objective is designed to prefer smoother basis functions in constructing
the bandlimited subspace. To quantify the smoothness of signals over groups, we view them as
functions over their corresponding Cayley graphs. We adopt the notion of smoothness from graph
signal processing, namely, the Laplacian quadratic form (Dong et al., 2016; Shuman et al., 2013)
as the smoothness measure. The Laplacian quadratic form for a function f on G can be defined as
fTLf, where L is the Laplacian of the Cayley graph I'(G, S). A smaller value indicates a smoother
function. Intuitively, the smooth selection objective can be viewed as penalizing the Fourier bases by
their Laplacian quadratic form weighted by their corresponding elements in M .
Finally, we solve the constrained optimization problem in Eq. (15) via Sequential Least Squares
Programming (Kraft, 1988) to obtain M™* which defines the bandlimited-ness and a corresponding
anti-aliasing operator P« .

Cohen & Welling, 2016
A6

5 EXPERIMENTS AND EVALUATIONS Table 1: )

5.1 EMPERICAL VALIDATION FOR CLAIM 2

We validate our theoretical findings in Clm. 2 by nu-

merically checking the recovery of bandlimited func- Group Subgroup Sub.R. Recon. Err.

tions after subsampling. We generate random signals D 214 % é.gie-m/
i — 2 _ oo 28 14 .54e-13/
x defined on dihedral group Da,, = (s,7r|s* =" = C 1 9.48¢-14
(sr)? = e) and cyclic rotation group C,, = (r|r"™ = 7 2oe
e), sampling each value from the standard Gaussian Dy 2 4.10e-11/
N(0,1). We consider subgroups G*, then apply the ~ Dag C1o 2 3.03e-11/
proposed downsampling technique: project x onto a Dy 5 2.78e-14/
bandlimited subspace by x = P x (anti-aliasing) Cis > 5.18¢-13/
and obtain x* restricted to G+ using S (subsampling).  Cio C: 6 9.5de-14/

Lastly, we interpolate the downsampled signal to the
original group using x" = Tx*.

In Tab. 1, we report reconstruction error, defined the norm difference || — xT||2 between the
bandlimited signal (X and the interpolated signal x"). We observe that the interpolation operator
successfully reconstructs the bandlimited signal. To further study the proposed anti-aliasing operator,
we visualize its response to the unit sample function d¢[g], where d¢[g] = 1 if g = e and 0 otherwise.
This response to d¢ represents the smoothing filter used in anti-aliasing. In Fig. 3, we illustrate such
filters. We observe that for the downsampling of cyclic group (C'¢ to Cs), the filter is reminiscent
of the sinc function (Fig. 3), which is used in an ideal low-pass filter for sequences. This further
illustrates the relation of our anti-aliasing to the classic anti-aliasing on sequences as explained
in Example 3.

Remarks: In practice, ideal anti-aliasing operators are often approximated. For instance, the Gaussian
blur filter is commonly used to smooth signals, approximating the sinc function, which has better
empirical advantages. Building on our theorem, there is potential for developing a more efficient
smoothing filter directly in the group (“time”) domain.

5.2 IMAGE CLASSIFICATION

We apply the proposed subgroup selection and anti-aliasing operator to equivariant CNN architectures.
Note that, to use the proposed anti-aliasing filter P4 in deep nets, we only need to perform the
optimization in Eq. (15) only once before training a model.

Experiment setup. As in prior works (Cesa et al., 2021; Cohen & Welling, 2017), we study the
effects of subgroup subsampling and anti-aliasing on group equivariant classification models using
the rotated MNIST (Deng, 2012) and CIFAR10 (Krizhevsky et al., 2009).
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Figure 3: Visualization of the smoothing filter (P (J¢) used in the anti-aliasing operation for subgroup
subsampling. The vertical bar corresponds to the value of the filter at each node, with the downward
bars indicating negative values.

Table 2: Performance of G-equivariant models on Rotated MNIST and CIFAR-10 at different
subsampling rates R and with/without anti-aliasing filter Py~ under the continuous rotation and
roto-reflection symmetry (SO(2)/O(2)). Sub-group subsampling with anti-aliasing improves both
equivariance and accuracy.

R # Param. D Sym. (SO(2)) Sym. (O(2))
X 103 M Accno aug ACCloc Accorbit Eequi ACCno aug Accloc ACCorbit L:equi
- 32311 - 09767 0.8234 0.8346 0.058 |0.9752  0.8253 0.8496 0.039
2 194.09 X 09743 0.8007 0.8106 0.056 |0.9774 0.6878 0.5660  0.092
£ 2 19409 v 09773  0.8301 0.8358 0.049 10.9807 0.6976 0.5749  0.091
Z 3 151.08 X 09674 0.7762 0.7907 0.057 |0.9731  0.8044 0.8316 0.046
S 3 151.08 v 09731 0.8057 0.8173 0.047| 0.9724  0.8251 0.8451 0.037
4 129.57 X 09831 0.6283 0.5052 0.109 |0.9810 0.6614 0.4816 0.109
4 12957 v 09827 0.6547 0.5219 0.093| 0.9806 0.6978 0.5006 0.098
- 54933 - 0.6934 04253 03708 0.322 |0.7251  0.4463 0.3867  0.265
o 2 29129 X 07060 0.4659 0.4096 0.398 |0.7448  0.4757 0.3310 0.555
- 2 291.29 v 07088  0.4868 0.4279 0.336 [0.7418 0.4720 0.3274 0.460
% 3 205.27 X 07006 04337 03766 0.549 |0.7249 0.4210 0.3674 0.478
£ 3 20527 v 06945 04472 03876 0379 [0.7117 04794 0.4197 0411
© 4 16226 X 07075 04275 0.2866 0.625 |0.7590 0.5205 0.2921 0.607
4 16226 v 0.7000 0.4536 0.3091 0.439 |0.7525 0.5425 0.3017 0.550

To rigorously examine the impact of subsampling on the rotation and roto-reflection symmetry
preservation, we remove the digits ‘9°, 2°, and ‘4’ from MNIST following Wang et al. (2023). These
digits disrupt the symmetry assumption on the dataset that the labels remain unchanged under the
group action. For instance, the digit ‘6’ overlaps with ‘9’ under a 180° rotation. The same is true for
2’/ *5” and ‘4’/*7” under roto-refletion group.

While we consider the symmetry of the image data to be continuous rotation/roto-reflection
(S0(2)/0O(2)), note that we use the discrete Coyq and Doy equivariant CNN for computational
feasibility which matches our theoretical assumptions. For MNIST and CIFAR-10, we train on 5k and
60k training images, and test on images on different levels of transformations (see § A7 for details).

Evaluation metrics. We propose evaluation metrics to measure the equivariance and classification
performance. Given a deep-net H, we use the features of image « to measure equivariance error

Lo (@) = = 37 |H (P (9)) — poe (9)H ()5

- (19)
G| | H (2)]|3

geqG

The representations p,, and p,, correspond to the group action on the input and output space of
the deep-net H. In the context of image classification, p,, represents the action of 2D rotation (and
flipping), while p,,, remains as an identity, i.e., invariance. Specifically, we use the pooled features
from the final equivariant convolution layer as the invariant features (Weiler et al., 2018).

For the classification performance, we consider three accuracy metrics for evaluating the model
performance under different degrees of equivariance:
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Table 3: Impact of subgroup selection in subgroup sampling on a 3-layer equivariant CNN. "*"
indicates selection based on our method. Our algorithm improves performance for various sampling
rates.

Group Sub. R. Subgroups Accro aug AcCroc AcCorbit
Doy 1.2.2 D2y Ci2 Cs 0.9703  0.6215 0.6128
T Doy D12 Dg* 09726 0.6539 0.5489
Dsy Cs Cs 0.9766 0.5244 0.4596
Doy Dg Dg* 09767 0.6272 0.4860
Dog C14 C14 09742  0.5852 0.5191
Dog D14 D14* 09786 0.7085 0.5792

Doy 1,4,1

Das 1,2,1

1. Accpo aug: The accuracy of the model on the original (un-augmented) dataset.
2. Accyoc: The accuracy of the model on the “locally augmented” dataset.
3. AcCorpit: The accuracy of the model on the full (SO(2)/O(2)) orbit of the dataset.

The orbit is constructed by taking all 10° rotations, and for local augmentations, we report on random
rotations within £60° of the test set.

Results. In Tab. 2, we report the results for MNIST and CIFAR-10 datasets under SO(2) and
O(2) symmetry. We report the average over 3 runs. For all models, the standard deviations are:
Accpo aug < 0.001, Accorpit and Accioe < 0.01, and Eequi < 0.004.

Overall, we observe that subgroup subsampling significantly reduces the parameter count of the
equivariant models. However, increasing the sampling rate (e.g., R = 4) disrupts the strict equivari-
ance constraint, leading to a higher equivalence error (Lequ;). This manifests as a decrease in both
Accorpit and Accyoc, while increasing the accuracy on the original test set, AcCpo ang. Next, incor-
porating our anti-aliasing operation mitigates the invariance error and achieves higher Acc,it and
Acci,c. Notably, a lower sampling rate combined with appropriate anti-aliasing significantly reduces
parameter usage while maintaining comparable or even surpassing the accuracy and equivariance
achieved with the full equivariant models.

Coates et al., 2011
A2.2

Ablations. In Tab. 3, we provide the ablation of the proposed sub-group selection heuristic. For 3
layered equivariant CNN and different sampling rates at different layers of the models, we report the
accuracy metrics for different choices of subgroups. We observe that for different symmetry groups
at different sampling rates, our proposed subgroup selection improves the performance in most cases.

Furthermore, in §A2.1, we demonstrate index selection by Xu et al. (2021) can be used with our
technique. The results show further performance improvements and confirm that our method can
easily be incorporated with existing techniques.

Limitations. As this is a theoretical paper, we fully acknowledge that our experiments are limited
to small-scale datasets and models. These experiments are meant to study and demonstrate the
potential of the proposed framework. Our proposed downsampling layer currently operates on finite
groups rather than continuous ones. The time complexity of the subgroup selection algorithm scales
quadratically, in the worst case, with the number of edges, |E|, in the Cayley graph (see §A5).

6 CONCLUSION

We propose uniform subgroup downsampling for signals on finite groups with an equivariant anti-
aliasing operation. We generalize the uniform subsampling operation to groups and propose a
subgroup selection method based on maximizing the number of generators. We then extend the
sampling theorem to subgroup subsampling, generalizing the notion of bandlimited-ness and anti-
aliasing to groups. We apply these theories to equivariant CNN and empirically show that models
with subgroup subsampling can achieve comparable or even better performance compared to full
equivariant models. In summary, we believe our developed theory would serve as the foundation
for future research in equivariant deep nets and signal processing on groups. We are particularly
excited about how to find an “optimal” subgroup for a given task and how to design more effective
anti-aliasing for signals on groups that would build on top of our framework.

10
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APPENDIX

The appendix is organized as follows:
* In §A 1, we present a review on group theory.

* In §A2, we present the results for incorporating the equivariant index selection operation with
our proposed downsampling technique.

* In §A3, we provide the complete proofs of the Lemmas and Claims in the main paper.
* In §A4, we provide the illustration of the implications of Claim 1.

* In §AS5, we provide a further generalization of the approach and how to check whether a given
group satisfies our theoretical assumptions.

* In §A7, we document additional implementation details. Code is also provided in the supplemental
materials.

A1l GROUP THEORY PRELIMINARIES

Al.1 GRouUP

A Group is a set G equipped with an operation (-) that maintains the following properties:
* Closure: Va,b € G,a-be G

* Associativity: Va,b,c € G,a-(b-¢)=(a-b)-c

* Existence of Identity: 3e €« G : Va € G, e-a=a

« Existence of Inverse: Va € G,3a 1 € G:a-a™ ! =e.

H is a subgroup of G if H C G and H satisfies all the group properties. The cardinality of the set G
is known as the order of the group. And the groups of finite order are called finite groups. For any
subgroup H C G, the left coset generated an element g € G is denoted as gH = {gh : h € H} and
right coset is denoted as Hg = {hg : h € H}.

Discrete Rotation Group (C},). The discrete rotation group C,, = (r | ™ = e) is a cyclic group
representing rotations by integer multiples of @ degrees.

Dihedral Group. Dihedral group Ds,, = (s,7|s? = r™ = (sr)? = ¢) is the group of symmetries of
a regular n-sided polygon, with rotations by integer multiple of @ and horizontal reflection.

General Linear Group. The general linear group GL(n,F) is the group of all invertible n x n
matrices with entries from the field F. GL(V') denotes general linear group on the vector space V.

A1.2 GROUP REPRESENTATION

Linear Group Representation. A linear group representation of a group G on a vector space U is a
homomorphism p from G to the general linear group GL(U). This can be written as:

p:G = GL(U), (A20)
where for each g € G, p(g) is an invertible linear transformation on U.

The map p must satisfy the following properties :

* p(gh) = p(g)p(h) forall g,h € G.
* p(e) = Iy, where I denotes identity transformation on U.

* p(g) is an invertible linear transformation.

14
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The dimensionality of a representation p is equal to the dimensionality of U and written as d,.

The trivial representation of a group G on a vector space U is a representation p such that p(g) =
Iy forall g € G. In other words, every group element acts as the identity transformation on the
vector space U.

The regular representation of a finite group G on the vector space F!G! with a basis indexed by
elements of GG act on it by permuting these basis elements according to the group operation.

Equivalent Representation Two representations p; and py are equivalent iff p; = Tp,T~! for
some change of basis T € GL(U).

Direct Sum of Representations Let p; : G — GL(U;) and p3 : G — GL(Uz) be two representa-
tions of a group G on vector spaces Uy and U, over the field F. The direct sum of p; and ps is a
representation p; @ ps : G — GL(U; @ Uy) defined by:

(p1 ® p2)(g) = p1(g) ® p2(g) forallg € G,
where U; @ Us is the direct sum of U; and Us, and the action on Uy @ Us is given by:

[p1 @ pa](g)[u1, uz] = [p1(g)u1, p2(g)uz]
for all u; € U; and uy € Us.

Irreducible Representation. A representation p : G — GL(U) of a group G on a vector space U
over a field F is called irreducible if the only G-invariant subspaces of U are the trivial subspace {0}
and U.

The set of irreducible representations (irreps) of G is denoted as G. All the irreps of abelian groups are
1 dimensional. The irreps of dihedral groups are 1 and 2 dimensional. And the irreps of a symmetric
group Sy are 1,2,3 dimensional.

Orthogonality Relation and Fourier Transform. Let ¢ be an irreducible unitary representation of
G of degree d,,. Then the d? functions {,/d,¢™" | 1 < m,n < d,} form an orthonormal set.

Let G be a finite group. Let G= {©i, ..., s} be a complete set of irreducible representations of G.

Then the functions
{ \% dW1g01nn | 2 S Gal S m,n S dga,i}

form an orthonormal set in the space of complex-valued functions over group L(G),and dil + -+
dis = |G]. In fact, this set of orthonormal bases defined the Fourier basis for functions on the group
G. The Fourier transform of a square-integrable function f € L?(G) is

f(er —‘Glzx/%f 9) Vi€ Gand1 <m,n < d,, (A21)
geG

where 7" (g) denotes the entry at m™ row and n™ column for matrix o;(g). Next, f (") de-
notes the Fourier coefficient corresponding to irrep component ¢}*". Similarly, the inverse Fourier
transform on a group can be expressed as

=3 > @MV (9), (A22)

0, €GmMn<dy,

And if for any g € G the action on f € L?(G) is defined as [g - f](u) = f(g~'u) then the action
can be represented in Fourier space as

9-Flei) = ¢if (1) (A23)
where, @i, f(¢i), g+ f(ipi) € Cler ¥

In the real case, irreps can have redundant columns. To eliminate redundancy, an endomorphism
basis Cy, is constructed to span the non-redundant columns of an irrep ;. The full irrep can be
recovered by multiplying these columns with elements of C'y,. The reverse of this process can also
be constructed, giving us the non-redundant columns (see (Cesa et al., 2021) for details).

15
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A1.3 INVARIANT AND EQUIVARIANT MAPS

A linear map W € R™ X7 g equivariant with respect to the group action p,, : ¢ — GL(U) and
Py 29— GLU") withU CR" and U’ C R" if

Wo, (9)v = p,, (9)Wv Vg € G,Vv € U (A24)

This imposes the following restrictions on the linear map
Py (9) @ py(g71) Tvec(W) = vec(W) Vg € G (A25)

where vec denotes vectorization operation converting a matrix to a vector. The condition in Eq. (A25)
denotes that vec()V) should be invariant to action of tensor product representation p,, g, = p,,, (9)®
0 (71T on the left. For a finite group G, the Reynolds operator (Mouli & Ribeiro, 2021; Mumford
et al., 1994) is defined as

1
T = @ Z p(9) (A26)

geG

which is a G-invariant linear map with respect to the representation p : ¢ — G L(X) on vector space
X. And to satisfy the condition in Eq. (A25), vec(W) must belong to the 1-eigenspace of Reynolds
operator with respect to the tensor product representation p, , s, acting on the vector space U’ ® U
(Mouli & Ribeiro, 2021).

Al.4 ILLUSTRATION CHALLENGES IN SUBGROUP SUBSAMPLING

(A27)

(A28)

A2 ADDITIONAL EXPERIMENTS

A2.1 EQUIVARIANT SUBSAMPLING

The work Xu et al. (2021) proposes to select indexes in a consistent manner that respects a specialized
equivariance (see Xu et al. (2021) lemma 2.1) that can work between groups and subgroups, which is
equivalent to Chaman & Dokmanic (2021) in traditional subsampling. The work assumes that the
subgroup is already provided and does not perform any anti-aliasing. However, the equivariant index
selection scheme can be incorporated with our proposed subgroup selection and anti-aliasing operator.
In Tab. A1, we provide the results on rotated-MNIST (SO(2) symmetry), where we incorporate
equivariant index selection with our proposed subgroup selection and anti-aliasing operator. We
observe that the proposed anti-aliasing operator consistently reduces the equivariance error and
improves accuracy. It also demonstrates the wide applicability of our proposed method.
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Table A1: Performance of G-equivariant models on Rotated MNIST at different subsampling rates
and with/without anti-aliasing filter P+ with the equivariant index selection. We can observe that
our proposed technique improves performance and equivariance error, showing wide adaptability.

Sub.R. #Param.x10® Pri+  AcCpoaug  AcCioc  AcCorbit  Lequi

2 194.09 X 0.9733° 08147 0.8225  0.0545
2 194.09 v 0.9782  0.8288 0.8297  0.0473
3 151.08 X 0.9692  0.7717 0.7865  0.1061
3 151.08 v 0.9650  0.7737 0.7833  0.0594
4 129.57 X 0.9656  0.6606 0.5602  0.0881
4 129.57 v 0.9703  0.6928 0.5759  0.0761

A2.2 RESUTL ON STL-10

Coates et al.. 2011

Table A2: Performnace of G-equivarinat models on STL-10 dataset at different sampling rate R and
with/without anti-aliasing filter P« under the rotation (SO(2)) symmetry. Sub-group subsampling
with anti-aliasing improves both equivariance and accuracy.

Initial Group Sub.R. P, #params ACCp,, .y ACCioc ACCorpit  Lequi

Coy - - 1.3M 0.54 0.34 0.30 0.16
Caa 2 v 962K 0.60 0.42 0.37 0.16
Coy 2 X 962K 0.60 0.40 0.35 0.17
Coy 3 v 831K 0.62 0.42 0.37 0.16
Cau 3 X 831K 0.60 0.38 0.34 0.18

Table A3: Performance of G-equivariant models on STL-10 dataset at different sampling rates R
and with/without anti-aliasing filter P+ under the roto-reflection (O(2)) symmetry. Sub-group
subsampling with anti-aliasing improves both equivariance and accuracy.

Initial Group Sub.R. P, #params ACCp,ayz ACCioc  ACCorbit  Lequi

Doy - - 1.3M 0.57 0.37 0.32 0.12
Doy 2 v 962K 0.64 0.40 0.27 0.19
Doy 2 X 962K 0.61 0.40 0.26 0.20
Doy 3 v 831K 0.64 0.44 0.39 0.17
Doy 3 X 831K 0.60 0.33 0.33 0.17

A3 COMPLETE PROOFS OF LEMMAS AND CLAIMS

A3.1 PROOF OF LEMMA 1

First, we provide the proof of the lemmas.

Lemma 1. For the set G¥ returned by Alg. 1, v € G* if and only if v can be expressed as a product
of the elements of the set S* = (S/{sq}) U {sF}.
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Proof. In the graph (V, E'), there exists a path between e and some node v € V iff v € G*
(guaranteed by BFS traversal algorithm). So it will be sufficient to prove that in a graph (V, E'), there
exists a path between node e and some node v if and only if v can be expressed as the product of
elements of S*.

By construction, each node in a directed Cayley graph (V, E) = DiCay(G, S) has an out-degree of
|S|, with each outgoing edge corresponding to an element of the set S. Removing all outgoing edges
corresponding to the element s4 and adding a new outgoing edge to each node corresponding to the
new element s¥, ie., B/ = E\ {(a,a-s4) : a € V}U{(a,a- s¥) : a € V} maintains the property
with respect to S¥. That means each node in graph (V, E’) has an outgoing edge corresponding to
each element of the set S*.

Let’s assume there exists a path from e to node a € V. We denote the path as a list of vertices by
{e;(e"Say)y--- (e Say---"Sa,,_, * Sa,, )} Which is constructed by picking m hops from e along
the edges corresponding to the elements {s,,, ... ,Sa,,_,; Sa,, } in order where Vj s,, € S+, This

implies a = H;”:l Saj» i-€., a is generated by products of the elements of set St.

Conversely, let b =[]}, sp, such that Vi s;, € S*. Existence of a path from e to b demands the exis-
tence of a series of hops from e along the edges corresponding to the elements sp,,... , 8y, ,,Sb,,-
Such a series of hops always exists in graph (V, E’) as every node has |S’| out-going edges corre-
sponding to each element in S’.

A3.2 PROOF OF LEMMA 2

Lemma 2. For the set S* in Lemma I, each element s; € S* = s;' € G*.

Proof. Let s, € S*\ {s§}, then s, ! = s7*~" (as oy, is order of s;,), i.e., s}, can be expressed as a
product of the elements of S+ by Lemma |, s,?l € G*.

Now (sf)~! = s;f. Let, w = (04 — 1) and (Rw mod 04) = (Rog — R mod 04) = (—R
mod 0g). S0, SJR = S&UR. And, following Lemma 1, (55)_1 e Gt O

A3.3 PROOF OF CLAIM 1

Claim 1. [f Sk = {sk : k € Z* and k mod R # 0} are non-redundant powers of sq, 04
mod r = 0, and the elements of S (’j can not be represented as a product of the elements of the left
cosets of the subgroup G, = (S/{sa}) generated by the set {s"F : n € ZT} then Alg. | returns
a proper subgroup G C G.

Proof. We first prove that G is a group.

Existence of Identity By construction, e is always a member of set G as we start the traversing the
graph from node e.

Closure Let a,b € G*. Therefore, by Lemma | a =[]}, sa,,b = [T}, 55, with Vs,,, 5, € S*.
Now a-b = (I[\~; Sa;) - (H?:1 sp,), 1., a - b can also be expressed as a product of elements of S*.
So,by Lemma |, a-b € GV,

Associativity As G* C G, and element of G** follows the multiplication table of group G.So, the
associativity of (-) operation will hold trivially for elements of G+.

. 1 _ n _ . .
Existence Inverse element Let, v € G¥ and v = [[._; Sy, = Su, - Sy - - - - Sy, . Now We construct a

group element wasu = s; ' -s; 1 ... s; 1. And, we cansee thatv-u = u-v = e. So, u = v~ !. By

Lemma 2, Vi s, ’1 € G* and following the Closure property u € G, i.e., G* is a group.
Now, we prove that G¥ C G by contradiction. We assume that Hsgi € S¥ such that s’;"' € G*.

As the elements of Sfj are non-redundant, ssi can not be generated only by the generator S =
S¥/{sB1. Additionally, k; mod R # 0 and o4 = wR for some w € Z ( R divides 0g), Bl € Z : IR
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mod o4 = k;. So, Bl € Z such that (s5)! = s%i. Therefore, the generators for the element s% must
include s& and elements from the set V.

Without any loss of the generality, assume that the path from e to sgi is the shortest among the
elements of S5 N GY. Lets 85" = sk, - Sk, - Sky - - - Sk, - Sk, such that Vi sy, € S*. Now, s, can
not be s. As

ki _ R ki—R __
Sq =S4 " Sky *Sko++-Skyn_1 " Sky Sq = Sko " Sko +++Skp_1 " Skp>

where k; — R mod R # 0as k; mod r # 0. But SZFR € S* requires one less generator, thus
contradicting our assumption that the path from e to ssi is the shortest among the elements of S 5 NG*.
A similar restriction is also applicable for s . So, the path from e to sfl"’ must start and end with
generators from set S’*. Therefore, we can express ssi as

SRTLg

shi=qp - (s qy) - (s5me - gg) .- (s ) (A29)

where, Vj g; € Gy With Gy is subgroup generated by S’ ‘L and Vi n; € Z.

Next, st""‘ - gm for 2 < m < [ is an element of the left coset of the subgroup G, generated by
element 55"’", ie., st"’" “Qm € {55”"’” -g:9g € Ggyup} and g is an element of a trivial left coset of

G sup generated by e. Therefore, s’;i is expressed as the product of the elements of the left cosets of
G sup generated by the set {SZR inE Z0+}, which contradicts our assumption.

This means that %' ¢ G¥ Vs" € S% and implies that G* C G. O
A3.4 PROOF OF CLAIM 2
Claim 2. Subgroup Sampling Theorem. For any signal x on G, if the Fourier coefficients X are

in the 1-eigenspace of M = M(MT M) M then it can be reconstructed perfectly from the
subsampled signal x* on G*. The superscript t denotes the conjugate transpose.

Proof. First, we show that if X is in the 1-Eigenspace of M (MT M)~ M, then x € Span(B) with
B £ F;'M.If x is in the 1-eigenspace, then

%= MM M) "M% (A30)
=Fox = FoFi  MMIM) "M Fox (as FoFg' =1) (A31)
=x = Fg  MMIM) M Fax (A32)
sx = FMMIFT F M) M FL % (as P = R (A33)
=x = IS M(FG M) Fo M)y (F M) x (A34)
=x = B(B'B)"'B'x (A35)
=x = PpmX (A36)

Here, Py = B(BTB)~B" denotes the projection matrix to the column space of B. Note that the

columns of B are linearly independent. As 7| = SB and rank(F_}) = M. The rank(B) is

at least M. And as B has M columns, they are independent, and rank(B) = M, Px, is a valid
projection matrix.

This means that x is in Span(1), i.e., we can express x = X, for some set of coefficient vector X..
Perfect reconstruction from the subsampled signal x* is now possible, i.e.,

Ixt = (BFgu)(Sx) = (BFq.S)(Bx.) = BFuF, % = Bxe = x. (A37)

In conclusion, perfect reconstruction of x is possible from x* when X is in the 1-Eigenspace of
MMIM)=IMT,

O
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A4 JLLUSTRATION OF CLAIM |

Here is an illustration of Claim |. The claim states thatif S§ = {s% : k € Z* and k mod r # 0} are
non-redundant powers of s4, o4 mod r = 0, and elements of .S 5 can not be represented as a product
of elements of left cosets of the subgroup G, = (S/{sq}) generated by set {s7¥ : n € Z] '} then
Alg. | returns a proper subgroup G* C G. In Fig. A1, we illustrate the claim with group Ds.

sub = (S/{sa})

N

Figure Al: Illustraion of Claim | for subsampling Dg by a factor R = 2 along the generator
sq = . The red-colored nodes denote the set S¥ = {r,r3}. The green highlighted nodes {e, s} is
the Gsup = (S/r). We can see S% is nonredundant, and the order of s, is divided by 2. The last part
of the claim implies that the colored node must not be reachable from nodes G, with a hop of 72
denoted in a dotted blue line. Which is indeed satisfied with the example shown.

A5 GENERALIZATION OF SAMPLING ALGORITHM

In this section, we provide an algorithm (see Alg. 2) to check for compliance of a generator with
the condition in Claim |. We also provide a general sampling algorithm (Alg. 3) that maximizes the
number of generators in the subgroup following the heuristics from §4.1.

The Alg. 2 takes O(|V|+ | E|) time where V is the set of nodes and E is the set of edges in the Cayley
graph. To choose the generator with the highest order, we need to check for compliance for each of the
generators, making the time complexity to downsample by a chosen generator O(|S|.(|V|+|E])). The
computational complexity can be high for complex groups depending on the choice of the generating
set S. Since the sampling algorithm runs only once before training to generate the sampling matrix,
efficiency is maintained. Furthermore, for large complex groups, such as symmetry groups .S,,, the
subgroups can be selected based on prior domain knowledge followed by our proposed anti-aliasing
operation.
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Algorithm 2 Check-Compliance

1: Input: Group G, Generators S, Generator s, Order of the generator o, subsampling rate r
2: Qutput: True, False

3: if o mod r # 0 then

4: ReturnFalse

5: end if

6: V, E + DiCay(G,S)

7. for eachv € V do

8:  E.remove((v,v-sq))

9:  E.add((v,v-s}))
10: end for
11: // graph traversal from e
12: Q+ 9
13: Gcosets —J
14: Q.enqueue(e)
15: while Q # @ do
16:  n + Q.dequeue()
17: Geosets-add(n)
18:  for each (n,m) € E’' do

19: if m ¢ @ then
20: Q.enqueue(m)
21: end if

22:  end for

23: end while

24: if 3s* € Grpsers such that & mod r # 0 then
25:  Return False

26: end if

27: Return True

Algorithm 3 General-Subsample

1: Input: Group GG, Generators S, Order of the generators O, subsampling rate r,
2: Subsampled Group: G+

3: V, E + DiCay(G, S)

4: Gt <« G.copy()

5: R« factorize(r)

6: fori = 1to R.length() do

7 index < NULL

8: forj = 1to S.length() do

9: // check the compliance of S[j|] using Alg.2
10 if check—compilance(G,S[j], Olj], R[j]) then

11: if (index = NULL OR OJj] < Olindex]) then

12: index < j

13: end if

14: end if

15:  end for

16:  if index = NULL then

17: Return NULL

18:  end if

19: // Downsampling using Alg. |

20:  GY < Downsample(G, S, R[i], S[index])

21: // updating generating set and order
22:  Slindex] « Slindex]F

23:  Olindez] < Olindex]/R]i]

24: end for

25: Return G+
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A6 FUNCTION ON GROUPS IN EQUIVARIANT CNN FOR IMAGES

Cohen &
Welling. 2016

(A38)

(A39)

Cohen & Welling, 2017

2

Figure A2: Visualization of function on the group in Cy = {e, r, 7%, r3} equivariant CNN. The input
image f is transformed into a function over a group following Eq. (A38) with some learnable filter
1. The resultant function [f % 9] is a function over Z? x C. Now at every fixed spatial location
(i,7) € Zy X Z,, we have functions over Cy. Elements of one of such functions are marked with a
dotted circle with corresponding elements of Cy
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A7 ADDITIONAL IMPLEMENTATION DETAILS

Weiler & Cesa (2019

Weiler & Cesa (2019

Weiler & Cesa, 2019

For MNIST, we train on 5, 000 training images without any data augmentation and test on 10, 000
images on different levels of transformations. For CIFAR-10, we train on 60K images without
any data augmentation and evaluate on 10K images. All models consist of 3 group equivariant
convolution layers (Cesa et al., 2021; Cohen & Welling, 2016) followed by a linear layer mapping
to the final logits. The filter size at each layer is 5. When subgroup subsampling is performed, the
convolution layer following the subsampling layer is equivariant only to the subgroup. The output of
the final convolution layer undergoes global-pooling operation (Weiler et al., 2018) to obtain invariant
features. For subsampling, roto(dihedral)-translation group, we subsample rotation (dihedral) group
and translation group independently. Subsampling along the translation group is equivalent to spatial
subsampling and is performed using BlurPool (Zhang, 2019). We set A = 5 in Eq. (15) for obtaining
M*.

Models are optimized using the Adam optimizer and trained using 15 and 50 epochs with batch sizes
of 128 and 256 for MNIST and CIFAR-10 datasets, respectively. All the expenses are run on a single
NVIDIA RTX 6000 GPU.
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