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Abstract
Linear recurrent neural networks enable powerful long-range sequence modeling with constant memory usage
and time-per-token during inference. These architectures hold promise for streaming applications at the edge, but
deployment in resource-constrained environments requires hardware-aware optimizations to minimize latency
and energy consumption. Unstructured sparsity offers a compelling solution–when accelerated by compatible
hardware platforms. In this paper, we investigate the Pareto front of performance and efficiency across inference
compute budgets. We find that highly sparse linear RNNs consistently achieve better efficiency-performance
trade-offs than dense baselines, with 2× less compute and 36% less memory iso-accuracy. Our models achieve
state-of-the-art results on a streaming audio denoising task. By quantizing our sparse models to fixed-point
arithmetic and deploying them on the Intel Loihi 2 neuromorphic chip, we translate model compression into
tangible gains of 42× lower latency and 149× lower energy consumption compared to a dense model on an edge
GPU. Our findings showcase the transformative potential of unstructured sparsity, paving the way for highly
efficient recurrent neural networks in real-world, resource-constrained environments.

§ https://github.com/IntelLabs/SparseRNNs

1. Introduction
Linear Recurrent Neural Networks (RNNs) have recently
emerged as powerful primitives for sequence modeling, both
in isolation or hybridized with self-attention, achieving im-
pressive results in language modeling (Poli et al., 2024),
audio generation (Goel et al., 2022), and genomics (Nguyen
et al., 2023), and many other areas. This success has been
ignited by advances in initialization, parametrization, and
parallelization of these models, which, combined, enabled
large-scale training on GPUs (Voelker et al., 2019; Chilkuri
et al., 2021; Gu et al., 2020; 2022b; Smith et al., 2023).

At inference time, linear RNNs iteratively compress the in-
put sequence into a finite-dimensional representation whose
dimensionality does not depend on the sequence length.
Their memory requirements remain constant regardless of
sequence length, and runtime scales linearly with sequence
length. In contrast, transformer architectures (Vaswani et al.,
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Figure 1. Model compression and acceleration pipeline for linear
RNNs, tailored to the Intel Loihi 2 chip.

2017) exhibit linear memory growth and quadratic runtime
scaling as sequence length increases. This advantageous
scaling makes linear RNNs especially well-suited for real-
time long-range sequence modeling on edge devices that
require low latency, a small form factor, and are subject to
weight and power constraints, as common for applications
like audio denoising (Timcheck et al., 2023), keyword spot-
ting (Warden, 2018), or perception-and-control (Lu et al.,
2023). Although model optimization and compression are
essential for enabling efficient edge machine learning by
reducing resource demands, their application to accelerate
the inference of linear RNNs remains under-explored.
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Figure 2. Overview of the S5 architecture. Symbols are shown as defined by equations in Section 2.1.

Linear RNNs are a promising match for neuromorphic pro-
cessors, which can efficiently update stateful neurons due to
a tight integration of massively parallel compute and mem-
ory. Neuromorphic processors are an emerging class of
brain-inspired hardware architectures, with notable exam-
ples like IBM’s NorthPole (Modha et al., 2023), SpiNNaker
2 (Mayr et al., 2019), Tianjic (Pei et al., 2019), and In-
tel’s Loihi 2 (Orchard et al., 2021). Beyond parallelism
and compute-memory integration, different neuromorphic
processors offer unique sets of further computational fea-
tures, including event-driven compute and messaging, low-
precision arithmetic, and support for unstructured sparse
weight matrices. These sets of features offer unique opportu-
nities to optimize and compress linear RNNs for real-world
applications.

In this work, we explore the potential of unstructured
sparsity–in weights and activations–and fixed-point quanti-
zation for the compression of linear RNNs and acceleration
on neuromorphic hardware as illustrated in Figure 1. Specif-
ically, we explore four key research questions:

1. Can we train linear RNNs with high synaptic and acti-
vation sparsity while retaining high performance?

2. Do highly sparse linear RNNs outperform dense linear
RNNs across different inference compute budgets?

3. Can fixed-point quantization compress sparse linear
RNNs without damaging the network’s performance?

4. Can unstructured sparsity and fixed-point quantization
be translated into latency and energy advantages on
neuromorphic hardware?

We provide definite positive answers to questions 1 and 4,
and present positive evidence for questions 2 and 3.

2. Compressing linear RNNs
2.1. Linear Recurrent Neural Networks

Recurrent neural networks (RNNs) are a class of neural
networks designed for processing sequential data by main-
taining hidden states that capture temporal dependencies.
Linear RNNs distinguish themselves through their linear
dynamics, which enables parallelization over the sequence
length and, therefore, efficient training. Previous work has
shown—both theoretically (Orvieto et al., 2024) and empiri-
cally (Gu et al., 2022a)—that the network’s recurrent weight
matrix can effectively be diagonalized in the complex do-
main without any loss of generality or model capacity. We
use this diagonal formulation of linear RNNs, such that
the network’s update equations for the state xk ∈ CN and
output yk ∈ RM are given by:

xk = diag(Ā)⊗ xk−1 + B̄Tuk (1)

yk = C̄Txk + diag(D̄)⊗ uk (2)

where ⊗ denotes the Hadamard product, uk ∈ RM is the
input sequence, diag(Ā) ∈ CN are the diagonal recurrent
weights, B̄T ∈ CM×N are the input weights, C̄T ∈ CN×M

are the output weights, and diag(D̄) ∈ RM are the residual
weights. We follow the S5 model (Smith et al., 2023) for
the initialization and parameterization of the linear RNN.

Because of its linearity, the temporal mixing of the S5 block
above is followed by a nonlinear channel mixing block.
We use a particular variant of the GLU block (Dauphin
et al., 2017) where the linear RNN’s output yk ∈ RM is
transformed as: GLU(yk) = σ (Wτ(yk))⊗ τ(yk) where
τ is an element-wise nonlinear function (we use either the
Gaussian error linear unit (GELU) or the Rectified Linear
Unit (ReLU)), W ∈ RM×M is a weight matrix, and σ is the
sigmoid function. The full model architecture is illustrated
in Figure 2.
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Figure 3. (a) Loihi 2 implements a network of neurons, which are processed by neuro-cores and communicate via an asynchronous
network-on-chip. Parallel IO and 10Gbit Ethernet interfaces enable a Loihi 2 chip to communicate with other Loihi 2 chips and external
hosts, respectively. Embedded microprocessors provide a flexible method of interaction with neuro-core registers, management, and
communication. On a neuro-core, each neuron receives spike messages from other neurons via synapses with multiplicative weights wi,
and sums them up by one or multiple dendritic accumulators. The input is used by a dendrite to update memory states that are local to the
respective neuron. The neuron communicates with other neurons by sending spike messages. (b) Different Loihi 2 systems are available
to cover a wide range of applications from the edge to HPC with up to 1B neurons.

2.2. Neuromorphic Computing with Intel Loihi 2

Neuromorphic processors mimic computing principles of
the brain, which excels in processing sequential data streams
with just around 20W of power. Loihi 2 is the second-
generation of Intel’s neuromorphic research processor (Or-
chard et al., 2021) and implements a spiking neural network
as illustrated in Figure 3. The network is processed by
massively parallel compute units, with 120 neuro-cores per
chip. The neuro-cores compute and communicate asyn-
chronously, but a global algorithmic time step is maintained
through a barrier synchronization process. The neuro-cores
are co-located with memory and can thus efficiently update
local states, simulating up to 8 192 stateful neurons per core.
Each neuron can be programmed by the user to realize a
variety of temporal dynamics through assembly code. Input
from and output to external hosts and sensors is provided
with up to 26M 32 bit integer messages/s (Shrestha et al.,
2024b). Loihi 2 can scale to real-world workloads of vari-
ous sizes with up to 1B neurons and 128B synapses, using
fully-digital stacked systems shown in Figure 3.

The architectural features of Loihi 2 offer unique oppor-
tunities to compress and optimize deep learning models.
Like GPUs, its neuro-cores benefit from model quantization,
as it supports low-precision arithmetics, 8 bit for synaptic
weights and up to 32 bit for spike messages. Unlike GPUs,
Loihi 2 is optimized for computations local within neu-
rons, a common focus of neuromorphic processors. First,
it allows fast and efficient updates of neuronal states with
recurrent dynamics with minimal data movement, due to
its tight compute-memory integration. Second, the fully
asynchronous event-driven architecture of Loihi 2 allows
it to efficiently process unstructured sparse weight matri-
ces. Third, the neuro cores can leverage sparsified activation
between neurons, as the asynchronous communication trans-
fers only non-zero messages.

2.3. Evaluating Benefits from Sparsity

Unstructured sparsity has demonstrated compelling results
as an effective model compression technique, serving both
as a framework for theoretical analysis of sparsity algo-
rithms and as an upper-bound for the gains achievable with
constrained forms of sparsity (Liu & Wang, 2023; Mishra
et al., 2021; Han et al., 2015). In particular, when com-
pared to structured sparsity patterns, like N:M (Mishra et al.,
2021) or block-diagonal, it typically attains higher task per-
formance or compression rates (Lee et al., 2023). However,
the gains of unstructured sparsity have not been realized
as the traditional GPU architecture is suited to exploit only
block sparsity structures (Liu & Wang, 2023). Additionally,
sparse activations complement synaptic sparsity, resulting in
fewer operations overall (Mukherji et al., 2024), but GPUs
typically cannot take advantage of activation sparsity ei-
ther. Realizing the benefits of unstructured sparsity requires
suitable hardware architectures (Lie, 2023; Ashby et al.,
2019; Zhang et al., 2021). The event-driven neuromorphic
architecture of Loihi 2 is inherently suited to take advan-
tage of the unstructured sparsity in both connections and
activities, in particular, when they are extremely sparse, i.e.,
≥ 90%. Therefore, we choose to compare the benefits of
efficiency gained from sparsity on Loihi 2 with equivalent
dense networks on an edge GPU.

Theoretical studies have shown that wider sparse layers out-
perform dense layers with the same number of parameters
(Golubeva et al., 2021; Chang et al., 2021). Research has
further shown that, in practice, it is better to train a larger
over-parameterized network and prune it to make it leaner
compared to training a compact sparse network from start
(Frankle & Carbin, 2018; Renda et al., 2020; Chen et al.,
2020). There is evidence showing minimal loss in accuracy
when the networks are pruned, typically to sparsity levels
of 50–80% (Chen et al., 2020). However, there is not much
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research on performance at extreme levels of sparsity of
≥ 90%. We thus ask; Do highly sparse networks achieve
superior performance to dense networks when operating
under identical inference compute budgets? How does the
performance benefit of sparsity vary with increased compute
budget?

In Section 3.2, we evaluate the effect of pruning and activity
sparsification on multiply-and-accumulate (MACs) opera-
tions and task performance for a k-family of sparse and
densely trained networks where ksparse ∈ [0.5, 3.0], kdense ∈
[0.25, 1.0] is the width scaling factor of the networks. In
linear layers, which account for most of the computation
in the S5 architecture, MACs scale linearly with weight
and pre-activation sparsity. The detailed MAC calculation
is reported in Appendix A.1. Additionally, we benchmark
iso-accuracy models on relevant hardware to validate the
theoretical gains from sparsity with latency and power mea-
surements in Section 3.3.

2.4. Model Compression

Synaptic pruning Given our focus on edge and low-
latency applications, we design our compression pipeline
assuming that fine-tuning or re-training of the models is
feasible. Following previous work (Mishra et al., 2021), we
initialize the parameters from the pre-trained dense models.
We adopt iterative magnitude pruning (IMP) which increases
sparsity progressively during training and achieves better
task performance than one-shot approaches, especially at
high sparsity levels (Zhu & Gupta, 2018; Lee et al., 2023).

Specifically, we train for E epochs with T update steps in
total. Sparsity starts at Si = 0 at ti = 0 and is increased
following a degree-3 polynomial schedule (Zhu & Gupta,
2018) and updated three times per epoch as:

St = Sf − (Sf − Si) ·
(
1− t− ti

tf − ti

)3

with tf = 0.75T . Given the total sparsity St and weights
W ℓ

t ∈ RNℓ×Mℓ

at time t and position ℓ in the network, we
scale the sparsity sℓt for each weight according to the Erdös-
Renyi-Kernel (ERK) strategy (Evci et al., 2020; Mocanu
et al., 2018) to compute the mask M ℓ

t :

sℓt = st ·
N ℓ +M ℓ

N ℓ ·M ℓ

M ℓ
t = 1

(
|W ℓ

t | ≥ τ ℓt
)

τ ℓt = min
[
TopK

(
|W ℓ

t |, sℓtN ℓM ℓ
)]

where τ ℓt is the calculated threshold for W ℓ
t to reach sparsity

sℓt and TopK(W,k) gives the top-k values from W . In
the forward pass, weights are masked as W̄ = M ⊙ W ,
while the backward pass applies straight-through estimation
(Bengio et al., 2013), enabling gradient updates also for
masked weights.

Activity sparsification Sparsifying layer activations pro-
vide another means for reducing the compute and on-chip
memory requirements during inference. In particular, sparse
pre-activations of linear layers can significantly reduce the
number of MACs required for the associated matrix-vector
multiplication (MVM), if appropriately supported by the
hardware backend. On sparse and event-driven accelerators,
such as Loihi 2, sparse pre-activations directly translate into
MACs savings since the MVM operation is computed as

MVM(W,x) = W{i,j|xj ̸=0}x{i|xi ̸=0} (3)

In contrast, GPU architectures struggle to leverage dynamic
sparse activation patterns and have demonstrated gains with
more structured activation patterns, and only in memory-
bound regimes as in auto-regressive generation with large
models (Mirzadeh et al., 2024; Zhang et al., 2024; Shazeer
et al., 2017; He, 2024a).

Techniques for activation sparsity include top-k (Key et al.,
2024), sigma-delta coding (Shrestha et al., 2024a; O’Connor
& Welling, 2016), sparse mixture-of-experts (Fedus et al.,
2022; He, 2024b) and ReLU-fication (Mirzadeh et al., 2024).
We base our methodology on the latter of these. Since
ReLU is a fully element-wise operation, it doesn’t require
synchronization across channels which would complicate
implementation in compute-memory integrated platforms,
such as Loihi 2. Following previous work on transformer
models (Mirzadeh et al., 2024), we start from the original
dense model with GELU non-linearity, as shown in Figure 2,
and apply two modifications. First, we replace the GELU
activation with a ReLU, sparsifying pre-activations of the
linear layer in the GLU block. Second, we insert additional
ReLU activations after the residual add in the GLU block
and to the real component of the S5 hidden layer, further
increasing the pre-activation sparsity of linear operators.
Both model surgeries are applied to the pre-trained model
at the beginning of the iterative pruning procedure, enabling
accuracy recovery from both weight and activation pruning
without extra training budget.

Quantization and fixed-point computation Reducing
the numerical precision of weights and activations through
quantization is an essential way to compress machine learn-
ing models, directly leading to reduced memory footprint
and faster inference (Gholami et al., 2021). We denote the
tensor to be quantized with x and the number of bits to use
with n, such that the quantized tensor x̄n is defined as:

x̄n =

⌊
x

∆x
+ zx

⌉
= ⌊sxx+ zx⌉ (4)

where ⌊·⌉ indicates rounding to the nearest integer, sx is
the scale for the given tensor, zx is the zero point, and ∆x

is the corresponding step size. For simplicity, we choose
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sx = (2n−1 − 1)(max |x|)−1 and zx = 0, i.e., we use
symmetric quantization based on the absolute maximum.

Post-training quantization (PTQ) applies quantization to a
pre-trained model without further training, which is com-
putationally efficient but may lead to a notable drop in ac-
curacy, especially for complex models or tasks (Gholami
et al., 2021). Without constraints during training, it has
been shown to under-perform on both nonlinear (Wu et al.,
2016) and linear RNNs (Abreu et al., 2024). In contrast,
quantization-aware training (QAT) incorporates quantiza-
tion into the training process using straight-through esti-
mators for the gradients (Bengio et al., 2013), allowing
the model to adapt to the reduced precision and typically
achieving superior performance retention compared to PTQ
(Hubara et al., 2018), which has also shown promising re-
sults on linear RNNs such as S4D (Meyer et al., 2024) and
S5 (Abreu et al., 2024) on synthetic tasks from the Long
Range Arena benchmark (Tay et al., 2021). To demonstrate
advantages on hardware, we use static quantization (Gho-
lami et al., 2021) using only fixed-point (integer) arithmetic
(Wu et al., 2020). Whereas in dynamic quantization, scales
sx are computed dynamically on incoming data (and there-
fore requiring floating-point operations), static quantization
pre-computes scales for all weights and activations in the
neural network and “freezes” these scales so that the net-
work can be converted to use only fixed-point arithmetic.

Following prior work on quantizing linear RNNs (Abreu
et al., 2024), we choose 8 bit for all weights, except the diag-
onal recurrent diag(Ā) weights which is stored with 16 bit.
All activations are quantized to 16 bit. We denote this quan-
tization recipe with W8A16. This is a more compressed
quantization scheme than previous work that deployed a
linear RNN to fixed-point hardware using W8A24 (Meyer
et al., 2024). For the linear RNNs that are deployed to the
Loihi 2 chip, we combine QAT with sparse training.

2.5. Porting S5 to Loihi 2

Running S5 on Loihi 2 requires a range of adjustments, to
fully leverage the neuromorphic architecture and to adhere
to its constraints. As a result, the S5 network shown in
Figure 2 is transformed into a network of synapses and
neurons for Loihi 2 as illustrated in Figure 8. In general,
a state vector of dimension RM is encoded by M neurons.
Matrix-vector multiplications are hardware accelerated by
the synaptic layers, which take a vector of neuron activities,
multiply it with the matrix of synaptic weights, and pass the
output to the next layer of neurons. Since complex numbers
are not natively supported on Loihi 2, the complex matrices
B̄ and C̄ have been split into two synaptic layers each.
Similarly, the complex state xk is stored by two neuronal
states. The remaining operations are performed within the
assembly-programmable neurons.

A single layer of programmable neurons can efficiently fuse
many operations on the vector it encodes. This applies to all
element-wise operations where each neuron must operate
only on its local states. The neuronal layers thus implement
ReLUs, BatchNorm, Hadamard products, residual add, and
multiplications of a state vector with a diagonal matrix. Ap-
plying this layer fusion, the full S5 architecture only requires
one neuron group for the encoder, one for the decoder, and
three for each S5 block. The detailed mapping of operations
to neuron groups is illustrated in Figure 8,

3. Results
3.1. Experimental Setup

Software We implemented our methodology in JAX
0.4.30, building on top of the original S5 codebase (Smith
et al., 2023), with JaxPruner (Lee et al., 2023) for the prun-
ing algorithms and the AQT library (Google, 2024) for
quantization-aware training. We implemented static quanti-
zation and a fixed-point model ourselves using only JAX.

Audio denoising task We evaluated our approach on the
Intel Neuromorphic Deep Noise Suppression Challenge
(Timcheck et al., 2023). The objective of the Intel N-
DNS Challenge is to enhance the clarity of human speech
recorded on a single microphone in a noisy environment.
The Intel N-DNS Challenge utilizes data from the Microsoft
DNS Challenge, encompassing clean human speech audio
samples and noise source samples. (Reddy et al., 2020;
2021a;b; Dubey et al., 2024). Clean human speech and
noise samples are mixed to produce noisy human speech
with a ground truth clean human speech goal.

To train our models, we used the default Intel N-DNS Chal-
lenge training and validation sets, each consisting of 60 000
noisy audio samples of 30 s each, and a test set with 12 000
samples. We encoded and decoded each audio sample us-
ing the Short-Time Fourier Transform (STFT) and Inverse
Short-Time Fourier Transformer (iSTFT) (Gröchenig, 2013).
Following the N-DNS baseline solution, NsSDNet (Shrestha
et al., 2024a), we adopted a 32ms window length and a 8ms
hop length for the STFT/ISTFT. This resulted in a nominal
real-time audio processing latency of 32ms, which allows
ample time (8ms) for denosing network inference, as 40ms
is the standard for an acceptable latency as recognized in the
Microsoft N-DNS Challenge. We evaluated the denoising
quality of our model using the scale-invariant signal-to-noise
ratio (SI-SNR)

SI-SNR = 10 log10
∥starget∥2

∥enoise∥2
. (5)

Importantly, SI-SNR provides a volume-agnostic measure
of audio cleanliness relative to the ground truth signal.
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Figure 4. Pareto fronts for S5 network audio denoising quality (SI-SNR) as a function of effective compute (left) and memory footprint
(right) on the Intel N-DNS test set. S5 networks with weight and activation sparsity (green) exhibit a large domain of Pareto optimality
versus dense S5 networks (orange). Number annotations enumerate increasing S5 dimensionality configurations, from 500 k to 4M
parameters. Dashed horizontal like marks SI-SNR of Spiking-FullSubNet XL, the previous state-of-the-art model. The horizontal arrows
highlight models used for hardware deployment, the diagonal arrows highlight models of the same width. See text for details.

3.2. Pareto Front of Performance and Efficiency

We studied the performance-efficiency Pareto front of dense
and sparse models across inference compute budgets. Start-
ing from the S5 architecture (Smith et al., 2023), we trained
a family of dense models of increasing size by linearly scal-
ing the model dimensions (i.e. model width and size of the
SSM hidden state), while keeping the depth fixed to three
S5 layers. Similarly, we trained a family of sparse models,
i.e., pruned and ReLU-fied, according to our methodol-
ogy discussed above, with 90% of weights pruned by the
end of training (further details on the model dimensions
are provided in Appendix A.2). The results, reported in
Figure 4, compare de-noising performance (SI-SNR) and
computational efficiency as measured by effective MACs
and memory footprint (see Appendix A.1).

The results show that sparsification significantly degrades
performance when applied to under-parametrized dense
models (e.g., sparsifying dense-3 reduces SI-SNR by 7.3%).
However, task performance is recovered with increased
model dimensions and the accuracy of dense models is
matched by larger sparse ones, with fewer MACs and lower
memory requirements. This gives empirical support to theo-
retical work on the capacity of sparse-and-wide neural net-
works (Golubeva et al., 2021). For example, sparse-8 model
requires 2× lower compute and 36% lower memory than
the dense-3 model, while achieving the same level of ac-
curacy. Overall, sparse models constitute the Pareto front
of task performance and computational efficiency across
compute budgets.

In terms of absolute task performance, we find that the S5
architecture provides state-of-the-art results on audio denois-
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Figure 5. Activation sparsity of ReLU blocks across model depth
for a dense model and a sparse-weight model. The sparse-weight
model exhibits significantly lower activation sparsity across layers.

ing out of the box. When compared to Spiking-FullSubNet-
XL (Hao et al., 2024), the Track 1 winner of the Intel N-DNS
Challenge with 15.2 dB SI-SNR, our sparse-11 S5 model
requires 3.2× lower compute and 5.37× lower memory
iso-accuracy. This finding is in line with previous research
on audio modeling with state space models (Goel et al.,
2022), and provides additional evidence on the suitability
of these architectures for signal processing.

Interaction of weight and activation sparsity An inter-
esting question is what is the interaction between the two
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types of sparsity, in weights and activations. Figure 5 re-
ports the pre-activation sparsity for different layers across
the model depth for two ReLU-fied models of the same size
(model variant 6), with and without synaptic sparsity. We
observe that the synaptic-sparse model exhibits lower acti-
vation sparsity across the board, a finding that is consistent
across model sizes. In addition, activation sparsity signifi-
cantly decreases with model depth, both for dense and sparse
models. These phenomena, previously observed in other
models (Mukherji et al., 2024), suggest that, during training,
the model compensates the reduced information flow caused
by pruning with increased levels of activation. Additional
research on more advanced activation functions would allow
for the optimal allocation of MACs, especially those that
provide explicit control over sparsity without cross-channel
synchronization (e.g., approximate top-k (Key et al., 2024)).

3.3. Hardware Implementation

Impact of fixed-point conversion Since Loihi 2 only sup-
ports fixed-point (FXP) arithmetic, as presented in Section 2,
we quantized the weights and activations of our model and
implemented the network dynamics in FXP arithmetic. The
effect of our quantization methodology is presented in Fig-
ure 6. Starting from a 32-bit floating-point (FP32) model,
we apply static quantization, which rounds weights and ac-
tivations using fixed scales, but still performs the actual
computation in FP32. Notably, Quantization-Aware Train-
ing (QAT) is very effective in maintaining test performance
(SI-SNR) from FP32 to static quantization, compared to
Post-Training Quantization (PTQ). The frozen scales from
static quantization are imported into our FXP model imple-
mented in JAX, which uses only int32 types and fixed-point
arithmetic to compute the forward pass of the model. We
observe further performance degradation in the FXP simu-
lation, which we analyze in more detail in Appendix A.3.3.
We finally map the FXP model to Loihi 2 and perform
inference on the chip, again finding a degradation in SI-
SNR, which is likely due to subtle differences in the integer
arithmetic performed by the FXP simulation and Loihi 2 im-
plementation with fused layers. Another source of mismatch
is that the FXP model in simulation handles overflows by
clipping to the maximum value, whereas Loihi 2 “wraps
around” the value, resulting in a sign inversion. The size of
the model decreases by about a factor of 4 when transition-
ing from FP32 weights to INT8 weights, as shown on the
right side of Figure 6.

Power and Performance To measure the empirical effi-
ciency benefits afforded by the sparse S5 model on neuro-
morphic hardware, we profile inference on Loihi 2 using the
fixed-point S5 model, in particular, configuration sparse-8
from Figure 4. To compare to conventional hardware, we
profile the smallest dense model that achieves equivalent

10 12 14

FXP (Loihi)

FXP (Sim)

Static Quant

FP32

Memory (kB)

116.7

116.7

451.4

451.4

Test SI-SNR (dB)

Base
QAT

Figure 6. Impact of quantization interventions on Test SI-SNR and
memory footprint, with and without quantization-aware training,
for model variant sparse-6. The results show that the Base model
without QAT performs slightly better in FP32 than the QAT model,
but significantly worse in static quantization and fixed-point preci-
sion.

performance on Jetson Orin Nano1, which is configuration
dense-3 from Figure 4. There exist a variety of modes in
which to execute a model on Loihi and Jetson, each ex-
hibiting different tradeoffs in terms of latency, throughput,
and energy. Therefore, we present different modes for a
comprehensive characterization and comparison. We sum-
marize our profiling results in Table 1. More details on
the different execution modes on Loihi 2 are presented in
Appendix A.3.2.

In real-time, token-by-token processing on a single input se-
quence, Loihi 2 processes a single STFT frame 35× faster
and with 1200× less energy than the Jetson Orin Nano.
When the Jetson Orin Nano processes “chunks” of multiple
time steps, its utilization increases, and energy per token
improves. With the largest chunks that fit the real-time re-
quirement of latency ≤8m sec, Loihi 2 is 42× faster and
uses 149× less energy per token.

In offline processing, when many STFT frames are buffered
to process in succession (or in parallel), the energy effi-
ciency and throughput of the Jetson Orin Nano improves.
Loihi 2 performs offline processing with pipelining (see
Appendix A.3.2 for further explanation). When processing
single sequences, i.e. batch size b = 1, Loihi 2 has 3.7×
higher throughput with 8× less energy per sample.

It is important to note that the Jetson Orin Nano is only fully

1Our W8A16 fixed-point model in JAX does not provide a
speedup over the FP32 model on the Jetson Orin Nano, therefore
we profile the FP32 model.
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Table 1. Power and performance results∗. The Loihi 2 is running a sparse and quantized S5 model, while the Jetson Orin Nano is running
a smaller dense S5 model that reaches similar test performance. All measurements are averaged over 8 random samples from the test set,
each containing 3 750 time steps. Gray highlights denote violation of real-time constraints for the audio denoising task. Best real-time
results are underlined.

Mode Latency (↓) Energy (↓) Throughput (↑)

Token-by-token
Intel Loihi 2† Fall-Through 76 µs 13 µJ/tok 13 178 tok/s

Jetson Orin Nano‡ Recurrent 1-step (b = 1) 2 688 µs 15 724 µJ/tok 372 tok/s
Jetson Orin Nano‡ Recurrent 10-step (b = 1) 3 224 µs 1 936 µJ/tok 3 103 tok/s
Jetson Orin Nano‡ Recurrent 100-step (b = 1) 10 653 µs 626 µJ/tok 9 516 tok/s
Jetson Orin Nano‡ Recurrent scan (b = 1) 236 717 µs 404 µJ/tok 15 845 tok/s

Sample-by-sample
Intel Loihi 2† Pipeline 60.58ms 185.80mJ/sam 16.58 sam/s

Jetson Orin Nano‡ Scan (b = 1) 233.48ms 1 512.60mJ/sam 4.28 sam/s
Jetson Orin Nano‡ Scan (b = bmax) 226.53ms 5.89mJ/sam 1 130.09 sam/s

† Loihi 2 workloads were characterized on an Oheo Gulch system with N3C1-revision Loihi 2 chips running NxCore 2.5.8 and NxKernel 0.2.0 with on-chip IO unthrottled sequencing

of inputs. Researchers interested to run S5 on Loihi 2 can gain access to the software and systems by joining Intel’s Neuromorphic Research Community. ‡ Jetson workloads were

characterized on an NVIDIA Jetson Orin Nano 8GB running Jetpack 6.2, CUDA 12.4, JAX 0.4.32, using the MAXN SUPER power mode; energy values are computed based on the TOT

power as reported by jtop 4.3.0. The batch size bmax = 256 was chosen to be the largest that fits into memory. ∗Performance results are based on testing as of January 2025 and may

not reflect all publicly available security updates; results may vary.
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Figure 7. Impact of batching on energy efficiency and latency for
Loihi 2 and Jetson Orin Nano. Both platforms exhibit similar
trends: energy per sample decreases proportionally with batch size,
while latency remains approximately constant. Loihi 2 maintains
competitive performance on both metrics across batch sizes.

utilized when processing 256 sequences in parallel, and at
this level, it shows significantly higher throughput while
consuming less energy per sample, compared to Loihi 2.
We include these results in the last row of Table 1.

Impact of batch processing While several edge applica-
tions typically require batch-one inference, some scenarios
can benefit from support for small-batch processing, e.g.,
de-noising audio streams from multiple on-device micro-

phones. For this reason, it is interesting to investigate the
effect of batch processing on energy efficiency and latency
for the two hardware architectures. Intel Loihi 2 doesn’t
natively support batching in the sense of processing multiple
independent samples through the same model instantiation.
However, the parallel inference of independent sequences
can be achieved by replicating the model on the chip as many
times as required by batch size, thereby obtaining higher
throughput through a larger silicon area. We extended the
results in Table 1 to compare the effect of this implemen-
tation of batching on a 16-chip Loihi 2 VPX board to the
usual batch processing of the Jetson Orin GPU. The results,
reported in Figure 7, show the energy per sample and the
total latency for both architectures across batch sizes, from
1 to 16. Both hardware backends exhibit a similar trend:
while total latency remains constant, the energy efficiency
improves proportionally to batch size. Loihi 2 remains com-
petitive across batch sizes, showing between 4.43 to 4.72×
lower energy per sample and 4.52× lower latency on av-
erage. It is important to note that since model replicas are
physically mapped to different cores on Loihi, the resource
requirements increase linearly with batch size. For this
reason, such batch processing on Loihi is only feasible for
small models and small batch sizes.

Energy at real-time inference rate The latency budget
for the neural network component of the audio denoising
pipeline, running either on Loihi 2 or on the Jetson, is 8ms.
Our Loihi 2 and Jetson implementations are well below
8ms for online inference. Thus, to estimate the energy
consumption in real-time settings, where subsequent tokens
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are actually 8ms apart, we rescale the power as:

P real-time
total = Pstatic +

tcompute

8ms
Pdynamic,

based on the power measurements in token-by-token pro-
cessing. In this setting, Loihi 2 achieves 1 128 µJ/tok while
the Jetson achieves 36 528 µJ/tok for token-by-token pro-
cessing and 3 720 µJ/tok when processing chunks of 10
time steps at once. Loihi 2 remains at least 3× more energy
efficient than the Jetson Orin Nano.

Limitations Our Jetson Orin Nano implementation is in
FP32, while our Loihi 2 implementation is in W8A16. Our
fixed-point model in JAX provides no improvements in
runtime or energy. More competitive Jetson energy, latency,
and throughput could potentially be obtained by developing
a more optimized quantized implementation.

4. Discussion
In this work, we explored the Pareto front of efficiency
and performance for a streaming audio processing task,
comparing dense and sparsified variants of a linear RNN
based on the S5 architecture. We showed that combining
activation sparsity and unstructured weight pruning results
in a significant reduction in compute requirements, up to
3.2×, and memory footprint, 5.7×, without accuracy degra-
dation. In addition, we validated these theoretical gains
with a hardware-accelerated implementation on a compute-
memory integrated coarse accelerator, the Intel Loihi 2 neu-
romorphic chip. When quantized and deployed on Loihi 2,
sparse models deliver 42× lower latency and 149× lower
energy consumption in token-by-token processing, com-
pared to the iso-accuracy dense models on the Jetson Orin
Nano GPU.

In conclusion, our work demonstrates that sparse event-
driven accelerators, such as neuromorphic processors, can
provide state-of-the-art accuracy on high-frequency signal
processing tasks, with orders of magnitude gains in latency
and energy efficiency. This possibility opens up several
research directions to further materialize these gains in real-
world applications. In particular, future work should investi-
gate how the efficiency-performance Pareto front scales up
to larger models and more complex tasks, such as language
and multimodal modeling. In this setting, the scalability
of multi-chip neuromorphic processors (Kudithipudi et al.,
2025) and high-frequency execution could power the grow-
ing need for large-scale inference compute (Snell et al.,
2024). Finally, improvements to our fixed-point conversion
methodology and the use of advanced data types (e.g. FP8),
could help close the gap between simulation and hardware
deployment.
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Hüllermeier for feedback on an early draft of this work.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Abreu, S., Pedersen, J. E., Heckel, K. M., and Pierro, A. Q-

S5: Towards quantized state space models. International
Conference on Machine Learning Workshops, 2024.

Ashby, M., Baaij, C., Baldwin, P., Bastiaan, M., Bunting,
O., Cairncross, A., Chalmers, C., Corrigan, L., Davis, S.,
van Doorn, N., Fowler, J., Hazel, G., Henry, B., Page, D.,
Shipton, J., and Steenkamp, S. C. Exploiting unstructured
sparsity on next-generation datacenter hardware. 2019.
URL https://api.semanticscholar.org/
CorpusID:209392807.
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A. Supplemental Material
A.1. Effective MACs computation for S5 architecture

In this section, we detail the computation of effective
multiply-accumulate operations (MACs) for different com-
ponents of the S5 architecture. The total MAC count pro-
vides an estimate of the computational cost associated with
each stage of the model. Below, we outline the individual
contributions from key components of the architecture. The
effective MACs for all model sizes–sparse and dense–in
Figure Figure 4 are calculated based on the formulas below,
summed over the entire network structure.

Notation:

• Ninput: Input dimension

• Nmodel: Model dimension for activations outside of the
linear RNN.

• Nssm: Dimension of the linear RNN’s hidden state.

• Noutput: Output dimension (equal to the number of
classes for classification)

• dwgt
x : Density of weights for x

• dact
x : Density of activations for x

where the density d is calculated from the sparsity s as
d = 1− s.

Breakdown of MAC Calculation per Component:

• Encoder: The MACs for the encoder depend on the
input dimension, model size, and scale linearly with
activation and weight densities:5

NinputNmodeld
wgt
encoderd

act
input (6)

• Batch Normalization (BatchNorm): A lightweight
operation, requiring only element-wise scaling, leading
to:

Nmodel (7)

• S5 Hidden Layer: The hidden state update for the
S5 model involves both matrix multiplications and
element-wise operations:

2NmodelNssmd
wgt
B dact

pre ssm + 4Nssm (8)

• SSM Output Layer: Computes the output transforma-
tion of the linear RNN:

2NssmNmodeld
wgt
C dact

hidden +Nmodeld
act
pre ssm (9)

• Gated Linear Unit (GLU): The computation for the
GLU involves matrix multiplications for the dense
weight matrix, followed by an element-wise multipli-
cation:

N2
modeld

wgt
GLUd

act
pre GLU +Nmodel (10)

• Classification Head: The final linear projection for
classification:

NmodelNoutputd
wgt
headd

act
pre hread (11)

• Regression Head: The regression head follows the
same computation as the classification head:

NmodelNoutputd
wgt
headd

act
pre hread (12)

Numerical operations such as the inverse square-root, sig-
moid function, and others, are ignored from our MAC cal-
culations, as is commonly done when calculating the MACs
or floating point operations (FLOPs) of machine learning
models (Evci et al., 2020).

A.2. Experimental Details

Model architecture Our linear RNN is based on the S5
architecture (Smith et al., 2023), as described in Section
Section 2.1. We use the following dimensions for our base
model with width scaling k = 1 (i.e. configuration 4 in
Figure 4). We use three layers, the recurrent state vector is
xt ∈ R256, we use a model dimension of 192. Both input
and output have dimension 257. The width scaling factors
ki scale the model and recurrent state dimension linearly.
In Figure 4, we report results for a k-family of sparse and
densely trained networks where ksparse ∈ [0.5, 3.0], kdense ∈
[0.25, 1.0].

Training recipe We trained all models for 50 epochs with
the Adam optimizer. The parameters of the SSM block were
updated with initial learning rate 0.002, while the rest of
the architecture used initial learning rate 0.008 and weight
decay 0.04. All learning rates used cosine annealing and no
warmup epochs. The dropout was set to 0.1.

A.3. Additional Results

A.3.1. KEYWORD SPOTTING

We extended our experiments by applying the proposed
scaling protocol to the keyword spotting task of the Speech-
Commands V2-35 dataset (Warden, 2018). The results,
reported in Figure 9, exhibit a similar trend to that observed
on the N-DNS dataset. Sparse models are more efficient
while reaching the same level of accuracy. However, further
scaling of the sparse model family would be required to
compare against dense models at higher accuracy.
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Figure 8. Diagram of S5 as implemented on Loihi 2. To leverage the neuromorphic hardware architecture, several adjustments are made in
comparison to the original S5 model shown in Figure 2: First, complex numbers are split into real and complex components for processing.
Second, ReLUs are introduced to increase activation sparsity. Third, multiple element-wise operations are fused into single neuromorphic
neurons. Symbols are shown as defined in Section 2.1.

A.3.2. LOIHI EXECUTION MODE

Loihi 2’s asynchronous architecture allows to trade off
between throughput and latency, as illustrated in Figure
10a. For optimal throughput, new input is provided every
time step and forwarded through the neuronal layers in a
pipelined mode. For optimal latency, new input is injected
only once the previous input has been processed by, or fallen
through, the network as fast as possible. The pipelined and
fall-through mode can be balanced by changing the rate of
new input, to match the throughput of a given input stream
while minimizing its processing latency.

As audio denoising is typically deployed in realtime in an
online fashion where one STFT input frame in processed at
a time, fall-through mode is appropriate, as one desires a
corresponding output STFT frame immediately.

We see that Loihi 2 processes a single STFT frame 35×
faster and with 1200× less energy than the Jetson Orin
Nano (Token-by-token; Loihi 2 Fall-Through and Jetson
Orin Nano Recurrent 1-step (b=1) in Table 1).

A.3.3. FIXED-POINT MODEL MISMATCH

The mismatch in Figure 6 indicates that fixed-point imple-
mentation in JAX does not perfectly match the original
FP32 model when using the scales computed through our

static quantization step. Further investigations show that
the mismatch between hidden activations is highest for the
hidden states xk of the linear RNN and its outputs yk, see
Figure 11. This mismatch increases approximately linearly
with model depth, indicating that quantization errors ac-
cumulate as information propagates through the network
layers. This linear escalation of errors underscores a critical
challenge in fixed-point quantization of recurrent models
(Wu et al., 2016; Abreu et al., 2024; Li & Alvarez, 2021;
Pierro & Abreu, 2024). Consequently, ensuring the fidelity
of deeper Linear RNNs on fixed-point neuromorphic hard-
ware may require advanced quantization techniques or error
mitigation strategies to preserve the network’s temporal dy-
namics and memory capacity effectively.
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Figure 10. (a) Loihi 2 offers two processing modes that optimize either throughput or latency. In the pipelined mode, a new data point is
inserted in each time step, to use all processing cores and maximize the throughput–at the expense of latency because equal time bins
t0 = t1 = . . . are enforced. In the fall-through mode, a new data points is only provided once the last data point has been fully processed
with minimum latency. Only a single neuronal layer is active at any step as data travels through the network. The time per step is thus
minimized as traffic is reduced and potentially more complex neuronal layers are not updated. (b) Comparison of execution mode and
time per step.

Figure 11. Layer-wise analysis of mismatch between the fixed-point model in JAX against the base model using floating-point weights
and activations. The left and right side show the same data with a linear y-axis and log y-axis, respectively. The top panels show
the mean absolute error N−1 ∑N

i |xi − x′
i| for all components of the model while the bottom panels show the mean relative error

N−1 ∑N
{i | i∈{0,...,N} ∧ xi ̸=0} |xi − x′

i|/|xi|. For further explanation, see text.
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