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Abstract
When we communicate with other humans, we
do not simply generate a sequence of words.
Rather, we use our cognitive state (beliefs,
desires, intentions) and our model of the au-
dience’s cognitive state to create utterances
that affect the audience’s cognitive state in
the intended manner. An important part of
cognitive state is the common ground, which
is the content the speaker believes, and the
speaker believes the audience believes, and so
on. While much attention has been paid to com-
mon ground in cognitive science, there has not
been much work in natural language processing.
In this paper, we introduce a new annotation
and corpus to capture common ground. We
then describe some initial experiments extract-
ing propositions from dialog and tracking their
status in the common ground from the perspec-
tive of each speaker.

1 Introduction

Expressions such as “finding common ground” or
“establishing common ground” are familiar to ev-
eryone. They are often used with reference to two
or more people trying to reach some sort of mutual
understanding about various topics; for example,
politicians during a parliamentary meeting. Most
often, however, common ground does not involve
a conscious effort. Establishing and updating com-
mon ground (CG) between interlocutors is the key
to a successful conversation. It is therefore cru-
cial to develop methods of CG representation and
learning. This work focuses on modelling the con-
cept of common ground from the cognitive per-
spective. Specifically, we introduce the first (to
the best of our knowledge) corpus annotated for
common ground. The procedure developed for the
annotation is designed such that it reflects what we
think happens when people update their common
grounds. We further conduct preliminary machine
learning experiments focused on extracting events
subject to CG updates, and on predicting the CG

updates from the perspective of the two speakers in
a dialog.

The concept of common ground has been widely
studied across various disciplines including linguis-
tics and cognitive science (Kiparsky and Kiparsky,
1968; Karttunen, 1971a,b; Clark, 1996; Horton and
Gerrig, 2016), computer science, artificial intelli-
gence, and natural language processing (Grosz and
Sidner, 1990; Cohen and Levesque, 1990; Traum,
1994; Del Tredici et al., 2022), and philosophy
(Lewis, 1969; Stalnaker, 2002). CG can be de-
scribed in simple terms as a set of beliefs which
interlocutors believe they share, and which they be-
lieve other discourse participants also believe they
share. However, when people communicate, they
do not only exchange their beliefs, but also other
components of cognitive state, such as desires, in-
tentions, goals, etc. Consequently, the full defini-
tion of CG should also contain sets of shared de-
sires, intentions, and so on. Because this is the first
corpus created for that purpose, we focus solely on
the belief component of CG. We do acknowledge,
however, that future work will need to extend the
notion of CG.

This paper is organized as follows. We summa-
rize the NLP literature in Section 2. We present
our new corpus in Section 3. In Sections 4, 5, and
6 we discuss our baseline experiments for predict-
ing the events, beliefs about events, and achieving
common ground.

2 Related Work

The concepts of belief and factivity are closely re-
lated, see (Prabhakaran et al., 2015, Section 2) for
a discussion. They have been annotated in multiple
language corpora, such as LU (Diab et al., 2009),
FactBank (Saurí and Pustejovsky, 2009), UW (Lee
et al., 2015), LDC CB (Prabhakaran et al., 2015),
MegaVeridicality (White et al., 2018), Commit-
mentBank (de Marneffe et al., 2019), RP (Ross
and Pavlick, 2019), and BeSt (Tracey et al., 2022),
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among others. While all of those datasets differ
in terms of identification of events and the anno-
tation procedure, they all target one common goal.
Given some text, they identify the level of commit-
ment to the events expressed in the text, whether
that be from the perspective of the author solely
(e.g. LU, MegaVeridicality, RP, UW) or from the
author along with other mentioned sources (Fact-
Bank, BeSt).

What is considered an event is usually tailored
to the specific question that a corpus is address-
ing. For example, CB targets solely final clausal
complements as it examines the role of the ma-
trix predicate in determining the speaker’s belief,
while LU and LDC CB consider all full lexical
verbs in a sentence, and FactBank and BeSt tar-
get verbs and nouns referring to events and states.
The genre of the data is also correlated with the
task. FactBack uses WSJ newswire, and as a result
the author is limited in the expressiveness of their
cognitive state, as news-writing requires following
certain standards. RP, LU, and CB, on the other
hand, use mixed genres, including discussion fo-
rums and blogs, which allow for more creative and
expressive freedom. All of these corpora also ex-
hibit various scales identifying the level of belief.
Those are either represented numerically, averaging
over annotators’ judgements, on a [-3,3] scale (UW,
CB, RP), or with categorical labels (LU, FactBank,
LDC CB, BeSt). One last crucial factor affecting
the outcome of annotation are the annotators them-
selves. RP and UW use crowdsourced annotators,
while FactBank, LU, LCD CB, and BeSt opt for
trained annotators.

Belief/factivity prediction tasks have attracted a
lot of attention in the past two decades. In the early
2000s, rule-based systems were used to detect au-
thors’ beliefs (Nairn et al., 2006). Diab et al. (2009),
Prabhakaran et al. (2010), and Lee et al. (2015) use
SVMs together with dependency trees and lexical
based features. Newer, neural network approaches
include bidirectional LSTMs for both single and
multi-task setups (Rudinger et al., 2018). Pouran
Ben Veyseh et al. (2019) use BERT representations
with graph convolutional neural networks. Jiang
and de Marneffe (2021) use fine-tuned BERT for
belief detection on various corpora and closely ex-
amine shortcomings of the model. Murzaku et al.
(2022) show that combination of specific corpora
can improve the model’s performance.

CG is closely related to Theory of Mind (ToM),

a concept first discussed in Premack and Woodruff
(1978), which refers to the capacity in humans
(Valle et al., 2015), as well as chimpanzees and
orangutans (Call and Tomasello, 1998), to infer
information about others’ mental states including
beliefs, desires, and emotions. CG is an aspect of
ToM, since beliefs in the CG are beliefs a speaker
models as being held by the addressee. This means
that humans (as well as other primates) are able to
infer some “hidden” information about what other
people think, believe, and perceive in particular
situations. A natural question for NLP is whether
contemporary advanced language models exhibit
knowledge of ToM. Furthermore, if not, what are
some possible approaches that will allow machines
to infer information about their conversational part-
ner’s cognitive states?

Kosinski (2023) tested current large language
models (LLMs) by having them complete narra-
tives inspired by the Sally-Anne (Wimmer and
Perner, 1983; Baron-Cohen et al., 1985) and Smar-
ties (Perner et al., 1987) tests, both of which were
originally designed to determine if children are
aware of the cognitive state of others. He focused
specifically on one subcomponent of the ToM scale
(Wellman and Liu, 2004), namely false belief. The
results found that the most advanced GPT models
correctly complete both true and false beliefs for
characters in various scenarios. For example, if
there is a bag of popcorn with a “chocolate” label
on it, the models accurately predict that when Sam
finds the bag she will believe that the bag is full
of chocolate. Kosinksi then concludes that this is
either (1) evidence of the inadequacy of these tests
for evaluating ToM or (2) evidence of ToM emerg-
ing as a byproduct of learning on different tasks.
Ullman (2023) disagrees with this hypothesis and
states that it is indeed possible that ToM tests are
in fact accurate and useful for studying human cog-
nition but not LLMs. His claim is backed by a
series of ToM experiments, slightly different from
the ones in Kosinski (2023), that show that LLMs
fail to make correct false-belief predictions. For
example, in the popcorn-chocolate bag scenario
they added additional information stating that Sam
cannot read. GPT 3.5 still guessed with 98% confi-
dence that Sam believes the bag is full of chocolate.
Similarly, Sileo and Lernould (2023) develop a
dataset of “mind games” using dynamic epistemic
logic and target aspects of ToM to show that con-
temporary LLMs fail to make correct inferences in



other scenarios as well.
The experiments conducted by Kosinski (2023),

Sileo and Lernould (2023), and Ullman (2023)
show that while LLMs can produce accurate com-
pletions for false-belief in some settings, the results
are highly sensitive to perturbation and far from ro-
bust. This on its own should be sufficient evidence
that ToM cannot possibly be an emergent property
of LLM learning, at least not yet, and points to a
need for higher quality, naturalistic data on how
humans reason about aspects of ToM, like CG.

3 The CG Corpus

The Common Ground Corpus is annotated on the
top of the LDC CALLHOME American Speech
corpus (Canavan et al., 1997), which consists of
collections of 120 unscripted dialogs between close
friends or family members. The dialogs are avail-
able in both written form and audio. Since our
dataset is the first attempt at annotating CG in a
discourse, we chose to start with conversations be-
tween two people. Another crucial aspect of the
CALLHOME corpus is that the interlocutors know
each other very well, which allows us to assume
that their CG set is non-empty at the start of the
conversation. Finally, the speakers were allowed
to speak freely about any topic, which allows us
to capture the speakers’ cognitive states in natural
settings.

In a dialog, each of the interlocutors form their
own cognitive states, which includes a model of
other speakers’ cognitive state. Since CG forms
a substantial component of a speaker’s cognitive
state, we model CG for each speaker separately:
the CG is not shared. In the majority of cases, the
CGs of the two interlocutors converge. However,
we also see scenarios in which the CGs for speakers
diverge and in which we observe miscommunica-
tions.

The two main parts of the annotation procedure
are event extraction, and belief and CG annotation.

3.1 Event extraction

CALLHOME dialogs are divided into utterances.
The events are formed from the main predicates
in each clause forming the utterance. To make the
events as informative as possible, we resolve any
pronominal anaphors, i.e. we spell out any refer-
ents of pronouns, including first and second person
(sometimes resulting in intentionally unnatural sen-
tences). Here is an example from the corpus.

Example 1: A: I thought I was going to get to see
everybody.
e1: A thought A was going to get to see everybody.
e2: A was going to get to see everybody.
e3: A got to see everybody.

There are two cases where we create events that
are not explicitly mentioned in a speaker’s utter-
ance. First, we form speech act events to signal
question asking or giving orders. Second, if one
speaker elliptically negates an event, or gives a
negative answer to an event under question, we cre-
ate a fully fledged event out of it. Both cases are
illustrated in the first three columns of Table 1.

3.2 Belief and CG annotation

As was discussed in Section 1, we limit the defi-
nition of CG to beliefs in this paper. In order to
infer the interlocutors CG, we first identify their
beliefs towards the formulated events. We follow
the belief types proposed in FactBank (Saurí and
Pustejovsky, 2009). Since the main goal of our
corpus is to represent the CG updates, as opposed
to the granularity of speakers’ beliefs, we simplify
the types and limit them to 4 different levels of be-
lief. An event e will be marked: CT+: if a speaker
certainly believes that e; CT-: if a speaker certainly
believes that not e; PS: if a speaker possibly be-
lieves that e; NB: if a speaker expresses no belief
about e.

Once belief values are established for speakers
A and B, the annotators determine the CG for each
speaker. We differentiate between three distinct
updates:
JA: an event e is mutually believed by both in-
terlocutors and is added to CG in the moment e
was uttered. The level of belief in the CG (which
may differ from individual beliefs) is left implicit,
since it is always the less certain degree of the two
interlocutor’s beliefs.
IN: an event e has already been a part of the inter-
locutors’ CGs before the time of the event. In other
words, it must be true that at some point in the past,
CG(A)=JA and CG(B)=JA for e.
RT: an event e that has been presented by a speaker
has been entertained but rejected by the addressee.

In order to reflect the dynamic nature of a dialog,
we must allow changes to the interlocutors’ beliefs
and, consequently, their CGs. Our annotation inter-
face allows us to conduct such updates and register
the history. Table 1 shows how beliefs can change.

Our annotation procedure requires looking



Nb Utterance e id Event Bel(A) Bel(B) CG(A) CG(B)

1 A: So you’ve been leading the life of Reilly huh?
e1 A asks B if B has been leading the life of Reilly CT+ e1 CT+ e1 JA e1 JA e1
e2 B has been leading the life of Reilly PS e2 CT- e2

2 B: No. Not really. e3 B has not been leading the life of Reilly
CT- e2 RT e2 RT e2
CT+ e3 CT+ e3 JA e3 JA e3

Table 1: An annotation sample.

ahead. An annotator, as an overhearer of the con-
versation, needs to have access to the interlocutor’s
responses to be able to determine the interlocutor’s
cognitive states. This is most evident in the case
of questions. In the example in 1, in order to de-
termine whether B believes e2, the annotator must
look to the next utterance to see that B’s attitude
towards e2 is in fact CT-, already at the time of the
question utterance (though A is not yet aware of
B’s belief towards e2).

The event that is being questioned is e2. Be-
lief of a speaker asking about e2 is determined by
the structure of the question. In the example, A
chooses to inquire about e2 by using affirmative
sentence structure and rising intonation. We iden-
tify it as expressing possible belief towards e2. To
determine the addressee’s (B’s) belief status, an an-
notator needs to continue reading the conversation
until they see B’s response in the second utterance.
In Example 2, B negates e2. This is marked as
Bel(B)=CT- at the level of the event e2 because B
always believed certainly not e2. Speaker A, on
the other hand, needs to wait for B’s response to
potentially update their belief about e2. A’s belief
about e2 (Bel(A)=CT-) is recorded at the time of
the second utterance. Now that both interlocutors’
beliefs about e2 are established, an annotator can
deduce that this event will be rejected from CG
from the perspectives of both A and B.

An obvious question to ask would be why one
cannot determine the status of B’s CG at the time of
utterance 1 since both Bel(A) and Bel(B) are avail-
able. This is because establishing common ground
is an iterative process, and it is not sufficient for B
to have access to B’s beliefs and A’s beliefs about
an event. B also needs to believe that A believes
that B believes e2 and the other way around, at a
minimum. At the stage of e2, B is in fact certain
that A does not know that and needs to wait for B’s
response.

Finally, with B’s negative response to A’s ques-
tion, we do not only update the speaker belief about
e2, but we also create a negated version of e2 that
will then enter CG in both interlocutors’ mind un-
less it is further explicitly denied.

3.3 Inter-Annotator Agreement

Computing agreement for the event extraction task
is challenging, because we need to penalize an an-
notation if the number of annotated events differs
between annotators. We call this method EMBERT.
Given a similarity measure f(·) which takes two
events (strings) and returns a score s ∈ [0, 1], we
compute an event-matched score between the set
of events extracted by an annotator taken to be
the reference Er and the set of events extracted
by an annotator for comparison Ec. We compute,
among the possible mappings between Er and Ec,
the mapping which maximizes the mean pairwise
similarity as produced by f(·). In the event that
|Er| ̸= |Ec|, any unmapped event from the annota-
tor being compared receives a score of zero. Simi-
larly, the annotator being compared receives a zero
for each reference event which cannot be mapped.
This penalty imparts high emphasis on annotators
first finding the same number of events from each
utterance and then producing events which have
similar semantic meaning. The mean similarity for
the maximal mapping is returned to produce an
event-matched score. EMBERT uses cosine sim-
ilarity between SBERT (Reimers and Gurevych,
2019) embeddings as the similarity measure f(·).

We report EMBERT among the four annotators
for event extraction in Table 2. Scores for EM-
BERT exceed 0.7 among all pairs of annotators,
with the exception of Annotator 2. We use these
studies to decide which annotators to retain.

We evaluate inter-annotator agreement among
the four annotators on the belief and CG annota-
tions for both speakers using a pairwise Cohen’s
kappa (Cohen, 1960). We use gold events for this
study. The mean of these results across the four
tasks are reported in Table 3. According to Co-
hen, anything above 0.6 indicates substantial agree-
ment, while values above 0.8 are considered “al-
most perfect agreement”. We also computed com-
puted Fleiss’ kappa, which was 0.70 across all tasks
(Fleiss, 1971). Based on the interpretation guide-
lines provided in Landis and Koch (1977) these
numbers also indicate substantial agreement among
the four annotators.



Anno. 2 Anno. 3 Anno. 4
Anno. 1 0.56 0.73 0.79
Anno. 2 - 0.60 0.61
Anno. 3 - - 0.84

Table 2: EMBERT inter-annotator agreement scores for
event extraction.

Anno. 2 Anno. 3 Anno. 4
Anno. 1 0.58 0.76 0.77
Anno. 2 - 0.63 0.60
Anno. 3 - - 0.87

Table 3: Mean pairwise Cohen’s kappa for Belief and
CG judgments.

4 Experiments: Events

For generating events, we use the base version
of FLAN-T5, which is an instruction-finetuned
version of the T5 LLM (Chung et al., 2022). It
has demonstrated impressive few-shot performance
across various tasks, outperforming even larger
models. In our experiments, the model receives
utterances as input and it generates the correspond-
ing event(s) for each utterance. We have fine-tuned
FLAN-T5 on the training set, which is a small
dataset (see Table 4), and evaluated the model on
the test set.

Alongside the input utterance, the model can
also receive contextual information as input. In
this paper, the contextual information is provided
as the following modes: 1) Fixed window: A pre-
determined number of utterances preceding and/or
following the target utterances or events will be
included as input for the model. And 2) Speaker-
based window: The model will receive all pre-
ceding and/or following utterances until it encoun-
ters an utterance from a speaker different from the
speaker in the target utterance or event. The input
format of the model is as follows:

"Preceding Context": {Preceding Utterances}
"Events": {Target Utterance}
"Following Context": {Following Utterances}

4.1 Experimental Setup

This version of the dataset consists of four dialogs.
To assess the performance of our model, we se-
lected three dialogs as the training set, while the
remaining dialog was designated as the test set.
The distribution of all annotation types available in
the training and test partitions are shown in Table 4.

The experimental results for event generation are

Annotation Type Train Test
Utterance 415 146
Event 970 325

Bel(A) + Bel(B)

CT+ 1,576 523
CT- 107 71
PS 150 34
NB 81 8
0 26 14

CG(A) + CG(B)
JA 1,540 490
IN 124 58
RT 115 73
0 161 29

Table 4: The distribution of different annotation types
in the annotated dataset.

presented in Table 5, using the EMBERT measure
introduced in Section 3.3.

Models EMBERT
FLAN-T5 No Context Event Generation 45.94
FLAN-T5 Speaker-Based Window (preceding) 48.65
FLAN-T5 Fixed Window Size 2 (preceding) 48.51
FLAN-T5 Fixed Window Size 4 (preceding) 48.69

Table 5: Experimental results of Event Generation.

As it is shown in Table 5, we have examined
FLAN-T5 with four different input formats: 1) No
context: the model only receives the target utter-
ance and generates its event(s), 2) Speaker-based
window: in addition to the target utterance, the
model also receives speaker-based utterances, 3)
Fixed window size 2 (preceding): in addition to
the target utterance, the model also receives the 2
preceding utterances, and 4) Fixed window size 4
(preceding): in addition to the target utterance, the
model also receives the 4 preceding utterances. As
can be seen, the model using four preceding utter-
ances as context performed best by both metrics.
We have explored alternative combinations, such as
using the following context. However, these com-
binations yielded unsatisfactory results, which is
why they are not reported.

4.2 Error analysis

We performed a preliminary error analysis on the
first 60 utterances from the test sets in three condi-
tions: without context, and with the context win-
dow of size two and four. We identified seven types
of errors. Senseless errors are those which make
no reference to the actual utterance. For instance,
for the gold event Jill’s situation sounds like a real
mess, the system generated The baby’s birth mom’s



mom mom’s mom [. . . ]. If an event was match-
ing some part of what was said but still failed to
provide sufficient information, it was marked Intel-
ligible. Anaphora resolution error combines unre-
solved pronoun references and wrongly identified
references, e.g. proper names in the test sets were
mistaken with the ones from training sets. Uninfor-
mative errors were the results of arbitrary division
of utterances per speaker or elided information in
speakers’ turns, e.g. B says same car instead of B
has the same car. The remaining types are Missing
events, i.e. not generated by the system, events
wrongly generated by the system (Gen), and Gold
errors.

Table 6 presents counts of each error type and
the total number of errors given a particular con-
text size. As expected, the more context our sys-
tem receives, the better it performs. The number
of missing events does not improve with context.
This is somewhat expected given that most missed
events were caused by some failure of pragmatic
inference. Anaphora resolution errors are signifi-
cantly reduced given more context, which was also
expected behavior.

5 Experiments: Beliefs

For belief classification, we designed a compre-
hensive set of models utilizing BERT-base-cased
(Devlin et al., 2019) and FLAN-T5. The system
is trained to annotate beliefs for each speaker (e.g.
Bel(A)=CT+) given a gold target event and any
additional context. As with event extraction, we
experiment with both fixed and speaker-based win-
dowing methods and additionally investigate in-
cluding forward context. In these experiments, ut-
terances are presented to the model either as raw
sentences or as the corresponding events of those
utterances.

We fine-tune BERT and FLAN-T5 on the train-
ing set using the following input format:

"Preceding Context": {Preceding Events or
Utterances}↪→

"Target Event": {Target Event}
"Following Context": {Following Events or

Utterances}↪→

5.1 Data Augmentation

To mitigate the issue of data imbalance, particu-
larly for the CT-, PS, and NB classes, we use a
data augmentation technique. Given FLAN-T5’s
ability to handle multiple languages, we opt for a
machine translation-based data augmentation ap-
proach. For the training set, we employ the FLAN-
T5 model to translate events associated with the
minority classes. These newly translated events are
subsequently incorporated into the training set, fol-
lowed by additional model fine-tuning. We utilize
French, German, and Spanish translations of the
events in this process.

5.2 Experimental Setup

The experimental results for belief classification
are shown in Table 7. Measures of classification
performance are computed for both Bel(A) and
Bel(B) and this table reports the average. The uti-
lized metrics include F1 for each possible label and
overall accuracy. As the label distribution is highly
imbalanced, we also report macro F1.

In Table 7, we have evaluated systems using
BERT, FLAN-T5, and augmented FLAN-T5 with
different contextual information. Except for one
model (i.e., “FLAN-T5 Fixed Window 4 (2 preced-
ing + 2 following)”), all models utilize preceding
fixed or speaker-based windows with different sizes
and the events of corresponding utterances are fed
to the model as context. In cases where the con-
text is provided in the form of “Utterance Context”,
the model receives the context as raw utterances
without the inclusion of events.

The results reported in Table 7 highlight several
important findings. (1) The problem at hand proves
to be challenging due to the small number of exam-
ples for the minority classes, resulting in low macro
F1 values. (2) In terms of macro F1, the FLAN-
T5 models generally outperform the BERT-based
models. In terms of accuracy, however, the best
result is achieved by the speaker-based window us-
ing BERT. This is because BERT does particularly
well with the very high frequency category CT+,
and less well with the other categories. (3) Interest-
ingly, the table reveals that the best results of fixed

Input Senseless Intelligible Missing Anaphora Uninformative Gold Gen: Total
No context 15 6 34 40 12 5 – 112
Context 2 12 7 40 32 11 5 1 108
Context 4 11 2 36 27 10 5 1 92

Table 6: Error analysis; counts per error category shown by context size of system



Models Bel(A,B) AVG
CT+ F1 CT- F1 PS F1 NB F1 Macro F1 Accuracy

BERT1 Fixed Window Size 1 89.67 14.83 32.33 12.67 37.38 79.17
BERT2 Fixed Window Size 2 90.00 17.33 29.83 11.50 37.17 79.50
BERT3 Fixed Window Size 3 89.50 16.00 22.50 0.00 32.00 79.00
BERT3 Speaker-based Window 91.50 23.33 19.50 9.17 35.88 81.83
FLAN-T5 Fixed Window Size 2 (Utterance Context) 87.00 20.25 20.25 10.50 34.50 76.75
FLAN-T5 Speaker-based Window (Utterance Context) 86.17 11.25 18.67 5.50 30.40 73.75
FLAN-T5 Fixed Window Size 1 87.00 35.00 28.50 13.33 40.96 74.67
FLAN-T5 Fixed Window Size 2 86.83 34.67 28.67 17.50 41.92 74.67
FLAN-T5 Fixed Window Size 3 85.50 27.00 26.00 20.00 39.63 72.00
FLAN-T5 Fixed Window Size 4 87.50 27.50 25.50 11.00 37.88 74.00
FLAN-T5 Fixed Window 4 (2 preceding + 2 following) 87.75 27.50 30.75 12.75 39.69 76.25
FLAN-T5 Speaker-based Window 87.67 32.67 30.67 17.83 42.21 76.33
Augmented
FLAN-T5 Fixed Window Size 2 (French) 87.50 26.50 26.50 16.17 39.17 75.00
FLAN-T5 Fixed Window Size 2 (French-German) 88.33 34.00 32.67 19.00 43.50 77.83
FLAN-T5 Fixed Window Size 2 (French-German-Spanish) 88.50 32.00 31.75 8.25 40.13 77.00
FLAN-T5 Speaker-based Window (French) 87.25 24.25 28.50 19.25 39.81 74.25
FLAN-T5 Speaker-based Window (French-German) 88.50 15.67 26.50 8.50 34.79 75.83
FLAN-T5 Speaker-based Window (French-German-Spanish) 88.67 32.33 28.67 11.83 40.38 76.00

Table 7: Experimental results of Belief Classification

window based contexts are achieved when utilizing
a window size of 2. Moreover, increasing the win-
dow size negatively impacts the macro F1 scores.
Also, using the following context does not help the
model. (4) Generally, the speaker-based window
contexts exhibit superior performance compared
to the fixed window approach and the utterance
context approach. (5) The results also demonstrate
the effectiveness of data augmentation, particularly
when using French and German for augmentation.
The augmented data contributes to achieving the
best macro-averaged F1 results because of the mi-
nority classes.

5.3 Error analysis
We conducted error analysis of FLAN-T5 in the
Speaker-based window condition. There were 92
errors in belief prediction, given the gold events.
We differentiated between five types of errors. The
most common errors were observed in events em-
bedded under matrix predicates, such as say, tell,
hope, think, or conjunctions such as before or be-
cause. For example, an event A’s sons never treat
one another like A and B’s mom and dad treat A em-
bedded under hope (A hopes that e), had predicted
CT+ values for both speakers, while it should have
been marked as only possible belief (PS). We call
those type of errors key words (KW). Another
type of event that was problematic were events em-
bedded in questions (Question). For example, the
event B sleeps which is a part of a speech act A
asks B when B sleeps has predicted values PS for

both speakers, when in fact this event is a presup-
position that has already been part of the speakers’
common ground, and should therefore be annotated
as CT+. Jokes, sarcasm and hypotheticals form an-
other error type that we named hard inferences
(HI). There were also cases of wrong predictions
that could not be linguistically motivated. Those
form fourth group called other. Finally, there were
also a few gold errors that were the result of data
formatting. Table 8 presents counts of errors within
each type.

KW Question HI Other Gold
38 21 12 11 10

Table 8: Error types in the belief prediction task

6 Experiments: Common Ground

We implemented two strategies to predict common
ground. The first strategy is based on heuristics
and the second strategy is based on fine-tuning of
the FLAN-T5 model.

Heuristic based approach In this strategy, we
have utilized the following rules. We always update
CG for both speakers with these simple heuristics.

1) If Bel(A) = CT- or Bel(B) = CT-, then CG = RT.
2) If Bel(A) = CT+ and Bel(B) = CT+,

then CG = JA or CG = IN.
3) If Bel(A) = PS and Bel(B) = CT+,

then CG = JA(PS) or CG = IN.



Models CG(A,B) AVG
JA F1 IN F1 RT F1 Macro F1 Accuracy

FLAN-T5 (No Event, No Context) 94.50 0.00 99.50 64.67 90.50
FLAN-T5 Fixed Window 0 (No Context) 94.50 33.75 99.50 75.92 91.00
FLAN-T5 Fixed Window 2 95.00 50.17 99.50 81.56 91.83
FLAN-T5 Fixed Window 4 94.33 48.83 99.50 80.89 90.67
FLAN-T5 Fixed Window 8 95.00 54.00 99.50 82.83 91.83
FLAN-T5 Fixed Window 4 (2previous-2next) 92.50 41.00 99.50 77.67 88.50

Table 9: Experimental results of FLAN-T5 based Common Ground classification utilizing Gold belief.

Models CG(A,B) AVG
JA F1 IN F1 RT F1 Macro F1 Accuracy

FLAN-T5 Fixed Window 0 (No Context) 88.00 28.25 0.00 38.75 78.00
FLAN-T5 Fixed Window 2 88.67 55.83 15.83 53.44 79.17
FLAN-T5 Fixed Window 4 87.00 42.75 23.00 50.92 76.25
FLAN-T5 Fixed Window 8 87.00 46.00 21.50 51.50 76.50
FLAN-T5 Fixed Window 4 (2previous-2next) 87.00 38.50 27.25 50.92 76.50

Table 10: Experimental results of FLAN-T5 based Common Ground classification without utilizing Gold belief.

4) If Bel(A) = CT+ and Bel(B) = PS,
then CG = JA(PS) or CG = IN.

5) If Bel(A) = NB or Bel(B) = NB, then CG = NULL.

Rules 2-4 under-determine whether the belief is al-
ready in the CG or newly added. In this context, the
crucial task is to determine whether the target event
had already been present in the common ground of
the speakers (i.e., CG = IN) or not (i.e, CG = JA).

To address this problem, we first create a data
structure called “dialog memory”, which combines
each event, its related (gold) beliefs, and extracted
common grounds. When processing the “target
event”, all preceding events, beliefs, and common
grounds are presented in the dialog memory. Then,
within the dialog memory, the heuristic algorithm
searches for the “target event” based on the SBERT
similarity measure. For similarities more than a
threshold, the “target event” will be regarded as
an event that is already in common ground. Note
that in this approach, the heuristic utilizes gold
annotated beliefs.

Common Ground classification with FLAN-T5
model In the next approach, we used the FLAN-
T5 model to classify common ground. We fine-
tuned FLAN-T5 on the training set. The model
takes the following input prompt format:

["Bel(A)": {Gold Bel(A)} "Bel(B)": {Gold
Bel(B)}]↪→

"Input Event with Context:"
"Preceding Context": {Preceding events}
"Target Event": {Target Event}
"Following Context": {Following events}

In this approach, it is important to note that the

SBERT Threshold CG(A,B) AVG
JA F1 IN F1 RT F1 Macro F1 Accuracy

0, 0.2 69.52 20.00 98.59 62.70 60.84
0.4 70.00 19.05 98.59 62.55 61.17
0.6 73.48 20.59 98.59 64.22 64.72
0.8 85.03 20.93 98.59 68.18 77.67
0.9 92.03 13.33 98.59 67.98 87.06
0.92 93.10 15.00 98.59 68.90 88.67
0.95 93.39 0.00 98.59 63.99 89.00

1 94.41 0.00 98.59 64.33 90.61

Table 11: Experimental results of heuristic based Com-
mon Ground classification utilizing Gold belief.

FLAN-T5 model operates in two distinct modes.
The first mode incorporates gold annotated beliefs,
while the second mode solely focuses on the events
without utilizing belief information. In either ap-
proach it uses gold events.

6.1 Experimental Setup

The experimental results for CG classification us-
ing heuristics approach, based on different SBERT
thresholds, are shown in Table 11. The experimen-
tal results for CG classification using FLAN-T5
with and without gold belief information are shown
in Tables 9 and 10, respectively. In these tables,
different contextual information has been studied.
Furthermore, as demonstrated in Table 9, we con-
ducted experiments on CG classification by exclu-
sively utilizing gold belief information, excluding
event and context information (i.e., “No Event, No
Context” case). Additionally, we explored another
scenario where the model operates without access
to context information (i.e., “Fixed Window 0 (No
Context)” case).

The results presented in Table 11 indicate the



inherent difficulty in designing a heuristic even
with the inclusion of gold beliefs, as they show
relatively low performance across the evaluated
metrics. Comparing the performance of the FLAN-
T5 model with gold beliefs and the heuristic, it is
evident that the FLAN-T5 model outperforms the
heuristic in all metrics. This highlights the superi-
ority of the FLAN-T5 model when leveraging gold
beliefs for CG classification.

Interestingly, when considering the FLAN-T5
model with gold beliefs, increasing the context
window size yields better results. However, this
trend is not observed in the case of the FLAN-
T5 model without gold beliefs. Furthermore, it is
worth noting that following utterances do not have a
positive impact on context generation classification
in both versions of the FLAN-T5 model.

As anticipated, the task of CG classification with-
out gold beliefs proves challenging due to class
imbalance.

6.2 Error analysis

Error analysis for CG prediction was conducted
on FLAN-T5 with window size of 8. Out of 29
mistakes (311 events in total), 27 were of one kind,
namely IN was mistaken for JA and the other way
around (13:14 ratio). Such errors are expected as
the IN condition requires either keeping track of
events that have entered CG during the span of the
conversation, or recognizing certain lexical items
that indicate that those event have been already part
of CG. The remaining two errors involved cases of
one speaker mishearing the other and CG updates
that were ignored for the moment.

7 Future work

There are many obvious extensions of our work to
date. We list a few.
Audio Modality In our modeling, we only use
the CALLHOME transcripts. However, intonation
in English is related to what the speaker believes
the hearers already know. We will incorporate the
audio signal into future CG predictions,and will
explore multimodal neural architectures.
Existing Belief Corpora and Systems We intend
to incorporate existing belief corpora and systems
into the belief prediction task, which could im-
prove the system performance. Specifically, we
intend to use the state-of-the-art FactBank-only be-
lief system from Murzaku et al. (2023) as a belief
tagger, and give those outputs to our system. We

also intend to experiment with a multi-task learning
(MTL) setup, where we jointly model belief and
common ground updates.
Graph Approaches Our data can naturally be rep-
resented as a graph structure where speaker A and
B’s utterances are nodes, and the changes in belief
and common ground being edge labels. We intend
to leverage graph neural network approaches in-
spired by neural architecture and general insights
from Zhang et al. (2023), who model the emotion
recognition in conversation (ERC) task.
Higher-Order Beliefs We explicitly model first-
order beliefs and the CG. Many higher-order beliefs
follow from the combination of individual belief
and CG – for example, if A says that Mary is com-
ing to dinner but B rejects it, it does not enter A’s
model of the CG. As a result, we can infer a higher-
order belief, namely that A believes B does not
believe the event (since if B believed it, it would be
in the CG). However, there may be cases in which
higher-order beliefs cannot be inferred from the
CG. We intend to annotate and model higher-order
beliefs in dialog, i.e. beliefs held about other peo-
ple’s belief which are not derivable from CG.
Error Analysis Finally, we intend to conduct a
more detailed error analysis that could give us more
insight to specific issues that need to be addressed
in future work.
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Limitations

Since this work introduces a novel language corpus
and provides base line system results, we acknowl-
edge several limitations. First, our event formu-
lation procedure does not account for every event
that can actually be inferred. For example, if A
said Now we have a king in England, Charles III,
the only event that would be recognized is Charles
III is now the king of England. Other inferences
such as presupposition that Charles’ predecessor
was not a king will be omitted. Furthermore, we
limited anaphora resolutions to personal pronouns
only, disregarding other types such as temporal or
event anaphora.

One crucial component of our corpus is the rep-
resentation of updates of CG in the mind of inter-
locutors. That often resulted in multiple annota-
tions associated with one event, some of which are
updates of belief and CG about previous events.
Because of the complexity of this procedure, we
ignored the updates in our experiments. Finally, we
reported only preliminary error analyses for each
task that may not provide very detailed insight into
the systems performances, and consequently may
not be informative enough to clearly understand
what needs to be improved.

We have only worked on English; other lan-
guages have different strategies for manipulating
the CG and we intend to extend this work to more
languages.

Ethics Statement

The annotation procedure developed for the pur-
pose of CG annotation is the first one we are aware
of. It reflects on our assumption on how speakers
establish and update their common grounds in a
dialog, however, we acknowledge that this may
not necessarily reflect what actually happens in our
mind. As a result, we do not recommend using our
procedure to make any important decision about
regarding people’s (mutual) beliefs. The data we
used for the experiments and the inter-annotator
agreement evaluations are publicly available. All
annotation was done in-house with trained under-
graduate students who received credit and/or pay-
ment.
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A Access to Data and Code

The corpus and code related to experiments are
available in the GitHub repository.1 All implemen-
tations use the Python programming language.

B Belief: different train test splits

The results of the belief classification tests, con-
sidering each corpus conversation as the test set.
As we mentioned before, four conversations have
been used for the tests and these conversations are
numbered as "I", "II", "III" and "IV". In the main
tests presented in Table7, conversation "IV" is con-
sidered as the test set. To check the stability of
the results obtained by the models trained on the
main test set of the CG body, we also conducted
experiments with different train test splits. These
experiments done for, FLAN-T5 Fixed Window 2,
FLAN-T5 Fixed Window 4, FLAN-T5 Speaker-
Based Window. The results of Macro F1 and ac-
curacy of the model considering each conversation

1https://github.com/cogstates/
2023-emnlp-common-ground

as a test set were calculated and presented in Ta-
ble 12. To analyze the stability of the results, their
average and standard deviation were determined in
Table 13.
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Models Bel(A,B) AVG
CT+ F1 CT- F1 PS F1 NB F1 Macro F1 Accuracy

I is test set
FLAN-T5 Fixed Window 2 92.00 26.50 6.25 14.25 34.75 82.00
FLAN-T5 Fixed Window 4 93.00 33.75 7.50 11.75 36.50 84.00
FLAN-T5 Speaker-based window 90.50 27.25 8.25 18.75 36.19 80.50
II is test set
FLAN-T5 Fixed Window 2 87.00 15.00 32.75 10.75 36.38 73.00
FLAN-T5 Fixed Window 4 86.75 23.50 33.75 11.00 38.75 73.00
FLAN-T5 Speaker-based window 87.75 19.50 37.25 6.75 37.81 73.75
III is test set
FLAN-T5 Fixed Window 2 91.00 27.25 54.25 23.00 48.88 81.50
FLAN-T5 Fixed Window 4 91.00 25.00 43.50 20.50 45.00 80.00
FLAN-T5 Speaker-based window 91.50 27.00 46.25 28.75 48.38 81.25
IV is main test set
FLAN-T5 Fixed Window 2 86.83 34.67 28.67 17.50 41.92 74.67
FLAN-T5 Fixed Window 4 87.50 27.50 25.50 11.00 37.88 74.00
FLAN-T5 Speaker-based window 87.67 32.67 30.67 17.83 42.21 76.33

Table 12: Experimental results of the belief classification with different train test split.

Models Bel(A,B) AVG, STD
CT+ F1 CT- F1 PS F1 NB F1 Macro F1 Accuracy

AVG, STD AVG, STD AVG, STD AVG, STD AVG, STD AVG, STD
FLAN-T5 Fixed Window 2 89.21, 2.320 25.85, 7.033 30.48, 17.033 16.38, 4.509 40.48, 5.528 77.79, 4.006
FLAN-T5 Fixed Window 4 89.56, 2.552 27.44, 3.915 27.56, 13.220 13.56, 4.017 39.53, 3.258 77.75, 4.493
FLAN-T5 Speaker-based window 89.35, 1.684 26.60, 4.685 30.60, 14.042 18.02, 7.790 41.15, 4.719 77.96, 3.068

Table 13: Average and standard deviation of the final results on belief classification task using different train test
split.


