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ABSTRACT

Large language model pre-training has traditionally relied on human experts to craft
heuristics for improving the corpora quality, resulting in numerous rules developed
to date. However, these rules lack the flexibility to address the unique characteris-
tics of individual examples effectively. Meanwhile, applying tailored rules to every
example is impractical for human experts. In this paper, we demonstrate that even
small language models, with as few as 0.3B parameters, can exhibit substantial
data refining capabilities comparable to those of human experts. We introduce
Programming Every Example (PROX), a novel framework that treats data refine-
ment as a programming task, enabling models to refine corpora by generating and
executing fine-grained operations, such as string normalization, for each individual
example at scale. Experimental results show that models pre-trained on PROX-
curated data outperform either original data or data curated via selection methods
by more than 2% across 10 downstream benchmarks. Its effectiveness spans vari-
ous model sizes (0.3B∼1.7B) and pre-training corpora (C4, RedPajama-V2, and
FineWeb). Furthermore, PROX shows great potential in domain-specific contin-
ual pre-training: models trained on OpenWebMath refined by PROX outperform
human-crafted rule-based methods, improving accuracy by 7.6% on MISTRAL-7B,
14.6% on LLAMA-2-7B, and 20.3% on CODELLAMA-7B within 10B tokens,
comparable to LLEMMA-7B trained on 200B tokens. PROX significantly reduces
training FLOPs, offering an efficient path for LLM pre-training.
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Figure 1: Training FLOPs v.s. downstream performance. Left: pre-training from scratch on general
domain; Right: continual pre-training on math domain. Although these corpora have been processed
through expert-crafted rules, applying PROX still yields significant improvements over these baseline
models trained with the original corpora. Moreover, models trained on PROX curated data achieve
competitive performance with much fewer training FLOPs.

1 INTRODUCTION

Large Language Models (LLMs) have made significant strides in capabilities (Meta, 2024; Achiam
et al., 2023; Anthropic, 2024; Reid et al., 2024), excelling in tasks such as creative writing (Yuan
et al., 2022), complex reasoning (Wei et al., 2022; Kojima et al., 2022), and agentic task planning and
execution (Fan et al., 2022; Park et al., 2023). Behind these, massive, high-quality pre-training corpora
form the backbone of these models, equipping them with the essential knowledge and reasoning
abilities crucial for a wide range of downstream tasks (Together, 2023; Penedo et al., 2024a).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

The Internet offers vast amounts of data, but much of it is noisy and unrefined, requiring extensive
cleaning and quality enhancement before being applied for pre-training. Previous works focus primar-
ily on designing heuristic-based pipelines to lift data quality, such as document filtering (Rae et al.,
2021; Penedo et al., 2024a; Soldaini et al., 2024) and perplexity-based scoring methods (Together,
2023), relying heavily on human expertise and manual adjustments (Zhang et al., 2024a). While
widely adopted, these labor-intensive solutions are inherently limited by rule coverage and their
inability to address every specific case. Recently, some efforts have explored leveraging LLMs for
high-quality data acquisition. On the one hand, language models have been applied for data filtering
or selection (Xie et al., 2023; Wettig et al., 2024; Yu et al., 2024; Dubey et al., 2024), but their role
is largely limited to identifying low-quality documents without enabling fine-grained refinements
(e.g., string-level). On the other hand, LLMs are also being used to generate high-quality data
directly, i.e., data synthesis (Gunasekar et al., 2023; Li et al., 2023; Ben Allal et al., 2024). Unlike
filtering, synthesis methods actively create or refine data to produce new documents, but they require
substantial computational resources, limiting the methods’ scalability. Despite the success, these
methods can also inherit issues from LLMs like hallucination (Maini et al., 2024), and assessing their
correctness and completeness in an interpretable manner remains a challenge (Liu et al., 2024a).

In this work, at the intersection of data processing efficiency and data quality improvement, we
propose PROX, a model-based framework for pre-training-level data refinement. PROX focuses on
refining corpora using smaller models at scale, offering a more efficient alternative. As shown in
Figure 2, in practice, PROX first adapts small base language models (e.g., < 1B) to data refining tasks
through fine-tuning them on seed data. The refining models in PROX then determine the appropriate
operations for each document in the pre-training corpora via versatile programs, such as document
filtering, string normalization and noisy line removal. The generated programs are then executed
by a pre-defined executor, producing refined corpus ready for pre-training. In this way, PROX is
empowered with language models to autonomously refine pre-training corpora, leveraging flexible
function calls to enhance data quality.

Experimental results demonstrate that the proposed PROX framework consistently lifts data quality for
pre-training. Specifically, PROX achieves an average improvement of 2.5% over the original corpus
on 10 downstream benchmarks and outperforms state-of-the-art data selection methods by over 2.0%
(§3.2). Furthermore, PROX demonstrates broad applicability across model sizes from 0.3B to 1.7B
and achieves consistent performance gains across diverse pre-training corpora of varying quality, in-
cluding RedPajama-V2 (Together, 2023), C4 (Raffel et al., 2020), and FineWeb (Penedo et al., 2024a)
(§3.3). In domain-specific continual pre-training, training on PROX-refined OpenWebMath (Paster
et al., 2024) yields an 11% gain for TINYLLAMA-1.1B and 7.6% for MISTRAL-7B across 9 mathe-
matical tasks, with similar improvements observed on LLAMA-2-7B and CODELLAMA-7B. Beyond
these gains, pre-training on the refined corpus significantly boosts pre-training efficiency, achieving
similar downstream performance with up to 20× less training computing (§3.4). Quantitative analysis
suggests scaling up computing FLOPs for data refinement enables comparable performance with
much less training costs and offers a highly promising path for efficient LLM pre-training (§4.2).

2 APPROACH: PROGRAMMING EVERY EXAMPLE

2.1 DATA REFINEMENT TASK FORMULATION

Given any document in the corpus d ∈ D, such as an HTML extract or a textbook, we define data
refinement as the process of transforming d into d̂, where d̂ exhibits higher quality. While it is
challenging to formally define “higher quality” for pre-training data, we assume it can be described
through qualitative improvements, such as the removal of advertisements, meaningless URL links,
random code gibberish, and content lacking educational value, just as shown on the left side of
Figure 2. Specifically, we formulate this refining process as the generation of a data processing
program Z , conditioned on d. The refined document d̂ is then produced by executing program Z on
the original document d. For instance, the “string normalization” can be a very fine-grained process
transforming noisy strings into clean ones with executor E and program Znormalize:

E(Znormalize, d) = (s′i)
|d|
i=1, where s′i = normalize(si) if si needs normalization else si (1)

Here, d = (s1, s2, ..., s|d|) is the original document represented as a sequence of strings, and
normalize() is our normalization function that maps certain strings to their normalized versions

2
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Figure 2: An overview of PROX framework: (1) we adapt a base language model to perform data
refinement; (2) PROX refining’s models are able to generate elaborate programs for each document,
including document-level filtering and more fine-grained chunk-level refining; (3) A Python
executor will execute the programs with the docs, producing the refined high-quality corpora.

for simplicity. Moreover, document filtering is a special case of refining transformation, where
executing Zfilter removes the entire document, i.e., E(Zfilter, d) = ∅. In this way, data quality
improvements like cleaning or normalizing can be unified into standardized functions that apply
specific transformations to documents. These operations are represented as various instances of the
general executor E(Z, d), where Z encodes function calls or heuristics for each specific task.

2.2 PROX FRAMEWORK

Overview As shown in Figure 2, given any document d as input, the PROX framework utilizes the
language model itself with parameter θ to generate the data refinement program Z = fθ(d). The
snippet is executed within the executor E , producing the refined document d̂ = E(fθ(d), d). We
include two stages in the PROX framework, aiming to refine the data progressively, from rough
to fine-grained. These two stages are referred to as document-level programming and chunk-level
programming, as illustrated in Figure 2. In each stage, the PROX refining model will generate
programs Zdoc and Zchunk that refine the corpora at varying levels of granularities.

PROX Program Design Designing the detailed program space is crucial for maximizing language
models’ capabilities. When scaling to large-scale pre-training corpora, we considered several practical
factors for such model-based operations: (1) the model does not need to be very powerful or large
to handle these tasks; it only needs to recognize certain patterns; (2) although the solution requires
more computational resources compared to heuristic-rule-based pipelines, it still needs to be simple
and efficient. Therefore, we make the language models generate function calls without detailed
implementations. These design choices balance functionality with the limitations of small language
models, enabling effective document manipulation while maintaining simplicity and coherence. We
present the function definitions in Table 1, which also constitutes the program space of PROX.

The most fundamental operations we aim to perform on a document are deletion and replacement. In
PROX, we incorporate these types of operations across different stages to refine the corpus at different
granularities: (1) In the document-level programming stage, we define the functions drop_doc() to
delete a document and keep_doc() to retain it. (2) At the chunk-level programming stage, we split
lengthy documents into smaller chunks and apply fine-grained operations to them. These operations
include deleting specific lines with remove_lines() and replacing strings with normalize(),
providing flexibility in modifying content rather than dropping the whole document. For high-quality
chunks that require no modifications, we use the keep_chunk() function. As shown in Table 1,
while the individual functions may seem straightforward, their design space is flexible and capable of
expressing complex rules developed by humans. We believe human-crafted rules can be projected
into the program space of PROX, demonstrating that our approach simplifies and enhances the rule
creation process, offering more systematic and scalable refinement capabilities.

PROX Execution During the execution stage, the generated program snippets Z will be executed
by the executor E to refine the document. For simplicity and flexibility, PROX integrates Pythonic
grammars, wrapping all operations into different function calling with parameters, and implements
these functions in Python for later execution. For example, in Figure 2, the document contains
some noisy patterns including navigation bars, meaningless HTML links and page indexes. The
refining model will then generate programs to remove the corresponding lines and patterns. In
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Table 1: PROX program design of document-level and chunk-level refining stage. For input, doc and
chunk will also be sent into the corresponding functions as string-type inputs for execution.

Stage Function Interface Description

Document
Level

drop_doc()→ <None> Delete the whole doc.

keep_doc()→ <str> Return the orignal doc.

Chunk
Level

remove_lines(line_start, line_end)→ <str>
▷ line_start<int>, index of the first line to be removed
▷ line_end<int>, index of the last line to be removed

Delete noisy lines from chunk;
Return chunk after removal.

normalize(source_str, target_str)→ <str>
▷ source_str<str>, the noisy string pattern
▷ target_str<str>, the string for replacement

Replace strings with normalized ones;
Return chunk after replacement.

keep_chunk()→ <str> Return the orignal chunk.

the document-level and chunk-level cleaning stage, PROX utilizes two different refining models
to generate programs with various function calls described in Table 1. We believe this sequential
approach ensures a structured and effective refinement, addressing the larger document noise first,
and then focusing on finer-grained cleaning.

2.3 MODEL ADAPTATION FOR PROX

Synthesize[Scoring Critiques]

Score 1-5[Function Definition]
def drop_doc(text: str):

”delete doc from corpus”
pass

LLMSeed  Documents

DF Program
drop_doc()

DF Program
drop_doc()

Document-Program Pairs
Base Model Refining Model

Fine-tune
Inference
At  Scale

Pretraining
CorporaZero-shot / Few-shot

Chunk-level Program
normalize(‘►©’,’’)

Doc-level Program
drop_doc()

Figure 3: The illustration of the model adaptation in PROX. We employ powerful LLMs (LLAMA-3)
to annotate random seed documents with valid programs and use doc-program pairs to fine-tune a
small base language model, obtaining the refining model suitable for fine-grained data refining tasks.

It is generally difficult for off-the-shelf models to directly generate perfect PROX programs. In fact,
generating such custom API calls is relatively challenging even for the most powerful LLMs at the
current stage (Zhuo et al., 2024). Thus, it is necessary to curate some seed data to adapt the model for
these scenarios. Under such consideration, we employ advanced LLMs to annotate these operations
via zero-shot and few-shot prompting, and then adapt our small models to these tasks by supervised
fine-tuning (SFT). As presented in Figure 3, we first apply additive scale scoring prompts, a method
explored in recent works (Yuan et al., 2024; Penedo et al., 2024a), to split the corpus into kept and
dropped documents, then use LLMs to annotate fine-grained programs based on kept documents.
Specifically, we leverage the LLAMA-3 series of models (Dubey et al., 2024) for seed data annotation,
and the seed documents are randomly sampled from the original pre-training corpus. In PROX, this
annotation is performed only once, and all models are adapted with the same curated data. To ensure
the reliability of the collected data, we also conduct necessary checks for grammar correctness and
control the removal ratio threshold. The detailed procedure for program synthesis and post-processing
can be found in §A.1.

For simplicity, we directly use a small language model (e.g., 0.3B parameters) that we have trained
on approximately 26B tokens of original unrefined data as the base model, which also serves as the
comparison baseline in subsequent experiments. The adapted models’ performance will then be
evaluated using the F1 score on the held-out validation dataset, both of which were derived from
the seed data we collected earlier. We select the highest-performing model checkpoints and employ
the models to generate programs Z , for each document or chunk of the dataset. These programs
together with the documents are then executed using the corresponding function implementation,
resulting in the final processed corpus. Please refer to the appendix for more training details (§A.2),
implementation for calculating the F1 score (§A.3), and large-scale inference (§A.4).
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3 EXPERIMENTS

In this section, we first describe our experimental setup (§3.1), then verify the effectiveness of
each PROX refining stage and compare it with various data selection methods tailored for pre-
training (§3.2). We then apply PROX to various model sizes and corpora to demonstrate its broad
applicability (§3.3). Finally, we apply PROX to the mathematical domain, showing its superiority in
domain-specific continual pre-training (§3.4).

3.1 EXPERIMENT SETUP

Pre-training Corpora We utilize various corpora for both general and specific domain experiments.
For the general domain, we begin with RedPajama-V2 (Together, 2023), a preprocessed large-scale
dataset of 30 trillion tokens from diverse Internet sources, ready for pre-training. We further apply
PROX on the C4 corpus (Raffel et al., 2020) with 198 billion tokens and the FineWeb dataset (Penedo
et al., 2024a) containing 15 trillion tokens, noted for high data quality. For specific domain exper-
iments, we use OpenWebMath (Paster et al., 2024), a math-focused dataset with 15 billion tokens.
Given the limitations in computational resources, we conduct experiments on a randomly sampled
subset of the entire pre-training dataset. See Table 7 (§B.2) for sampling details.
Base Model Architecture Our experiments are conducted on various sizes of language models.
(1) To verify different stages’ effectiveness of PROX, we employ a 750M sized model sharing
LLAMA-2 architecture (Touvron et al., 2023b), denoted as TLM-S, used for both pre-training
from scratch and refining. We also compare PROX with data selection methods using PYTHIA-
410M/1B’s architecture (Biderman et al., 2023), as those employed in MATES (Yu et al., 2024). (2)
For further evaluation of PROX using different refining and base model sizes, we scale the model
sizes from 350M (0.5×smaller, denoted as TLM-XS) to 1.7B (2×larger, denoted as TLM-M). (3)
For domain-specific continual pre-training, we select TINYLLAMA-1.1B (Zhang et al., 2024b),
LLAMA-2 (Touvron et al., 2023b), CODELLAMA (Rozière et al., 2023) and MISTRAL-7B (Jiang
et al., 2023) as representative base models for their adequate training and solid performance. Detailed
specifications and training recipes are provided in §B.3, especially in Table 8 and Table 9.
Baselines To ensure a fair comparison within the same experiment, we maintain consistent training
hyperparameters across most of the baselines, differing only in data refining and selection pipelines.
We compare PROX with various baseline methods, including heuristic filtering rules (e.g., rules used
to create Gopher (Rae et al., 2021), C4 (Raffel et al., 2020), and FineWeb (Penedo et al., 2024a)),
fasttext-based filtering (Li et al., 2024), and existing data selection techniques (e.g., DSIR (Xie et al.,
2023), DsDm (Engstrom et al., 2024), MATES (Yu et al., 2024), QuRating (Wettig et al., 2024)),
LLM synthesis approaches (such as INSTRUCTIONLM (Cheng et al., 2024) and COSMO (Ben Allal
et al., 2024)). For domain-specific continual pre-training, we also compare with strong open-sourced
models such as LLEMMA (Azerbayev et al., 2024), INTERNLM2-MATH (Ying et al., 2024), and
RHO (Lin et al., 2024). For detailed descriptions of each baseline, please refer to §C.
Evaluation Setup We compare the trained models’ performance over a vast of datasets for com-
prehensive evaluation: (1) For general pre-training, we evaluate the zero-shot performance across
ten selected tasks using lighteval’s implementation (Fourrier et al., 2023); we have also included
LM-eval-harness (Biderman et al., 2024) for fair comparison with data selection methods. (2) For
domain-specific continual pre-training evaluation, we integrate nine mathematical related tasks and
report few-shot chain-of-thought (CoT) (Wei et al., 2022) performance. The selected evaluation
benchmarks, number of evaluation examples, and full details can be found in §D.

3.2 VERIFYING PROX’S EFFECTIVENESS

Verifying Effectiveness for Each PROX Operation We first conduct a series of experiments to
verify the effectiveness of each PROX operation. We begin by training TLM-S on the RedPajama-V2
raw data for approximately 26B tokens (or 12.5K steps) as the initial baseline. Following Wettig et al.
(2024) and for convenience, we then sequentially apply the document-level and chunk-level refining
pipelines by fine-tuning the 0.7B model itself. We then perform large-scale program synthesis and
execution using the refining models, resulting in Ddoc and Ddoc+chunk. Such 2-stage synthesis requires
approximately 192 A100-80G GPU hours for processing 60B tokens of data. The resulting zero-shot
downstream performance is presented in Table 2, including base models trained on the data produced
by PROX refinement methods and different rule-based filtering methods. Moreover, we visualize the
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Table 2: Zero-shot performance on 10 selected tasks. All models use the same TLM-S architecture
and are trained on RedPajama-V2. The doc-level (PROX-D) and chunk-level (PROX-C) refining are
done by fine-tuning the raw data pre-trained model as a refining model. Bolded entries represent the
best results. #Win represents the number of tasks where the method achieved the best performance.

Method ARC-C ARC-E CSQA HellaS MMLU OBQA PIQA SIQA WinoG SciQ AVG #Win
Raw 26.1 44.3 29.7 39.1 27.3 29.2 66.9 39.0 52.0 67.4 42.1 0 / 10

Applying Rule-based filtering on Raw Data: GO = Gopher rules, C4 = C4 rules, FW = FineWeb rules.

GO 25.7 44.0 31.3 40.2 27.3 29.0 66.3 39.0 51.2 68.9 42.3 0 / 10
C4 25.0 46.0 31.0 40.5 27.1 29.2 68.5 40.5 51.7 66.6 42.6 2 / 10
FW 25.2 46.8 32.6 39.6 27.2 29.0 66.5 39.4 52.4 69.2 42.8 2 / 10
GO+C4+FW 25.2 43.9 30.0 41.9 27.5 31.0 67.0 39.9 51.9 65.3 42.3 0 / 10
FASTTEXT 26.9 49.9 29.5 39.0 28.5 31.8 64.7 39.6 52.1 70.4 43.3 2 / 10

Applying PROX (ours) on Raw Data: D = Doc-level Programming, C = Chunk-level Programming.

PROX-D 26.6 49.7 30.1 40.5 29.4 30.4 66.3 39.0 51.2 71.6 43.5 1 / 10
PROX-D+C 26.4 51.9 30.9 42.4 29.4 31.6 67.9 40.0 52.2 73.5 44.6 3 / 10
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Figure 4: Downstream zero-shot per-
formance w.r.t. different training
steps: first 0.5K, then evenly from
2.5K to 12.5K. Rule: the best per-
forming FineWeb rule in Table 2.

Table 3: Comparison with different data selection methods on
8 benchmarks using the C4 corpus and PYTHIA architecture.
#Win represents the count of best performance.

Method Total FLOPs (1e19) 0-shot 2-shot #Win
Model Architecture: PYTHIA-410M

Random 06.4 42.7 43.8 0 / 8
DSIR 06.4 42.5 43.7 1 / 8
DsDm 10.7 43.4 44.1 0 / 8
QuRating 26.4 43.5 44.6 0 / 8
MATES 08.1 44.0 45.0 0 / 8
PROX (ours) 13.2 46.2 47.5 7 / 8

Model Architecture: PYTHIA-1B

Random 17.7 44.7 45.4 0 / 8
MATES 20.0 45.8 46.4 1 / 8
PROX (ours) 21.9 46.8 48.4 7 / 8

dynamic benchmark performance in Figure 4, implying the consistent improvement of PROX over all
baselines. See §E.1 for full detailed results of all intermediate checkpoints.

These results show that PROX is highly effective, outperforming the raw corpus with an average
boost of 2.5%, including significant boosts such as 7.6% on ARC-E, and 3.3% on HellaSwag. Such
improvements were achieved even on benchmarks that are typically prone to performance instability,
such as SIQA, WinoGrande, and CSQA. By contrast, rule-based methods demonstrate relatively
marginal overall improvement. For instance, Gopher rules achieve only a 0.2% boost, while C4 shows
a modest 0.5% improvement. Furthermore, combining all three rules (as is done in constructing the
official FineWeb corpus), does not lead to any larger enhancement in overall performance.

Comparing with Data Selection Methods Apart from comparing with heuristic methods, we
also include existing representative model-based data selection methods tailored for pre-training
corpora to verify PROX’s effectiveness. In Table 3, we report both 0-shot and 2-shot performance
under the same settings used in MATES (Yu et al., 2024). While we merely apply document-level
stage (i.e., PROX-D) which is indeed similar to data selection methods, we can see that PROX
outperforms the strongest data selection method MATES, by 2.2% and 2.5% in 0-shot and 2-shot
average performance for 410M model, and by 1.0% and 2.0% for 1B model. Additionally, PROX
achieves the best performance on 7 out of 8 benchmarks tested, demonstrating its superiority over
existing data selection methods. Full evaluation results are provided in Table 12 (§E.2).

3.3 APPLYING PROX ACROSS MODEL SIZES AND PRE-TRAINING CORPORA

In this section, we demonstrate that PROX can effectively benefit models beyond scales and across
different corpora, and greatly improves the training efficiency.
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Table 4: Refining model’s perfor-
mance on valid set and token reten-
tion ratio of original corpus.

Size Doc-level Chunk-level Kept Ratio

XS (0.3B) 82.6 75.2 23.2%
S (0.7B) 81.3 75.6 25.6%
M (1.7B) 83.7 77.3 28.8%
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Figure 5: PROX’s effect over differ-
ent model sizes.
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Our From-Scratch Experiments

TinyLlama-1.1B-3T: 50.1%
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Other Approaches

49.2
49.7 50.3

Raw Data ProX LLM Synthesis Model Pruning

Figure 6: Performance of original data and PROX curated data
trained models across different datasets using≈ 50B tokens and
comparison with existing models trained using different tech-
niques. Inst-LM: INSTRUCTIONLM-1.3B; Cosmo: COSMO-
1.8B; S-Llama: SHEAREDLLAMA-1.3B.

PROX works well across different scales. We train a family of models from 350M to 1.7B (i.e.,
TLM-XS, TLM-S, and TLM-M) on the same 26B tokens used in §3.2, and then fine-tune these
models on document-level and chunk-level tasks, obtaining refining models with different sizes.
We then apply these models in document-level refining and chunk-level refining stages and use the
curated data for from-scratch pre-training. We report the adaptation performance on refining tasks of
different refining model sizes in Table 4. According to the validation performance, adaptation works
well across all model sizes, all achieving > 80% F1 on document-level refinement, and > 75% F1 on
chunk-level refinement. We further train models of different sizes from scratch using data produced
by refining models of varying sizes. In Figure 5, the heatmap indicates that all refining models
of three sizes improve data quality over raw data (left patches of the heatmap), with a consistent
performance boost of 2% over all base model sizes. While TLM-XS curated data shows slightly
better downstream performance, it has a significantly lower token-level retention ratio (23.2% vs.
28.8%) compared to larger models as reflected in Table 4. This implies that moderately larger models
suggest a favorable balance between data quality and quantity. These additional tokens likely provide
more knowledge during pre-training without compromising downstream benchmark performance,
showcasing an effective trade-off between data refinement and information preservation.
PROX works well across pre-training corpora. To assess the applicability of PROX across various
pre-training corpora, we extend our experiments beyond RedPajama-V2 to include C4 (Raffel et al.,
2020), and the recently released 15-trillion-token pre-training corpus, FineWeb (Penedo et al., 2024a)
together with its top-quality subset, FineWeb-Edu. For consistency, we apply exactly the same
PROX-xs refining models detailed in Table 4 to these corpora without constructing new SFT data
for each corpus. We conducted larger-scale experiments by training our model on approximately
50 billion tokens, again achieving notable improvements. On ten downstream benchmarks, models
trained on PROX’s curated data showed improvements of +2.0% on RedPajama-V2, +3.1% on C4,
+2.4% on FineWeb, and +0.9% on FineWeb-Edu, as shown in Figure 6.

ProX trains language models with much greater efficiency. To demonstrate the non-trivial
nature of these results, we compared models trained on PROX curated data against various models
trained by different approaches. These include models like TINYLLAMA-1.1B-3T (trained directly
on 3 trillion tokens, about 60× of our training tokens and 40× training FLOPs), SHEADLLAMA-
1.3B (denoted as S-Llama, a pruned version of LLAMA-2-7B, with extra training on 50 billion
tokens), and models using LLM data synthesis, such as INSTRUCTIONLM-1.3B (denoted as Inst-
LM) and COSMO-1.8B. Our results, including TLM-M (PROX) and TLM-M (Raw), are presented
alongside all these baselines in Figure 6. On FineWeb, which is recognized for its high-quality
data, TLM-M using PROX-refined data performs comparably to pruned models like SHEADLLAMA-
1.3B and TINYLLAMA-1.1B, despite their reliance on additional pruning techniques or much larger
datasets. Moreover, using much less computing overhead for data refinement, our model surprisingly
outperforms models that rely heavily on data synthesis with LLMs, underscoring the PROX’s
efficiency. Notably, models like INSTRUCT-LM-1.3B, trained on 100 billion tokens leveraging a
fine-tuned MISTRAL-7B synthesizer, and COSMO-1.8B, trained on 180 billion tokens (including 25
billion tokens synthesized by MIXTRAL-8x7B), require significantly more computational resources
than PROX. In fact, their computational cost of data synthesis has far surpassed the training overhead.
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Table 5: OpenWebMath continual pre-training (CPT) results. All models are evaluated using few-
shot CoT prompts. LLEMMA and INTERNLM2-MATH are continual pre-trained models from
CODELLAMA and INTERNLM2 (Team, 2023) with public available data, respectively. DEEPSEEK-
LLM denotes an internal DeepSeek model, and the model trained on OpenWebMath introduced
in Shao et al. (2024). Note that the unique tokens and training tokens in the column refer exclusively
to the token numbers from math-specific corpora (calculated by corresponding tokenizers). †: MQA
evaluation of INTERNLM2-BASE is based on an alternative prompt due to non-prediction issues with
the original prompt. The bolded entries represent the best results within the same base model.

Model Size Method Uniq
Toks

Train
Toks GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

Existing Continual Pre-trained Models for Reference

DEEPSEEK-LLM 1.3B - - - 2.9 3.0 - - - - - 19.5 15.6 -
1.3B - 14B 150B 11.5 8.9 - - - - - 29.6 31.3 -

LLEMMA
7B - 55B 200B 38.8 17.2 56.1 69.1 82.4 48.7 41.0 45.4 59.4 50.9 (+21.8)
34B - 55B 50B 54.2 23.0 67.9 75.7 90.1 57.9 49.8 54.7 68.8 60.1 (+12.8)

INTERNLM2-BASE
7B - - - 27.0 6.6 49.0 59.3 74.8 40.1 20.9† 19.0 28.1 36.1
20B - - - 50.6 18.8 72.5 75.9 93.9 45.4 33.1 53.7 59.4 55.9

INTERNLM2-MATH
7B - 31B 125B 41.8 14.4 61.6 66.8 83.7 50.0 57.3 24.8 37.5 48.7 (+12.6)
20B - 120B 500B 65.4 30.0 75.7 79.3 94.0 50.9 38.5 53.1 71.9 62.1 (+6.2)

Applying Data Refinement Approaches

TINYLLAMA (Base) 1.1B - - - 2.8 3.2 10.9 18.0 20.2 12.5 14.6 16.4 21.9 14.7

TINYLLAMA (CPT)

1.1B - 15B 15B 6.2 4.8 22.3 36.2 47.6 19.3 11.6 20.7 25.0 21.5 (+8.1)
1.1B RHO 15B 9B1 7.1 5.0 23.5 41.2 53.8 - 18.0 - - -
1.1B Rule 6.5B 15B 4.5 2.8 17.5 29.4 39.3 15.1 12.4 19.4 25.0 18.4 (+3.7)
1.1B PROX 5B 15B 9.0 5.6 23.8 41.9 56.9 22.2 15.6 26.8 31.2 25.7 (+11.0)

LLAMA-2 (Base) 7B - - - 14.1 3.8 39.5 51.6 63.6 30.9 12.5 32.9 34.4 31.5

LLAMA-2 (CPT)
7B - 15B 10B 29.6 13.6 49.2 61.9 78.4 36.3 31.9 40.5 43.8 42.8 (+11.3)
7B PROX 5B 10B 30.6 16.8 50.2 63.7 79.3 37.3 40.1 43.8 53.1 46.1 (+14.6)

CODELLAMA (Base)
7B - - - 11.8 5.0 44.2 50.7 62.6 30.6 14.3 20.4 21.9 29.1
34B - - - 31.8 10.8 61.9 66.0 83.4 51.6 23.7 43.0 53.1 47.3

CODELLAMA (CPT)
7B - 15B 10B 31.1 14.8 51.4 62.1 81.2 33.6 30.4 40.5 43.8 43.2 (+14.1)
7B PROX 5B 10B 35.6 17.6 55.8 67.9 82.7 41.3 38.9 42.6 62.5 49.4 (+20.3)

MISTRAL (Base) 7B - - - 40.6 11.4 65.4 68.5 87.0 52.9 32.3 50.0 56.2 51.6

MISTRAL (CPT)
7B - 15B 10B 44.4 19.2 65.2 69.6 88.4 46.6 43.1 50.8 65.6 54.8 (+3.2)
7B PROX 4.7B 10B 51.0 22.4 64.9 72.9 89.2 49.8 53.0 54.2 75.0 59.2 (+7.6)

3.4 APPLYING PROX TO DOMAIN-SPECIFIC CONTIUAL PRERAINING

We also demonstrate the potential of PROX in the continual pre-training scenario, specifically, in the
mathematical domain. We apply the very same pipeline as in general domains to the OpenWebMath
corpus (Paster et al., 2024), aiming to further mine and refine the high-quality and clean data from the
crawled vast web pages. We apply PROX-xs series for refining, which was initially trained on general
text as described in §3.3, and further adapted on math text for the document-level and chunk-level
refining tasks. Finally, about 5.5B tokens remain after document-level refining, and about 4.7B
after chunk-level refining. We present the final mathematical evaluation results of models trained on
OpenWebMath in Table 5, with full evaluation results and ablation studies presented in §E.4.

PROX boosts math continual pre-training efficiency vastly. Without any domain-specific design,
Table 5 shows that pre-training on OpenWebMath refined by PROX brings 11.0% average performance
improvements for TINYLLAMA-1.1B, 14.6% for LLAMA-2, 20.3% for CODELLAMA, 7.6% for
MISTRAL, which clearly exceed the improvements of all baselines, including their counterparts pre-
trained on the original corpus. Notably, applying rule-based filtering does not improve performance;
instead, it causes a 3.1% degradation compared to continual pre-training on the original corpus.
This suggests that universal heuristics are ineffective across all domains, highlighting the need
for automated pipelines like PROX. Moreover, compared with some existing state-of-the-art math
continual pre-training models like LLEMMA and INTERNLM2-MATH typically requiring hundreds
of billions of training tokens, our PROX demonstrates remarkable efficiency gains. A more controlled
comparison further highlights this: LLEMMA-7B, based on CODELLAMA-7B, was trained on 200B

1RHO (Lin et al., 2024) only counts the selected tokens that are used for training (loss calculation).

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

tokens; whereas PROX, also starting from CODELLAMA-7B, reaches similar performance (50.9% vs.
49.4%) with just 10B tokens of training, indicating a 20× reduction in training computes.

4 ANALYSIS

4.1 IMPACT ON THE ORIGINAL DATA

101 102 103 104

D
en

si
ty Avg.Toks: 1217.5

Avg.Toks:2004.8

(#toks)

Original Data
ProX Refined Data

RedPajama-V2
101 102 103 104

Avg.Toks: 472.3

Avg.Toks: 1027.2
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ProX Refined Data

C4
102 103 104
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FineWeb
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ProX Refined Data

OpenWebMath
Figure 7: Comparison of doc’s token length distributions between original and PROX-refined data.

What changes occur in the corpora after applying PROX? We compare the document’s token length
distribution of the original corpus with that of the PROX-refined corpus in Figure 7. In the general
domain corpora (RedPajama-V2, C4, and FineWeb), the data refined by PROX exhibits a noticeable
shift in the average number of tokens per document. For instance, in RedPajama-V2, we observe that
documents with fewer than 100 tokens make up a significant portion of the corpus. After applying the
PROX, the majority of documents contain more than 200 tokens, with an average number of tokens
per document increasing from 1217 to over 2000. This suggests that very short documents may be
noisy and lack sufficient meaningful information to be suitable for pre-training. This shift, however,
is not observed in OpenWebMath, where the average number of tokens per document is already
larger. One possible reason for this outlier is that the OpenWebMath corpus is collected mostly from
sources different from the general domain, e.g., online forums like Stack Exchange, and academic
publisher websites such as Arxiv. And noises of these sources can be quite different from general
domains. Further analysis and case studies on these documents are provided in §F.1, §F.2, and §F.3.

4.2 COMPUTING OVERHEAD ANALYSIS

Although PROX demonstrates promising results in downstream tasks, it is important to acknowl-
edge that large-scale model inference still requires a substantial computing budget. For example,
as mentioned in §3.2, and in Table 7, the RedPajama-V2 corpus used for training TLM-S was
refined from about 60B raw tokens. As calculated in §F.4, if we utilize PROX-xs (0.3B) for
both two refining stages, the additional computational overhead will amount to approximately
C = 5 × 1019 FLOPs, which is equivalent to training an additional 12B tokens on TLM-
S and 5B tokens on TLM-M. It is noteworthy that this overhead ratio keeps decreasing as
model size increases, meaning that the relative computational cost diminishes for larger models.
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0.42 0.43

0.72 0.69

2.26

1.35

Train FLOPs
Infer FLOPs

Figure 8: FLOPs comparison for compara-
ble downstream performance with/without
PROX refining: 0.3B (Avg. Perf = 40.5),
0.7B (41.6), and 1.7B (42.9).2

In Figure 8, we compare the FLOPs consumed by
checkpoints with similar downstream performance,
both with and without applying PROX, across three
different model sizes. As the model size increases, the
proportion of inference FLOPs required for applying
PROX decreases. For the 0.7B model, the total FLOPs
when using PROX are already lower than without it
(6.3× 1e19 vs. 6.7× 1e19). Notably, for the largest
1.7B model, we achieve performance comparable to
a model pre-trained on the original data, but with only
58% of the total FLOPs. This demonstrates that refin-
ing methods like PROX not only enhance data quality
but also become more computationally efficient as
model sizes grow, reinforcing the value of allocating
additional resources to refining pre-training data.

2The train FLOPs for the base model (approximately 5.3 × 1019) used to create the refining model are
excluded. This is because any pre-trained LLM can theoretically serve as the base for refinement.
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5 RELATED WORKS

Pre-training Data Processing It has been a common practice to execute extensive pre-processing
before pre-training due to the noisy nature of raw data from the Internet, which can hurt model
performance (Touvron et al., 2023a; Together, 2023; Penedo et al., 2024a). The pipeline usually
starts with document preparation, such as URL filtering, text extraction, and language-based filter-
ing (Wenzek et al., 2020; Smith et al., 2022). The remaining documents will then undergo several
quality checks with heuristic rules like overall length, symbol-to-word ratio, and other criteria to
determine whether they are kept, or aborted (Zhang et al., 2024a; Dou et al., 2024; Qiu et al., 2024).
Finally, these documents are deduplicated using fuzzy matches like MinHash (Broder, 1997), or
exact sequences matches (Penedo et al., 2024c). In PROX, we use the language model for further
data refining, outperforming heuristic rules with acceptable computational overhead.

Data Selection Methods Data selection is more commonly applied in the later stages of large-scale
data pre-processing. In supervised fine-tuning (SFT), it typically involves selecting a much smaller
subset of samples while maintaining performance (Liu et al., 2024b). Recent efforts have extended
these selection strategies to pre-training (Engstrom et al., 2024; Xie et al., 2023; Ankner et al., 2024;
Sachdeva et al., 2024). Wettig et al. (2024) train a rater model to score documents on four quality
criteria in SlimPajama (Soboleva et al., 2023); MATES (Yu et al., 2024) apply a BERT-based model
to estimate data influence and enables dynamic data selection schema. Moreover, as mentioned in
LLAMA-3 (Meta, 2024), LLAMA-2 models (Touvron et al., 2023b) are used as text-quality classifiers
that underpin LLAMA-3’s training data. Instead of merely selecting documents, PROX enables more
fine-grained operations within documents, contributing to further quality improvements.

Model-based Data Synthesizing Another branch of research focuses on editing or rephrasing
existing data with models to improve the data quality. Fan et al. (2024) uses ChatGPT to rephrase
several instruction tuning datasets for clear format; Yue et al. (2024) employ LLMs to extract and
refine QA pairs from web documents. Such techniques have also been applied in the pre-training
phase such as the PHI series (Gunasekar et al., 2023; Li et al., 2023). Most recently, Maini et al.
(2024) and Cheng et al. (2024) utilize LLMs to paraphrase web documents in specific styles such as
QA, and mix these synthetic and real data for training. Ben Allal et al. (2024) further synthesizes
from mere seed topics and prompts LLMs to generate clean formatted data. In this work, we focus on
leveraging language models to lift data quality via generating executable and interpretable programs,
which improve data quality at scale with much less extra computing compared with LLM synthesis.

Inference Time Scaling Recent trends in language models explore the potential of allocating
additional computing at inference time, complementing the extensive computations already devi-
ated to the pre-training and post-training phases. Several studies have shown that smaller language
models with extra inference-time computing can match or outperform larger models in code genera-
tion (Hassid et al., 2024; Brown et al., 2024) and math problem-solving (Snell et al., 2024; Wu et al.,
2024). The significance of this approach has been further corroborated by OpenAI’s latest o1 model
release (OpenAI, 2024). Slightly different, our work demonstrates an alternative perspective on
inference computing scaling. We advocate allocating computing resources to refine pre-training
corpora, given their extensive use in language model pre-training, and show remarkable gains in
pre-training efficiency by investing moderate additional compute in corpus refinement, facilitating
more efficient and accessible development of LLMs.

6 CONCLUSION

We introduced PROX, a framework that uses language models to refine pre-training data at scale
through program generation and execution. Our extensive experiments show that PROX curated data
improves model performance by more than 2% on various downstream benchmarks and is effective
across different model sizes and pre-training datasets. For domain-specific continual pre-training,
models trained on PROX curated data also yield significant improvements in 20× less tokens. Further
analysis also implies applying PROX can achieve similar results with less computing power for
large-scale language model pre-training. These results demonstrate PROX’s potential to significantly
enhance data quality while reducing costs in language model training. We believe that PROX paves
the way for developing more efficient LLMs, and scaling computing for data refinement may further
accelerate progress in future exploration.
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ETHICS STATEMENT

In applying model-based refining techniques, we acknowledge potential ethical concerns, including
the risk of hallucinations or the introduction of biases learned by large language models during data
annotation. While PROX is specifically designed for interpretability through program generation,
model-based refinement may still unintentionally reflect these biases. Additionally, although we
use very small models to refine data, the large-scale nature of the pre-training data inevitably
leads to additional energy consumption. Techniques like quantization could be explored to reduce
computational costs. It is also important to note that the computation required for data refinement is
significantly lower than that of current large-scale pre-training. In fact, PROX has the potential to
improve pre-training efficiency, resulting in substantial computational savings during pre-training.

REPRODUCBILITY STATEMENT

We have provided detailed information in the appendix to ensure reproducibility, including:

1. A comprehensive explanation of how we obtained the SFT data required for PROX adapta-
tion, including the algorithms for prompting and synthetic program generation, and other
details. (§A.1-§A.3)

2. Pseudocode for the algorithms used to process data chunks during large-scale inference
(§A.4).

3. A complete breakdown of the model architectures, datasets, and hyperparameters, based on
the open-source TINYLLAMA and litgpt framework (§B).

4. A detailed list of all benchmarks used, along with the corresponding evaluation metrics and
their implementation methods, all grounded in previous works or open-source projects (§D).

5. Evaluation results for all intermediate checkpoints (§E).

We will make our base models and refining models publicly available for reproducible research.
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A PROX IMPLEMENTATION DETAILS

A.1 SUPERVISED FINE-TUNING DATA COLLECTION

In this section, we elaborate on the detailed prompts used to generate the SFT data for model
adaptation. In principle, We apply the same prompts for general domain corpora (including C4 (Raffel
et al., 2020), RedPajama-V2 (Together, 2023), FineWeb (Penedo et al., 2024a)) and mathematical
corpus (OpenWebMath (Paster et al., 2024)). All seed data is randomly sampled from the raw
corpora.

Document-level Programming We apply two zero-shot scoring prompts to evaluate and assign
a combined score to each web document before synthesizing the (doc, program) pair. One of
the prompts is the same as the one used in FineWeb-Edu, which is a prompt to let the model decide
the educational score. Additionally in PROX, we add a new format scoring prompt, focusing on the
format and structure of the document. Both prompts follow the additive style proposed by Yuan
et al. (2024). Given these prompts, the language models generate short critiques and assign a score
between 0 and 5.

In FineWeb-Edu, documents are retained only if the educational score (Edu Score) is greater than
2. However, this approach is too aggressive when attempting to preserve a larger portion of the
tokens. For instance, FineWeb-Edu retains only 1.3 trillion tokens out of the original 15 trillion in the
FineWeb corpus. To recall more documents, we relax the filtering criteria by incorporating the format
score as follows:

Filtering Criteria =


Edu Score ≥ 3, keep document;
Edu Score = 2 and Format Score ≥ 4, keep document;
Edu Score < 2, drop document.

(2)

Finally, we use LLAMA-3-70B-INSTRUCT to annotate 51K data, splitting 5K for validation. 3

The FineWeb-Edu prompt and our format scoring prompts are presented in Figure 9.

Chunk-level Programming We apply chunk-level programming for more fine-grained operations.
We find three very popular patterns that keep occurring in all corpus: (1) menu, navigation bars at the
top of the document; (2) button, html elements, links; (3) footers.

In general, LLMs work well given within 5 few-shot examples. But to generate these program
snippets more accurately, we apply few-shot prompting with LLAMA-3-70B-INSTRUCT for each
type of noise. We merge these programs aiming to clean different types of noises, perform some
grammar checking, and make them the final data for training and validation during the chunk-level
refining stage. The annotated source comes from the same seed document used in the previous
document filtering stage, accumulating to about 57K data, of which 5K is split as validation.

After the release of LLAMA-3.1-405B-INSTRUCT, We also try to use only one prompt aiming to
remove all the noises. However, we find such practices lead to aggressive removal of the original
document, often making the document less coherent. Finally, we decide to only keep the head
part and tail part of the program generated by LLAMA-3.1-405B-INSTRUCT, which is previously
mentioned in FinGPT (Luukkonen et al., 2023), and merge with the previous programs generated by
LLAMA-3-70B-INSTRUCT.

The few-shot prompts used to generate program snippets are presented in Figure 10, Figure 11 and
Figure 12.

3In the earlier stage of experiments, we found that a dataset of thousands of data points (i.e., 5K) is also
sufficient to equip the model with the “programming” abilities. This generally holds true for both document-level
and chunk-level programming tasks. Scaling the dataset size could enhance the model’s robustness across
various documents so we finally enlarge the pool to over 50K.
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Edu Scoring Prompts (Penedo et al., 2024a)

Below is an extract from a web page. Evaluate whether the page has a high educational value and could be useful in an educational setting for teaching from
primary school to grade school levels using the additive 5-point scoring system described below. Points are accumulated based on the satisfaction of each criterion:

- Add 1 point if the extract provides some basic information relevant to educational topics, even if it includes some irrelevant or non-academic
content like advertisements and promotional material. - Add another point if the extract addresses certain elements pertinent to education but does not align
closely with educational standards. It might mix educational content with non-educational material, offering a superficial overview of potentially useful topics,
or presenting information in a disorganized manner and incoherent writing style. - Award a third point if the extract is appropriate for educational use and
introduces key concepts relevant to school curricula. It is coherent though it may not be comprehensive or could include some extraneous information. It may
resemble an introductory section of a textbook or a basic tutorial that is suitable for learning but has notable limitations like treating concepts that are too
complex for grade school students.
- Grant a fourth point if the extract highly relevant and beneficial for educational purposes for a level not higher than grade school, exhibiting a clear and
consistent writing style. It could be similar to a chapter from a textbook or a tutorial, offering substantial educational content, including exercises and solutions,
with minimal irrelevant information, and the concepts aren’t too advanced for grade school students. The content is coherent, focused, and valuable for structured
learning.
- Bestow a fifth point if the extract is outstanding in its educational value, perfectly suited for teaching either at primary school or grade school. It follows
detailed reasoning, the writing style is easy to follow and offers profound and thorough insights into the subject matter, devoid of any non-educational or
complex content.
The extract:
<EXAMPLE>.
After examining the extract:
- Briefly justify your total score, up to 100 words.

- Conclude with the score using the format: “Educational score: <total points>”

Format Scoring Prompts

Evaluate the provided web content extraction sample. Points are accumulated based on the satisfaction of each criterion:

0. Start with 0 points.
1. Add 1 point if the extract contains some readable content, even if it includes a significant amount of HTML tags, navigation elements, or other web page
artifacts. The main content should be identifiable, albeit mixed with noise.
2. Add another point if the extract shows signs of basic cleaning. Most obvious HTML tags have been removed, though some may remain. The text structure
begins to emerge, but non-content elements (e.g., footer links, button text) may still be present. The writing style may be disjointed due to remnants of page
structure.
3. Award a third point if the extract is largely cleaned of HTML and most non-content elements. The main body of the content is intact and coherent. Some
extraneous information (e.g., isolated URLs, timestamps, image alt text) may persist, but doesn’t significantly impede readability. The extract resembles a rough
draft of the original content.
4. Grant a fourth point if the extract is highly refined, with clear paragraph structure and formatting. Almost all HTML tags and non-content elements have been
eliminated. Minimal noise remains. The content flows well and reads like a near-final draft, with consistent formatting and style.
5. Bestow a fifth point if the extraction is flawless. The content is entirely clean, preserving the original structure (paragraphs, headings, lists) without any
HTML tags or web page elements. No extraneous information is present. The extract reads as if it were a professionally edited document, perfectly capturing
the original content.
The extract:
<EXAMPLE>.
After examining the extract:
- Briefly justify your total score, up to 100 words.

- Conclude with the score using the format: "Extraction Quality Score: <total points>"

Figure 9: Edu scoring prompts used in FineWeb (Penedo et al., 2024a) and newly proposed “format
scoring” prompts for PROX.

Comparison with FineWeb-Edu’s Approach Compared with the recently released FineWeb-Edu,
which also uses model-based scoring by applying a BERT model to evaluate documents, we find
that our relaxed design retains more tokens without compromising overall data quality. Specifically,
FineWeb-Edu retains about 1.3 trillion tokens out of a 15 trillion token corpus (less than 9%), while
PROX curation typically keeps 23% to 28%, providing up to 3× more unique tokens for training.

Moreover, we conducted a preliminary study by training 0.7 billion parameter models on these
data. We found that models trained on our curated data achieved similar downstream performance,
as shown in Table 6. Therefore, we believe our current strategy is more suitable for large-scale
pre-training, as it is capable of retaining more tokens while maintaining very high data quality.

Table 6: Comparing FineWeb-Edu with our strategy on TLM-S.

Methods Kept Ratio ARC-C ARC-E CSQA HellaSwag MMLU OBQA PiQA SIQA WinoG SciQ AVG #Win
FineWeb-Edu 8.6% 30.3 58.7 29.0 42.0 30.4 31.8 67.7 38.1 50.4 73.3 45.2 5/10

FineWeb-PROX 28.0% 27.7 55.7 30.4 44.2 29.5 31.0 68.8 39.3 52.2 72.8 45.2 5/10
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Navigation Removal Prompts

You’re tasked with generating Python programs to clean web text strings by removing navigation bars. The web text will be presented with line numbers starting
from `[000]`. Your task is to use the following pre-defined functions to clean the text:

```python

def untouch_doc():
"""leave the clean doc untouched, for tagging clean and high quality doc."""

def remove_lines(start: int, end: int):
"""remove noisy lines from `start` until `end`, including `end`."""

```

Your goal is to identify navigation bars or menu items at the beginning of the text and remove them using the `remove_lines()` function. If the text
doesn’t contain a navigation bar or menu items, use the `untouch_doc()` function to indicate that no cleaning is necessary. If the line contains other text
other than navigation, also call `untouch_doc` to escape overkilling.
Here are some examples to guide you:
Example 1:

[doc]
[000] Home | Products | About Us | Contact
[001] Welcome to our website
[002] Here's our main content...
[/doc]
Program:
```python
remove_lines(start=0, end=0)
```

Example 2:

[doc]
341 US 479 Hoffman v. United States
341 US 479 Hoffman v. United States 341 U.S. 479
95 L.Ed. 1118
HOFFMANv.UNITED STATES.
Mr. William A. Gray, Philadelphia, Pa., for petitioner.
Mr. John F. Davis, Washington, D.C., for respondent.
......
[/doc]
Program:
```python
untouch_doc()
```

Example 3:

[doc]
[000]Police Search Tunbridge Wells House Over Human Remains Tip Off
[001]Posted: 16/04/2012 10:44 Updated: 16/04/2012 10:44 reddit stumble
[002]Crime, Body Buried In House, Buried Body, Buried Remains, Tip-Off, Uk News, Uk Police,
[003]Detectives are searching the gardens of a house following information that human remains may be
buried there.
[/doc]
Program:
```python
untouch_doc()
```

Example 4:

[doc]
[000]Home > Bollywood News > Bollywood Stars clash on Indian TV Bollywood Stars clash on Indian TV
[001]By Lekha Madhavan09:47 pm Betting big on the festive season, general entertainment channels (GECs)
are launching celebrity-driven shows, but media buyers are concerned about the audience split that is set
to happen.
[002]The fourth season of Bigg Boss on Colors is almost certain to clash with the fourth season of Kaun
Banega Crorepati (KBC) on Sony Entertainment Television (SET) in the second week of October.
[003]Another big property, Master Chef, to be hosted by Akshay Kumar, on STAR Plus, is also expected to go
on air in October. However, the channel is yet to disclose the launch date.
[004]Big-budget shows like these are often loss-making propositions for channels, as the operating cost is
very high and advertisement revenues do not suffice to cover the cost.
[005]Source: IBNS
[/doc]
Program:
```python
untouch_doc()
```

For each given web text, analyze the content and determine if there’s a navigation bar or menu items at the beginning. If present, use `remove_lines()` or
`normalize()` to remove them. If not, use `untouch_doc()` to indicate that no cleaning is needed.
Example: <EXAMPLE>.
After examining the web text: - Briefly describe if the web extract contains navigation bar at the begining (10 lines).
- You must not mistakenly decide that title of the page is navigation bar and remove it.
- When the whole line is navigation bar, call `remove_lines`; if the line contains other information, call `normalize` to remove part of it.

- Give your program using the same format: ```python[your code]```

Figure 10: Few-shot navigation bar removal prompts.
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URL Removal Prompts

You’re tasked with generating Python programs to clean web text strings by removing http lines. The web text will be presented with line numbers starting from
`[000]`. Your task is to use the following pre-defined functions to clean the text:

```python

def untouch_doc():
"""leave the clean doc untouched, for tagging clean and high quality doc."""

def remove_lines(start: int, end: int):
"""remove noisy lines from `start` until `end`, including `end`."""

def normalize(source_str: str, target_str: str=""):
"""turn noisy strings into normalized strings."""

```

Your goal is to identify http links from the text and remove them using the `remove_lines()` or `normalize()` function. If the text doesn’t contain
http lines, use the `untouch_doc()` function to indicate that no cleaning is necessary.
Here are some examples to guide you:
Example 1:

[doc]
[013] http://groups.google.com/group/toowoombalinuxLast
[014] Breaking News: Major Event Unfolds
[015] http://code.google.com/p/inxi/
[/doc]
Program:
```python
# the whole line-[013] is http, so remove the line-[013]
remove_lines(start=13, end=13)
# the whole line-[015] is http, so remove the line-[015]
remove_lines(start=15, end=15)
```

Example 2:

[doc]
[000] The Impact of Climate Change on Global Ecosystems
[001] By Dr. Jane Smith
[002] Climate change continues to be a pressing issue...
[/doc]
Program:
```python
untouch_doc()
```

Example 3:

[doc]
[021]Bow-wow
[022]http://groups.google.com/group/toowoombalinuxLast edited by Puppyt on Mon 06 Jun 2011, 00:23; edited
1 time in total
[023]I would like to see something like Jitsi
[024]http://www.jitsi.org/. Plus some others incorporated into a puppy distro.
[/doc]
Program:
```python
# the http link in line 22 and line 24 comes with other text, so use normalize to ONLY remove the link
without touching text.
normalize(source_str="http://groups.google.com/group/toowoombalinuxLast", target_str="")
normalize(source_str="http://www.jitsi.org/.", target_str="")
```

For each given web text, analyze the content and determine if there’s a navigation bar or menu items at the beginning. If present, use `remove_lines()` or
`normalize()` to remove them. If not, use `untouch_doc()` to indicate that no cleaning is needed.
Example: <EXAMPLE>.
After examining the web text: - do not remove text together with http.
- Briefly describe if the web extract contains http links; and make sure remove them will not influence the main content.
- Program only contain sequences of function callings and comments, no other codes.
- note line number starts with 0. make accurate annotations about line number. put the exact int line number of the given line. do not add 1 or minus 1.
- Give your program using the same format: ```python[your code]```

Figure 11: Few-shot URL removal prompts.
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Footer Removal Prompts

You’re tasked with generating Python programs to clean web text strings by removing footer sections, references. The web text will be presented with line
numbers starting from `[000]`. Your task is to use the following pre-defined functions to clean the text:

```python

def untouch_doc():
"""leave the clean doc untouched, for tagging clean and high quality doc."""

def remove_lines(start: int, end: int):
"""remove noisy lines from `start` until `end`, including `end`."""

def normalize(source_str: str, target_str: str=""):
"""turn noisy strings into normalized strings."""

```

Your goal is to identify footer sections from the text and remove them using the `remove_lines()` function. Footers and references typically appear at the
end of the text and may contain information such as copyright notices, contact details, or navigation links. If the text doesn’t contain a footer section or any
references, use the `untouch_doc()` function to indicate that no cleaning is necessary.
Here are some examples to guide you:
Example 1:

[doc]
[013] In conclusion, the study demonstrates significant findings.
[014] © 2023 Research Institute. All rights reserved.
[015] Contact: info@research-institute.com
[016] Follow us on social media: @ResearchInst
[/doc]
Program:
```python
# Remove the footer section starting from line 14
remove_lines(start=14, end=16)
```

Example 2:

[doc]
[000] The Impact of Climate Change on Global Ecosystems
[001] By Dr. Jane Smith
[002] Climate change continues to be a pressing issue...
[003] Further research is needed to fully understand its implications.
[/doc]
Program:
```python
untouch_doc()
```

Example 3:

[doc]
[020] Thank you for reading our newsletter.
[021] Stay informed with our latest updates!
[022] ---
[023] Unsubscribe | Privacy Policy | Terms of Service
[024] NewsletterCo, 123 Main St, Anytown, USA
[/doc]
Program:
```python
# Remove the footer section starting from the divider
remove_lines(start=22, end=24)
```

For each given web text, analyze the content and determine if there is a footer section or reference. If present, use `remove_lines()` to remove it. If not,
use `untouch_doc()` to indicate that no cleaning is needed.
Example: <EXAMPLE>.
After examining the web text:
- Briefly describe if the web extract contains a footer section or references; ensure that removing it will not influence the main content. If not, simply call
`untouch_doc`.
- The program should only contain sequences of function calls and comments, no other code.
- Note that line numbers start with 0. Make accurate annotations about line numbers. Put the exact int line number of the given line. Do not add 1 or subtract 1.

- Give your program using the same format: ```python[your code]```

Figure 12: Few-shot footer removal prompts.
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A.2 SUPERVISED FINE-TUNING DETAILS

Training Parameters We use llama-factory (Zheng et al., 2024) as our main code base for the
Adaptation Stage. We apply full parameter supervised fine-tuning on our base models: we train on
the whole seed dataset for 3 to 5 epochs, with batch size as 64, and cosine learning rate schedular (lr
from 1e-5→ 1e-6). Also, we find that the base model converges quite fast on these tasks, thus we do
not apply further tuning over hyper-parameters, and keep the same training configurations for all the
adaptation tasks.

A.3 EVALUATION METRICS FOR PROX REFINING TASKS

Document-level Refining Task The document filtering task is indeed equal to a binary classification
problem, where documents are classified as either to be kept (1) or dropped (0). We evaluate the
performance using the F1 score, calculated as follows:

F1 = 2 · Precision · Recall
Precision + Recall

(3)

where:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(4)

The F1 score ranges from 0 to 1 and we assume a higher F1 score indicates better classification
performance.

Chunk-level Refining Task This task actually contains two parts: line removal and string normal-
ization. However, we find it rather hard to evaluate the normalization task, so we use the line removal
accuracy to reflect the refining performance. We propose a line-wise F1 score metric:

The F1 score is computed by comparing the predicted noisy lines with the labeled noisy lines. First,
we extract the noisy line indexes from both the prediction and the label. Then, we calculate the
overlap between these two sets. The true positives (TP) are the number of lines in this overlap. False
positives (FP) are the predicted noisy lines that are not in the labeled set, and false negatives (FN) are
the labeled noisy lines that are not in the predicted set. The calculation is actually simple:

TP (True Positives) = |Predicted Noisy Lines ∩ Actual Noisy Lines| (5)

FP (False Positives) = |Predicted Noisy Lines \ Actual Noisy Lines| (6)

FN (False Negatives) = |Actual Noisy Lines \ Predicted Noisy Lines| (7)

Then we use same calculation of F1 score mentioned before, i.e., F1 = 2·TP
2·TP+FP+FN .
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A.4 PROX INFERENCE AT SCALE

Thanks to the Datatrove project (Penedo et al., 2024b), we are able to efficiently split, and load the
whole corpus to each worker (which normally equals the number of GPUs since small models do not
require tensor parallelism). We use the vllm (Kwon et al., 2023) to perform large-scale inference.

For chunk-wise programming, we will split the original document into several chunks, controlling
the tokens of each chunk less than the context window. In practice, we normally replace the token
count process with a word count process to save time and control the window size as 1, 500. The
general algorithm is implemented as below:

Algorithm 1 Document Chunk Splitting Algorithm

Require: Document D, context window size W
Ensure: Set of chunks C

1: C ← ∅, c← ∅
2: for each line l in D do
3: if TokenCount(c+ l) ≤W then
4: c← c+ l ▷ Add line to current chunk
5: else
6: if c ̸= ∅ then
7: C ← C ∪ {c} ▷ Save current chunk
8: end if
9: if TokenCount(l) ≤W then

10: c← l ▷ Start new chunk
11: else
12: C ← C ∪ {FlagAsSkipped(l)} ▷ Flag long line
13: c← ∅
14: end if
15: end if
16: end for
17: if c ̸= ∅ then
18: C ← C ∪ {c} ▷ Add the final chunk
19: end if
20: return C
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B PRE-TRAINING DETAILS

B.1 TRAINING INFRASTRUCTURE

Code Base Thanks to LitGPT (AI, 2023), and TinyLlama (Zhang et al., 2024b), we are able to
flexibly train all our base models. We inherit several fused kernels from the TinyLlaMA, which is
installed from the FlashAttention (Dao, 2024) including fused rotary positional embedding (RoPE) (Su
et al., 2024), layer normalization, and cross-entropy loss to help saving memory. We mainly apply
FSDP strategy (Zhao et al., 2023) to enable training larger scale models on multiple nodes.

B.2 PRE-TRAINING CORPORA

Due to computing constraints and for fair comparison purposes, we cannot exhaustively train over
the whole corpora. Thus, we apply random sampling for some of the pre-training corpora and make
them as our pre-training data pools.

• For RedPajama-V2, We randomly download 70 file shards, obtaining a total data pool
consisting about 500B tokens, we evenly separate it into 8 dumps, with each containing
about 62.5B tokens; due to computing constraints, we use only 1 dump for verifying effec-
tiveness (Section 3.2) and use 2 dumps for scaling the training to 50B tokens (Section 3.3);

• For C4, we download the whole dataset, which contains about 198B tokens;
• For FineWeb, we download the official 350B sample; 4

• For OpenWebMath, we download the whole dataset.

We report the corpora details applied in each experiment in Table 7.

Table 7: The detailed breakdown for pre-training corpora in all experiments.

Section Experiments Source Data Description Corpora Size (B) Train Tokens (B) Epoch

Section 3.2 Table 2, Figure 4 RedPajama-V2

raw data size 62.5

26.2

0.42
after rule-based filtering 31.5 0.83
after PROX-D 19.0 1.38
after PROX-D+C 16.0 1.64

Section 3.2 Table 3 C4
random -

26.2
-

after PROX-D 41.5 (GPT-NeoX) 0.63
other baselines - -

Section 3.3 Figure 5 RedPajama-V2

raw data size 62.5

26.2

0.42
after PROX-D+C (using PROX-xs) 14.5 1.80
after PROX-D+C (using PROX-s) 16.0 1.64
after PROX-D+C (using PROX-m) 18.0 1.46

Section 3.3 Figure 6

C4
raw data size 198.0

52.4

0.53
after PROX-D+C (using PROX-xs) 44.5 1.18

RedPajama-V2
raw data size 123.5 0.42
after PROX-D+C (using PROX-xs) 29 1.81

FineWeb
raw data size 79.0 0.66
after PROX-D+C (using PROX-xs) 18.0 2.91

Section 3.4 Table 5, 1.1B model OpenWebMath

raw data size 15.0

15.7

1.05
after rule-based filtering 6.5 2.40

after PROX-D 5.5 2.85
after PROX-D+C 4.7 3.49

Section 3.4 Table 5, 7B model OpenWebMath
raw data size 15.0

10.5
0.70

after PROX-D 5.5 1.91
after PROX-D+C 4.7 2.23

4https://huggingface.co/datasets/HuggingFaceFW/fineweb/tree/main/
sample/350BT
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B.3 MODEL CONFIGURATION AND TRAINING PARAMETERS

Table 8: The details of the pre-training experiments’ model architecture.

Model Hidden Size Intermediate Size Context Len Heads Layers Vocab Size # Params (w/o embed)
Training From Scratch

TLM-XS 1,280 2,048 2,048 16 24 32,000 354,284,800 (313,324,800)
TLM-S 1,536 4,864 2,048 24 24 32,000 758,982,144 (709,830,144)
TLM-M 2,048 8,192 2,048 32 24 32,000 1,741,785,088 (1,676,249,088)

PYTHIA-410M 1,024 4,096 1,024 16 24 50,304 405,334,016 (353,822,720)
PYTHIA-1B 2,048 8,192 1,024 8 16 50,304 1,011,781,632 (908,759,040)

Continual Pre-training

TINYLLAMA-1.1B 2,048 5,632 2,048 32 22 32,000 1,100,048,384 (1,034,512,384)
LLAMA-2-7B 4,096 11,008 4,096 32 32 32,000 6,738,415,616 (6,607,343,616)
CODELLAMA-7B 4,096 11,008 4,096 32 32 32,016 6,738,546,688 (6,607,409,152)
MISTRAL-7B 4,096 14,336 4,096 32/8 (GQA) 32 32,000 7,241,732,096 (7,110,660,096)

Table 9: Training hyper-parameters of all base models.

Model Context
Length Batch Size Max Steps Warmup

Steps
Weight
Decay Optimizer LR

Scheular LR

Training from Scratch

TLM-XS 1,024 2,048 12,500 500 0.1 AdamW cosine 5e-4→ 5e-5
TLM-S 1,024 2,048 12,500 500 0.1 AdamW cosine 5e-4→ 5e-6
TLM-M 1,024 2,048 12,500/2,5000 500 0.1 AdamW cosine 3e-4→ 3e-5

PYTHIA-410M 512 1,024 50,200 2,000 0.1 AdamW WSD 1e-3→ 6.25e-5
PYTHIA-1B 512 1,024 50,200 2,000 0.1 AdamW WSD 1e-3→ 6.25e-5

Continual Pre-training

TINYLLAMA-1.1B 2,048 1,024 7,500 0 0.1 AdamW cosine 8e-5→ 8e-6
LLAMA-2-7B 4096 256 15,000 (early stop at 10,000) 0 0.1 AdamW cosine 8e-5→ 8e-6
CODELLAMA-7B 4096 1024 3,750 (early stop at 2,500) 0 0.1 AdamW cosine 3e-4→ 3e-5
MISTRAL-7B 4,096 256 15,000 (early stop at 10,000) 0 0.1 AdamW cosine 2e-5→ 2e-6

Base Model Selection Our pre-training experiments are conducted using various sizes of decoder-
only language models.

1. To verify different stages’ effectiveness of PROX, we employ a 750M sized model sharing LLAMA-
2 architecture (Touvron et al., 2023b), denoted as TLM-S, used for both pre-training from scratch
and refining. We also compare PROX with data selection methods using PYTHIA-410M/1B’s
architecture (Biderman et al., 2023), as those employed in MATES (Yu et al., 2024).

2. For further evaluation of PROX using different refining and base model sizes, we scale the model
sizes from 350M (0.5× smaller, denoted as TLM-XS) and 1.7B (2× larger, denoted as TLM-M),
all based on the LLAMA-2 architecture.

3. For domain-specific continual pre-training, we select TINYLLAMA-1.1B (Zhang et al., 2024b),
LLAMA-2 (Touvron et al., 2023b), CODELLAMA (Rozière et al., 2023) and MISTRAL-7B (Jiang
et al., 2023) as representative base models for their adequate training and solid performance.

Model Architecture The models we used in general and continual pre-training are presented at
Table 8 with detailed architecture configuration.

Training Hyperparameter Choice We primarily use a cosine learning rate scheduler and follow
established settings used in Zhang et al. (2024b) and Lin et al. (2024). The default configurations for
each experiment can be found below and we elaborate on full details in Table 9.

1. For general pre-training experiments, we set the learning rate to 5e-4 for TLM-XS and TLM-S,
3e-4 for TLM-M; the maximum sequence lengths are uniformly set to 2048, and the global batch
size is set to 2M tokens.

2. Additionally, we align all our hyper-parameters with those used in MATES (Yu et al., 2024) to
facilitate a direct comparison with their existing data selection methods, as previously shown in
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Table 3. In this case, we switch to the warmup-stable-decay (WSD) learning rate scheduler (Hu
et al., 2024), as implemented in MATES. For a fair comparison with baselines implemented in
MATES, we apply the exact same WSD Schedular (Hu et al., 2024):

lr(t) =


t
W · η, if t < W

η, if W ≤ t < S

0.54·(t−S)/D · η, if S ≤ t < S +D

(8)

where W equals to 2000, S equals to 50000, D equals to 200.
3. For continual pre-training experiments, we set different hyperparameters for different base models,

as shown in Table 9. We apply an early-stop mechanism mentioned in INTERNLM2-MATH (Ying
et al., 2024) for 7B model experiments. We mainly refer to these settings to the setup reported
in Rho-1 (Lin et al., 2024) and LLEMMA (Azerbayev et al., 2024). We do not use warmup in
continual pre-training experiments.
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C PROX BASELINE SELECTION

To ensure a fair comparison w.r.t. training cost, we keep most of the training hyperparameters, such
as training steps and batch size, consistent across baselines, with only the data refining and selection
pipelines differing. We compare PROX to a series of baselines:

1. In § 3.2, to verify PROX’s effectiveness, we first compare with PROX with regular pre-training over
the raw RedPajama-V2 data. We also introduce heuristic baselines used to curate the FineWeb
corpora, which is the combination of three filtering strategies from C4 (Raffel et al., 2020),
Gopher (Rae et al., 2021), and newly crafted rules (as FineWeb rules). Apart from rule-based base-
lines, we also introduce existing data selection techniques proposed in previous works, including
(1) importance resampling: DSIR (Xie et al., 2023); (2) model-based selection: DsDM (Engstrom
et al., 2024), MATES (Yu et al., 2024), and QuRating (Wettig et al., 2024).

2. In § 3.3, to test PROX on different model sizes and training corpora, we finally scale the TLM-M’s
training tokens to 50B over RedPajama-V2, C4, and FineWeb. To show PROX efficiency, we
then directly compare with models covering a variety of pre-training approaches including (1)
large-scale pre-training: TINYLLAMA-1.1B (Zhang et al., 2024b) trained on 3T tokens; (2) model
pruning from existing models: (SHEADLLAMA (Xia et al., 2024) pruned from LLAMA-2 and
trained on extra 50B tokens); (3) LLM synthesis (INSTRUCTIONLM-1.3B (Cheng et al., 2024)
trained on MISTRAL-7B generated data and COSMO-1.8B (Ben Allal et al., 2024) trained on
MIXTRAL-8x7B generated data).

3. In § 3.4’s specific domain continual pre-training, apart from standard continual pre-training
on TINYLLAMA-1.1B, LLAMA-2-7B, CODELLAMA-7B, and MISTRAL-7B, we additionally
introduce with well-known and strong baselines trained on public (or partially public) data,
including RHO-1 (Lin et al., 2024), INTERNLM2-MATH (Ying et al., 2024), LLEMMA (Azerbayev
et al., 2024), and an internal checkpoint reported in DEEPSEEK-MATH (Shao et al., 2024).
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D DOWNSTREAM TASKS EVALUATION

D.1 GENERAL PRE-TRAINING EVALUATION

Lighteval Configurations We mainly borrow the evaluation benchmarks from FineWeb’s nine
selected “early signal” tasks (Penedo et al., 2024a), and use the implementation of lighteval (Fourrier
et al., 2023) to test all our base models. We also introduce SciQ (Welbl et al., 2017) which is widely
used in previous works and proved a good testbed (Mehta et al., 2024; Wettig et al., 2024). By default,
we report the normalized zero-shot accuracy. All nine benchmarks are listed at below:

• ARC (Clark et al., 2018): including ARC-Easy (ARC-E) and ARC-Challenge (ARC-C)

• CommonSense QA (Talmor et al., 2019) (CSQA)

• HellaSwag (Zellers et al., 2019)

• MMLU (Hendrycks et al., 2021)

• OpenBook QA (Mihaylov et al., 2018) (OBQA)

• PIQA (Bisk et al., 2020)

• SocialIQA (Sap et al., 2019) (SIQA)

• WinoGrande (Sakaguchi et al., 2021) (WinoG)

• SciQ (Welbl et al., 2017)

We use the same configuration used in FineWeb’s, which randomly picks 1, 000 samples for each
dataset (for MMLU, it selects 1, 000 samples for each of the 57 subsets), and reports the normalized
accuracy. This average performance is calculated over the nine benchmarks, where ARC-C and
ARC-E are considered as two separate benchmarks, and MMLU is treated as a single benchmark.
This approach differs slightly from the aggregation score calculation in FineWeb, as we believe
MMLU’s performance is relatively unstable, and we aim to give equal weight to all benchmarks,
preventing MMLU from becoming a dominant factor. For the original lighteval scores, please refer
to the §E.1, where we include a dynamic result curve that clearly illustrates the fluctuations in each
benchmark.

We choose to present zero-shot evaluation mainly following settings used in all FineWeb’s abla-
tion experiments (Penedo et al., 2024a). We find the FineWeb evaluation maintains a very stable
performance curve when training tokens gradually accumulate. Also, it is very time-efficient for
fast evaluation regarding our extensive pre-training experiments(20+ final runs, with hundreds of
intermediate checkpoints). We also present few-shot evaluation results in Table 10. Also, we find
that not all benchmarks show better performance given few-shot prompts. For example, we do not
observe a very clear performance boost on HellaSwag, MMLU, PIQA, and WinoGrande. Similar
observation can also be noticed in recent works (Mehta et al., 2024; Muennighoff et al., 2023), where
0-shot Hellaswag and 0-shot WinoGrande show very close performances with 5-shot ones.

Based on these findings and considerations, we present zero-shot evaluation results in Table 2,
Figure 4 and use it as our default evaluation metrics.

LM-Eval Harness Configurations We also include the lm-evel-harness (Biderman et al., 2024)
for zero-shot and few-shot performance, for fair comparison with different data selection methods
including DSIR (Xie et al., 2023), DsDm (Engstrom et al., 2024), Qurating (Wettig et al., 2024)
MATES (Yu et al., 2024). Similar to lighteval configuration, we include:

• ARC: including ARC-E and ARC-C

• HellaSwag

• LogiQA (Liu et al., 2020)

• OpenBook QA (OBQA)

• PIQA
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• WinoGrande (WinoG)
• SciQ

We exclude the BoolQ (Clark et al., 2019) tasks from MATES (Yu et al., 2024), leaving eight tasks in
total. This decision was made because we observed that the BoolQ benchmark performance exhibited
severe fluctuations and showed a notable declining trend in the early stages. Therefore, we decided
to exclude it from our evaluation set. Such a similar trend is also observed earlier in the OpenELM
work (Mehta et al., 2024). We report both zero-shot and two-shot performance. If the metrics include
normalized accuracy, we use that measure; otherwise, we use accuracy.

D.2 CONTINUAL PRE-TRAINING EVALUATION

We evaluate all benchmarks implemented in the math-eval-harness repository,5 including:

• Math (MATH) (Hendrycks et al., 2021)
• GSM8K (Cobbe et al., 2021)
• SVAMP (Patel et al., 2021)
• ASDiv (Miao et al., 2020)
• MAWPS (Koncel-Kedziorski et al., 2016)
• MathQA (MQA) (Amini et al., 2019)
• TableMWP (TAB) (Lu et al., 2023)
• SAT MATH (Azerbayev et al., 2024)

We use few-shot CoT prompting (Wei et al., 2022) when evaluating these tasks, and report the
accuracy of each task.

E FULL EVALUATION RESULTS

E.1 DETAILED PERFORMANCE ON 10 BENCHMARKS IN SEC 3.2

We report full evaluation results of checkpoints saved at different training steps in Section 3.2. We
present the results for 0.7B models trained on data curated by different methods in Table 11, including
models trained on raw data, rule-based filtered data, fasttext-filtered data, and data curated by PROX.

Table 10: Few-shot performance on 10 selected tasks. All models use the same TLM-S architecture
and are trained on RedPajama-V2. The doc-level (PROX-D) and chunk-level (PROX-C) refining are
done by fine-tuning the raw data pre-trained model as a refining model same as Table 2.

Method ARC-C ARC-E CSQA HellaS MMLU OBQA PIQA SIQA WinoG SciQ AVG
Raw 25.5 50.3 33.2 39.9 27.8 29.2 67.8 38.7 52.4 71.5 43.6
Rule-based 26.2 50.9 34.1 41.8 27.8 29.2 66.8 40.5 52 72.8 44.2
PROX-D 29.1 55.7 35.6 41.8 29.4 29.2 66.8 38.3 51.3 77 45.4
PROX-D+C 27.2 59.9 38.3 42.8 29.7 31.4 67.1 40.3 50.2 75.8 46.3

5https://github.com/ZubinGou/math-evaluation-harness
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Table 11: Full evaluation results on TLM-S.

Train
Steps ARC-C ARC-E CSQA HellaSwag MMLU OBQA PiQA SIQA WinoG SciQ AVG

Raw Data

2500 22.1 39.0 27.6 31.6 25.9 26.6 61.2 37.3 48.9 59.1 37.9
5000 24.4 41.2 28.8 34.8 26.7 27.0 64.9 39.3 50.4 61.9 39.9
7500 26.5 43.9 29.5 37.2 27.2 29.0 64.8 38.7 50.8 68.2 41.6
10000 25.8 43.5 29.1 38.8 27.4 29.8 66.9 39.0 51.2 66.2 41.8
12500 26.1 44.3 29.7 39.1 27.3 29.2 66.9 39.0 52.0 67.4 42.1

Gopher

2500 22.3 39.4 26.6 31.3 25.6 27.0 61.1 38.9 51.3 58.6 38.2
5000 25.1 41.4 29.8 34.3 26.4 27.2 64.5 39.6 52.1 62.9 40.3
7500 26.5 43.0 30.5 38.5 27.2 28.8 65.7 38.2 53.7 66.4 41.8
10000 26.2 44.2 31.8 39.2 27.5 29.4 66.6 38.9 51.3 68.2 42.3
12500 25.7 44.0 31.3 40.2 27.3 29.0 66.3 39.0 51.2 68.9 42.3

C4

2500 22.6 40.6 28.8 31.3 26.2 27.4 61.7 39.3 51.2 57.1 38.6
5000 22.9 41.6 29.3 36.0 26.8 27.6 64.7 40.2 50.9 63.6 40.4
7500 24.2 44.2 29.5 39.2 27.2 28.4 66.2 40.9 51.6 63.8 41.5
10000 24.6 44.8 30.4 39.5 27.0 29.4 68.7 40.9 51.7 63.9 42.1
12500 25.0 46.0 31.0 40.5 27.1 29.2 68.5 40.5 51.7 66.6 42.6

FineWeb

2500 23.2 39.4 27.2 31.8 25.6 26.2 62.6 39.0 51.4 57.1 38.3
5000 24.2 42.3 29.8 36.2 27.0 28.4 64.3 38.9 51.4 61.4 40.4
7500 24.4 44.1 30.4 37.8 27.2 28.2 66.1 39.5 50.8 66.2 41.5
10000 23.6 46.6 32.0 39.6 27.0 27.8 66.3 39.2 53.1 70.5 42.6
12500 25.2 46.8 32.6 39.6 27.2 29.0 66.5 39.4 52.4 69.2 42.8

Gopher + C4 + FineWeb

2500 23.6 39.3 27.6 32.1 25.8 26.0 61.7 39.8 50.9 55.4 38.2
5000 23.9 40.9 29.0 36.2 26.9 26.8 65.3 39.3 52.7 62.4 40.3
7500 25.6 42.2 30.7 39.7 27.0 28.4 66.0 40.2 51.8 60.9 41.2
10000 25.8 43.3 30.8 41.4 27.5 29.8 66.9 39.5 51.8 63.1 42.0
12500 25.0 43.9 30.0 41.9 27.5 31.0 67.0 39.9 51.9 65.3 42.3

PROX-D

2500 25.6 43.2 27.7 32.9 27.2 27.0 61.3 39.4 50.6 63.0 39.8
5000 25.4 46.2 28.4 35.7 28.1 28.8 64.7 39.3 53.3 64.2 41.4
7500 26.9 49.2 29.1 39.2 28.6 30.8 65.4 38.8 51.2 71.7 43.1
10000 26.7 48.2 30.5 39.9 28.6 28.6 66.2 39.7 51.9 71.2 43.2
12500 26.6 49.7 30.1 40.5 29.4 30.4 66.3 39.0 51.2 71.6 43.5

PROX-D+C

2500 24.9 43.4 27.3 32.1 26.9 28.2 60.9 38.8 51.2 60.8 39.5
5000 24.9 49.6 28.8 36.8 27.9 30.6 64.7 38.8 51.1 66.9 42.0
7500 25.5 51.2 30.8 38.8 28.4 31.2 67.3 40.2 50.3 71.7 43.5
10000 26.2 51.7 30.8 39.9 29.0 32.6 68.6 39.7 51.7 73.7 44.4
12500 26.4 51.9 30.9 42.4 29.4 31.6 67.9 40.0 52.2 73.5 44.6
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E.2 DETAILED PERFORMANCE ON 8 BENCHMARKS USED IN DATA SELECTION EXPERIMENTS

The full benchmark performance used in data-selection method comparison experiments is presented
in Table 12.

Table 12: Detailed evaluation results for different data selection methods.

Method ARC-C ARC-E HellaSwag LogiQA OBQA PIQA WinoGrande SciQ AVG

PYTHIA-410M 0-shot

Random 25.6 40.2 39.7 24.7 29.4 67.1 50.6 64.1 42.7
DSIR 23.8 39.9 39.6 27.0 28.4 66.8 51.5 63.1 42.5
DsDm 24.7 41.7 40.3 27.5 29 68.1 50.1 65.4 43.4

QuRating 25.4 42.0 40.7 25.3 30.2 67.5 52.1 64.8 43.5
MATES 25.0 41.8 41.0 25.7 30.8 68.7 52.7 66.0 44.0
PROX 27.2 48.9 43.1 26.9 31.8 68.4 54.1 69.5 46.2

PYTHIA-410M 2-shot

Random 25.3 42.6 39.9 24.1 28.6 66.9 52.2 70.6 43.8
DSIR 23.6 42.0 39.8 26.1 28.6 66.1 51.6 71.4 43.7
DsDm 23.6 44.2 40.1 23.5 29.2 66.5 51.5 74 44.1

QuRating 23.6 43.9 40.4 26.1 30.2 67.4 51.4 74.1 44.6
MATES 25.3 43.8 40.6 24.9 30.6 67.1 53.4 74.1 45.0
PROX 27.0 52.7 42.6 23.7 32.8 68.2 53.9 78.9 47.5

PYTHIA-1B 0-shot

Random 25.6 43.7 43.8 27.5 31.8 68.9 50.7 65.8 44.7
MATES 25.9 44.9 45.3 28.7 32.2 69.5 52.4 67.3 45.8
PROX 26.2 49.1 46.6 24.8 32.2 70.3 54.2 70.9 46.8

PYTHIA-1B 2-shot

Random 25.5 45.1 42.9 24.6 30.0 68.3 52.1 74.6 45.4
MATES 26.8 46.1 44.8 25.2 30.6 68.7 51.6 75.7 46.2
PROX 27.3 54.5 46.2 26.6 32.2 69.0 53.9 77.4 48.4
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Figure 13: Visualization of dynamic performance on ten benchmarks. Rule: the best performing
FineWeb rule in Table 2.
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E.3 DETAILED PERFORMANCE IN SEC 3.3

In § 3.3, we test PROX’s effectiveness using different sizes of refining models, and also train a series
of models by using these curated data. We report these detailed results in Table 13, Table 14 and
Table 15.

Table 13: Full evaluation results of TLM-XS trained on different PROX model curated data.

Train
Steps ARC-C ARC-E CSQA HellaSwag MMLU OBQA PiQA SIQA WinoG SciQ AVG

TLM-XS trained on Raw data

2500 22.5 38.5 27.0 29.1 25.8 25.0 60.2 38.8 50.4 58.6 37.6
5000 23.6 39.2 28.7 33.1 26.1 26.6 62.2 39.5 49.9 66.2 39.5
7500 23.8 42.7 28.0 33.4 26.0 26.2 64.0 39.3 51.5 67.0 40.2
10000 23.8 41.2 27.8 35.0 26.6 28.0 65.3 40.9 50.1 65.9 40.5
12500 22.6 41.9 29.7 32.8 26.2 26.4 62.2 39.3 51.3 63.3 39.6

TLM-XS trained on PROX-xs data

2500 24.8 43.5 26.5 30.3 26.8 26.6 59.3 38.6 50.8 60.7 38.8
5000 23.7 44.3 28.1 33.8 27.3 28.8 61.3 38.9 50.9 70.2 40.7
7500 24.1 46.0 29.2 35.0 27.7 30.6 63.4 38.7 52.0 70.4 41.7
10000 25.3 46.1 28.3 35.7 28.1 29.2 64.4 38.5 51.2 70.6 41.7
12500 25.9 47.5 29.2 36.7 28.1 30.2 64.6 38.0 51.7 71.4 42.3

TLM-XS trained on PROX-s data

2500 23.5 41.9 24.9 30.4 26.6 27.6 62.0 37.8 49.3 61.4 38.5
5000 24.7 44.5 27.0 33.8 27.5 28.0 62.4 38.0 50.6 67.0 40.3
7500 25.3 45.3 27.3 34.0 27.9 29.2 63.4 37.7 52.9 68.7 41.2
10000 25.6 45.7 27.6 35.6 28.6 30.2 63.6 37.4 52.0 71.1 41.7
12500 26.4 46.7 27.5 37.2 28.1 29.8 62.8 37.8 52.2 70.1 41.9

TLM-XS trained on PROX-m curated data

2500 22.9 41.3 26.5 31.1 26.9 27.0 62.2 37.6 50.6 62.4 38.9
5000 25.8 44.0 27.3 34.0 27.1 29.6 63.1 38.5 51.8 64.9 40.6
7500 26.0 45.3 28.5 36.6 27.7 29.8 63.6 39.4 51.3 68.5 41.7
10000 26.0 46.6 28.8 37.3 27.6 30.6 63.3 38.7 51.6 70.3 42.1
12500 26.5 46.4 29.1 37.6 28.1 29.4 64.1 38.7 51.5 68.0 41.9

Table 14: Full evaluation results of TLM-S trained on different PROX model curated data.

Train
Steps ARC-C ARC-E CSQA HellaSwag MMLU OBQA PiQA SIQA WinoG SciQ AVG

TLM-S trained on Raw data

2500 22.1 39.0 27.6 31.6 25.9 26.6 61.2 37.3 48.9 59.1 37.9
5000 24.4 41.2 28.8 34.8 26.7 27.0 64.9 39.3 50.4 61.9 39.9
7500 26.5 43.9 29.5 37.2 27.2 29.0 64.8 38.7 50.8 68.2 41.6
10000 25.8 43.5 29.1 38.8 27.4 29.8 66.9 39.0 51.2 66.2 41.8
12500 26.1 44.3 29.7 39.1 27.3 29.2 66.9 39.0 52.0 67.4 42.1

TLM-S trained on PROX-xs curated data

2500 23.8 44.1 26.5 33.5 26.9 29.4 60.7 38.9 50.6 62.1 39.6
5000 26.8 48.1 28.4 36.7 28.0 30.6 64.0 38.6 50.3 65.6 41.7
7500 26.9 49.0 30.6 39.5 28.2 29.6 65.3 39.6 52.2 69.6 43.0
10000 26.7 51.3 29.4 40.1 28.3 31.8 64.1 39.3 51.4 69.9 43.2
12500 26.8 52.1 30.2 41.8 28.5 31.6 65.5 39.5 51.9 70.8 43.9

TLM-S trained on PROX-s curated data

2500 24.9 43.4 27.3 32.1 26.9 28.2 60.9 38.8 51.2 60.8 39.5
5000 24.9 49.6 28.8 36.8 27.9 30.6 64.7 38.8 51.1 66.9 42.0
7500 25.5 51.2 30.8 38.8 28.4 31.2 67.3 40.2 50.3 71.7 43.5
10000 26.2 51.7 30.8 39.9 29.0 32.6 68.6 39.7 51.7 73.7 44.4
12500 26.4 51.9 30.9 42.4 29.4 31.6 67.9 40.0 52.2 73.5 44.6

TLM-S trained on PROX-m curated data

2500 25.3 45.3 27.5 32.2 26.7 27.0 62.4 38.7 50.6 60.8 39.6
5000 26.1 45.4 28.6 37.2 27.4 27.8 65.7 38.9 50.9 65.6 41.4
7500 27.1 47.5 30.6 41.0 28.6 29.2 66.8 39.3 51.1 69.9 43.1
10000 26.7 50.5 30.7 41.5 28.4 30.2 67.0 40.1 49.9 70.9 43.6
12500 27.4 50.7 30.6 42.0 28.8 30.2 67.4 39.4 48.8 70.1 43.5

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Table 15: Full evaluation results of TLM-M trained on different PROX model curated data.

Train
Steps ARC-C ARC-E CSQA HellaSwag MMLU OBQA PiQA SIQA WinoG SciQ AVG

TLM-S trained on Raw data

2500 23.5 41.5 27.5 32.9 26.4 25.2 62.1 39.4 51.5 65.1 39.5
5000 24.0 42.1 29.6 37.6 27.6 27.2 65.0 39.7 53.2 68.5 41.4
7500 24.3 44.9 28.9 39.3 27.8 27.6 66.4 40.4 51.3 69.2 42.0
10000 24.8 46.1 29.6 41.4 27.9 28.4 67.5 39.8 51.9 70.9 42.8
12500 26.3 46.8 29.0 43.2 28.3 27.8 68.2 40.5 50.7 72.5 43.3

TLM-M trained on PROX-xs curated data

2500 24.9 49.6 26.5 34.0 27.3 30.4 61.8 37.9 51.3 65.1 40.9
5000 26.7 47.6 28.6 39.7 28.5 31.8 65.4 39.5 50.2 70.7 42.9
7500 27.5 52.1 30.4 41.8 29.6 31.8 67.6 39.6 51.7 75.2 44.7
10000 28.4 54.7 29.8 45.2 30.8 31.8 67.9 39.7 52.0 77.7 45.8
12500 28.8 54.2 29.7 46.5 30.9 31.8 68.2 39.9 51.3 78.3 46.0

TLM-M trained on PROX-s curated data

2500 25.3 45.7 27.8 34.2 27.8 29.0 64.4 37.5 49.3 66.3 40.7
5000 26.1 49.0 28.8 40.2 29.2 30.8 65.6 39.0 50.5 71.2 43.0
7500 27.7 53.6 31.1 44.1 29.6 34.8 67.6 39.4 52.5 72.2 45.3
10000 27.2 54.0 31.5 45.1 30.3 33.8 67.7 39.7 52.9 74.2 45.6
12500 28.6 56.1 31.8 45.5 30.5 34.4 68.5 39.4 51.3 76.1 46.2

TLM-M trained on PROX-m curated data

2500 24.7 44.1 25.9 34.8 27.4 27.8 62.9 38.9 49.2 67.0 40.3
5000 27.7 48.0 26.8 40.5 28.5 30.6 67.4 39.4 50.3 69.1 42.8
7500 26.7 51.9 26.7 42.9 29.3 31.4 69.1 40.3 50.4 73.3 44.2
10000 28.4 52.4 27.9 45.0 29.7 32.0 70.2 40.0 51.9 75.4 45.3
12500 28.3 53.7 28.4 45.9 30.1 33.8 70.6 41.1 52.3 72.5 45.7

We also further scale PROX to other two pre-training corpora, C4 and FineWeb. We also scale our
training to about 50B tokens, and directly compare with existing well-trained models developed by
different research groups. We report our detailed results in Table 16, Table 17 and Table 18. We also
present other models’ results in Table 19.

Table 16: Full evaluation results on scaling pre-training to about 50B tokens on RedPajama-V2.

Train
Steps ARC-C ARC-E CSQA HellaSwag MMLU OBQA PiQA SIQA WinoG SciQ AVG

TLM-M trained on RedPajama-V2 raw data.

2500 24.0 42.9 26.6 33.7 25.9 26.0 62.4 39.4 52.3 64.0 39.7
5000 24.3 45.9 26.4 37.4 27.0 27.6 64.1 39.7 49.5 66.2 40.8
7500 25.1 45.3 28.8 40.3 27.1 29.2 66.3 39.1 51.7 66.9 42.0

10000 25.8 49.3 31.5 42.5 28.0 28.8 66.7 39.6 51.5 74.0 43.8
12500 25.3 50.1 30.2 43.0 28.2 30.0 66.6 39.2 51.1 74.2 43.8
15000 26.2 50.3 31.2 44.3 28.8 28.4 68.2 39.8 51.7 76.2 44.5
17500 25.8 51.1 30.8 44.7 29.0 29.6 67.7 39.2 52.6 75.2 44.6
20000 26.7 52.5 31.7 47.2 28.6 30.4 69.0 39.6 53.0 78.2 45.7
22500 27.4 51.7 32.1 47.2 29.3 30.4 69.5 39.5 51.9 78.5 45.7
25000 26.9 51.4 32.4 47.3 29.3 32.2 69.7 39.6 52.1 79.1 46.0

TLM-M trained on PROX refined RedPajama-V2 data.

2500 24.8 46.8 27.2 33.8 27.3 28.2 61.3 38.6 50.3 65.1 40.3
5000 26.9 49.3 28.5 40.1 28.0 30.6 66.2 39.7 50.2 70.1 43.0
7500 28.5 53.1 29.2 41.7 29.4 33.2 66.9 39.3 53.0 73.0 44.7

10000 28.2 53.5 30.1 43.6 29.8 31.6 68.4 39.6 52.0 75.3 45.2
12500 29.5 55.3 30.2 46.4 30.5 32.2 68.6 40.2 52.6 76.9 46.2
15000 30.0 57.1 30.2 47.6 30.9 33.0 69.5 39.8 52.2 77.8 46.8
17500 31.5 59.6 29.4 49.5 31.6 33.6 69.4 39.8 53.0 78.9 47.6
20000 31.2 61.2 29.4 50.4 31.4 35.2 70.6 40.1 53.7 79.6 48.3
22500 32.0 61.7 30.2 51.4 31.4 34.0 70.0 39.9 53.2 79.5 48.3
25000 31.1 60.7 29.8 51.0 31.7 33.2 70.9 39.2 53.3 79.1 48.0
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Table 17: Full evaluation results on scaling pre-training to about 50B tokens on C4.

Train
Steps ARC-C ARC-E CSQA HellaSwag MMLU OBQA PiQA SIQA WinoG SciQ AVG

TLM-M trained on C4 raw data.

2500 22.4 39.7 26.8 36.5 26.5 27.6 64.8 40.2 50.1 60.0 39.5
5000 23.9 42.9 27.5 42.3 27.1 29.6 68.2 39.6 50.3 66.6 41.8
7500 25.1 44.8 28.2 45.4 27.1 29.2 70.7 40.7 51.6 66.3 42.9

10000 25.5 46.0 32.3 48.2 27.9 31.6 71.1 39.7 52.3 67.6 44.2
12500 25.8 48.8 30.3 49.7 27.9 31.6 71.2 40.9 52.0 69.4 44.8
15000 26.9 48.0 28.2 50.5 28.5 31.4 71.9 41.1 51.4 69.7 44.8
17500 26.6 48.8 30.3 52.1 28.6 31.2 73.2 41.6 52.0 70.0 45.4
20000 26.3 50.1 29.7 52.5 28.5 32.6 72.3 41.7 52.3 71.0 45.7
22500 25.8 50.7 31.0 52.9 28.8 33.8 73.0 41.6 53.0 71.5 46.2
25000 25.3 48.8 30.1 52.4 28.8 32.2 72.0 40.6 53.6 71.7 45.5

TLM-M trained on PROX refined C4 data.

2500 24.1 45.9 26.0 37.3 27.2 29.0 66.3 39.8 50.8 65.9 41.2
5000 27.3 50.0 26.6 42.4 28.6 33.8 68.1 40.5 53.0 71.9 44.2
7500 28.3 53.7 27.7 47.7 29.3 35.4 71.1 39.3 54.0 73.1 46.0

10000 30.0 54.3 28.1 50.9 30.0 33.6 71.2 40.6 52.0 74.2 46.5
12500 29.3 56.7 27.5 52.3 30.9 33.8 72.8 39.9 52.5 77.5 47.3
15000 29.6 55.9 28.3 53.9 30.6 35.0 72.9 41.0 53.8 75.8 47.7
17500 30.6 55.5 28.7 53.3 31.2 34.2 73.6 40.4 53.4 76.7 47.8
20000 30.0 57.6 28.3 54.9 31.1 37.2 74.6 40.7 53.6 79.4 48.7
22500 30.1 56.7 28.6 55.2 31.4 37.2 73.8 41.6 53.3 77.7 48.6
25000 31.1 56.0 28.4 55.2 31.1 36.2 74.0 41.0 54.1 76.8 48.4

Table 18: Full evaluation results on scaling pre-training to about 50B tokens on FineWeb.

Train
Steps ARC-C ARC-E CSQA HellaSwag MMLU OBQA PiQA SIQA WinoG SciQ AVG

TLM-M trained on FineWeb raw data.

2500 22.9 41.2 28.9 34.3 26.1 27.6 64.8 39.3 52.1 62.8 40.0
5000 25.5 44.5 30.4 39.8 26.9 32.0 68.4 39.2 52.1 67.2 42.6
7500 26.8 45.6 31.4 44.1 27.6 30.2 70.9 38.8 52.2 70.3 43.8

10000 27.2 46.2 31.3 47.2 28.3 31.6 72.1 38.8 53.4 69.0 44.5
12500 26.4 49.2 32.1 48.7 28.7 31.6 71.5 40.1 52.6 74.7 45.6
15000 27.1 49.6 32.8 49.5 28.9 31.0 72.7 39.0 52.3 77.1 46.0
17500 26.4 50.9 33.8 51.3 29.3 31.0 71.9 39.3 53.0 78.0 46.5
20000 27.1 53.1 33.2 51.2 29.6 32.2 73.4 39.7 52.3 76.3 46.8
22500 27.1 51.2 34.9 51.7 29.5 33.4 73.7 40.1 52.4 78.0 47.2
25000 28.5 52.6 33.9 53.2 29.8 32.6 72.9 40.2 53.0 77.1 47.4

TLM-M trained on PROX refined FineWeb data.

2500 25.8 46.8 27.4 36.1 27.7 28.8 63.9 39.3 51.9 69.1 41.7
5000 28.5 52.1 28.8 43.5 29.3 32.6 66.4 38.7 51.2 71.3 44.2
7500 28.2 52.0 30.6 45.9 29.9 33.0 69.3 39.5 51.7 71.8 45.2

10000 29.3 54.3 30.6 48.5 30.8 33.2 69.7 40.7 50.6 74.4 46.2
12500 28.7 57.8 30.7 48.1 31.1 32.6 72.0 40.4 52.7 77.4 47.2
15000 31.1 59.6 31.9 50.4 31.8 34.4 71.9 40.5 50.8 78.0 48.0
17500 32.6 60.9 31.9 51.5 32.2 33.8 72.3 39.7 52.5 78.9 48.6
20000 33.2 62.5 32.5 51.6 32.4 34.6 72.4 39.7 51.7 80.7 49.1
22500 34.7 63.6 32.9 53.3 32.9 34.8 73.1 40.3 54.2 80.5 50.0
25000 34.4 63.9 32.6 53.0 33.1 34.4 73.1 39.3 52.7 81.5 49.8
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Table 19: Detailed evaluation results of existing base models trained on different corpora and trained
using different techniques.

ARC-C ARC-E CSQA HellaSwag MMLU OBQA PiQA SIQA WinoG SciQ AVG
TINYLLAMA-1.1B (trained on 3T tokens)

31.5 59.0 35.5 57.8 32.8 33.4 72.8 40.0 56.0 82.4 50.1

OLMO-1B (trained on 2T tokens)

31.4 59.7 38.9 61.9 32.2 38.4 76.1 41.5 53.9 78.8 51.3

PYTHIA-1.4B

28.7 56.9 34.7 51.7 31.5 36.0 71.8 40.8 55.1 79.3 48.7

PYTHIA-2.8B

32.9 61.0 36.5 60.4 33.3 35.0 73.5 41.1 57.0 83.1 51.4

SHEAREDLLAMA-1.3B (pruned from LLAMA-2-7B)

22.4 39.7 29.3 36.0 26.4 28.4 62.6 39.9 52.0 71.4 40.8

SHEAREDLLAMA-1.3B (pruned from LLAMA-2-7B, and further trained on 50B tokens)

29.0 58.3 34.8 59.6 32.0 35.0 74.6 41.0 56.3 82.3 50.3

INSTRUCTLM-1.3B (LLM data synthesis)

28.1 57.9 32.5 52.3 30.0 34.0 74.5 39.9 56.1 86.9 49.2

COSMO-1.8B (LLM data synthesis)

33.4 57.0 31.2 55.1 32.4 35.2 71.4 42.0 54.7 84.4 49.7
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E.4 EVALUATION RESULTS OF CONTINUAL PRE-TRAINING IN SEC 3.4

We provide full ablation results for each base model, as shown in Table 20. We can observe
that PROX-D+C consistently improves average performance over PROX-D across various base
models. Although the performance gain from PROX-D+C compared to PROX-D is less pronounced
than the improvement of PROX-D over continual pre-training on raw OpenWebMath, this is both
understandable and expected. PROX-D+C does not significantly reduce the token count beyond
the reductions achieved by PROX-D alone. Given the scale of the OpenWebMath corpus, a more
aggressive token removal strategy could potentially diminish the diversity of unique tokens below
the threshold necessary for robust pre-training. This observation underscores the delicate balance
between data refinement and maintaining sufficient linguistic variety for effective language model
training, particularly when working with limited-scale corpora.

Table 20: Full ablation results on OpenWebMath Continual Pre-training (CPT). All models are tested
using few-shot CoT prompts. LLEMMA and INTERNLM2-MATH are continual pre-trained models
from CODELLAMA (Rozière et al., 2023) and INTERNLM2 (Team, 2023) with public available
data, respectively. DEEPSEEK-LLM denotes an internal DeepSeek model, and the model trained
on OpenWebMath introduced by Shao et al. (2024). Note that the unique tokens and training tokens
in the column refer exclusively to the token numbers from math-specific corpora (calculated by
corresponding tokenizers). †: MQA evaluation of INTERNLM2-BASE is based on an alternative
prompt due to non-prediction issues with the original prompt. The bolded entries represent the best
results within the same base model and CPT experiments.

Model Size Method Uniq
Toks

Train
Toks GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

Existing Continual Pre-training for Reference

DEEPSEEK-LLM 1.3B - - - 2.9 3.0 - - - - - 19.5 15.6 -
1.3B - 14B 150B 11.5 8.9 - - - - - 29.6 31.3 -

CODELLAMA (Base)
7B - - - 11.8 5.0 44.2 50.7 62.6 30.6 14.3 20.4 21.9 29.1
34B - - - 31.8 10.8 61.9 66.0 83.4 51.6 23.7 43.0 53.1 47.3

LLEMMA
7B - 55B 200B 38.8 17.2 56.1 69.1 82.4 48.7 41.0 45.4 59.4 50.9 (+21.8)
34B - 55B 50B 54.2 23.0 67.9 75.7 90.1 57.9 49.8 54.7 68.8 60.1 (+12.8)

INTERNLM2-BASE
7B - - - 27.0 6.6 49.0 59.3 74.8 40.1 20.9† 19.0 28.1 36.1
20B - - - 50.6 18.8 72.5 75.9 93.9 45.4 33.1 53.7 59.4 55.9

INTERNLM2-MATH
7B - 31B 125B 41.8 14.4 61.6 66.8 83.7 50.0 57.3 24.8 37.5 48.7 (+12.6)
20B - 120B 500B 65.4 30.0 75.7 79.3 94.0 50.9 38.5 53.1 71.9 62.1 (+6.2)

Applying Data Refinement Approaches

TINYLLAMA (Base) 1.1B - - - 2.8 3.2 10.9 18.0 20.2 12.5 14.6 16.4 21.9 14.7

TINYLLAMA (CPT)

1.1B - 15B 15B 6.2 4.8 22.3 36.2 47.6 19.3 11.6 20.7 25.0 21.5 (+8.1)
1.1B RHO 15B 9B∗6 7.1 5.0 23.5 41.2 53.8 - 18.0 - - -
1.1B Rule 6.5B 15B 4.5 2.8 17.5 29.4 39.3 15.1 12.4 19.4 25.0 18.4 (+3.7)
1.1B PROX-D 5.4B 15B 9.3 7.4 23.4 41.9 55.6 22.1 14.6 24.1 25.0 24.8 (+10.1)
1.1B PROX-D+C 5B 15B 9.0 5.6 23.8 41.9 56.9 22.2 15.6 26.8 31.2 25.7 (+11.0)

LLAMA-2 (Base) 7B - - - 14.1 3.8 39.5 51.6 63.6 30.9 12.5 32.9 34.4 31.5

LLAMA-2 (CPT)
7B - 15B 10B 29.6 13.6 49.2 61.9 78.4 36.3 31.9 40.5 43.8 42.8 (+11.3)
7B PROX-D 5.4B 10B 30.3 16.0 54.2 63.8 79.5 37.3 37.2 44.2 46.9 45.5 (+14.0)
7B PROX-D+C 5B 10B 30.6 16.8 50.2 63.7 79.3 37.3 40.1 43.8 53.1 46.1 (+14.6)

CODELLAMA (Base) 7B - - - 11.8 5.0 44.2 50.7 62.6 30.6 14.3 20.4 21.9 29.1

CODELLAMA (CPT)
7B - 15B 10B 31.1 14.8 51.4 62.1 81.2 33.6 30.4 40.5 43.8 43.2 (+14.1)
7B PROX-D 5.4B 10B 38.1 17.0 54.2 67.0 83.1 40.9 39.8 43.7 50.0 48.2 (+19.1)
7B PROX-D+C 5B 10B 35.6 17.6 55.8 67.9 82.7 41.3 38.9 42.6 62.5 49.4 (+20.3)

MISTRAL (Base) 7B - - - 40.6 11.4 65.4 68.5 87.0 52.9 32.3 50.0 56.2 51.6

MISTRAL (CPT)
7B - 15B 10B 44.4 19.2 65.2 69.6 88.4 46.6 43.1 50.8 65.6 54.8 (+3.2)
7B PROX-D 5.5B 10B 47.8 24.8 63.5 72.4 88.9 48.3 48.2 54.1 62.5 56.4 (+4.8)
7B PROX-D+C 4.7B 10B 51.0 22.4 64.9 72.9 89.2 49.8 53.0 54.2 75.0 59.2 (+7.6)

Besides, we report the detailed dynamic evaluation results of our continual pre-training experiments
on OpenWebMath:

• Tables 21, 22, 23, and 24 present the evaluation results for TINYLLAMA-1.1B.

6RHO-1 only counts the selected tokens that are used for training (loss calculation).
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• Tables 25, 26, and 27 present the evaluation results for LLAMA-2.
• Tables 28, 29, 30 present the evaluation results for CODELLAMA.
• Tables 31, 32, and 33 show the evaluation results for MISTRAL-7B.

Table 21: Full evaluation results of TINYLLAMA-1.1B continual pre-training on OpenWebMath
with raw data. Note that about 1B tokens are trained per 500 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 2.8 3.2 10.9 18 20.2 12.5 14.6 16.4 21.9 14.7

500 1.9 3.4 16.3 23.9 30.3 13.9 10.3 14.8 18.8 14.8
1000 3.1 2.2 16.6 25.6 32.4 12.5 12.0 16.6 25.0 16.2
1500 2.7 3.0 17.6 28.5 34.5 13.9 8.7 14.1 15.6 15.4
2000 4.5 3.2 16.4 28.5 39.0 15.1 10.2 16.6 34.4 18.7
2500 4.9 3.4 19.3 31.0 39.2 16.0 12.1 18.6 9.4 17.1
3000 4.1 5.2 19.1 32.0 43.0 15.3 9.6 16.1 18.8 18.1
3500 4.9 3.6 19.7 31.4 40.4 18.1 11.3 19.6 15.6 18.3
4000 4.8 4.8 19.5 33.8 44.5 16.4 10.7 19.9 12.5 18.5
4500 5.4 4.8 20.2 35.0 45.2 17.9 12.7 21.0 18.8 20.1
5000 5.5 4.6 22.3 34.6 42.9 16.0 10.6 21.7 28.1 20.7
5500 4.9 5.8 23.6 35.2 44.0 20.4 11.0 21.1 21.9 20.9
6000 6.1 4.4 22.8 36.2 45.4 17.8 12.7 21.4 15.6 20.3
6500 6.3 3.6 23.2 37.3 48.0 19.7 10.3 21.0 18.8 20.9
7000 6.1 4.6 22.2 36.6 46.9 19.4 12.0 21.5 21.9 21.2
7500 6.2 4.8 22.3 36.2 47.6 19.3 11.6 20.7 25.0 21.5

Table 22: Full evaluation results of TINYLLAMA-1.1B continual pre-training on OpenWebMath
with data after rule-based filtering. Note that about 1B tokens are trained per 500 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 2.8 3.2 10.9 18 20.2 12.5 14.6 16.4 21.9 14.7

500 3.4 3.6 13.6 22.5 25.9 13.1 14.2 13.5 28.1 15.3
1000 3.0 2.8 14.1 22.5 27.8 11.4 11.0 16.4 12.5 13.5
1500 3.6 3.2 13.6 24.0 31.2 13.9 9.2 18.0 18.8 15.1
2000 3.5 2.4 15.0 25.1 33.0 12.5 10.6 13.9 15.6 14.6
2500 3.3 1.6 15.0 25.3 33.5 13.7 11.1 18.1 25.0 16.3
3000 3.5 3.0 16.4 25.5 33.4 14.1 10.2 18.4 18.8 15.9
3500 3.2 3.4 17.2 27.0 37.7 14.6 11.2 13.3 25.0 17.0
4000 3.5 3.6 15.6 26.2 36.5 13.4 12.1 15.9 18.8 16.2
4500 4.1 3.8 15.6 27.9 38.2 14.9 11.6 17.1 18.8 16.9
5000 4.2 3.6 18.6 28.7 37.7 14.3 12.7 17.5 21.9 17.7
5500 4.1 3.8 16.3 29.3 38.4 14.7 10.8 17.5 18.8 17.1
6000 4.3 3.6 16.0 28.7 39.1 13.5 12.8 19.5 21.9 17.7
6500 4.2 3.2 16.4 29.5 39.0 15.1 11.7 17.9 21.9 17.7
7000 4.0 4.0 16.2 29.6 37.9 16.0 13.8 17.8 21.9 17.9
7500 4.5 2.8 17.5 29.4 39.3 15.1 12.4 19.4 25.0 18.4
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Table 23: Full evaluation results of TINYLLAMA-1.1B continual pre-training on OpenWebMath
with data after PROX-D. Note that about 1B tokens are trained per 500 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 2.8 3.2 10.9 18 20.2 12.5 14.6 16.4 21.9 14.7

500 3.3 2.8 17.7 29.0 38.7 12.4 9.5 15.7 15.6 16.1
1000 4.6 4.0 18.1 31.6 41.9 15.9 11.9 18.2 25.0 19.0
1500 5.2 5.4 21.1 32.9 43.1 15.3 11.1 20.4 12.5 18.6
2000 6.8 5.8 20.2 33.5 46.6 18.2 10.7 20.3 12.5 19.4
2500 7.1 3.8 20.7 37.0 48.6 18.3 12.0 21.4 18.8 20.9
3000 7.4 4.4 22.9 37.1 50.5 18.3 12.3 21.2 25.0 22.1
3500 8.8 4.8 22.8 39.4 53.3 19.2 12.0 22.8 34.4 24.2
4000 8.6 4.6 24.0 38.7 51.4 18.8 14.8 24.4 18.8 22.7
4500 8.6 4.2 24.2 39.2 53.6 20.4 13.5 23.9 18.8 22.9
5000 8.9 5.2 24.0 40.0 52.6 20.0 13.6 23.9 18.8 23.0
5500 8.0 6.2 23.2 41.4 55.0 22.3 14.3 24.9 25.0 24.5
6000 8.3 5.2 22.2 39.8 54.0 24.3 12.6 25.1 31.2 24.7
6500 9.4 5.6 24.4 40.2 54.5 20.3 13.0 24.9 31.2 24.8
7000 9.2 5.8 25.8 40.6 55.3 22.5 12.5 24.5 21.9 24.2
7500 9.3 7.4 23.4 41.9 55.6 22.1 14.6 24.1 25.0 24.8

Table 24: Full evaluation results of TINYLLAMA-1.1B continual pre-training on OpenWebMath
with data after PROX-D+C. Note that about 1B tokens are trained per 500 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 2.8 3.2 10.9 18 20.2 12.5 14.6 16.4 21.9 14.7

500 4.3 5.0 16.4 28.8 36.4 15.3 11.4 18.5 15.6 16.9
1000 5.5 3.8 20.5 34.6 44.6 15.3 12.1 19.6 28.1 20.5
1500 5.2 4.4 21.4 34.5 44.7 16.1 11.2 21.4 34.4 21.5
2000 6.3 5.4 20.1 33.7 46.2 19.4 10.5 21.2 12.5 19.5
2500 7.8 5.4 22.1 37.0 49.5 17.9 13.3 22.9 21.9 22.0
3000 6.4 3.4 23.0 38.6 51.1 18.5 12.6 24.3 18.8 21.9
3500 8.5 4.6 24.1 40.2 53.8 22.1 12.5 23.1 25.0 23.8
4000 8.2 6.0 24.1 41.0 52.4 19.8 10.2 26.1 31.2 24.3
4500 8.3 5.4 24.1 41.3 54.4 20.6 15.2 24.2 28.1 24.6
5000 8.5 7.0 26.0 40.5 54.9 21.7 13.9 25.5 34.4 25.8
5500 8.7 4.0 23.2 41.1 54.8 20.5 14.4 26.5 21.9 23.9
6000 8.3 5.0 24.8 41.3 54.3 23.2 14.0 25.3 25.0 24.6
6500 8.6 6.4 24.5 41.6 55.1 22.2 14.4 26.5 25.0 24.9
7000 8.9 6.0 23.4 40.5 53.4 22.0 15.8 27.3 28.1 25.0
7500 9.0 4.4 23.8 41.9 56.4 22.2 15.6 26.8 31.2 25.7
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Table 25: Full evaluation results of LLAMA-2 continual pre-training on OpenWebMath with raw data.
Note that about 1B tokens are trained per 1000 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 14.1 3.8 39.5 51.6 63.6 30.9 12.5 32.9 34.4 31.5

1k 17.2 3.6 39.1 50.4 63.0 30.2 18.9 31.8 31.2 31.7
2k 19.7 6.0 43.9 55.5 68.3 32.9 19.0 33.0 37.5 35.1
3k 19.6 8.6 42.9 56.3 68.4 32.2 17.4 34.6 40.6 35.6
4k 21.8 8.8 44.6 57.3 72.0 28.9 23.6 35.8 40.6 37.0
5k 22.6 10.4 45.9 57.0 73.5 31.5 23.9 39.0 43.8 38.6
6k 24.5 10.0 44.9 57.6 73.7 35.5 25.8 36.1 43.8 39.1
7k 23.3 10.4 46.5 59.0 75.3 32.9 27.7 39.0 50.0 40.5
8k 29.0 12.4 46.4 59.7 77.0 33.1 30.2 38.8 50.0 41.8
9k 26.1 12.8 48.8 59.9 74.3 35.0 28.3 39.2 50.0 41.6
10k 29.6 13.6 49.2 61.9 78.4 36.3 31.9 40.5 43.8 42.8

Table 26: Full evaluation results of LLAMA-2 continual pre-training on OpenWebMath with PROX-
D. Note that about 1B tokens are trained per 1000 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 14.1 3.8 39.5 51.6 63.6 30.9 12.5 32.9 34.4 31.5

1k 17.1 7.2 39.8 51.6 68.4 31.4 21.4 35.2 40.6 34.7
2k 21.9 9.2 43.2 57.0 72.8 33.1 24.0 37.6 56.2 39.4
3k 20.5 10.8 45.7 58.6 76.2 35.3 25.8 38.3 53.1 40.5
4k 27.2 11.8 45.7 58.7 76.6 35.9 29.2 41.0 31.2 39.7
5k 28.9 14.2 49.3 60.2 77.9 38.8 32.8 41.7 53.1 44.1
6k 31.9 15.0 51.5 62.0 79.0 39.2 33.3 41.4 68.8 46.9
7k 31.5 16.8 51.9 63.2 77.9 36.5 35.9 43.8 43.8 44.6
8k 30.3 13.8 51.9 63.7 80.6 38.3 36.1 41.3 59.4 46.2
9k 30.6 14.0 52.7 62.6 78.7 37.5 36.1 43.2 43.8 44.4
10k 30.3 16.0 54.2 63.8 79.5 37.3 37.2 44.2 46.9 45.5

Table 27: Full evaluation results of LLAMA-2 continual pre-training on OpenWebMath with PROX-
D+C. Note that about 1B tokens are trained per 1000 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 14.1 3.8 39.5 51.6 63.6 30.9 12.5 32.9 34.4 31.5

1k 18.8 6.8 40.1 54.4 66.1 29.7 22.9 35.6 53.1 36.4
2k 23.1 8.6 45.7 56.5 72.7 30.7 25.1 35.6 46.9 38.3
3k 23.4 11.8 47.9 59.1 74.6 30.4 28.2 38.3 59.4 41.5
4k 25.2 14.2 49.0 57.8 72.7 32.8 33.1 40.7 40.6 40.7
5k 24.4 13.6 48.0 58.7 72.1 28.9 33.0 40.6 50.0 41.0
6k 29.6 12.8 46.1 63.4 75.6 33.7 31.6 42.8 53.1 43.2
7k 29.9 13.6 50.5 61.5 75.2 36.4 34.5 41.7 53.1 44.0
8k 30.2 15.8 50.8 63.7 77.1 37.7 36.3 43.4 43.8 44.3
9k 34.0 15.4 52.1 62.4 79.3 35.9 40.2 44.0 56.2 46.6
10k 30.6 16.8 50.2 63.7 79.3 37.3 40.1 43.8 53.1 46.1
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Table 28: Full evaluation results of CODELLAMA-7B continual pre-training on OpenWebMath with
raw data. Note that about 1B tokens are trained per 250 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 11.8 5.0 44.2 50.7 62.6 30.6 14.3 20.4 21.9 29.1

250 16.7 8.2 45.2 52.2 65.3 33.9 16.0 28.8 43.8 34.5
500 18.3 7.8 43.1 53.9 69.0 29.3 15.3 22.5 37.5 33.0
750 20.2 8.0 45.2 54.2 71.9 29.9 17.1 31.2 37.5 35.0

1000 24.7 9.8 40.6 58.6 72.7 29.3 20.7 31.9 34.4 35.9
1250 24.3 10.4 44.0 57.5 74.8 29.2 21.4 36.1 50.0 38.6
1500 26.2 13.2 48.4 58.8 75.4 29.4 28.1 34.9 50.0 40.5
1750 25.5 11.8 49.1 58.7 76.6 32.4 26.7 37.3 43.8 40.2
2000 28.0 13.6 46.3 61.7 80.0 33.8 29.4 37.2 50.0 42.2
2250 27.7 13.6 48.9 62.2 80.3 32.5 28.9 39.1 59.4 43.6
2500 31.1 14.8 51.4 62.1 81.2 33.6 30.4 40.5 43.8 43.2

Table 29: Full evaluation results of CODELLAMA continual pre-training on OpenWebMath with
PROX-D. Note that about 1B tokens are trained per 250 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 11.8 5.0 44.2 50.7 62.6 30.6 14.3 20.4 21.9 29.1

250 21.1 9.2 48.7 56.1 71.3 33.4 22.2 34.1 50.0 38.5
500 23.7 11.6 49.8 57.4 74.7 32.9 28.5 35.8 59.4 41.5
750 25.1 15.4 48.1 58.9 78.8 36.8 29.4 37.6 53.1 42.6

1000 28.4 14.2 50.9 61.2 79.8 36.7 27.7 37.6 50.0 42.9
1250 33.0 15.2 49.3 62.9 81.1 33.4 32.8 41.0 46.9 44.0
1500 36.0 15.0 54.2 65.0 81.0 39.3 34.1 42.0 62.5 47.7
1750 34.7 14.6 53.1 63.6 83.3 40.6 35.9 43.4 62.5 48.0
2000 35.7 17.6 53.3 65.4 83.5 42.4 37.1 42.4 56.2 48.2
2250 37.2 18.8 54.5 65.4 83.2 41.9 41.0 44.9 71.9 51.0
2500 38.1 17.0 54.2 67.0 83.1 40.9 39.8 43.7 50.0 48.2

Table 30: Full evaluation results of CODELLAMA continual pre-training on OpenWebMath with
PROX-D+C. Note that about 1B tokens are trained per 250 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 11.8 5.0 44.2 50.7 62.6 30.6 14.3 20.4 21.9 29.1

250 18.1 10.2 46.0 54.5 71.9 33.0 21.3 34.4 50.0 37.7
500 22.4 10.0 50.3 59.7 76.4 31.3 26.1 36.0 59.4 41.3
750 26.8 11.4 51.2 61.0 78.5 34.9 26.4 38.0 53.1 42.4

1000 29.0 14.4 54.1 62.8 80.1 36.9 34.2 40.4 62.5 46.0
1250 31.4 15.0 51.7 63.8 81.1 37.2 32.5 41.4 75.0 47.7
1500 31.5 17.4 53.4 64.4 80.7 39.6 35.4 41.6 71.9 48.4
1750 33.7 15.2 50.6 64.3 81.5 39.2 36.1 40.5 53.1 46.0
2000 36.2 16.0 54.7 65.1 83.1 39.9 39.1 43.4 71.9 49.9
2250 37.1 16.6 55.3 65.6 82.4 41.3 36.5 42.7 75.0 50.3
2500 35.6 17.6 55.8 67.9 82.7 41.3 38.9 42.6 62.5 49.4

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Table 31: Full evaluation results of MISTRAL-7B continual pre-training on OpenWebMath with raw
data. Note that about 1B tokens are trained per 1000 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 40.6 11.4 65.4 68.5 87.0 52.9 32.3 50.0 56.2 51.6

1k 31.6 12.0 56.5 66.0 80.1 43.9 27.1 45.1 56.2 46.5
2k 32.4 10.8 54.7 63.5 82.6 40.8 31.6 45.7 59.4 46.8
3k 33.6 14.8 60.4 64.7 84.5 43.5 33.1 47.2 68.8 50.1
4k 35.1 14.8 58.7 65.2 84.4 41.2 38.5 47.3 62.5 49.7
5k 33.4 16.0 59.3 65.0 83.8 46.7 34.6 49.1 62.5 50.0
6k 38.7 16.6 61.5 68.1 86.1 47.4 35.3 48.5 37.5 48.9
7k 39.6 17.2 60.5 68.2 86.2 44.4 38.5 49.3 53.1 50.8
8k 44.0 16.4 64.5 69.8 88.7 45.5 41.3 50.6 59.4 53.4
9k 43.9 19.4 63.7 69.7 87.6 44.9 42.9 51.0 62.5 54.0
10k 44.4 19.2 65.2 69.6 88.4 46.6 43.1 50.8 65.6 54.8

Table 32: Full evaluation results of MISTRAL-7B continual pre-training on OpenWebMath with
PROX-D. Note that about 1B tokens are trained per 1000 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 40.6 11.4 65.4 68.5 87.0 52.9 32.3 50.0 56.2 51.6

1k 36.8 14.6 57.2 66.1 83.1 45.7 32.6 47.7 59.4 49.2
2k 38.5 17.0 57.9 69.0 86.3 44.7 33.6 49.2 56.2 50.3
3k 40.0 19.0 59.3 68.7 87.0 46.8 41.0 48.0 68.8 53.2
4k 38.5 20.4 59.3 66.2 85.1 42.6 42.8 49.5 68.8 52.6
5k 42.5 20.2 63.0 70.5 86.6 47.2 43.4 49.8 62.5 54.0
6k 46.8 17.8 62.5 72.7 88.2 51.2 47.7 51.3 56.2 54.9
7k 47.5 22.4 64.1 71.8 89.1 51.4 47.9 52.4 65.6 56.9
8k 44.6 23.8 63.2 70.8 87.7 47.6 49.1 54.1 65.6 56.3
9k 46.6 24.6 61.6 72.3 86.4 46.9 49.8 53.2 65.6 56.3
10k 46.7 22.6 63.5 72.4 88.9 48.3 48.2 54.1 62.5 56.4

Table 33: Full evaluation results of Mistral-7B continual pre-training on OpenWebMath with PROX-
D+C. Note that about 1B tokens are trained per 1000 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 40.6 11.4 65.4 68.5 87.0 52.9 32.3 50.0 56.2 51.6

1k 30.9 16.0 60.1 64.5 85.3 40.8 33.9 48.0 59.4 48.8
2k 40.3 17.6 63.0 66.3 86.2 48.0 33.9 48.7 53.1 50.8
3k 42.4 17.8 59.6 69.1 85.7 50.1 38.5 49.9 59.4 52.5
4k 43.8 20.4 63.7 69.3 88.2 46.2 46.3 50.9 65.6 54.9
5k 42.5 18.4 59.3 69.6 87.9 44.3 46.1 51.9 65.6 54.0
6k 47.7 21.8 62.7 71.7 89.2 47.9 48.4 54.0 68.8 56.9
7k 46.8 21.6 62.9 72.1 88.4 50.1 46.4 52.5 68.8 56.6
8k 48.4 21.6 65.0 72.7 89.2 51.1 49.4 52.9 65.6 57.3
9k 48.5 24.8 64.4 72.6 88.3 50.7 48.1 53.4 62.5 57.0
10k 51.0 22.4 64.9 72.9 89.2 49.8 53.0 54.2 75.0 59.2
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F ANALYSIS

F.1 TOKEN LENGTH DISTRIBUTION

Table 34: Average length of token per document for different refining methods.

Methods General Domain Math Domain
N/A 1217.5 1815.8
Rule 1329.4 1955.6
PROX (ours) 2004.8 1734.9

As previously discussed in §4.1, our analysis reveals a notable document length distribution shift in
the data refined by PROX, specifically a significant increase in the average token length (from 1217.5
to 2004.8 tokens per document). When further compared to the rule-based method (we compare to
FineWeb rules), we only observe a marginal increase in token length within the general domain (from
1217.5 to 1329.4 tokens).

Interestingly, in the math domain, we observe an opposite trend. The raw data shows an average token
length of 1815.8, which our method reduces to 1734.9, while the rule-based method increases it to
1955.6. And the training performance in Table 5 follows the order: PROX > original > rule-based
method for TINYLLAMA-1.1B. This again implies that mathematical documents used for pre-training
exhibit significant differences in distribution and characteristics compared to those in the general
domain.

F.2 CASE STUDIES

We provide several cases to qualitatively illustrate the refinement effect of PROX, as shown in
Tables 35-36. For the general domain, using RedPajama-V2 as an example, we observe that PROX
can drop low-information documents, remove meaningless content such as navigation bars, and
replace URL links (see Table 35). In the mathematics domain, PROX demonstrates the ability to
eliminate documents with minimal relevance to mathematical reasoning and remove less important
elements like functional buttons (see Table 36). These refinements enhance the quality and relevance
of the processed data across different domains.

F.3 ERROR ANALYSIS

As shown in Table 37, the failure ratio across both refining stages (document-level and chunk-level)
and domains (General and Math) is remarkably low (< 0.5%). This demonstrates that ProX’s
refining tasks are well-suited for small models. Specifically, for the General domain, failure ratios
are 0.04% for document-level and 0.36% for chunk-level refining, with an average of 3.7 function
calls per program in the chunk-level stage. For the Math domain, these ratios are 0.06% and 0.11%,
respectively, with an average complexity of 2.7 function calls at the chunk-level stage.

Despite the low failure rates, we observed two prevalent failure cases in ProX’s programs:

1. Repeated output or empty output: This occurs when a program inadvertently generates
duplicate outputs or fails to produce any meaningful results. Such failures are typically
linked to improper loop conditions or insufficient constraints in processing logic.

2. Non-existent target removal: In some cases, ProX’s programs attempt to remove a string
or line that does not exist in the input data. This leads to incomplete execution or errors in
the program output, particularly in datasets with irregular formats or unexpected variations.

As shown in Table 38, we present two failure cases to illustrate instances of repeated output and
non-existent target strings.
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Table 35: Cases from RedPajama-V2 after applying PROX. Text in red indicates content to be
removed or replaced. “...” denotes omitted content due to limited space.

Case 1

TagCollegeEducationJournalismWar

: Michael Lewis

ContributorMichael Lewis

Michael Lewis is possibly the most entertaining nonfiction writer alive. If that’s not true it’s at least close to true.
Liar’s Poker, Moneyball, The Blind Side, his NYT article about Jonathan Lebed (Google it): what’s not to love?

504: How I Got Into College

Act Two: My Ames is True

Writer Michael Lewis tells the story of a man named Emir Kamenica, whose path to college started with fleeing the
war in Bosnia and becoming a refugee in the United States. Then he had a stroke of luck: a student teacher read an
essay he’d plagiarized from a book he’d stolen from a library back in Bosnia, and was so impressed that she got him
out of a bad high school and into a much better one.

Act Three

Michael Lewis’ story continues, and he figures out why Emir Kamenica insists on remembering, and telling, the story
of his life the way he does — even when he finds out that some of the facts may be wrong.

Output by PROX:
drop_doc()

Case 2

Home > Staff > Staff search > Dr Tim Overton
Dr Tim Overton BSc PhD
School of Chemical EngineeringSenior Lecturer
Telephone (+44) (0) 121 414 5306Emailt.w.overton@bham.ac.uk
AddressSchool of Chemical EngineeringUniversity of Birmingham
B15 2TT
Dr Tim Overton is a biochemist and molecular microbiologist who is interested in applying molecular biology and single-
cell techniques to understand and develop bioprocesses. He is active in microbial flow cytometry research and collaborates
widely with bioprocess engineers, molecular microbiologists, cell biologists and environmental microbiologists to develop
new methods of answering fundamental questions on a single-cell level.
His research also focuses on using bacteria to make useful products such as protein drugs and small molecules, and the
bacterial responses to stress encountered in such processes. Current and recent research funding has come from the
BBSRC, TSB and EU FP7. He is the director of the MSc in Biochemical Engineering. Pages: 1 3 4

...

Google scholar: http://scholar.google.co.uk/citations?user=tF_eBKEAAAAJ
...

Output by PROX:
keep_doc()
remove_lines(line_start=0, line_end=5)
normalize(source_str="http://scholar.google.co.uk/citations?user",
target_str="")
normalize(source_str="Pages: 1 3 4", target_str="")
...
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Table 36: Cases from OpenWebMath after applying PROX. Text in red indicates content to be
removed or replaced. “...” denotes omitted content due to limited space.

Case 1

## unhybridized pi bonds

sp, sp2, sp3, dsp3, d2sp3

Tatiana 4B

Posts: 30

Joined: Fri Sep 28, 2018 12:28 am

### unhybridized pi bonds

...

### Re: unhybridized pi bonds

I am not too sure in my knowledge about this, but I think that both have hybridized orbitals. Since hybridization is
defined as the phenomenon of intermixing of the orbitals such as sp, sigma and pi bonds are just different types of
covalent bonds formed depending on the way the atomic orbitals hybridize with each other. Sigma bonds are a result
of when the overlap of orbitals of two atoms takes place along the line joining the two orbitals, while pi bonds are
when two atoms overlap due to the sideways overlap of their ’p’ orbitals.

Hannah Yates 1K

Posts: 59

Joined: Fri Sep 28, 2018 12:27 am

### Re: unhybridized pi bonds

I am also not too sure on my answer, but I am pretty sure that a sigma bond has just hybridized orbitals, but the reason
a pi bond can form is because of an extra (not hybridized) p orbital. This allows for a double and triple bond to form.

Output by PROX:
drop_doc()

Case 2

Solution - Trigonometric Identities

Account
Register

Share

Books Shortlist
ConceptTrigonometric Identities

Question

Prove the following trigonometric identities:

(i) sin θ
1−cos θ

= cosecθ + cot θ
Solution

You need to to view the solution
Is there an error in this question or solution?

Reference Material

Solution for concept: Trigonometric Identities. For the course CBSE
S

Output by PROX:
keep_doc()
remove_lines(line_start=0, line_end=7)
remove_lines(line_start=18, line_end=24)
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Table 37: Failure ratio and average complexity (function calls) for ProX refining stages across
domains.

Domain Failure Ratio (doc-level) Failure Ratio (chunk-level) Complexity (AVG. function calls)
General Domain 0.04% 0.36% 3.7
Math Domain 0.06% 0.11% 2.7

Table 38: Failure cases from RedPajama-V2 during applying PROX. “...” denotes omitted content
due to limited space. The notation like [004] is used to indicate the line number.

Case 1: Repeated output (or Empty output)

...

[004] P: 114 1. The problem statement, all variables and given/known data Mercury is poured into a U-tube as in
Figure P15.18a....Basically I don’t understand why you would know to set the two volumes equal to each other? How
do you know the volumes are the same?

...

[007] Related Discussions Mechanical Engineering 6 Introductory Physics Homework 0 General Engineering 1
Introductory Physics Homework 2 Introductory Physics Homework 2

Output by PROX:
remove_lines(start=1, end=1)
remove_lines(start=6, end=6)
remove_lines(start=7, end=7)
remove_lines(start=7, end=7)
remove_lines(start=7, end=7)
remove_lines(start=7, end

Case 2: Non-existent target string

...

[195] 18. Sathyamoorthi, C. R., Mbekomize, C., Mapharing, M., & Selinkie, P. (2018). The Impact of Corporate
Governance on Working Capital Management Efficiency: Evidence from the Listed Companies in the Consumer Services
Sector in Botswana. International Journal of Economics and Finance, 10, 135. https://doi.org/10.5539/ijef.v10n12p135

[196] 19. Vu, T. M. T., Tran, C. Q., Doan, D. T., & Le, T. N. (2020). Determinants of Capi-
tal Structure: The Case in Vietnam. Journal of Asian Finance, Economics, And Business, 7(9), 159-168.
https://doi.org/10.13106/jafeb.2020.vol7.no9.159

...

Output by PROX:
# Analysis: this ‘source_str‘ can not be found in the original text
normalize(source_str="https://doi.org/10.13106/jafeb.2020.vol6.no2.53",
target_str="")
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F.4 COMPUTING OVERHEAD ANALYSIS

According to Kaplan et al. (2020), both training and inference computational FLOPs for Transformer-
based Language Models (denoted as Ctrain and Cinference) can be approximated as the product of model
parameters (non-embedding parameter) N and the number of tokens D. This can be expressed as:

Ctrain ≈ 6 ·NDtrain, (9)

Cinference ≈ 2 ·N (Dprefill +Ddecode) . (10)

In PROX, we go through two data refining stages before final training, which incurs additional
inference-time computational FLOPs. Suppose the refining model parameter for each stage is denoted
as Nrefine, and the raw data size in tokens is Draw.

For the first document-level stage, the computational cost can be approximated as:

Cdoc ≈ 2 ·Nrefine (Draw +Doutput) ≈ 2 ·NrefineDraw, (suppose Doutput ≪ Draw) (11)

resulting in a new pool of data sized Ddoc.

Similarly, for the second chunk-level stage, the computational cost is:

Cchunk ≈ 2 ·Nr (Ddoc +Doutput) ≈ 2 ·NrDdoc, (suppose Doutput ≪ Ddoc) (12)

which produces the final refined data size of DProX.

Thus, the total computational overhead for PROX can be calculated as the sum of the two stages:

CPROX = Cdoc + Cchunk ≈ 2 ·Ndoc_refineDraw + 2 ·Nchunk_refineDdoc. (13)

In general, we use refining models with the same sizes, so the final inference overhead can be
estimated as

CPROX ≈ 2 ·Nrefine(Draw +Ddoc). (14)

Additionally, we omit the FLOPs for fine-tuning since they are negligible compared to the large-scale
pre-training and inference FLOPs.
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