
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PROGRAMMING EVERY EXAMPLE: LIFTING PRE-
TRAINING DATA QUALITY LIKE EXPERTS AT SCALE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language model pre-training has traditionally relied on human experts to craft
heuristics for improving the corpora quality, resulting in numerous rules developed
to date. However, these rules lack the flexibility to address the unique characteris-
tics of individual examples effectively. Meanwhile, applying tailored rules to every
example is impractical for human experts. In this paper, we demonstrate that even
small language models, with as few as 0.3B parameters, can exhibit substantial
data refining capabilities comparable to those of human experts. We introduce
Programming Every Example (PROX), a novel framework that treats data refine-
ment as a programming task, enabling models to refine corpora by generating and
executing fine-grained operations, such as string normalization, for each individual
example at scale. Experimental results show that models pre-trained on PROX-
curated data outperform either original data or data curated via selection methods
by more than 2% across 10 downstream benchmarks. Its effectiveness spans vari-
ous model sizes (0.3B∼1.7B) and pre-training corpora (C4, RedPajama-V2, and
FineWeb). Furthermore, PROX shows great potential in domain-specific contin-
ual pre-training: models trained on OpenWebMath refined by PROX outperform
human-crafted rule-based methods, improving accuracy by 7.6% on MISTRAL-7B,
14.6% on LLAMA-2-7B, and 20.3% on CODELLAMA-7B within 10B tokens,
comparable to LLEMMA-7B trained on 200B tokens. PROX significantly reduces
training FLOPs, offering an efficient path for LLM pre-training.

0 70 140 210 1.9k 2k

42

44

46

48

50

52

54

56

Av
er

ag
e

Pe
rf

or
m

an
ce

 (%
)

30 × less training steps

+2.4%

Apply ProX on FineWeb

FLOPs
(×1019)

1.7B model trained on ProX
1.7B model trained on Orig.
TinyLLaMA-1.1B

OLMo-1B
Pythia-1.4B

0 1 2 3 4 50 80

30

35

40

45

50

55

M
at

h
Pe

rf
or

m
an

ce
 (%

)

7B

34B

20 × less training steps

+6.2%

Apply ProX on OpenWebMath

FLOPs
(×1020)

Cont. trained on ProX
Cont. trained on Orig.
Llemma-7B

InternLM-MATH
CodeLLaMA

Figure 1: Training FLOPs v.s. downstream performance. Left: pre-training from scratch on general
domain; Right: continual pre-training on math domain. Although these corpora have been processed
through expert-crafted rules, applying PROX still yields significant improvements over these baseline
models trained with the original corpora. Moreover, models trained on PROX curated data achieve
competitive performance with much fewer training FLOPs.

1 INTRODUCTION

Large Language Models (LLMs) have made significant strides in capabilities (Meta, 2024; Achiam
et al., 2023; Anthropic, 2024; Reid et al., 2024), excelling in tasks such as creative writing (Yuan
et al., 2022), complex reasoning (Wei et al., 2022; Kojima et al., 2022), and agentic task planning and
execution (Fan et al., 2022; Park et al., 2023). Behind these, massive, high-quality pre-training corpora
form the backbone of these models, equipping them with the essential knowledge and reasoning
abilities crucial for a wide range of downstream tasks (Together, 2023; Penedo et al., 2024a).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

The Internet offers vast amounts of data, but much of it is noisy and unrefined, requiring extensive
cleaning and quality enhancement before being applied for pre-training. Previous works focus primar-
ily on designing heuristic-based pipelines to lift data quality, such as document filtering (Rae et al.,
2021; Penedo et al., 2024a; Soldaini et al., 2024) and perplexity-based scoring methods (Together,
2023), relying heavily on human expertise and manual adjustments (Zhang et al., 2024a). While
widely adopted, these labor-intensive solutions are inherently limited by rule coverage and their
inability to address every specific case. Recently, some efforts have explored leveraging LLMs for
high-quality data acquisition. On the one hand, language models have been applied for data filtering
or selection (Xie et al., 2023; Wettig et al., 2024; Yu et al., 2024; Dubey et al., 2024), but their role
is largely limited to identifying low-quality documents without enabling fine-grained refinements
(e.g., string-level). On the other hand, LLMs are also being used to generate high-quality data
directly, i.e., data synthesis (Gunasekar et al., 2023; Li et al., 2023; Ben Allal et al., 2024). Unlike
filtering, synthesis methods actively create or refine data to produce new documents, but they require
substantial computational resources, limiting the methods’ scalability. Despite the success, these
methods can also inherit issues from LLMs like hallucination (Maini et al., 2024), and assessing their
correctness and completeness in an interpretable manner remains a challenge (Liu et al., 2024a).

In this work, at the intersection of data processing efficiency and data quality improvement, we
propose PROX, a model-based framework for pre-training-level data refinement. PROX focuses on
refining corpora using smaller models at scale, offering a more efficient alternative. As shown in
Figure 2, in practice, PROX first adapts small base language models (e.g., < 1B) to data refining tasks
through fine-tuning them on seed data. The refining models in PROX then determine the appropriate
operations for each document in the pre-training corpora via versatile programs, such as document
filtering, string normalization and noisy line removal. The generated programs are then executed
by a pre-defined executor, producing refined corpus ready for pre-training. In this way, PROX is
empowered with language models to autonomously refine pre-training corpora, leveraging flexible
function calls to enhance data quality.

Experimental results demonstrate that the proposed PROX framework consistently lifts data quality for
pre-training. Specifically, PROX achieves an average improvement of 2.5% over the original corpus
on 10 downstream benchmarks and outperforms state-of-the-art data selection methods by over 2.0%
(§3.2). Furthermore, PROX demonstrates broad applicability across model sizes from 0.3B to 1.7B
and achieves consistent performance gains across diverse pre-training corpora of varying quality, in-
cluding RedPajama-V2 (Together, 2023), C4 (Raffel et al., 2020), and FineWeb (Penedo et al., 2024a)
(§3.3). In domain-specific continual pre-training, training on PROX-refined OpenWebMath (Paster
et al., 2024) yields an 11% gain for TINYLLAMA-1.1B and 7.6% for MISTRAL-7B across 9 mathe-
matical tasks, with similar improvements observed on LLAMA-2-7B and CODELLAMA-7B. Beyond
these gains, pre-training on the refined corpus significantly boosts pre-training efficiency, achieving
similar downstream performance with up to 20× less training computing (§3.4). Quantitative analysis
suggests scaling up computing FLOPs for data refinement enables comparable performance with
much less training costs and offers a highly promising path for efficient LLM pre-training (§4.2).

2 APPROACH: PROGRAMMING EVERY EXAMPLE

2.1 DATA REFINEMENT TASK FORMULATION

Given any document in the corpus d ∈ D, such as an HTML extract or a textbook, we define data
refinement as the process of transforming d into d̂, where d̂ exhibits higher quality. While it is
challenging to formally define “higher quality” for pre-training data, we assume it can be described
through qualitative improvements, such as the removal of advertisements, meaningless URL links,
random code gibberish, and content lacking educational value, just as shown on the left side of
Figure 2. Specifically, we formulate this refining process as the generation of a data processing
program Z , conditioned on d. The refined document d̂ is then produced by executing program Z on
the original document d. For instance, the “string normalization” can be a very fine-grained process
transforming noisy strings into clean ones with executor E and program Znormalize:

E(Znormalize, d) = (s′i)
|d|
i=1, where s′i = normalize(si) if si needs normalization else si (1)

Here, d = (s1, s2, ..., s|d|) is the original document represented as a sequence of strings, and
normalize() is our normalization function that maps certain strings to their normalized versions

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Adapt

Pre-training Corpora
[000]
[001] A description of the type of authorized
interactions a can have with a resource. Examples
include read, write, execute, add, modify, and
delete.
……
[108]
[109]

ProX: Programming Every EXample

Activities | Technical Reports | About W3C | …

http://t.co/XUQZZRvn3i

ClickHere

Search English terms starting with the letter:

Base
Model

Refining
Model

Chunk-level Program
normalize(‘ClickHere’, ‘’)
remove_lines(0, 0)
remove_lines(108, 109)

ProX programs
Refined Corpora

Doc-level Program
keep_doc()

[001] A description of the
type of authorized
interactions a can have
with a resource. Examples
include read, write,
execute, add, modify, and
delete.
……

Generate

Noisy & Mixed-quality Clean & High-quality

Execute

1

2 3

!! ✓

Figure 2: An overview of PROX framework: (1) we adapt a base language model to perform data
refinement; (2) PROX refining’s models are able to generate elaborate programs for each document,
including document-level filtering and more fine-grained chunk-level refining; (3) A Python
executor will execute the programs with the docs, producing the refined high-quality corpora.

for simplicity. Moreover, document filtering is a special case of refining transformation, where
executing Zfilter removes the entire document, i.e., E(Zfilter, d) = ∅. In this way, data quality
improvements like cleaning or normalizing can be unified into standardized functions that apply
specific transformations to documents. These operations are represented as various instances of the
general executor E(Z, d), where Z encodes function calls or heuristics for each specific task.

2.2 PROX FRAMEWORK

Overview As shown in Figure 2, given any document d as input, the PROX framework utilizes the
language model itself with parameter θ to generate the data refinement program Z = fθ(d). The
snippet is executed within the executor E , producing the refined document d̂ = E(fθ(d), d). We
include two stages in the PROX framework, aiming to refine the data progressively, from rough
to fine-grained. These two stages are referred to as document-level programming and chunk-level
programming, as illustrated in Figure 2. In each stage, the PROX refining model will generate
programs Zdoc and Zchunk that refine the corpora at varying levels of granularities.

PROX Program Design Designing the detailed program space is crucial for maximizing language
models’ capabilities. When scaling to large-scale pre-training corpora, we considered several practical
factors for such model-based operations: (1) the model does not need to be very powerful or large
to handle these tasks; it only needs to recognize certain patterns; (2) although the solution requires
more computational resources compared to heuristic-rule-based pipelines, it still needs to be simple
and efficient. Therefore, we make the language models generate function calls without detailed
implementations. These design choices balance functionality with the limitations of small language
models, enabling effective document manipulation while maintaining simplicity and coherence. We
present the function definitions in Table 1, which also constitutes the program space of PROX.

The most fundamental operations we aim to perform on a document are deletion and replacement. In
PROX, we incorporate these types of operations across different stages to refine the corpus at different
granularities: (1) In the document-level programming stage, we define the functions drop_doc() to
delete a document and keep_doc() to retain it. (2) At the chunk-level programming stage, we split
lengthy documents into smaller chunks and apply fine-grained operations to them. These operations
include deleting specific lines with remove_lines() and replacing strings with normalize(),
providing flexibility in modifying content rather than dropping the whole document. For high-quality
chunks that require no modifications, we use the keep_chunk() function. As shown in Table 1,
while the individual functions may seem straightforward, their design space is flexible and capable of
expressing complex rules developed by humans. We believe human-crafted rules can be projected
into the program space of PROX, demonstrating that our approach simplifies and enhances the rule
creation process, offering more systematic and scalable refinement capabilities.

PROX Execution During the execution stage, the generated program snippets Z will be executed
by the executor E to refine the document. For simplicity and flexibility, PROX integrates Pythonic
grammars, wrapping all operations into different function calling with parameters, and implements
these functions in Python for later execution. For example, in Figure 2, the document contains
some noisy patterns including navigation bars, meaningless HTML links and page indexes. The
refining model will then generate programs to remove the corresponding lines and patterns. In

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: PROX program design of document-level and chunk-level refining stage. For input, doc and
chunk will also be sent into the corresponding functions as string-type inputs for execution.

Stage Function Interface Description

Document
Level

drop_doc()→ <None> Delete the whole doc.

keep_doc()→ <str> Return the orignal doc.

Chunk
Level

remove_lines(line_start, line_end)→ <str>
▷ line_start<int>, index of the first line to be removed
▷ line_end<int>, index of the last line to be removed

Delete noisy lines from chunk;
Return chunk after removal.

normalize(source_str, target_str)→ <str>
▷ source_str<str>, the noisy string pattern
▷ target_str<str>, the string for replacement

Replace strings with normalized ones;
Return chunk after replacement.

keep_chunk()→ <str> Return the orignal chunk.

the document-level and chunk-level cleaning stage, PROX utilizes two different refining models
to generate programs with various function calls described in Table 1. We believe this sequential
approach ensures a structured and effective refinement, addressing the larger document noise first,
and then focusing on finer-grained cleaning.

2.3 MODEL ADAPTATION FOR PROX

Synthesize[Scoring Critiques]

Score 1-5[Function Definition]
def drop_doc(text: str):

”delete doc from corpus”
pass

LLMSeed Documents

DF Program
drop_doc()

DF Program
drop_doc()

Document-Program Pairs
Base Model Refining Model

Fine-tune
Inference
At Scale

Pretraining
CorporaZero-shot / Few-shot

Chunk-level Program
normalize(‘►©’,’’)

Doc-level Program
drop_doc()

Figure 3: The illustration of the model adaptation in PROX. We employ powerful LLMs (LLAMA-3)
to annotate random seed documents with valid programs and use doc-program pairs to fine-tune a
small base language model, obtaining the refining model suitable for fine-grained data refining tasks.

It is generally difficult for off-the-shelf models to directly generate perfect PROX programs. In fact,
generating such custom API calls is relatively challenging even for the most powerful LLMs at the
current stage (Zhuo et al., 2024). Thus, it is necessary to curate some seed data to adapt the model for
these scenarios. Under such consideration, we employ advanced LLMs to annotate these operations
via zero-shot and few-shot prompting, and then adapt our small models to these tasks by supervised
fine-tuning (SFT). As presented in Figure 3, we first apply additive scale scoring prompts, a method
explored in recent works (Yuan et al., 2024; Penedo et al., 2024a), to split the corpus into kept and
dropped documents, then use LLMs to annotate fine-grained programs based on kept documents.
Specifically, we leverage the LLAMA-3 series of models (Dubey et al., 2024) for seed data annotation,
and the seed documents are randomly sampled from the original pre-training corpus. In PROX, this
annotation is performed only once, and all models are adapted with the same curated data. To ensure
the reliability of the collected data, we also conduct necessary checks for grammar correctness and
control the removal ratio threshold. The detailed procedure for program synthesis and post-processing
can be found in §A.1.

For simplicity, we directly use a small language model (e.g., 0.3B parameters) that we have trained
on approximately 26B tokens of original unrefined data as the base model, which also serves as the
comparison baseline in subsequent experiments. The adapted models’ performance will then be
evaluated using the F1 score on the held-out validation dataset, both of which were derived from
the seed data we collected earlier. We select the highest-performing model checkpoints and employ
the models to generate programs Z , for each document or chunk of the dataset. These programs
together with the documents are then executed using the corresponding function implementation,
resulting in the final processed corpus. Please refer to the appendix for more training details (§A.2),
implementation for calculating the F1 score (§A.3), and large-scale inference (§A.4).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3 EXPERIMENTS

In this section, we first describe our experimental setup (§3.1), then verify the effectiveness of
each PROX refining stage and compare it with various data selection methods tailored for pre-
training (§3.2). We then apply PROX to various model sizes and corpora to demonstrate its broad
applicability (§3.3). Finally, we apply PROX to the mathematical domain, showing its superiority in
domain-specific continual pre-training (§3.4).

3.1 EXPERIMENT SETUP

Pre-training Corpora We utilize various corpora for both general and specific domain experiments.
For the general domain, we begin with RedPajama-V2 (Together, 2023), a preprocessed large-scale
dataset of 30 trillion tokens from diverse Internet sources, ready for pre-training. We further apply
PROX on the C4 corpus (Raffel et al., 2020) with 198 billion tokens and the FineWeb dataset (Penedo
et al., 2024a) containing 15 trillion tokens, noted for high data quality. For specific domain exper-
iments, we use OpenWebMath (Paster et al., 2024), a math-focused dataset with 15 billion tokens.
Given the limitations in computational resources, we conduct experiments on a randomly sampled
subset of the entire pre-training dataset. See Table 7 (§B.2) for sampling details.
Base Model Architecture Our experiments are conducted on various sizes of language models.
(1) To verify different stages’ effectiveness of PROX, we employ a 750M sized model sharing
LLAMA-2 architecture (Touvron et al., 2023b), denoted as TLM-S, used for both pre-training
from scratch and refining. We also compare PROX with data selection methods using PYTHIA-
410M/1B’s architecture (Biderman et al., 2023), as those employed in MATES (Yu et al., 2024). (2)
For further evaluation of PROX using different refining and base model sizes, we scale the model
sizes from 350M (0.5×smaller, denoted as TLM-XS) to 1.7B (2×larger, denoted as TLM-M). (3)
For domain-specific continual pre-training, we select TINYLLAMA-1.1B (Zhang et al., 2024b),
LLAMA-2 (Touvron et al., 2023b), CODELLAMA (Rozière et al., 2023) and MISTRAL-7B (Jiang
et al., 2023) as representative base models for their adequate training and solid performance. Detailed
specifications and training recipes are provided in §B.3, especially in Table 8 and Table 9.
Baselines To ensure a fair comparison within the same experiment, we maintain consistent training
hyperparameters across most of the baselines, differing only in data refining and selection pipelines.
We compare PROX with various baseline methods, including heuristic filtering rules (e.g., rules used
to create Gopher (Rae et al., 2021), C4 (Raffel et al., 2020), and FineWeb (Penedo et al., 2024a)),
fasttext-based filtering (Li et al., 2024), and existing data selection techniques (e.g., DSIR (Xie et al.,
2023), DsDm (Engstrom et al., 2024), MATES (Yu et al., 2024), QuRating (Wettig et al., 2024)),
LLM synthesis approaches (such as INSTRUCTIONLM (Cheng et al., 2024) and COSMO (Ben Allal
et al., 2024)). For domain-specific continual pre-training, we also compare with strong open-sourced
models such as LLEMMA (Azerbayev et al., 2024), INTERNLM2-MATH (Ying et al., 2024), and
RHO (Lin et al., 2024). For detailed descriptions of each baseline, please refer to §C.
Evaluation Setup We compare the trained models’ performance over a vast of datasets for com-
prehensive evaluation: (1) For general pre-training, we evaluate the zero-shot performance across
ten selected tasks using lighteval’s implementation (Fourrier et al., 2023); we have also included
LM-eval-harness (Biderman et al., 2024) for fair comparison with data selection methods. (2) For
domain-specific continual pre-training evaluation, we integrate nine mathematical related tasks and
report few-shot chain-of-thought (CoT) (Wei et al., 2022) performance. The selected evaluation
benchmarks, number of evaluation examples, and full details can be found in §D.

3.2 VERIFYING PROX’S EFFECTIVENESS

Verifying Effectiveness for Each PROX Operation We first conduct a series of experiments to
verify the effectiveness of each PROX operation. We begin by training TLM-S on the RedPajama-V2
raw data for approximately 26B tokens (or 12.5K steps) as the initial baseline. Following Wettig et al.
(2024) and for convenience, we then sequentially apply the document-level and chunk-level refining
pipelines by fine-tuning the 0.7B model itself. We then perform large-scale program synthesis and
execution using the refining models, resulting in Ddoc and Ddoc+chunk. Such 2-stage synthesis requires
approximately 192 A100-80G GPU hours for processing 60B tokens of data. The resulting zero-shot
downstream performance is presented in Table 2, including base models trained on the data produced
by PROX refinement methods and different rule-based filtering methods. Moreover, we visualize the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: Zero-shot performance on 10 selected tasks. All models use the same TLM-S architecture
and are trained on RedPajama-V2. The doc-level (PROX-D) and chunk-level (PROX-C) refining are
done by fine-tuning the raw data pre-trained model as a refining model. Bolded entries represent the
best results. #Win represents the number of tasks where the method achieved the best performance.

Method ARC-C ARC-E CSQA HellaS MMLU OBQA PIQA SIQA WinoG SciQ AVG #Win
Raw 26.1 44.3 29.7 39.1 27.3 29.2 66.9 39.0 52.0 67.4 42.1 0 / 10

Applying Rule-based filtering on Raw Data: GO = Gopher rules, C4 = C4 rules, FW = FineWeb rules.

GO 25.7 44.0 31.3 40.2 27.3 29.0 66.3 39.0 51.2 68.9 42.3 0 / 10
C4 25.0 46.0 31.0 40.5 27.1 29.2 68.5 40.5 51.7 66.6 42.6 2 / 10
FW 25.2 46.8 32.6 39.6 27.2 29.0 66.5 39.4 52.4 69.2 42.8 2 / 10
GO+C4+FW 25.2 43.9 30.0 41.9 27.5 31.0 67.0 39.9 51.9 65.3 42.3 0 / 10
FASTTEXT 26.9 49.9 29.5 39.0 28.5 31.8 64.7 39.6 52.1 70.4 43.3 2 / 10

Applying PROX (ours) on Raw Data: D = Doc-level Programming, C = Chunk-level Programming.

PROX-D 26.6 49.7 30.1 40.5 29.4 30.4 66.3 39.0 51.2 71.6 43.5 1 / 10
PROX-D+C 26.4 51.9 30.9 42.4 29.4 31.6 67.9 40.0 52.2 73.5 44.6 3 / 10

0.0 2.5 5.0 7.5 10.0 12.5
Training Step (K)

34

36

38

40

42

44

A
ve

ra
ge

 P
er

fo
rm

an
ce

 (%
)

ProX-D+C
ProX-D
FastText
Rule
Raw

Figure 4: Downstream zero-shot per-
formance w.r.t. different training
steps: first 0.5K, then evenly from
2.5K to 12.5K. Rule: the best per-
forming FineWeb rule in Table 2.

Table 3: Comparison with different data selection methods on
8 benchmarks using the C4 corpus and PYTHIA architecture.
#Win represents the count of best performance.

Method Total FLOPs (1e19) 0-shot 2-shot #Win
Model Architecture: PYTHIA-410M

Random 06.4 42.7 43.8 0 / 8
DSIR 06.4 42.5 43.7 1 / 8
DsDm 10.7 43.4 44.1 0 / 8
QuRating 26.4 43.5 44.6 0 / 8
MATES 08.1 44.0 45.0 0 / 8
PROX (ours) 13.2 46.2 47.5 7 / 8

Model Architecture: PYTHIA-1B

Random 17.7 44.7 45.4 0 / 8
MATES 20.0 45.8 46.4 1 / 8
PROX (ours) 21.9 46.8 48.4 7 / 8

dynamic benchmark performance in Figure 4, implying the consistent improvement of PROX over all
baselines. See §E.1 for full detailed results of all intermediate checkpoints.

These results show that PROX is highly effective, outperforming the raw corpus with an average
boost of 2.5%, including significant boosts such as 7.6% on ARC-E, and 3.3% on HellaSwag. Such
improvements were achieved even on benchmarks that are typically prone to performance instability,
such as SIQA, WinoGrande, and CSQA. By contrast, rule-based methods demonstrate relatively
marginal overall improvement. For instance, Gopher rules achieve only a 0.2% boost, while C4 shows
a modest 0.5% improvement. Furthermore, combining all three rules (as is done in constructing the
official FineWeb corpus), does not lead to any larger enhancement in overall performance.

Comparing with Data Selection Methods Apart from comparing with heuristic methods, we
also include existing representative model-based data selection methods tailored for pre-training
corpora to verify PROX’s effectiveness. In Table 3, we report both 0-shot and 2-shot performance
under the same settings used in MATES (Yu et al., 2024). While we merely apply document-level
stage (i.e., PROX-D) which is indeed similar to data selection methods, we can see that PROX
outperforms the strongest data selection method MATES, by 2.2% and 2.5% in 0-shot and 2-shot
average performance for 410M model, and by 1.0% and 2.0% for 1B model. Additionally, PROX
achieves the best performance on 7 out of 8 benchmarks tested, demonstrating its superiority over
existing data selection methods. Full evaluation results are provided in Table 12 (§E.2).

3.3 APPLYING PROX ACROSS MODEL SIZES AND PRE-TRAINING CORPORA

In this section, we demonstrate that PROX can effectively benefit models beyond scales and across
different corpora, and greatly improves the training efficiency.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 4: Refining model’s perfor-
mance on valid set and token reten-
tion ratio of original corpus.

Size Doc-level Chunk-level Kept Ratio

XS (0.3B) 82.6 75.2 23.2%
S (0.7B) 81.3 75.6 25.6%
M (1.7B) 83.7 77.3 28.8%

Raw ProX-(xs) ProX-(s) ProX-(m)

xs
s

mB
as

e
M

od
el

 S
iz

e 39.6 42.3 41.9 41.9

42.5 43.9 44.6 43.5

43.4 46.0 46.2 45.7
40

42

44

46

Pe
rf

or
m

an
ce

Figure 5: PROX’s effect over differ-
ent model sizes.

RedPajama C4 FineWeb FineWeb-Edu42

44

46

48

50

52

Av
er

ag
e

Pe
rf

or
m

an
ce

 (%
)

Our From-Scratch Experiments

TinyLlama-1.1B-3T: 50.1%

46.0
45.5

47.4

50.1

48.0
48.4

49.8
51.0

Inst-LM Cosmo S-Llama

Other Approaches

49.2
49.7 50.3

Raw Data ProX LLM Synthesis Model Pruning

Figure 6: Performance of original data and PROX curated data
trained models across different datasets using≈ 50B tokens and
comparison with existing models trained using different tech-
niques. Inst-LM: INSTRUCTIONLM-1.3B; Cosmo: COSMO-
1.8B; S-Llama: SHEAREDLLAMA-1.3B.

PROX works well across different scales. We train a family of models from 350M to 1.7B (i.e.,
TLM-XS, TLM-S, and TLM-M) on the same 26B tokens used in §3.2, and then fine-tune these
models on document-level and chunk-level tasks, obtaining refining models with different sizes.
We then apply these models in document-level refining and chunk-level refining stages and use the
curated data for from-scratch pre-training. We report the adaptation performance on refining tasks of
different refining model sizes in Table 4. According to the validation performance, adaptation works
well across all model sizes, all achieving > 80% F1 on document-level refinement, and > 75% F1 on
chunk-level refinement. We further train models of different sizes from scratch using data produced
by refining models of varying sizes. In Figure 5, the heatmap indicates that all refining models
of three sizes improve data quality over raw data (left patches of the heatmap), with a consistent
performance boost of 2% over all base model sizes. While TLM-XS curated data shows slightly
better downstream performance, it has a significantly lower token-level retention ratio (23.2% vs.
28.8%) compared to larger models as reflected in Table 4. This implies that moderately larger models
suggest a favorable balance between data quality and quantity. These additional tokens likely provide
more knowledge during pre-training without compromising downstream benchmark performance,
showcasing an effective trade-off between data refinement and information preservation.
PROX works well across pre-training corpora. To assess the applicability of PROX across various
pre-training corpora, we extend our experiments beyond RedPajama-V2 to include C4 (Raffel et al.,
2020), and the recently released 15-trillion-token pre-training corpus, FineWeb (Penedo et al., 2024a)
together with its top-quality subset, FineWeb-Edu. For consistency, we apply exactly the same
PROX-xs refining models detailed in Table 4 to these corpora without constructing new SFT data
for each corpus. We conducted larger-scale experiments by training our model on approximately
50 billion tokens, again achieving notable improvements. On ten downstream benchmarks, models
trained on PROX’s curated data showed improvements of +2.0% on RedPajama-V2, +3.1% on C4,
+2.4% on FineWeb, and +0.9% on FineWeb-Edu, as shown in Figure 6.

ProX trains language models with much greater efficiency. To demonstrate the non-trivial
nature of these results, we compared models trained on PROX curated data against various models
trained by different approaches. These include models like TINYLLAMA-1.1B-3T (trained directly
on 3 trillion tokens, about 60× of our training tokens and 40× training FLOPs), SHEADLLAMA-
1.3B (denoted as S-Llama, a pruned version of LLAMA-2-7B, with extra training on 50 billion
tokens), and models using LLM data synthesis, such as INSTRUCTIONLM-1.3B (denoted as Inst-
LM) and COSMO-1.8B. Our results, including TLM-M (PROX) and TLM-M (Raw), are presented
alongside all these baselines in Figure 6. On FineWeb, which is recognized for its high-quality
data, TLM-M using PROX-refined data performs comparably to pruned models like SHEADLLAMA-
1.3B and TINYLLAMA-1.1B, despite their reliance on additional pruning techniques or much larger
datasets. Moreover, using much less computing overhead for data refinement, our model surprisingly
outperforms models that rely heavily on data synthesis with LLMs, underscoring the PROX’s
efficiency. Notably, models like INSTRUCT-LM-1.3B, trained on 100 billion tokens leveraging a
fine-tuned MISTRAL-7B synthesizer, and COSMO-1.8B, trained on 180 billion tokens (including 25
billion tokens synthesized by MIXTRAL-8x7B), require significantly more computational resources
than PROX. In fact, their computational cost of data synthesis has far surpassed the training overhead.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 5: OpenWebMath continual pre-training (CPT) results. All models are evaluated using few-
shot CoT prompts. LLEMMA and INTERNLM2-MATH are continual pre-trained models from
CODELLAMA and INTERNLM2 (Team, 2023) with public available data, respectively. DEEPSEEK-
LLM denotes an internal DeepSeek model, and the model trained on OpenWebMath introduced
in Shao et al. (2024). Note that the unique tokens and training tokens in the column refer exclusively
to the token numbers from math-specific corpora (calculated by corresponding tokenizers). †: MQA
evaluation of INTERNLM2-BASE is based on an alternative prompt due to non-prediction issues with
the original prompt. The bolded entries represent the best results within the same base model.

Model Size Method Uniq
Toks

Train
Toks GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

Existing Continual Pre-trained Models for Reference

DEEPSEEK-LLM 1.3B - - - 2.9 3.0 - - - - - 19.5 15.6 -
1.3B - 14B 150B 11.5 8.9 - - - - - 29.6 31.3 -

LLEMMA
7B - 55B 200B 38.8 17.2 56.1 69.1 82.4 48.7 41.0 45.4 59.4 50.9 (+21.8)
34B - 55B 50B 54.2 23.0 67.9 75.7 90.1 57.9 49.8 54.7 68.8 60.1 (+12.8)

INTERNLM2-BASE
7B - - - 27.0 6.6 49.0 59.3 74.8 40.1 20.9† 19.0 28.1 36.1
20B - - - 50.6 18.8 72.5 75.9 93.9 45.4 33.1 53.7 59.4 55.9

INTERNLM2-MATH
7B - 31B 125B 41.8 14.4 61.6 66.8 83.7 50.0 57.3 24.8 37.5 48.7 (+12.6)
20B - 120B 500B 65.4 30.0 75.7 79.3 94.0 50.9 38.5 53.1 71.9 62.1 (+6.2)

Applying Data Refinement Approaches

TINYLLAMA (Base) 1.1B - - - 2.8 3.2 10.9 18.0 20.2 12.5 14.6 16.4 21.9 14.7

TINYLLAMA (CPT)

1.1B - 15B 15B 6.2 4.8 22.3 36.2 47.6 19.3 11.6 20.7 25.0 21.5 (+8.1)
1.1B RHO 15B 9B1 7.1 5.0 23.5 41.2 53.8 - 18.0 - - -
1.1B Rule 6.5B 15B 4.5 2.8 17.5 29.4 39.3 15.1 12.4 19.4 25.0 18.4 (+3.7)
1.1B PROX 5B 15B 9.0 5.6 23.8 41.9 56.9 22.2 15.6 26.8 31.2 25.7 (+11.0)

LLAMA-2 (Base) 7B - - - 14.1 3.8 39.5 51.6 63.6 30.9 12.5 32.9 34.4 31.5

LLAMA-2 (CPT)
7B - 15B 10B 29.6 13.6 49.2 61.9 78.4 36.3 31.9 40.5 43.8 42.8 (+11.3)
7B PROX 5B 10B 30.6 16.8 50.2 63.7 79.3 37.3 40.1 43.8 53.1 46.1 (+14.6)

CODELLAMA (Base)
7B - - - 11.8 5.0 44.2 50.7 62.6 30.6 14.3 20.4 21.9 29.1
34B - - - 31.8 10.8 61.9 66.0 83.4 51.6 23.7 43.0 53.1 47.3

CODELLAMA (CPT)
7B - 15B 10B 31.1 14.8 51.4 62.1 81.2 33.6 30.4 40.5 43.8 43.2 (+14.1)
7B PROX 5B 10B 35.6 17.6 55.8 67.9 82.7 41.3 38.9 42.6 62.5 49.4 (+20.3)

MISTRAL (Base) 7B - - - 40.6 11.4 65.4 68.5 87.0 52.9 32.3 50.0 56.2 51.6

MISTRAL (CPT)
7B - 15B 10B 44.4 19.2 65.2 69.6 88.4 46.6 43.1 50.8 65.6 54.8 (+3.2)
7B PROX 4.7B 10B 51.0 22.4 64.9 72.9 89.2 49.8 53.0 54.2 75.0 59.2 (+7.6)

3.4 APPLYING PROX TO DOMAIN-SPECIFIC CONTIUAL PRERAINING

We also demonstrate the potential of PROX in the continual pre-training scenario, specifically, in the
mathematical domain. We apply the very same pipeline as in general domains to the OpenWebMath
corpus (Paster et al., 2024), aiming to further mine and refine the high-quality and clean data from the
crawled vast web pages. We apply PROX-xs series for refining, which was initially trained on general
text as described in §3.3, and further adapted on math text for the document-level and chunk-level
refining tasks. Finally, about 5.5B tokens remain after document-level refining, and about 4.7B
after chunk-level refining. We present the final mathematical evaluation results of models trained on
OpenWebMath in Table 5, with full evaluation results and ablation studies presented in §E.4.

PROX boosts math continual pre-training efficiency vastly. Without any domain-specific design,
Table 5 shows that pre-training on OpenWebMath refined by PROX brings 11.0% average performance
improvements for TINYLLAMA-1.1B, 14.6% for LLAMA-2, 20.3% for CODELLAMA, 7.6% for
MISTRAL, which clearly exceed the improvements of all baselines, including their counterparts pre-
trained on the original corpus. Notably, applying rule-based filtering does not improve performance;
instead, it causes a 3.1% degradation compared to continual pre-training on the original corpus.
This suggests that universal heuristics are ineffective across all domains, highlighting the need
for automated pipelines like PROX. Moreover, compared with some existing state-of-the-art math
continual pre-training models like LLEMMA and INTERNLM2-MATH typically requiring hundreds
of billions of training tokens, our PROX demonstrates remarkable efficiency gains. A more controlled
comparison further highlights this: LLEMMA-7B, based on CODELLAMA-7B, was trained on 200B

1RHO (Lin et al., 2024) only counts the selected tokens that are used for training (loss calculation).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

tokens; whereas PROX, also starting from CODELLAMA-7B, reaches similar performance (50.9% vs.
49.4%) with just 10B tokens of training, indicating a 20× reduction in training computes.

4 ANALYSIS

4.1 IMPACT ON THE ORIGINAL DATA

101 102 103 104

D
en

si
ty Avg.Toks: 1217.5

Avg.Toks:2004.8

(#toks)

Original Data
ProX Refined Data

RedPajama-V2
101 102 103 104

Avg.Toks: 472.3

Avg.Toks: 1027.2

(#toks)

Original Data
ProX Refined Data

C4
102 103 104

Avg.Toks: 674.6

Avg.Toks: 1253.4

(#toks)

Original Data
ProX Refined Data

FineWeb
102 103 104

Avg.Toks: 1815.8

Avg.Toks: 1734.9

(#toks)

Original Data
ProX Refined Data

OpenWebMath
Figure 7: Comparison of doc’s token length distributions between original and PROX-refined data.

What changes occur in the corpora after applying PROX? We compare the document’s token length
distribution of the original corpus with that of the PROX-refined corpus in Figure 7. In the general
domain corpora (RedPajama-V2, C4, and FineWeb), the data refined by PROX exhibits a noticeable
shift in the average number of tokens per document. For instance, in RedPajama-V2, we observe that
documents with fewer than 100 tokens make up a significant portion of the corpus. After applying the
PROX, the majority of documents contain more than 200 tokens, with an average number of tokens
per document increasing from 1217 to over 2000. This suggests that very short documents may be
noisy and lack sufficient meaningful information to be suitable for pre-training. This shift, however,
is not observed in OpenWebMath, where the average number of tokens per document is already
larger. One possible reason for this outlier is that the OpenWebMath corpus is collected mostly from
sources different from the general domain, e.g., online forums like Stack Exchange, and academic
publisher websites such as Arxiv. And noises of these sources can be quite different from general
domains. Further analysis and case studies on these documents are provided in §F.1, §F.2, and §F.3.

4.2 COMPUTING OVERHEAD ANALYSIS

Although PROX demonstrates promising results in downstream tasks, it is important to acknowl-
edge that large-scale model inference still requires a substantial computing budget. For example,
as mentioned in §3.2, and in Table 7, the RedPajama-V2 corpus used for training TLM-S was
refined from about 60B raw tokens. As calculated in §F.4, if we utilize PROX-xs (0.3B) for
both two refining stages, the additional computational overhead will amount to approximately
C = 5 × 1019 FLOPs, which is equivalent to training an additional 12B tokens on TLM-
S and 5B tokens on TLM-M. It is noteworthy that this overhead ratio keeps decreasing as
model size increases, meaning that the relative computational cost diminishes for larger models.

0.3 0.7 1.7
Model Parameters (B)

0.0

0.5

1.0

1.5

2.0

T
ra

in
 +

 In
fe

r
FL

O
Ps

 (×
1e

20
)

0.42 0.43

0.72 0.69

2.26

1.35

Train FLOPs
Infer FLOPs

Figure 8: FLOPs comparison for compara-
ble downstream performance with/without
PROX refining: 0.3B (Avg. Perf = 40.5),
0.7B (41.6), and 1.7B (42.9).2

In Figure 8, we compare the FLOPs consumed by
checkpoints with similar downstream performance,
both with and without applying PROX, across three
different model sizes. As the model size increases, the
proportion of inference FLOPs required for applying
PROX decreases. For the 0.7B model, the total FLOPs
when using PROX are already lower than without it
(6.3× 1e19 vs. 6.7× 1e19). Notably, for the largest
1.7B model, we achieve performance comparable to
a model pre-trained on the original data, but with only
58% of the total FLOPs. This demonstrates that refin-
ing methods like PROX not only enhance data quality
but also become more computationally efficient as
model sizes grow, reinforcing the value of allocating
additional resources to refining pre-training data.

2The train FLOPs for the base model (approximately 5.3 × 1019) used to create the refining model are
excluded. This is because any pre-trained LLM can theoretically serve as the base for refinement.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 RELATED WORKS

Pre-training Data Processing It has been a common practice to execute extensive pre-processing
before pre-training due to the noisy nature of raw data from the Internet, which can hurt model
performance (Touvron et al., 2023a; Together, 2023; Penedo et al., 2024a). The pipeline usually
starts with document preparation, such as URL filtering, text extraction, and language-based filter-
ing (Wenzek et al., 2020; Smith et al., 2022). The remaining documents will then undergo several
quality checks with heuristic rules like overall length, symbol-to-word ratio, and other criteria to
determine whether they are kept, or aborted (Zhang et al., 2024a; Dou et al., 2024; Qiu et al., 2024).
Finally, these documents are deduplicated using fuzzy matches like MinHash (Broder, 1997), or
exact sequences matches (Penedo et al., 2024c). In PROX, we use the language model for further
data refining, outperforming heuristic rules with acceptable computational overhead.

Data Selection Methods Data selection is more commonly applied in the later stages of large-scale
data pre-processing. In supervised fine-tuning (SFT), it typically involves selecting a much smaller
subset of samples while maintaining performance (Liu et al., 2024b). Recent efforts have extended
these selection strategies to pre-training (Engstrom et al., 2024; Xie et al., 2023; Ankner et al., 2024;
Sachdeva et al., 2024). Wettig et al. (2024) train a rater model to score documents on four quality
criteria in SlimPajama (Soboleva et al., 2023); MATES (Yu et al., 2024) apply a BERT-based model
to estimate data influence and enables dynamic data selection schema. Moreover, as mentioned in
LLAMA-3 (Meta, 2024), LLAMA-2 models (Touvron et al., 2023b) are used as text-quality classifiers
that underpin LLAMA-3’s training data. Instead of merely selecting documents, PROX enables more
fine-grained operations within documents, contributing to further quality improvements.

Model-based Data Synthesizing Another branch of research focuses on editing or rephrasing
existing data with models to improve the data quality. Fan et al. (2024) uses ChatGPT to rephrase
several instruction tuning datasets for clear format; Yue et al. (2024) employ LLMs to extract and
refine QA pairs from web documents. Such techniques have also been applied in the pre-training
phase such as the PHI series (Gunasekar et al., 2023; Li et al., 2023). Most recently, Maini et al.
(2024) and Cheng et al. (2024) utilize LLMs to paraphrase web documents in specific styles such as
QA, and mix these synthetic and real data for training. Ben Allal et al. (2024) further synthesizes
from mere seed topics and prompts LLMs to generate clean formatted data. In this work, we focus on
leveraging language models to lift data quality via generating executable and interpretable programs,
which improve data quality at scale with much less extra computing compared with LLM synthesis.

Inference Time Scaling Recent trends in language models explore the potential of allocating
additional computing at inference time, complementing the extensive computations already devi-
ated to the pre-training and post-training phases. Several studies have shown that smaller language
models with extra inference-time computing can match or outperform larger models in code genera-
tion (Hassid et al., 2024; Brown et al., 2024) and math problem-solving (Snell et al., 2024; Wu et al.,
2024). The significance of this approach has been further corroborated by OpenAI’s latest o1 model
release (OpenAI, 2024). Slightly different, our work demonstrates an alternative perspective on
inference computing scaling. We advocate allocating computing resources to refine pre-training
corpora, given their extensive use in language model pre-training, and show remarkable gains in
pre-training efficiency by investing moderate additional compute in corpus refinement, facilitating
more efficient and accessible development of LLMs.

6 CONCLUSION

We introduced PROX, a framework that uses language models to refine pre-training data at scale
through program generation and execution. Our extensive experiments show that PROX curated data
improves model performance by more than 2% on various downstream benchmarks and is effective
across different model sizes and pre-training datasets. For domain-specific continual pre-training,
models trained on PROX curated data also yield significant improvements in 20× less tokens. Further
analysis also implies applying PROX can achieve similar results with less computing power for
large-scale language model pre-training. These results demonstrate PROX’s potential to significantly
enhance data quality while reducing costs in language model training. We believe that PROX paves
the way for developing more efficient LLMs, and scaling computing for data refinement may further
accelerate progress in future exploration.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

In applying model-based refining techniques, we acknowledge potential ethical concerns, including
the risk of hallucinations or the introduction of biases learned by large language models during data
annotation. While PROX is specifically designed for interpretability through program generation,
model-based refinement may still unintentionally reflect these biases. Additionally, although we
use very small models to refine data, the large-scale nature of the pre-training data inevitably
leads to additional energy consumption. Techniques like quantization could be explored to reduce
computational costs. It is also important to note that the computation required for data refinement is
significantly lower than that of current large-scale pre-training. In fact, PROX has the potential to
improve pre-training efficiency, resulting in substantial computational savings during pre-training.

REPRODUCBILITY STATEMENT

We have provided detailed information in the appendix to ensure reproducibility, including:

1. A comprehensive explanation of how we obtained the SFT data required for PROX adapta-
tion, including the algorithms for prompting and synthetic program generation, and other
details. (§A.1-§A.3)

2. Pseudocode for the algorithms used to process data chunks during large-scale inference
(§A.4).

3. A complete breakdown of the model architectures, datasets, and hyperparameters, based on
the open-source TINYLLAMA and litgpt framework (§B).

4. A detailed list of all benchmarks used, along with the corresponding evaluation metrics and
their implementation methods, all grounded in previous works or open-source projects (§D).

5. Evaluation results for all intermediate checkpoints (§E).

We will make our base models and refining models publicly available for reproducible research.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Lightning AI. Litgpt. https://github.com/Lightning-AI/litgpt, 2023.

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh
Hajishirzi. Mathqa: Towards interpretable math word problem solving with operation-based
formalisms. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pp. 2357–2367, 2019.

Zachary Ankner, Cody Blakeney, Kartik Sreenivasan, Max Marion, Matthew L Leavitt, and Mansheej
Paul. Perplexed by perplexity: Perplexity-based pruning with small reference models. In ICLR
2024 Workshop on Navigating and Addressing Data Problems for Foundation Models, 2024.

AI Anthropic. The claude 3 model family: Opus, sonnet, haiku. Claude-
3 Model Card, 2024. URL https://www-cdn.anthropic.com/
de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen Marcus McAleer,
Albert Q. Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model
for mathematics. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=4WnqRR915j.

Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro von
Werra. Cosmopedia, February 2024. URL https://huggingface.co/datasets/
HuggingFaceTB/cosmopedia.

11

https://github.com/Lightning-AI/litgpt
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://openreview.net/forum?id=4WnqRR915j
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Stella Biderman, Hailey Schoelkopf, Lintang Sutawika, Leo Gao, Jonathan Tow, Baber Abbasi,
Alham Fikri Aji, Pawan Sasanka Ammanamanchi, Sidney Black, Jordan Clive, Anthony DiPofi,
Julen Etxaniz, Benjamin Fattori, Jessica Zosa Forde, Charles Foster, Mimansa Jaiswal, Wilson Y.
Lee, Haonan Li, Charles Lovering, Niklas Muennighoff, Ellie Pavlick, Jason Phang, Aviya
Skowron, Samson Tan, Xiangru Tang, Kevin A. Wang, Genta Indra Winata, François Yvon, and
Andy Zou. Lessons from the trenches on reproducible evaluation of language models, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Andrei Z Broder. On the resemblance and containment of documents. In Proceedings. Compression
and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171), pp. 21–29. IEEE, 1997.

Bradley C. A. Brown, Jordan Juravsky, Ryan Saul Ehrlich, Ronald Clark, Quoc V. Le, Christopher
Ré, and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated
sampling. CoRR, abs/2407.21787, 2024. doi: 10.48550/ARXIV.2407.21787. URL https:
//doi.org/10.48550/arXiv.2407.21787.

Daixuan Cheng, Yuxian Gu, Shaohan Huang, Junyu Bi, Minlie Huang, and Furu Wei. Instruction
pre-training: Language models are supervised multitask learners. arXiv preprint arXiv:2406.14491,
2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In
International Conference on Learning Representations (ICLR), 2024.

Longxu Dou, Qian Liu, Guangtao Zeng, Jia Guo, Jiahui Zhou, Wei Lu, and Min Lin. Sailor: Open
language models for south-east asia. CoRR, abs/2404.03608, 2024. doi: 10.48550/ARXIV.2404.
03608. URL https://doi.org/10.48550/arXiv.2404.03608.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Logan Engstrom, Axel Feldmann, and Aleksander Madry. Dsdm: Model-aware dataset selection
with datamodels. arXiv preprint arXiv:2401.12926, 2024.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. Advances in Neural Information Processing Systems, 35:
18343–18362, 2022.

Run-Ze Fan, Xuefeng Li, Haoyang Zou, Junlong Li, Shwai He, Ethan Chern, Jiewen Hu, and Pengfei
Liu. Reformatted alignment. arXiv preprint arXiv:2402.12219, 2024.

12

https://doi.org/10.48550/arXiv.2407.21787
https://doi.org/10.48550/arXiv.2407.21787
https://doi.org/10.48550/arXiv.2404.03608

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Clémentine Fourrier, Nathan Habib, Thomas Wolf, and Lewis Tunstall. Lighteval: A lightweight
framework for llm evaluation, 2023. URL https://github.com/huggingface/
lighteval.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, et al. Textbooks are all
you need. arXiv preprint arXiv:2306.11644, 2023.

Michael Hassid, Tal Remez, Jonas Gehring, Roy Schwartz, and Yossi Adi. The larger the better? im-
proved LLM code-generation via budget reallocation. In First Conference on Language Modeling,
2024. URL https://openreview.net/forum?id=QJvfpWSpWm.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models
with scalable training strategies. arXiv preprint arXiv:2404.06395, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199–22213, 2022.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi. Mawps:
A math word problem repository. In Proceedings of the 2016 conference of the north american
chapter of the association for computational linguistics: human language technologies, pp. 1152–
1157, 2016.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal, Etash
Guha, Sedrick Keh, Kushal Arora, et al. Datacomp-lm: In search of the next generation of training
sets for language models. arXiv preprint arXiv:2406.11794, 2024.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463, 2023.

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Yelong Shen, Ruochen Xu, Chen Lin, Yujiu
Yang, Jian Jiao, Nan Duan, et al. Rho-1: Not all tokens are what you need. arXiv preprint
arXiv:2404.07965, 2024.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A
challenge dataset for machine reading comprehension with logical reasoning. arXiv preprint
arXiv:2007.08124, 2020.

Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe Zhang, Jinmeng Rao, Steven Zheng, Daiyi
Peng, Diyi Yang, Denny Zhou, et al. Best practices and lessons learned on synthetic data for
language models. arXiv preprint arXiv:2404.07503, 2024a.

13

https://github.com/huggingface/lighteval
https://github.com/huggingface/lighteval
https://openreview.net/forum?id=QJvfpWSpWm

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for
alignment? a comprehensive study of automatic data selection in instruction tuning. In The Twelfth
International Conference on Learning Representations, 2024b. URL https://openreview.
net/forum?id=BTKAeLqLMw.

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, Tanmay Rajpurohit, Peter
Clark, and Ashwin Kalyan. Dynamic prompt learning via policy gradient for semi-structured
mathematical reasoning. In International Conference on Learning Representations (ICLR), 2023.

Risto Luukkonen, Ville Komulainen, Jouni Luoma, Anni Eskelinen, Jenna Kanerva, Hanna-Mari
Kupari, Filip Ginter, Veronika Laippala, Niklas Muennighoff, Aleksandra Piktus, et al. Fingpt:
Large generative models for a small language. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pp. 2710–2726, 2023.

Pratyush Maini, Skyler Seto, He Bai, David Grangier, Yizhe Zhang, and Navdeep Jaitly. Rephras-
ing the web: A recipe for compute and data-efficient language modeling. arXiv preprint
arXiv:2401.16380, 2024.

Sachin Mehta, Mohammad Hossein Sekhavat, Qingqing Cao, Maxwell Horton, Yanzi Jin, Chenfan
Sun, Iman Mirzadeh, Mahyar Najibi, Dmitry Belenko, Peter Zatloukal, et al. Openelm: An
efficient language model family with open-source training and inference framework. arXiv preprint
arXiv:2404.14619, 2024.

Meta. Introducing meta llama 3: The most capable openly available llm to date, 2024. URL
https://ai.meta.com/blog/meta-llama-3.

Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su. A diverse corpus for evaluating and developing
english math word problem solvers. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 975–984, 2020.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Ellen Riloff, David Chiang,
Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pp. 2381–2391, Brussels, Belgium, October-November
2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1260. URL https:
//aclanthology.org/D18-1260.

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra
Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language
models. Advances in Neural Information Processing Systems, 36:50358–50376, 2023.

OpenAI. Introducing openai o1-preview, 2024. URL https://openai.com/index/
introducing-openai-o1-preview.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S
Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings of the 36th
Annual ACM Symposium on User Interface Software and Technology, pp. 1–22, 2023.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. Openwebmath: An open dataset
of high-quality mathematical web text. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=jKHmjlpViu.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pp. 2080–2094, 2021.

Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov, Margaret Mitchell, Colin Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data at
scale. arXiv preprint arXiv:2406.17557, 2024a.

Guilherme Penedo, Hynek Kydlíček, Alessandro Cappelli, Mario Sasko, and Thomas Wolf. Data-
trove: large scale data processing, 2024b. URL https://github.com/huggingface/
datatrove.

14

https://openreview.net/forum?id=BTKAeLqLMw
https://openreview.net/forum?id=BTKAeLqLMw
https://ai.meta.com/blog/meta-llama-3
https://aclanthology.org/D18-1260
https://aclanthology.org/D18-1260
https://openai.com/index/introducing-openai-o1-preview
https://openai.com/index/introducing-openai-o1-preview
https://openreview.net/forum?id=jKHmjlpViu
https://github.com/huggingface/datatrove
https://github.com/huggingface/datatrove

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Hamza Alobeidli,
Alessandro Cappelli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb
dataset for falcon llm: Outperforming curated corpora with web data only. Advances in Neural
Information Processing Systems, 36, 2024c.

Jiantao Qiu, Haijun Lv, Zhenjiang Jin, Rui Wang, Wenchang Ning, Jia Yu, ChaoBin Zhang, Pei Chu,
Yuan Qu, Runyu Peng, et al. Wanjuan-cc: A safe and high-quality open-sourced english webtext
dataset. arXiv preprint arXiv:2402.19282, 2024.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton,
Manish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade
Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. Code llama: Open foundation models for code. CoRR, abs/2308.12950, 2023. doi: 10.
48550/ARXIV.2308.12950. URL https://doi.org/10.48550/arXiv.2308.12950.

Noveen Sachdeva, Benjamin Coleman, Wang-Cheng Kang, Jianmo Ni, Lichan Hong, Ed H Chi,
James Caverlee, Julian McAuley, and Derek Zhiyuan Cheng. How to train data-efficient llms.
arXiv preprint arXiv:2402.09668, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Commonsense
reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Yu Wu,
and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, et al. Using deepspeed
and megatron to train megatron-turing nlg 530b, a large-scale generative language model. arXiv
preprint arXiv:2201.11990, 2022.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute optimally
can be more effective than scaling model parameters. CoRR, abs/2408.03314, 2024. doi: 10.48550/
ARXIV.2408.03314. URL https://doi.org/10.48550/arXiv.2408.03314.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness, and Nolan Dey.
SlimPajama: A 627B token cleaned and deduplicated version of RedPajama, June 2023. URL
https://huggingface.co/datasets/cerebras/SlimPajama-627B.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur,
Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Jha,
Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas
Muennighoff, Aakanksha Naik, Crystal Nam, Matthew Peters, Abhilasha Ravichander, Kyle
Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Evan Walsh,
Luke Zettlemoyer, Noah Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge,

15

https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.48550/arXiv.2408.03314
https://huggingface.co/datasets/cerebras/SlimPajama-627B

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

and Kyle Lo. Dolma: an open corpus of three trillion tokens for language model pretraining
research. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
15725–15788, Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL
https://aclanthology.org/2024.acl-long.840.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A question
answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pp. 4149–4158, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1421. URL https://aclanthology.org/N19-1421.

InternLM Team. Internlm: A multilingual language model with progressively enhanced capabilities,
2023.

Together. Redpajama: an open dataset for training large language models, October 2023. URL
https://github.com/togethercomputer/RedPajama-Data.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209, 2017.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav Chaudhary, Francisco Guzmán,
Armand Joulin, and Edouard Grave. Ccnet: Extracting high quality monolingual datasets from web
crawl data. In Nicoletta Calzolari, Frédéric Béchet, Philippe Blache, Khalid Choukri, Christopher
Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Hélène
Mazo, Asunción Moreno, Jan Odijk, and Stelios Piperidis (eds.), Proceedings of The 12th Language
Resources and Evaluation Conference, LREC 2020, Marseille, France, May 11-16, 2020, pp. 4003–
4012. European Language Resources Association, 2020. URL https://aclanthology.
org/2020.lrec-1.494/.

Alexander Wettig, Aatmik Gupta, Saumya Malik, and Danqi Chen. QuRating: Selecting high-quality
data for training language models. In International Conference on Machine Learning (ICML),
2024.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. An empirical analysis of
compute-optimal inference for problem-solving with language models. CoRR, abs/2408.00724,
2024. doi: 10.48550/ARXIV.2408.00724. URL https://doi.org/10.48550/arXiv.
2408.00724.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. In The Twelfth International Conference on Learning
Representations, 2024.

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy S Liang. Data selection for language
models via importance resampling. Advances in Neural Information Processing Systems, 36:
34201–34227, 2023.

16

https://aclanthology.org/2024.acl-long.840
https://aclanthology.org/N19-1421
https://github.com/togethercomputer/RedPajama-Data
https://aclanthology.org/2020.lrec-1.494/
https://aclanthology.org/2020.lrec-1.494/
https://doi.org/10.48550/arXiv.2408.00724
https://doi.org/10.48550/arXiv.2408.00724

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma,
Jiawei Hong, Kuikun Liu, Ziyi Wang, et al. Internlm-math: Open math large language models
toward verifiable reasoning. arXiv preprint arXiv:2402.06332, 2024.

Zichun Yu, Spandan Das, and Chenyan Xiong. Mates: Model-aware data selection for efficient
pretraining with data influence models. arXiv preprint arXiv:2406.06046, 2024.

Ann Yuan, Andy Coenen, Emily Reif, and Daphne Ippolito. Wordcraft: story writing with large
language models. In 27th International Conference on Intelligent User Interfaces, pp. 841–852,
2022.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. Self-rewarding language models. arXiv preprint arXiv:2401.10020, 2024.

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen. Mammoth2: Scaling instructions from the
web. arXiv preprint arXiv:2405.03548, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Ge Zhang, Scott Qu, Jiaheng Liu, Chenchen Zhang, Chenghua Lin, Chou Leuang Yu, Danny Pan,
Esther Cheng, Jie Liu, Qunshu Lin, et al. Map-neo: Highly capable and transparent bilingual large
language model series. arXiv preprint arXiv:2405.19327, 2024a.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385, 2024b.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania, Bernard
Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. Pytorch fsdp: Experiences on
scaling fully sharded data parallel. Proc. VLDB Endow., 16(12):3848–3860, aug 2023. ISSN 2150-
8097. doi: 10.14778/3611540.3611569. URL https://doi.org/10.14778/3611540.
3611569.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, and Zheyan Luo. Llamafactory: Unified
efficient fine-tuning of 100+ language models. arXiv preprint arXiv:2403.13372, 2024.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Benchmarking code
generation with diverse function calls and complex instructions. arXiv preprint arXiv:2406.15877,
2024.

17

https://doi.org/10.14778/3611540.3611569
https://doi.org/10.14778/3611540.3611569

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A PROX IMPLEMENTATION DETAILS

A.1 SUPERVISED FINE-TUNING DATA COLLECTION

In this section, we elaborate on the detailed prompts used to generate the SFT data for model
adaptation. In principle, We apply the same prompts for general domain corpora (including C4 (Raffel
et al., 2020), RedPajama-V2 (Together, 2023), FineWeb (Penedo et al., 2024a)) and mathematical
corpus (OpenWebMath (Paster et al., 2024)). All seed data is randomly sampled from the raw
corpora.

Document-level Programming We apply two zero-shot scoring prompts to evaluate and assign
a combined score to each web document before synthesizing the (doc, program) pair. One of
the prompts is the same as the one used in FineWeb-Edu, which is a prompt to let the model decide
the educational score. Additionally in PROX, we add a new format scoring prompt, focusing on the
format and structure of the document. Both prompts follow the additive style proposed by Yuan
et al. (2024). Given these prompts, the language models generate short critiques and assign a score
between 0 and 5.

In FineWeb-Edu, documents are retained only if the educational score (Edu Score) is greater than
2. However, this approach is too aggressive when attempting to preserve a larger portion of the
tokens. For instance, FineWeb-Edu retains only 1.3 trillion tokens out of the original 15 trillion in the
FineWeb corpus. To recall more documents, we relax the filtering criteria by incorporating the format
score as follows:

Filtering Criteria =

Edu Score ≥ 3, keep document;
Edu Score = 2 and Format Score ≥ 4, keep document;
Edu Score < 2, drop document.

(2)

Finally, we use LLAMA-3-70B-INSTRUCT to annotate 51K data, splitting 5K for validation. 3

The FineWeb-Edu prompt and our format scoring prompts are presented in Figure 9.

Chunk-level Programming We apply chunk-level programming for more fine-grained operations.
We find three very popular patterns that keep occurring in all corpus: (1) menu, navigation bars at the
top of the document; (2) button, html elements, links; (3) footers.

In general, LLMs work well given within 5 few-shot examples. But to generate these program
snippets more accurately, we apply few-shot prompting with LLAMA-3-70B-INSTRUCT for each
type of noise. We merge these programs aiming to clean different types of noises, perform some
grammar checking, and make them the final data for training and validation during the chunk-level
refining stage. The annotated source comes from the same seed document used in the previous
document filtering stage, accumulating to about 57K data, of which 5K is split as validation.

After the release of LLAMA-3.1-405B-INSTRUCT, We also try to use only one prompt aiming to
remove all the noises. However, we find such practices lead to aggressive removal of the original
document, often making the document less coherent. Finally, we decide to only keep the head
part and tail part of the program generated by LLAMA-3.1-405B-INSTRUCT, which is previously
mentioned in FinGPT (Luukkonen et al., 2023), and merge with the previous programs generated by
LLAMA-3-70B-INSTRUCT.

The few-shot prompts used to generate program snippets are presented in Figure 10, Figure 11 and
Figure 12.

3In the earlier stage of experiments, we found that a dataset of thousands of data points (i.e., 5K) is also
sufficient to equip the model with the “programming” abilities. This generally holds true for both document-level
and chunk-level programming tasks. Scaling the dataset size could enhance the model’s robustness across
various documents so we finally enlarge the pool to over 50K.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Edu Scoring Prompts (Penedo et al., 2024a)

Below is an extract from a web page. Evaluate whether the page has a high educational value and could be useful in an educational setting for teaching from
primary school to grade school levels using the additive 5-point scoring system described below. Points are accumulated based on the satisfaction of each criterion:

- Add 1 point if the extract provides some basic information relevant to educational topics, even if it includes some irrelevant or non-academic
content like advertisements and promotional material. - Add another point if the extract addresses certain elements pertinent to education but does not align
closely with educational standards. It might mix educational content with non-educational material, offering a superficial overview of potentially useful topics,
or presenting information in a disorganized manner and incoherent writing style. - Award a third point if the extract is appropriate for educational use and
introduces key concepts relevant to school curricula. It is coherent though it may not be comprehensive or could include some extraneous information. It may
resemble an introductory section of a textbook or a basic tutorial that is suitable for learning but has notable limitations like treating concepts that are too
complex for grade school students.
- Grant a fourth point if the extract highly relevant and beneficial for educational purposes for a level not higher than grade school, exhibiting a clear and
consistent writing style. It could be similar to a chapter from a textbook or a tutorial, offering substantial educational content, including exercises and solutions,
with minimal irrelevant information, and the concepts aren’t too advanced for grade school students. The content is coherent, focused, and valuable for structured
learning.
- Bestow a fifth point if the extract is outstanding in its educational value, perfectly suited for teaching either at primary school or grade school. It follows
detailed reasoning, the writing style is easy to follow and offers profound and thorough insights into the subject matter, devoid of any non-educational or
complex content.
The extract:
<EXAMPLE>.
After examining the extract:
- Briefly justify your total score, up to 100 words.

- Conclude with the score using the format: “Educational score: <total points>”

Format Scoring Prompts

Evaluate the provided web content extraction sample. Points are accumulated based on the satisfaction of each criterion:

0. Start with 0 points.
1. Add 1 point if the extract contains some readable content, even if it includes a significant amount of HTML tags, navigation elements, or other web page
artifacts. The main content should be identifiable, albeit mixed with noise.
2. Add another point if the extract shows signs of basic cleaning. Most obvious HTML tags have been removed, though some may remain. The text structure
begins to emerge, but non-content elements (e.g., footer links, button text) may still be present. The writing style may be disjointed due to remnants of page
structure.
3. Award a third point if the extract is largely cleaned of HTML and most non-content elements. The main body of the content is intact and coherent. Some
extraneous information (e.g., isolated URLs, timestamps, image alt text) may persist, but doesn’t significantly impede readability. The extract resembles a rough
draft of the original content.
4. Grant a fourth point if the extract is highly refined, with clear paragraph structure and formatting. Almost all HTML tags and non-content elements have been
eliminated. Minimal noise remains. The content flows well and reads like a near-final draft, with consistent formatting and style.
5. Bestow a fifth point if the extraction is flawless. The content is entirely clean, preserving the original structure (paragraphs, headings, lists) without any
HTML tags or web page elements. No extraneous information is present. The extract reads as if it were a professionally edited document, perfectly capturing
the original content.
The extract:
<EXAMPLE>.
After examining the extract:
- Briefly justify your total score, up to 100 words.

- Conclude with the score using the format: "Extraction Quality Score: <total points>"

Figure 9: Edu scoring prompts used in FineWeb (Penedo et al., 2024a) and newly proposed “format
scoring” prompts for PROX.

Comparison with FineWeb-Edu’s Approach Compared with the recently released FineWeb-Edu,
which also uses model-based scoring by applying a BERT model to evaluate documents, we find
that our relaxed design retains more tokens without compromising overall data quality. Specifically,
FineWeb-Edu retains about 1.3 trillion tokens out of a 15 trillion token corpus (less than 9%), while
PROX curation typically keeps 23% to 28%, providing up to 3× more unique tokens for training.

Moreover, we conducted a preliminary study by training 0.7 billion parameter models on these
data. We found that models trained on our curated data achieved similar downstream performance,
as shown in Table 6. Therefore, we believe our current strategy is more suitable for large-scale
pre-training, as it is capable of retaining more tokens while maintaining very high data quality.

Table 6: Comparing FineWeb-Edu with our strategy on TLM-S.

Methods Kept Ratio ARC-C ARC-E CSQA HellaSwag MMLU OBQA PiQA SIQA WinoG SciQ AVG #Win
FineWeb-Edu 8.6% 30.3 58.7 29.0 42.0 30.4 31.8 67.7 38.1 50.4 73.3 45.2 5/10

FineWeb-PROX 28.0% 27.7 55.7 30.4 44.2 29.5 31.0 68.8 39.3 52.2 72.8 45.2 5/10

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Navigation Removal Prompts

You’re tasked with generating Python programs to clean web text strings by removing navigation bars. The web text will be presented with line numbers starting
from `[000]`. Your task is to use the following pre-defined functions to clean the text:

```python

def untouch_doc():
"""leave the clean doc untouched, for tagging clean and high quality doc."""

def remove_lines(start: int, end: int):
"""remove noisy lines from `start` until `end`, including `end`."""

```

Your goal is to identify navigation bars or menu items at the beginning of the text and remove them using the `remove_lines()` function. If the text
doesn’t contain a navigation bar or menu items, use the `untouch_doc()` function to indicate that no cleaning is necessary. If the line contains other text
other than navigation, also call `untouch_doc` to escape overkilling.
Here are some examples to guide you:
Example 1:

[doc]
[000] Home | Products | About Us | Contact
[001] Welcome to our website
[002] Here's our main content...
[/doc]
Program:
```python
remove_lines(start=0, end=0)
```

Example 2:

[doc]
341 US 479 Hoffman v. United States
341 US 479 Hoffman v. United States 341 U.S. 479
95 L.Ed. 1118
HOFFMANv.UNITED STATES.
Mr. William A. Gray, Philadelphia, Pa., for petitioner.
Mr. John F. Davis, Washington, D.C., for respondent.
......
[/doc]
Program:
```python
untouch_doc()
```

Example 3:

[doc]
[000]Police Search Tunbridge Wells House Over Human Remains Tip Off
[001]Posted: 16/04/2012 10:44 Updated: 16/04/2012 10:44 reddit stumble
[002]Crime, Body Buried In House, Buried Body, Buried Remains, Tip-Off, Uk News, Uk Police,
[003]Detectives are searching the gardens of a house following information that human remains may be
buried there.
[/doc]
Program:
```python
untouch_doc()
```

Example 4:

[doc]
[000]Home > Bollywood News > Bollywood Stars clash on Indian TV Bollywood Stars clash on Indian TV
[001]By Lekha Madhavan09:47 pm Betting big on the festive season, general entertainment channels (GECs)
are launching celebrity-driven shows, but media buyers are concerned about the audience split that is set
to happen.
[002]The fourth season of Bigg Boss on Colors is almost certain to clash with the fourth season of Kaun
Banega Crorepati (KBC) on Sony Entertainment Television (SET) in the second week of October.
[003]Another big property, Master Chef, to be hosted by Akshay Kumar, on STAR Plus, is also expected to go
on air in October. However, the channel is yet to disclose the launch date.
[004]Big-budget shows like these are often loss-making propositions for channels, as the operating cost is
very high and advertisement revenues do not suffice to cover the cost.
[005]Source: IBNS
[/doc]
Program:
```python
untouch_doc()
```

For each given web text, analyze the content and determine if there’s a navigation bar or menu items at the beginning. If present, use `remove_lines()` or
`normalize()` to remove them. If not, use `untouch_doc()` to indicate that no cleaning is needed.
Example: <EXAMPLE>.
After examining the web text: - Briefly describe if the web extract contains navigation bar at the begining (10 lines).
- You must not mistakenly decide that title of the page is navigation bar and remove it.
- When the whole line is navigation bar, call `remove_lines`; if the line contains other information, call `normalize` to remove part of it.

- Give your program using the same format: ```python[your code]```

Figure 10: Few-shot navigation bar removal prompts.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

URL Removal Prompts

You’re tasked with generating Python programs to clean web text strings by removing http lines. The web text will be presented with line numbers starting from
`[000]`. Your task is to use the following pre-defined functions to clean the text:

```python

def untouch_doc():
"""leave the clean doc untouched, for tagging clean and high quality doc."""

def remove_lines(start: int, end: int):
"""remove noisy lines from `start` until `end`, including `end`."""

def normalize(source_str: str, target_str: str=""):
"""turn noisy strings into normalized strings."""

```

Your goal is to identify http links from the text and remove them using the `remove_lines()` or `normalize()` function. If the text doesn’t contain
http lines, use the `untouch_doc()` function to indicate that no cleaning is necessary.
Here are some examples to guide you:
Example 1:

[doc]
[013] http://groups.google.com/group/toowoombalinuxLast
[014] Breaking News: Major Event Unfolds
[015] http://code.google.com/p/inxi/
[/doc]
Program:
```python
# the whole line-[013] is http, so remove the line-[013]
remove_lines(start=13, end=13)
# the whole line-[015] is http, so remove the line-[015]
remove_lines(start=15, end=15)
```

Example 2:

[doc]
[000] The Impact of Climate Change on Global Ecosystems
[001] By Dr. Jane Smith
[002] Climate change continues to be a pressing issue...
[/doc]
Program:
```python
untouch_doc()
```

Example 3:

[doc]
[021]Bow-wow
[022]http://groups.google.com/group/toowoombalinuxLast edited by Puppyt on Mon 06 Jun 2011, 00:23; edited
1 time in total
[023]I would like to see something like Jitsi
[024]http://www.jitsi.org/. Plus some others incorporated into a puppy distro.
[/doc]
Program:
```python
# the http link in line 22 and line 24 comes with other text, so use normalize to ONLY remove the link
without touching text.
normalize(source_str="http://groups.google.com/group/toowoombalinuxLast", target_str="")
normalize(source_str="http://www.jitsi.org/.", target_str="")
```

For each given web text, analyze the content and determine if there’s a navigation bar or menu items at the beginning. If present, use `remove_lines()` or
`normalize()` to remove them. If not, use `untouch_doc()` to indicate that no cleaning is needed.
Example: <EXAMPLE>.
After examining the web text: - do not remove text together with http.
- Briefly describe if the web extract contains http links; and make sure remove them will not influence the main content.
- Program only contain sequences of function callings and comments, no other codes.
- note line number starts with 0. make accurate annotations about line number. put the exact int line number of the given line. do not add 1 or minus 1.
- Give your program using the same format: ```python[your code]```

Figure 11: Few-shot URL removal prompts.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Footer Removal Prompts

You’re tasked with generating Python programs to clean web text strings by removing footer sections, references. The web text will be presented with line
numbers starting from `[000]`. Your task is to use the following pre-defined functions to clean the text:

```python

def untouch_doc():
"""leave the clean doc untouched, for tagging clean and high quality doc."""

def remove_lines(start: int, end: int):
"""remove noisy lines from `start` until `end`, including `end`."""

def normalize(source_str: str, target_str: str=""):
"""turn noisy strings into normalized strings."""

```

Your goal is to identify footer sections from the text and remove them using the `remove_lines()` function. Footers and references typically appear at the
end of the text and may contain information such as copyright notices, contact details, or navigation links. If the text doesn’t contain a footer section or any
references, use the `untouch_doc()` function to indicate that no cleaning is necessary.
Here are some examples to guide you:
Example 1:

[doc]
[013] In conclusion, the study demonstrates significant findings.
[014] © 2023 Research Institute. All rights reserved.
[015] Contact: info@research-institute.com
[016] Follow us on social media: @ResearchInst
[/doc]
Program:
```python
# Remove the footer section starting from line 14
remove_lines(start=14, end=16)
```

Example 2:

[doc]
[000] The Impact of Climate Change on Global Ecosystems
[001] By Dr. Jane Smith
[002] Climate change continues to be a pressing issue...
[003] Further research is needed to fully understand its implications.
[/doc]
Program:
```python
untouch_doc()
```

Example 3:

[doc]
[020] Thank you for reading our newsletter.
[021] Stay informed with our latest updates!
[022] ---
[023] Unsubscribe | Privacy Policy | Terms of Service
[024] NewsletterCo, 123 Main St, Anytown, USA
[/doc]
Program:
```python
# Remove the footer section starting from the divider
remove_lines(start=22, end=24)
```

For each given web text, analyze the content and determine if there is a footer section or reference. If present, use `remove_lines()` to remove it. If not,
use `untouch_doc()` to indicate that no cleaning is needed.
Example: <EXAMPLE>.
After examining the web text:
- Briefly describe if the web extract contains a footer section or references; ensure that removing it will not influence the main content. If not, simply call
`untouch_doc`.
- The program should only contain sequences of function calls and comments, no other code.
- Note that line numbers start with 0. Make accurate annotations about line numbers. Put the exact int line number of the given line. Do not add 1 or subtract 1.

- Give your program using the same format: ```python[your code]```

Figure 12: Few-shot footer removal prompts.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

A.2 SUPERVISED FINE-TUNING DETAILS

Training Parameters We use llama-factory (Zheng et al., 2024) as our main code base for the
Adaptation Stage. We apply full parameter supervised fine-tuning on our base models: we train on
the whole seed dataset for 3 to 5 epochs, with batch size as 64, and cosine learning rate schedular (lr
from 1e-5→ 1e-6). Also, we find that the base model converges quite fast on these tasks, thus we do
not apply further tuning over hyper-parameters, and keep the same training configurations for all the
adaptation tasks.

A.3 EVALUATION METRICS FOR PROX REFINING TASKS

Document-level Refining Task The document filtering task is indeed equal to a binary classification
problem, where documents are classified as either to be kept (1) or dropped (0). We evaluate the
performance using the F1 score, calculated as follows:

F1 = 2 · Precision · Recall
Precision + Recall

(3)

where:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(4)

The F1 score ranges from 0 to 1 and we assume a higher F1 score indicates better classification
performance.

Chunk-level Refining Task This task actually contains two parts: line removal and string normal-
ization. However, we find it rather hard to evaluate the normalization task, so we use the line removal
accuracy to reflect the refining performance. We propose a line-wise F1 score metric:

The F1 score is computed by comparing the predicted noisy lines with the labeled noisy lines. First,
we extract the noisy line indexes from both the prediction and the label. Then, we calculate the
overlap between these two sets. The true positives (TP) are the number of lines in this overlap. False
positives (FP) are the predicted noisy lines that are not in the labeled set, and false negatives (FN) are
the labeled noisy lines that are not in the predicted set. The calculation is actually simple:

TP (True Positives) = |Predicted Noisy Lines ∩ Actual Noisy Lines| (5)

FP (False Positives) = |Predicted Noisy Lines \ Actual Noisy Lines| (6)

FN (False Negatives) = |Actual Noisy Lines \ Predicted Noisy Lines| (7)

Then we use same calculation of F1 score mentioned before, i.e., F1 = 2·TP
2·TP+FP+FN .

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

A.4 PROX INFERENCE AT SCALE

Thanks to the Datatrove project (Penedo et al., 2024b), we are able to efficiently split, and load the
whole corpus to each worker (which normally equals the number of GPUs since small models do not
require tensor parallelism). We use the vllm (Kwon et al., 2023) to perform large-scale inference.

For chunk-wise programming, we will split the original document into several chunks, controlling
the tokens of each chunk less than the context window. In practice, we normally replace the token
count process with a word count process to save time and control the window size as 1, 500. The
general algorithm is implemented as below:

Algorithm 1 Document Chunk Splitting Algorithm

Require: Document D, context window size W
Ensure: Set of chunks C

1: C ← ∅, c← ∅
2: for each line l in D do
3: if TokenCount(c+ l) ≤W then
4: c← c+ l ▷ Add line to current chunk
5: else
6: if c ̸= ∅ then
7: C ← C ∪ {c} ▷ Save current chunk
8: end if
9: if TokenCount(l) ≤W then

10: c← l ▷ Start new chunk
11: else
12: C ← C ∪ {FlagAsSkipped(l)} ▷ Flag long line
13: c← ∅
14: end if
15: end if
16: end for
17: if c ̸= ∅ then
18: C ← C ∪ {c} ▷ Add the final chunk
19: end if
20: return C

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

B PRE-TRAINING DETAILS

B.1 TRAINING INFRASTRUCTURE

Code Base Thanks to LitGPT (AI, 2023), and TinyLlama (Zhang et al., 2024b), we are able to
flexibly train all our base models. We inherit several fused kernels from the TinyLlaMA, which is
installed from the FlashAttention (Dao, 2024) including fused rotary positional embedding (RoPE) (Su
et al., 2024), layer normalization, and cross-entropy loss to help saving memory. We mainly apply
FSDP strategy (Zhao et al., 2023) to enable training larger scale models on multiple nodes.

B.2 PRE-TRAINING CORPORA

Due to computing constraints and for fair comparison purposes, we cannot exhaustively train over
the whole corpora. Thus, we apply random sampling for some of the pre-training corpora and make
them as our pre-training data pools.

• For RedPajama-V2, We randomly download 70 file shards, obtaining a total data pool
consisting about 500B tokens, we evenly separate it into 8 dumps, with each containing
about 62.5B tokens; due to computing constraints, we use only 1 dump for verifying effec-
tiveness (Section 3.2) and use 2 dumps for scaling the training to 50B tokens (Section 3.3);

• For C4, we download the whole dataset, which contains about 198B tokens;
• For FineWeb, we download the official 350B sample; 4

• For OpenWebMath, we download the whole dataset.

We report the corpora details applied in each experiment in Table 7.

Table 7: The detailed breakdown for pre-training corpora in all experiments.

Section Experiments Source Data Description Corpora Size (B) Train Tokens (B) Epoch

Section 3.2 Table 2, Figure 4 RedPajama-V2

raw data size 62.5

26.2

0.42
after rule-based filtering 31.5 0.83
after PROX-D 19.0 1.38
after PROX-D+C 16.0 1.64

Section 3.2 Table 3 C4
random -

26.2
-

after PROX-D 41.5 (GPT-NeoX) 0.63
other baselines - -

Section 3.3 Figure 5 RedPajama-V2

raw data size 62.5

26.2

0.42
after PROX-D+C (using PROX-xs) 14.5 1.80
after PROX-D+C (using PROX-s) 16.0 1.64
after PROX-D+C (using PROX-m) 18.0 1.46

Section 3.3 Figure 6

C4
raw data size 198.0

52.4

0.53
after PROX-D+C (using PROX-xs) 44.5 1.18

RedPajama-V2
raw data size 123.5 0.42
after PROX-D+C (using PROX-xs) 29 1.81

FineWeb
raw data size 79.0 0.66
after PROX-D+C (using PROX-xs) 18.0 2.91

Section 3.4 Table 5, 1.1B model OpenWebMath

raw data size 15.0

15.7

1.05
after rule-based filtering 6.5 2.40

after PROX-D 5.5 2.85
after PROX-D+C 4.7 3.49

Section 3.4 Table 5, 7B model OpenWebMath
raw data size 15.0

10.5
0.70

after PROX-D 5.5 1.91
after PROX-D+C 4.7 2.23

4https://huggingface.co/datasets/HuggingFaceFW/fineweb/tree/main/
sample/350BT

25

https://huggingface.co/datasets/HuggingFaceFW/fineweb/tree/main/sample/350BT
https://huggingface.co/datasets/HuggingFaceFW/fineweb/tree/main/sample/350BT

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

B.3 MODEL CONFIGURATION AND TRAINING PARAMETERS

Table 8: The details of the pre-training experiments’ model architecture.

Model Hidden Size Intermediate Size Context Len Heads Layers Vocab Size # Params (w/o embed)
Training From Scratch

TLM-XS 1,280 2,048 2,048 16 24 32,000 354,284,800 (313,324,800)
TLM-S 1,536 4,864 2,048 24 24 32,000 758,982,144 (709,830,144)
TLM-M 2,048 8,192 2,048 32 24 32,000 1,741,785,088 (1,676,249,088)

PYTHIA-410M 1,024 4,096 1,024 16 24 50,304 405,334,016 (353,822,720)
PYTHIA-1B 2,048 8,192 1,024 8 16 50,304 1,011,781,632 (908,759,040)

Continual Pre-training

TINYLLAMA-1.1B 2,048 5,632 2,048 32 22 32,000 1,100,048,384 (1,034,512,384)
LLAMA-2-7B 4,096 11,008 4,096 32 32 32,000 6,738,415,616 (6,607,343,616)
CODELLAMA-7B 4,096 11,008 4,096 32 32 32,016 6,738,546,688 (6,607,409,152)
MISTRAL-7B 4,096 14,336 4,096 32/8 (GQA) 32 32,000 7,241,732,096 (7,110,660,096)

Table 9: Training hyper-parameters of all base models.

Model Context
Length Batch Size Max Steps Warmup

Steps
Weight
Decay Optimizer LR

Scheular LR

Training from Scratch

TLM-XS 1,024 2,048 12,500 500 0.1 AdamW cosine 5e-4→ 5e-5
TLM-S 1,024 2,048 12,500 500 0.1 AdamW cosine 5e-4→ 5e-6
TLM-M 1,024 2,048 12,500/2,5000 500 0.1 AdamW cosine 3e-4→ 3e-5

PYTHIA-410M 512 1,024 50,200 2,000 0.1 AdamW WSD 1e-3→ 6.25e-5
PYTHIA-1B 512 1,024 50,200 2,000 0.1 AdamW WSD 1e-3→ 6.25e-5

Continual Pre-training

TINYLLAMA-1.1B 2,048 1,024 7,500 0 0.1 AdamW cosine 8e-5→ 8e-6
LLAMA-2-7B 4096 256 15,000 (early stop at 10,000) 0 0.1 AdamW cosine 8e-5→ 8e-6
CODELLAMA-7B 4096 1024 3,750 (early stop at 2,500) 0 0.1 AdamW cosine 3e-4→ 3e-5
MISTRAL-7B 4,096 256 15,000 (early stop at 10,000) 0 0.1 AdamW cosine 2e-5→ 2e-6

Base Model Selection Our pre-training experiments are conducted using various sizes of decoder-
only language models.

1. To verify different stages’ effectiveness of PROX, we employ a 750M sized model sharing LLAMA-
2 architecture (Touvron et al., 2023b), denoted as TLM-S, used for both pre-training from scratch
and refining. We also compare PROX with data selection methods using PYTHIA-410M/1B’s
architecture (Biderman et al., 2023), as those employed in MATES (Yu et al., 2024).

2. For further evaluation of PROX using different refining and base model sizes, we scale the model
sizes from 350M (0.5× smaller, denoted as TLM-XS) and 1.7B (2× larger, denoted as TLM-M),
all based on the LLAMA-2 architecture.

3. For domain-specific continual pre-training, we select TINYLLAMA-1.1B (Zhang et al., 2024b),
LLAMA-2 (Touvron et al., 2023b), CODELLAMA (Rozière et al., 2023) and MISTRAL-7B (Jiang
et al., 2023) as representative base models for their adequate training and solid performance.

Model Architecture The models we used in general and continual pre-training are presented at
Table 8 with detailed architecture configuration.

Training Hyperparameter Choice We primarily use a cosine learning rate scheduler and follow
established settings used in Zhang et al. (2024b) and Lin et al. (2024). The default configurations for
each experiment can be found below and we elaborate on full details in Table 9.

1. For general pre-training experiments, we set the learning rate to 5e-4 for TLM-XS and TLM-S,
3e-4 for TLM-M; the maximum sequence lengths are uniformly set to 2048, and the global batch
size is set to 2M tokens.

2. Additionally, we align all our hyper-parameters with those used in MATES (Yu et al., 2024) to
facilitate a direct comparison with their existing data selection methods, as previously shown in

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 3. In this case, we switch to the warmup-stable-decay (WSD) learning rate scheduler (Hu
et al., 2024), as implemented in MATES. For a fair comparison with baselines implemented in
MATES, we apply the exact same WSD Schedular (Hu et al., 2024):

lr(t) =

t
W · η, if t < W

η, if W ≤ t < S

0.54·(t−S)/D · η, if S ≤ t < S +D

(8)

where W equals to 2000, S equals to 50000, D equals to 200.
3. For continual pre-training experiments, we set different hyperparameters for different base models,

as shown in Table 9. We apply an early-stop mechanism mentioned in INTERNLM2-MATH (Ying
et al., 2024) for 7B model experiments. We mainly refer to these settings to the setup reported
in Rho-1 (Lin et al., 2024) and LLEMMA (Azerbayev et al., 2024). We do not use warmup in
continual pre-training experiments.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

C PROX BASELINE SELECTION

To ensure a fair comparison w.r.t. training cost, we keep most of the training hyperparameters, such
as training steps and batch size, consistent across baselines, with only the data refining and selection
pipelines differing. We compare PROX to a series of baselines:

1. In § 3.2, to verify PROX’s effectiveness, we first compare with PROX with regular pre-training over
the raw RedPajama-V2 data. We also introduce heuristic baselines used to curate the FineWeb
corpora, which is the combination of three filtering strategies from C4 (Raffel et al., 2020),
Gopher (Rae et al., 2021), and newly crafted rules (as FineWeb rules). Apart from rule-based base-
lines, we also introduce existing data selection techniques proposed in previous works, including
(1) importance resampling: DSIR (Xie et al., 2023); (2) model-based selection: DsDM (Engstrom
et al., 2024), MATES (Yu et al., 2024), and QuRating (Wettig et al., 2024).

2. In § 3.3, to test PROX on different model sizes and training corpora, we finally scale the TLM-M’s
training tokens to 50B over RedPajama-V2, C4, and FineWeb. To show PROX efficiency, we
then directly compare with models covering a variety of pre-training approaches including (1)
large-scale pre-training: TINYLLAMA-1.1B (Zhang et al., 2024b) trained on 3T tokens; (2) model
pruning from existing models: (SHEADLLAMA (Xia et al., 2024) pruned from LLAMA-2 and
trained on extra 50B tokens); (3) LLM synthesis (INSTRUCTIONLM-1.3B (Cheng et al., 2024)
trained on MISTRAL-7B generated data and COSMO-1.8B (Ben Allal et al., 2024) trained on
MIXTRAL-8x7B generated data).

3. In § 3.4’s specific domain continual pre-training, apart from standard continual pre-training
on TINYLLAMA-1.1B, LLAMA-2-7B, CODELLAMA-7B, and MISTRAL-7B, we additionally
introduce with well-known and strong baselines trained on public (or partially public) data,
including RHO-1 (Lin et al., 2024), INTERNLM2-MATH (Ying et al., 2024), LLEMMA (Azerbayev
et al., 2024), and an internal checkpoint reported in DEEPSEEK-MATH (Shao et al., 2024).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

D DOWNSTREAM TASKS EVALUATION

D.1 GENERAL PRE-TRAINING EVALUATION

Lighteval Configurations We mainly borrow the evaluation benchmarks from FineWeb’s nine
selected “early signal” tasks (Penedo et al., 2024a), and use the implementation of lighteval (Fourrier
et al., 2023) to test all our base models. We also introduce SciQ (Welbl et al., 2017) which is widely
used in previous works and proved a good testbed (Mehta et al., 2024; Wettig et al., 2024). By default,
we report the normalized zero-shot accuracy. All nine benchmarks are listed at below:

• ARC (Clark et al., 2018): including ARC-Easy (ARC-E) and ARC-Challenge (ARC-C)

• CommonSense QA (Talmor et al., 2019) (CSQA)

• HellaSwag (Zellers et al., 2019)

• MMLU (Hendrycks et al., 2021)

• OpenBook QA (Mihaylov et al., 2018) (OBQA)

• PIQA (Bisk et al., 2020)

• SocialIQA (Sap et al., 2019) (SIQA)

• WinoGrande (Sakaguchi et al., 2021) (WinoG)

• SciQ (Welbl et al., 2017)

We use the same configuration used in FineWeb’s, which randomly picks 1, 000 samples for each
dataset (for MMLU, it selects 1, 000 samples for each of the 57 subsets), and reports the normalized
accuracy. This average performance is calculated over the nine benchmarks, where ARC-C and
ARC-E are considered as two separate benchmarks, and MMLU is treated as a single benchmark.
This approach differs slightly from the aggregation score calculation in FineWeb, as we believe
MMLU’s performance is relatively unstable, and we aim to give equal weight to all benchmarks,
preventing MMLU from becoming a dominant factor. For the original lighteval scores, please refer
to the §E.1, where we include a dynamic result curve that clearly illustrates the fluctuations in each
benchmark.

We choose to present zero-shot evaluation mainly following settings used in all FineWeb’s abla-
tion experiments (Penedo et al., 2024a). We find the FineWeb evaluation maintains a very stable
performance curve when training tokens gradually accumulate. Also, it is very time-efficient for
fast evaluation regarding our extensive pre-training experiments(20+ final runs, with hundreds of
intermediate checkpoints). We also present few-shot evaluation results in Table 10. Also, we find
that not all benchmarks show better performance given few-shot prompts. For example, we do not
observe a very clear performance boost on HellaSwag, MMLU, PIQA, and WinoGrande. Similar
observation can also be noticed in recent works (Mehta et al., 2024; Muennighoff et al., 2023), where
0-shot Hellaswag and 0-shot WinoGrande show very close performances with 5-shot ones.

Based on these findings and considerations, we present zero-shot evaluation results in Table 2,
Figure 4 and use it as our default evaluation metrics.

LM-Eval Harness Configurations We also include the lm-evel-harness (Biderman et al., 2024)
for zero-shot and few-shot performance, for fair comparison with different data selection methods
including DSIR (Xie et al., 2023), DsDm (Engstrom et al., 2024), Qurating (Wettig et al., 2024)
MATES (Yu et al., 2024). Similar to lighteval configuration, we include:

• ARC: including ARC-E and ARC-C

• HellaSwag

• LogiQA (Liu et al., 2020)

• OpenBook QA (OBQA)

• PIQA

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

• WinoGrande (WinoG)
• SciQ

We exclude the BoolQ (Clark et al., 2019) tasks from MATES (Yu et al., 2024), leaving eight tasks in
total. This decision was made because we observed that the BoolQ benchmark performance exhibited
severe fluctuations and showed a notable declining trend in the early stages. Therefore, we decided
to exclude it from our evaluation set. Such a similar trend is also observed earlier in the OpenELM
work (Mehta et al., 2024). We report both zero-shot and two-shot performance. If the metrics include
normalized accuracy, we use that measure; otherwise, we use accuracy.

D.2 CONTINUAL PRE-TRAINING EVALUATION

We evaluate all benchmarks implemented in the math-eval-harness repository,5 including:

• Math (MATH) (Hendrycks et al., 2021)
• GSM8K (Cobbe et al., 2021)
• SVAMP (Patel et al., 2021)
• ASDiv (Miao et al., 2020)
• MAWPS (Koncel-Kedziorski et al., 2016)
• MathQA (MQA) (Amini et al., 2019)
• TableMWP (TAB) (Lu et al., 2023)
• SAT MATH (Azerbayev et al., 2024)

We use few-shot CoT prompting (Wei et al., 2022) when evaluating these tasks, and report the
accuracy of each task.

E FULL EVALUATION RESULTS

E.1 DETAILED PERFORMANCE ON 10 BENCHMARKS IN SEC 3.2

We report full evaluation results of checkpoints saved at different training steps in Section 3.2. We
present the results for 0.7B models trained on data curated by different methods in Table 11, including
models trained on raw data, rule-based filtered data, fasttext-filtered data, and data curated by PROX.

Table 10: Few-shot performance on 10 selected tasks. All models use the same TLM-S architecture
and are trained on RedPajama-V2. The doc-level (PROX-D) and chunk-level (PROX-C) refining are
done by fine-tuning the raw data pre-trained model as a refining model same as Table 2.

Method ARC-C ARC-E CSQA HellaS MMLU OBQA PIQA SIQA WinoG SciQ AVG
Raw 25.5 50.3 33.2 39.9 27.8 29.2 67.8 38.7 52.4 71.5 43.6
Rule-based 26.2 50.9 34.1 41.8 27.8 29.2 66.8 40.5 52 72.8 44.2
PROX-D 29.1 55.7 35.6 41.8 29.4 29.2 66.8 38.3 51.3 77 45.4
PROX-D+C 27.2 59.9 38.3 42.8 29.7 31.4 67.1 40.3 50.2 75.8 46.3

5https://github.com/ZubinGou/math-evaluation-harness

30

https://github.com/ZubinGou/math-evaluation-harness

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Table 11: Full evaluation results on TLM-S.

Train
Steps ARC-C ARC-E CSQA HellaSwag MMLU OBQA PiQA SIQA WinoG SciQ AVG

Raw Data

2500 22.1 39.0 27.6 31.6 25.9 26.6 61.2 37.3 48.9 59.1 37.9
5000 24.4 41.2 28.8 34.8 26.7 27.0 64.9 39.3 50.4 61.9 39.9
7500 26.5 43.9 29.5 37.2 27.2 29.0 64.8 38.7 50.8 68.2 41.6
10000 25.8 43.5 29.1 38.8 27.4 29.8 66.9 39.0 51.2 66.2 41.8
12500 26.1 44.3 29.7 39.1 27.3 29.2 66.9 39.0 52.0 67.4 42.1

Gopher

2500 22.3 39.4 26.6 31.3 25.6 27.0 61.1 38.9 51.3 58.6 38.2
5000 25.1 41.4 29.8 34.3 26.4 27.2 64.5 39.6 52.1 62.9 40.3
7500 26.5 43.0 30.5 38.5 27.2 28.8 65.7 38.2 53.7 66.4 41.8
10000 26.2 44.2 31.8 39.2 27.5 29.4 66.6 38.9 51.3 68.2 42.3
12500 25.7 44.0 31.3 40.2 27.3 29.0 66.3 39.0 51.2 68.9 42.3

C4

2500 22.6 40.6 28.8 31.3 26.2 27.4 61.7 39.3 51.2 57.1 38.6
5000 22.9 41.6 29.3 36.0 26.8 27.6 64.7 40.2 50.9 63.6 40.4
7500 24.2 44.2 29.5 39.2 27.2 28.4 66.2 40.9 51.6 63.8 41.5
10000 24.6 44.8 30.4 39.5 27.0 29.4 68.7 40.9 51.7 63.9 42.1
12500 25.0 46.0 31.0 40.5 27.1 29.2 68.5 40.5 51.7 66.6 42.6

FineWeb

2500 23.2 39.4 27.2 31.8 25.6 26.2 62.6 39.0 51.4 57.1 38.3
5000 24.2 42.3 29.8 36.2 27.0 28.4 64.3 38.9 51.4 61.4 40.4
7500 24.4 44.1 30.4 37.8 27.2 28.2 66.1 39.5 50.8 66.2 41.5
10000 23.6 46.6 32.0 39.6 27.0 27.8 66.3 39.2 53.1 70.5 42.6
12500 25.2 46.8 32.6 39.6 27.2 29.0 66.5 39.4 52.4 69.2 42.8

Gopher + C4 + FineWeb

2500 23.6 39.3 27.6 32.1 25.8 26.0 61.7 39.8 50.9 55.4 38.2
5000 23.9 40.9 29.0 36.2 26.9 26.8 65.3 39.3 52.7 62.4 40.3
7500 25.6 42.2 30.7 39.7 27.0 28.4 66.0 40.2 51.8 60.9 41.2
10000 25.8 43.3 30.8 41.4 27.5 29.8 66.9 39.5 51.8 63.1 42.0
12500 25.0 43.9 30.0 41.9 27.5 31.0 67.0 39.9 51.9 65.3 42.3

PROX-D

2500 25.6 43.2 27.7 32.9 27.2 27.0 61.3 39.4 50.6 63.0 39.8
5000 25.4 46.2 28.4 35.7 28.1 28.8 64.7 39.3 53.3 64.2 41.4
7500 26.9 49.2 29.1 39.2 28.6 30.8 65.4 38.8 51.2 71.7 43.1
10000 26.7 48.2 30.5 39.9 28.6 28.6 66.2 39.7 51.9 71.2 43.2
12500 26.6 49.7 30.1 40.5 29.4 30.4 66.3 39.0 51.2 71.6 43.5

PROX-D+C

2500 24.9 43.4 27.3 32.1 26.9 28.2 60.9 38.8 51.2 60.8 39.5
5000 24.9 49.6 28.8 36.8 27.9 30.6 64.7 38.8 51.1 66.9 42.0
7500 25.5 51.2 30.8 38.8 28.4 31.2 67.3 40.2 50.3 71.7 43.5
10000 26.2 51.7 30.8 39.9 29.0 32.6 68.6 39.7 51.7 73.7 44.4
12500 26.4 51.9 30.9 42.4 29.4 31.6 67.9 40.0 52.2 73.5 44.6

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

E.2 DETAILED PERFORMANCE ON 8 BENCHMARKS USED IN DATA SELECTION EXPERIMENTS

The full benchmark performance used in data-selection method comparison experiments is presented
in Table 12.

Table 12: Detailed evaluation results for different data selection methods.

Method ARC-C ARC-E HellaSwag LogiQA OBQA PIQA WinoGrande SciQ AVG

PYTHIA-410M 0-shot

Random 25.6 40.2 39.7 24.7 29.4 67.1 50.6 64.1 42.7
DSIR 23.8 39.9 39.6 27.0 28.4 66.8 51.5 63.1 42.5
DsDm 24.7 41.7 40.3 27.5 29 68.1 50.1 65.4 43.4

QuRating 25.4 42.0 40.7 25.3 30.2 67.5 52.1 64.8 43.5
MATES 25.0 41.8 41.0 25.7 30.8 68.7 52.7 66.0 44.0
PROX 27.2 48.9 43.1 26.9 31.8 68.4 54.1 69.5 46.2

PYTHIA-410M 2-shot

Random 25.3 42.6 39.9 24.1 28.6 66.9 52.2 70.6 43.8
DSIR 23.6 42.0 39.8 26.1 28.6 66.1 51.6 71.4 43.7
DsDm 23.6 44.2 40.1 23.5 29.2 66.5 51.5 74 44.1

QuRating 23.6 43.9 40.4 26.1 30.2 67.4 51.4 74.1 44.6
MATES 25.3 43.8 40.6 24.9 30.6 67.1 53.4 74.1 45.0
PROX 27.0 52.7 42.6 23.7 32.8 68.2 53.9 78.9 47.5

PYTHIA-1B 0-shot

Random 25.6 43.7 43.8 27.5 31.8 68.9 50.7 65.8 44.7
MATES 25.9 44.9 45.3 28.7 32.2 69.5 52.4 67.3 45.8
PROX 26.2 49.1 46.6 24.8 32.2 70.3 54.2 70.9 46.8

PYTHIA-1B 2-shot

Random 25.5 45.1 42.9 24.6 30.0 68.3 52.1 74.6 45.4
MATES 26.8 46.1 44.8 25.2 30.6 68.7 51.6 75.7 46.2
PROX 27.3 54.5 46.2 26.6 32.2 69.0 53.9 77.4 48.4

0 10 20
Training Tokens(B)

22

24

26

Pe
rf

or
m

an
ce

ARC-C

ProX-D+C
ProX-D
Rule
Raw

0 10 20
Training Tokens(B)

30

35

40

45

50

Pe
rf

or
m

an
ce

ARC-E

ProX-D+C
ProX-D
Rule
Raw

0 10 20
Training Tokens(B)

24

26

28

30

32

Pe
rf

or
m

an
ce

CSQA

ProX-D+C
ProX-D
Rule
Raw

0 10 20
Training Tokens(B)

30

35

40

Pe
rf

or
m

an
ce

HellaSwag

ProX-D+C
ProX-D
Rule
Raw

0 10 20
Training Tokens(B)

25

26

27

28

29

Pe
rf

or
m

an
ce

MMLU

ProX-D+C
ProX-D
Rule
Raw

0 10 20
Training Tokens(B)

24

26

28

30

32

Pe
rf

or
m

an
ce

OBQA

ProX-D+C
ProX-D
Rule
Raw

0 10 20
Training Tokens(B)

55

60

65

Pe
rf

or
m

an
ce

PiQA

ProX-D+C
ProX-D
Rule
Raw

0 10 20
Training Tokens(B)

37

38

39

40

Pe
rf

or
m

an
ce

SIQA

ProX-D+C
ProX-D
Rule
Raw

0 10 20
Training Tokens(B)

48

50

52

54

Pe
rf

or
m

an
ce

WinoG

ProX-D+C
ProX-D
Rule
Raw

0 10 20
Training Tokens(B)

40

50

60

70

Pe
rf

or
m

an
ce

SciQ

ProX-D+C
ProX-D
Rule
Raw

Figure 13: Visualization of dynamic performance on ten benchmarks. Rule: the best performing
FineWeb rule in Table 2.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

E.3 DETAILED PERFORMANCE IN SEC 3.3

In § 3.3, we test PROX’s effectiveness using different sizes of refining models, and also train a series
of models by using these curated data. We report these detailed results in Table 13, Table 14 and
Table 15.

Table 13: Full evaluation results of TLM-XS trained on different PROX model curated data.

Train
Steps ARC-C ARC-E CSQA HellaSwag MMLU OBQA PiQA SIQA WinoG SciQ AVG

TLM-XS trained on Raw data

2500 22.5 38.5 27.0 29.1 25.8 25.0 60.2 38.8 50.4 58.6 37.6
5000 23.6 39.2 28.7 33.1 26.1 26.6 62.2 39.5 49.9 66.2 39.5
7500 23.8 42.7 28.0 33.4 26.0 26.2 64.0 39.3 51.5 67.0 40.2
10000 23.8 41.2 27.8 35.0 26.6 28.0 65.3 40.9 50.1 65.9 40.5
12500 22.6 41.9 29.7 32.8 26.2 26.4 62.2 39.3 51.3 63.3 39.6

TLM-XS trained on PROX-xs data

2500 24.8 43.5 26.5 30.3 26.8 26.6 59.3 38.6 50.8 60.7 38.8
5000 23.7 44.3 28.1 33.8 27.3 28.8 61.3 38.9 50.9 70.2 40.7
7500 24.1 46.0 29.2 35.0 27.7 30.6 63.4 38.7 52.0 70.4 41.7
10000 25.3 46.1 28.3 35.7 28.1 29.2 64.4 38.5 51.2 70.6 41.7
12500 25.9 47.5 29.2 36.7 28.1 30.2 64.6 38.0 51.7 71.4 42.3

TLM-XS trained on PROX-s data

2500 23.5 41.9 24.9 30.4 26.6 27.6 62.0 37.8 49.3 61.4 38.5
5000 24.7 44.5 27.0 33.8 27.5 28.0 62.4 38.0 50.6 67.0 40.3
7500 25.3 45.3 27.3 34.0 27.9 29.2 63.4 37.7 52.9 68.7 41.2
10000 25.6 45.7 27.6 35.6 28.6 30.2 63.6 37.4 52.0 71.1 41.7
12500 26.4 46.7 27.5 37.2 28.1 29.8 62.8 37.8 52.2 70.1 41.9

TLM-XS trained on PROX-m curated data

2500 22.9 41.3 26.5 31.1 26.9 27.0 62.2 37.6 50.6 62.4 38.9
5000 25.8 44.0 27.3 34.0 27.1 29.6 63.1 38.5 51.8 64.9 40.6
7500 26.0 45.3 28.5 36.6 27.7 29.8 63.6 39.4 51.3 68.5 41.7
10000 26.0 46.6 28.8 37.3 27.6 30.6 63.3 38.7 51.6 70.3 42.1
12500 26.5 46.4 29.1 37.6 28.1 29.4 64.1 38.7 51.5 68.0 41.9

Table 14: Full evaluation results of TLM-S trained on different PROX model curated data.

Train
Steps ARC-C ARC-E CSQA HellaSwag MMLU OBQA PiQA SIQA WinoG SciQ AVG

TLM-S trained on Raw data

2500 22.1 39.0 27.6 31.6 25.9 26.6 61.2 37.3 48.9 59.1 37.9
5000 24.4 41.2 28.8 34.8 26.7 27.0 64.9 39.3 50.4 61.9 39.9
7500 26.5 43.9 29.5 37.2 27.2 29.0 64.8 38.7 50.8 68.2 41.6
10000 25.8 43.5 29.1 38.8 27.4 29.8 66.9 39.0 51.2 66.2 41.8
12500 26.1 44.3 29.7 39.1 27.3 29.2 66.9 39.0 52.0 67.4 42.1

TLM-S trained on PROX-xs curated data

2500 23.8 44.1 26.5 33.5 26.9 29.4 60.7 38.9 50.6 62.1 39.6
5000 26.8 48.1 28.4 36.7 28.0 30.6 64.0 38.6 50.3 65.6 41.7
7500 26.9 49.0 30.6 39.5 28.2 29.6 65.3 39.6 52.2 69.6 43.0
10000 26.7 51.3 29.4 40.1 28.3 31.8 64.1 39.3 51.4 69.9 43.2
12500 26.8 52.1 30.2 41.8 28.5 31.6 65.5 39.5 51.9 70.8 43.9

TLM-S trained on PROX-s curated data

2500 24.9 43.4 27.3 32.1 26.9 28.2 60.9 38.8 51.2 60.8 39.5
5000 24.9 49.6 28.8 36.8 27.9 30.6 64.7 38.8 51.1 66.9 42.0
7500 25.5 51.2 30.8 38.8 28.4 31.2 67.3 40.2 50.3 71.7 43.5
10000 26.2 51.7 30.8 39.9 29.0 32.6 68.6 39.7 51.7 73.7 44.4
12500 26.4 51.9 30.9 42.4 29.4 31.6 67.9 40.0 52.2 73.5 44.6

TLM-S trained on PROX-m curated data

2500 25.3 45.3 27.5 32.2 26.7 27.0 62.4 38.7 50.6 60.8 39.6
5000 26.1 45.4 28.6 37.2 27.4 27.8 65.7 38.9 50.9 65.6 41.4
7500 27.1 47.5 30.6 41.0 28.6 29.2 66.8 39.3 51.1 69.9 43.1
10000 26.7 50.5 30.7 41.5 28.4 30.2 67.0 40.1 49.9 70.9 43.6
12500 27.4 50.7 30.6 42.0 28.8 30.2 67.4 39.4 48.8 70.1 43.5

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Table 15: Full evaluation results of TLM-M trained on different PROX model curated data.

Train
Steps ARC-C ARC-E CSQA HellaSwag MMLU OBQA PiQA SIQA WinoG SciQ AVG

TLM-S trained on Raw data

2500 23.5 41.5 27.5 32.9 26.4 25.2 62.1 39.4 51.5 65.1 39.5
5000 24.0 42.1 29.6 37.6 27.6 27.2 65.0 39.7 53.2 68.5 41.4
7500 24.3 44.9 28.9 39.3 27.8 27.6 66.4 40.4 51.3 69.2 42.0
10000 24.8 46.1 29.6 41.4 27.9 28.4 67.5 39.8 51.9 70.9 42.8
12500 26.3 46.8 29.0 43.2 28.3 27.8 68.2 40.5 50.7 72.5 43.3

TLM-M trained on PROX-xs curated data

2500 24.9 49.6 26.5 34.0 27.3 30.4 61.8 37.9 51.3 65.1 40.9
5000 26.7 47.6 28.6 39.7 28.5 31.8 65.4 39.5 50.2 70.7 42.9
7500 27.5 52.1 30.4 41.8 29.6 31.8 67.6 39.6 51.7 75.2 44.7
10000 28.4 54.7 29.8 45.2 30.8 31.8 67.9 39.7 52.0 77.7 45.8
12500 28.8 54.2 29.7 46.5 30.9 31.8 68.2 39.9 51.3 78.3 46.0

TLM-M trained on PROX-s curated data

2500 25.3 45.7 27.8 34.2 27.8 29.0 64.4 37.5 49.3 66.3 40.7
5000 26.1 49.0 28.8 40.2 29.2 30.8 65.6 39.0 50.5 71.2 43.0
7500 27.7 53.6 31.1 44.1 29.6 34.8 67.6 39.4 52.5 72.2 45.3
10000 27.2 54.0 31.5 45.1 30.3 33.8 67.7 39.7 52.9 74.2 45.6
12500 28.6 56.1 31.8 45.5 30.5 34.4 68.5 39.4 51.3 76.1 46.2

TLM-M trained on PROX-m curated data

2500 24.7 44.1 25.9 34.8 27.4 27.8 62.9 38.9 49.2 67.0 40.3
5000 27.7 48.0 26.8 40.5 28.5 30.6 67.4 39.4 50.3 69.1 42.8
7500 26.7 51.9 26.7 42.9 29.3 31.4 69.1 40.3 50.4 73.3 44.2
10000 28.4 52.4 27.9 45.0 29.7 32.0 70.2 40.0 51.9 75.4 45.3
12500 28.3 53.7 28.4 45.9 30.1 33.8 70.6 41.1 52.3 72.5 45.7

We also further scale PROX to other two pre-training corpora, C4 and FineWeb. We also scale our
training to about 50B tokens, and directly compare with existing well-trained models developed by
different research groups. We report our detailed results in Table 16, Table 17 and Table 18. We also
present other models’ results in Table 19.

Table 16: Full evaluation results on scaling pre-training to about 50B tokens on RedPajama-V2.

Train
Steps ARC-C ARC-E CSQA HellaSwag MMLU OBQA PiQA SIQA WinoG SciQ AVG

TLM-M trained on RedPajama-V2 raw data.

2500 24.0 42.9 26.6 33.7 25.9 26.0 62.4 39.4 52.3 64.0 39.7
5000 24.3 45.9 26.4 37.4 27.0 27.6 64.1 39.7 49.5 66.2 40.8
7500 25.1 45.3 28.8 40.3 27.1 29.2 66.3 39.1 51.7 66.9 42.0

10000 25.8 49.3 31.5 42.5 28.0 28.8 66.7 39.6 51.5 74.0 43.8
12500 25.3 50.1 30.2 43.0 28.2 30.0 66.6 39.2 51.1 74.2 43.8
15000 26.2 50.3 31.2 44.3 28.8 28.4 68.2 39.8 51.7 76.2 44.5
17500 25.8 51.1 30.8 44.7 29.0 29.6 67.7 39.2 52.6 75.2 44.6
20000 26.7 52.5 31.7 47.2 28.6 30.4 69.0 39.6 53.0 78.2 45.7
22500 27.4 51.7 32.1 47.2 29.3 30.4 69.5 39.5 51.9 78.5 45.7
25000 26.9 51.4 32.4 47.3 29.3 32.2 69.7 39.6 52.1 79.1 46.0

TLM-M trained on PROX refined RedPajama-V2 data.

2500 24.8 46.8 27.2 33.8 27.3 28.2 61.3 38.6 50.3 65.1 40.3
5000 26.9 49.3 28.5 40.1 28.0 30.6 66.2 39.7 50.2 70.1 43.0
7500 28.5 53.1 29.2 41.7 29.4 33.2 66.9 39.3 53.0 73.0 44.7

10000 28.2 53.5 30.1 43.6 29.8 31.6 68.4 39.6 52.0 75.3 45.2
12500 29.5 55.3 30.2 46.4 30.5 32.2 68.6 40.2 52.6 76.9 46.2
15000 30.0 57.1 30.2 47.6 30.9 33.0 69.5 39.8 52.2 77.8 46.8
17500 31.5 59.6 29.4 49.5 31.6 33.6 69.4 39.8 53.0 78.9 47.6
20000 31.2 61.2 29.4 50.4 31.4 35.2 70.6 40.1 53.7 79.6 48.3
22500 32.0 61.7 30.2 51.4 31.4 34.0 70.0 39.9 53.2 79.5 48.3
25000 31.1 60.7 29.8 51.0 31.7 33.2 70.9 39.2 53.3 79.1 48.0

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Table 17: Full evaluation results on scaling pre-training to about 50B tokens on C4.

Train
Steps ARC-C ARC-E CSQA HellaSwag MMLU OBQA PiQA SIQA WinoG SciQ AVG

TLM-M trained on C4 raw data.

2500 22.4 39.7 26.8 36.5 26.5 27.6 64.8 40.2 50.1 60.0 39.5
5000 23.9 42.9 27.5 42.3 27.1 29.6 68.2 39.6 50.3 66.6 41.8
7500 25.1 44.8 28.2 45.4 27.1 29.2 70.7 40.7 51.6 66.3 42.9

10000 25.5 46.0 32.3 48.2 27.9 31.6 71.1 39.7 52.3 67.6 44.2
12500 25.8 48.8 30.3 49.7 27.9 31.6 71.2 40.9 52.0 69.4 44.8
15000 26.9 48.0 28.2 50.5 28.5 31.4 71.9 41.1 51.4 69.7 44.8
17500 26.6 48.8 30.3 52.1 28.6 31.2 73.2 41.6 52.0 70.0 45.4
20000 26.3 50.1 29.7 52.5 28.5 32.6 72.3 41.7 52.3 71.0 45.7
22500 25.8 50.7 31.0 52.9 28.8 33.8 73.0 41.6 53.0 71.5 46.2
25000 25.3 48.8 30.1 52.4 28.8 32.2 72.0 40.6 53.6 71.7 45.5

TLM-M trained on PROX refined C4 data.

2500 24.1 45.9 26.0 37.3 27.2 29.0 66.3 39.8 50.8 65.9 41.2
5000 27.3 50.0 26.6 42.4 28.6 33.8 68.1 40.5 53.0 71.9 44.2
7500 28.3 53.7 27.7 47.7 29.3 35.4 71.1 39.3 54.0 73.1 46.0

10000 30.0 54.3 28.1 50.9 30.0 33.6 71.2 40.6 52.0 74.2 46.5
12500 29.3 56.7 27.5 52.3 30.9 33.8 72.8 39.9 52.5 77.5 47.3
15000 29.6 55.9 28.3 53.9 30.6 35.0 72.9 41.0 53.8 75.8 47.7
17500 30.6 55.5 28.7 53.3 31.2 34.2 73.6 40.4 53.4 76.7 47.8
20000 30.0 57.6 28.3 54.9 31.1 37.2 74.6 40.7 53.6 79.4 48.7
22500 30.1 56.7 28.6 55.2 31.4 37.2 73.8 41.6 53.3 77.7 48.6
25000 31.1 56.0 28.4 55.2 31.1 36.2 74.0 41.0 54.1 76.8 48.4

Table 18: Full evaluation results on scaling pre-training to about 50B tokens on FineWeb.

Train
Steps ARC-C ARC-E CSQA HellaSwag MMLU OBQA PiQA SIQA WinoG SciQ AVG

TLM-M trained on FineWeb raw data.

2500 22.9 41.2 28.9 34.3 26.1 27.6 64.8 39.3 52.1 62.8 40.0
5000 25.5 44.5 30.4 39.8 26.9 32.0 68.4 39.2 52.1 67.2 42.6
7500 26.8 45.6 31.4 44.1 27.6 30.2 70.9 38.8 52.2 70.3 43.8

10000 27.2 46.2 31.3 47.2 28.3 31.6 72.1 38.8 53.4 69.0 44.5
12500 26.4 49.2 32.1 48.7 28.7 31.6 71.5 40.1 52.6 74.7 45.6
15000 27.1 49.6 32.8 49.5 28.9 31.0 72.7 39.0 52.3 77.1 46.0
17500 26.4 50.9 33.8 51.3 29.3 31.0 71.9 39.3 53.0 78.0 46.5
20000 27.1 53.1 33.2 51.2 29.6 32.2 73.4 39.7 52.3 76.3 46.8
22500 27.1 51.2 34.9 51.7 29.5 33.4 73.7 40.1 52.4 78.0 47.2
25000 28.5 52.6 33.9 53.2 29.8 32.6 72.9 40.2 53.0 77.1 47.4

TLM-M trained on PROX refined FineWeb data.

2500 25.8 46.8 27.4 36.1 27.7 28.8 63.9 39.3 51.9 69.1 41.7
5000 28.5 52.1 28.8 43.5 29.3 32.6 66.4 38.7 51.2 71.3 44.2
7500 28.2 52.0 30.6 45.9 29.9 33.0 69.3 39.5 51.7 71.8 45.2

10000 29.3 54.3 30.6 48.5 30.8 33.2 69.7 40.7 50.6 74.4 46.2
12500 28.7 57.8 30.7 48.1 31.1 32.6 72.0 40.4 52.7 77.4 47.2
15000 31.1 59.6 31.9 50.4 31.8 34.4 71.9 40.5 50.8 78.0 48.0
17500 32.6 60.9 31.9 51.5 32.2 33.8 72.3 39.7 52.5 78.9 48.6
20000 33.2 62.5 32.5 51.6 32.4 34.6 72.4 39.7 51.7 80.7 49.1
22500 34.7 63.6 32.9 53.3 32.9 34.8 73.1 40.3 54.2 80.5 50.0
25000 34.4 63.9 32.6 53.0 33.1 34.4 73.1 39.3 52.7 81.5 49.8

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Table 19: Detailed evaluation results of existing base models trained on different corpora and trained
using different techniques.

ARC-C ARC-E CSQA HellaSwag MMLU OBQA PiQA SIQA WinoG SciQ AVG
TINYLLAMA-1.1B (trained on 3T tokens)

31.5 59.0 35.5 57.8 32.8 33.4 72.8 40.0 56.0 82.4 50.1

OLMO-1B (trained on 2T tokens)

31.4 59.7 38.9 61.9 32.2 38.4 76.1 41.5 53.9 78.8 51.3

PYTHIA-1.4B

28.7 56.9 34.7 51.7 31.5 36.0 71.8 40.8 55.1 79.3 48.7

PYTHIA-2.8B

32.9 61.0 36.5 60.4 33.3 35.0 73.5 41.1 57.0 83.1 51.4

SHEAREDLLAMA-1.3B (pruned from LLAMA-2-7B)

22.4 39.7 29.3 36.0 26.4 28.4 62.6 39.9 52.0 71.4 40.8

SHEAREDLLAMA-1.3B (pruned from LLAMA-2-7B, and further trained on 50B tokens)

29.0 58.3 34.8 59.6 32.0 35.0 74.6 41.0 56.3 82.3 50.3

INSTRUCTLM-1.3B (LLM data synthesis)

28.1 57.9 32.5 52.3 30.0 34.0 74.5 39.9 56.1 86.9 49.2

COSMO-1.8B (LLM data synthesis)

33.4 57.0 31.2 55.1 32.4 35.2 71.4 42.0 54.7 84.4 49.7

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

E.4 EVALUATION RESULTS OF CONTINUAL PRE-TRAINING IN SEC 3.4

We provide full ablation results for each base model, as shown in Table 20. We can observe
that PROX-D+C consistently improves average performance over PROX-D across various base
models. Although the performance gain from PROX-D+C compared to PROX-D is less pronounced
than the improvement of PROX-D over continual pre-training on raw OpenWebMath, this is both
understandable and expected. PROX-D+C does not significantly reduce the token count beyond
the reductions achieved by PROX-D alone. Given the scale of the OpenWebMath corpus, a more
aggressive token removal strategy could potentially diminish the diversity of unique tokens below
the threshold necessary for robust pre-training. This observation underscores the delicate balance
between data refinement and maintaining sufficient linguistic variety for effective language model
training, particularly when working with limited-scale corpora.

Table 20: Full ablation results on OpenWebMath Continual Pre-training (CPT). All models are tested
using few-shot CoT prompts. LLEMMA and INTERNLM2-MATH are continual pre-trained models
from CODELLAMA (Rozière et al., 2023) and INTERNLM2 (Team, 2023) with public available
data, respectively. DEEPSEEK-LLM denotes an internal DeepSeek model, and the model trained
on OpenWebMath introduced by Shao et al. (2024). Note that the unique tokens and training tokens
in the column refer exclusively to the token numbers from math-specific corpora (calculated by
corresponding tokenizers). †: MQA evaluation of INTERNLM2-BASE is based on an alternative
prompt due to non-prediction issues with the original prompt. The bolded entries represent the best
results within the same base model and CPT experiments.

Model Size Method Uniq
Toks

Train
Toks GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

Existing Continual Pre-training for Reference

DEEPSEEK-LLM 1.3B - - - 2.9 3.0 - - - - - 19.5 15.6 -
1.3B - 14B 150B 11.5 8.9 - - - - - 29.6 31.3 -

CODELLAMA (Base)
7B - - - 11.8 5.0 44.2 50.7 62.6 30.6 14.3 20.4 21.9 29.1
34B - - - 31.8 10.8 61.9 66.0 83.4 51.6 23.7 43.0 53.1 47.3

LLEMMA
7B - 55B 200B 38.8 17.2 56.1 69.1 82.4 48.7 41.0 45.4 59.4 50.9 (+21.8)
34B - 55B 50B 54.2 23.0 67.9 75.7 90.1 57.9 49.8 54.7 68.8 60.1 (+12.8)

INTERNLM2-BASE
7B - - - 27.0 6.6 49.0 59.3 74.8 40.1 20.9† 19.0 28.1 36.1
20B - - - 50.6 18.8 72.5 75.9 93.9 45.4 33.1 53.7 59.4 55.9

INTERNLM2-MATH
7B - 31B 125B 41.8 14.4 61.6 66.8 83.7 50.0 57.3 24.8 37.5 48.7 (+12.6)
20B - 120B 500B 65.4 30.0 75.7 79.3 94.0 50.9 38.5 53.1 71.9 62.1 (+6.2)

Applying Data Refinement Approaches

TINYLLAMA (Base) 1.1B - - - 2.8 3.2 10.9 18.0 20.2 12.5 14.6 16.4 21.9 14.7

TINYLLAMA (CPT)

1.1B - 15B 15B 6.2 4.8 22.3 36.2 47.6 19.3 11.6 20.7 25.0 21.5 (+8.1)
1.1B RHO 15B 9B∗6 7.1 5.0 23.5 41.2 53.8 - 18.0 - - -
1.1B Rule 6.5B 15B 4.5 2.8 17.5 29.4 39.3 15.1 12.4 19.4 25.0 18.4 (+3.7)
1.1B PROX-D 5.4B 15B 9.3 7.4 23.4 41.9 55.6 22.1 14.6 24.1 25.0 24.8 (+10.1)
1.1B PROX-D+C 5B 15B 9.0 5.6 23.8 41.9 56.9 22.2 15.6 26.8 31.2 25.7 (+11.0)

LLAMA-2 (Base) 7B - - - 14.1 3.8 39.5 51.6 63.6 30.9 12.5 32.9 34.4 31.5

LLAMA-2 (CPT)
7B - 15B 10B 29.6 13.6 49.2 61.9 78.4 36.3 31.9 40.5 43.8 42.8 (+11.3)
7B PROX-D 5.4B 10B 30.3 16.0 54.2 63.8 79.5 37.3 37.2 44.2 46.9 45.5 (+14.0)
7B PROX-D+C 5B 10B 30.6 16.8 50.2 63.7 79.3 37.3 40.1 43.8 53.1 46.1 (+14.6)

CODELLAMA (Base) 7B - - - 11.8 5.0 44.2 50.7 62.6 30.6 14.3 20.4 21.9 29.1

CODELLAMA (CPT)
7B - 15B 10B 31.1 14.8 51.4 62.1 81.2 33.6 30.4 40.5 43.8 43.2 (+14.1)
7B PROX-D 5.4B 10B 38.1 17.0 54.2 67.0 83.1 40.9 39.8 43.7 50.0 48.2 (+19.1)
7B PROX-D+C 5B 10B 35.6 17.6 55.8 67.9 82.7 41.3 38.9 42.6 62.5 49.4 (+20.3)

MISTRAL (Base) 7B - - - 40.6 11.4 65.4 68.5 87.0 52.9 32.3 50.0 56.2 51.6

MISTRAL (CPT)
7B - 15B 10B 44.4 19.2 65.2 69.6 88.4 46.6 43.1 50.8 65.6 54.8 (+3.2)
7B PROX-D 5.5B 10B 47.8 24.8 63.5 72.4 88.9 48.3 48.2 54.1 62.5 56.4 (+4.8)
7B PROX-D+C 4.7B 10B 51.0 22.4 64.9 72.9 89.2 49.8 53.0 54.2 75.0 59.2 (+7.6)

Besides, we report the detailed dynamic evaluation results of our continual pre-training experiments
on OpenWebMath:

• Tables 21, 22, 23, and 24 present the evaluation results for TINYLLAMA-1.1B.

6RHO-1 only counts the selected tokens that are used for training (loss calculation).

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

• Tables 25, 26, and 27 present the evaluation results for LLAMA-2.
• Tables 28, 29, 30 present the evaluation results for CODELLAMA.
• Tables 31, 32, and 33 show the evaluation results for MISTRAL-7B.

Table 21: Full evaluation results of TINYLLAMA-1.1B continual pre-training on OpenWebMath
with raw data. Note that about 1B tokens are trained per 500 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 2.8 3.2 10.9 18 20.2 12.5 14.6 16.4 21.9 14.7

500 1.9 3.4 16.3 23.9 30.3 13.9 10.3 14.8 18.8 14.8
1000 3.1 2.2 16.6 25.6 32.4 12.5 12.0 16.6 25.0 16.2
1500 2.7 3.0 17.6 28.5 34.5 13.9 8.7 14.1 15.6 15.4
2000 4.5 3.2 16.4 28.5 39.0 15.1 10.2 16.6 34.4 18.7
2500 4.9 3.4 19.3 31.0 39.2 16.0 12.1 18.6 9.4 17.1
3000 4.1 5.2 19.1 32.0 43.0 15.3 9.6 16.1 18.8 18.1
3500 4.9 3.6 19.7 31.4 40.4 18.1 11.3 19.6 15.6 18.3
4000 4.8 4.8 19.5 33.8 44.5 16.4 10.7 19.9 12.5 18.5
4500 5.4 4.8 20.2 35.0 45.2 17.9 12.7 21.0 18.8 20.1
5000 5.5 4.6 22.3 34.6 42.9 16.0 10.6 21.7 28.1 20.7
5500 4.9 5.8 23.6 35.2 44.0 20.4 11.0 21.1 21.9 20.9
6000 6.1 4.4 22.8 36.2 45.4 17.8 12.7 21.4 15.6 20.3
6500 6.3 3.6 23.2 37.3 48.0 19.7 10.3 21.0 18.8 20.9
7000 6.1 4.6 22.2 36.6 46.9 19.4 12.0 21.5 21.9 21.2
7500 6.2 4.8 22.3 36.2 47.6 19.3 11.6 20.7 25.0 21.5

Table 22: Full evaluation results of TINYLLAMA-1.1B continual pre-training on OpenWebMath
with data after rule-based filtering. Note that about 1B tokens are trained per 500 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 2.8 3.2 10.9 18 20.2 12.5 14.6 16.4 21.9 14.7

500 3.4 3.6 13.6 22.5 25.9 13.1 14.2 13.5 28.1 15.3
1000 3.0 2.8 14.1 22.5 27.8 11.4 11.0 16.4 12.5 13.5
1500 3.6 3.2 13.6 24.0 31.2 13.9 9.2 18.0 18.8 15.1
2000 3.5 2.4 15.0 25.1 33.0 12.5 10.6 13.9 15.6 14.6
2500 3.3 1.6 15.0 25.3 33.5 13.7 11.1 18.1 25.0 16.3
3000 3.5 3.0 16.4 25.5 33.4 14.1 10.2 18.4 18.8 15.9
3500 3.2 3.4 17.2 27.0 37.7 14.6 11.2 13.3 25.0 17.0
4000 3.5 3.6 15.6 26.2 36.5 13.4 12.1 15.9 18.8 16.2
4500 4.1 3.8 15.6 27.9 38.2 14.9 11.6 17.1 18.8 16.9
5000 4.2 3.6 18.6 28.7 37.7 14.3 12.7 17.5 21.9 17.7
5500 4.1 3.8 16.3 29.3 38.4 14.7 10.8 17.5 18.8 17.1
6000 4.3 3.6 16.0 28.7 39.1 13.5 12.8 19.5 21.9 17.7
6500 4.2 3.2 16.4 29.5 39.0 15.1 11.7 17.9 21.9 17.7
7000 4.0 4.0 16.2 29.6 37.9 16.0 13.8 17.8 21.9 17.9
7500 4.5 2.8 17.5 29.4 39.3 15.1 12.4 19.4 25.0 18.4

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Table 23: Full evaluation results of TINYLLAMA-1.1B continual pre-training on OpenWebMath
with data after PROX-D. Note that about 1B tokens are trained per 500 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 2.8 3.2 10.9 18 20.2 12.5 14.6 16.4 21.9 14.7

500 3.3 2.8 17.7 29.0 38.7 12.4 9.5 15.7 15.6 16.1
1000 4.6 4.0 18.1 31.6 41.9 15.9 11.9 18.2 25.0 19.0
1500 5.2 5.4 21.1 32.9 43.1 15.3 11.1 20.4 12.5 18.6
2000 6.8 5.8 20.2 33.5 46.6 18.2 10.7 20.3 12.5 19.4
2500 7.1 3.8 20.7 37.0 48.6 18.3 12.0 21.4 18.8 20.9
3000 7.4 4.4 22.9 37.1 50.5 18.3 12.3 21.2 25.0 22.1
3500 8.8 4.8 22.8 39.4 53.3 19.2 12.0 22.8 34.4 24.2
4000 8.6 4.6 24.0 38.7 51.4 18.8 14.8 24.4 18.8 22.7
4500 8.6 4.2 24.2 39.2 53.6 20.4 13.5 23.9 18.8 22.9
5000 8.9 5.2 24.0 40.0 52.6 20.0 13.6 23.9 18.8 23.0
5500 8.0 6.2 23.2 41.4 55.0 22.3 14.3 24.9 25.0 24.5
6000 8.3 5.2 22.2 39.8 54.0 24.3 12.6 25.1 31.2 24.7
6500 9.4 5.6 24.4 40.2 54.5 20.3 13.0 24.9 31.2 24.8
7000 9.2 5.8 25.8 40.6 55.3 22.5 12.5 24.5 21.9 24.2
7500 9.3 7.4 23.4 41.9 55.6 22.1 14.6 24.1 25.0 24.8

Table 24: Full evaluation results of TINYLLAMA-1.1B continual pre-training on OpenWebMath
with data after PROX-D+C. Note that about 1B tokens are trained per 500 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 2.8 3.2 10.9 18 20.2 12.5 14.6 16.4 21.9 14.7

500 4.3 5.0 16.4 28.8 36.4 15.3 11.4 18.5 15.6 16.9
1000 5.5 3.8 20.5 34.6 44.6 15.3 12.1 19.6 28.1 20.5
1500 5.2 4.4 21.4 34.5 44.7 16.1 11.2 21.4 34.4 21.5
2000 6.3 5.4 20.1 33.7 46.2 19.4 10.5 21.2 12.5 19.5
2500 7.8 5.4 22.1 37.0 49.5 17.9 13.3 22.9 21.9 22.0
3000 6.4 3.4 23.0 38.6 51.1 18.5 12.6 24.3 18.8 21.9
3500 8.5 4.6 24.1 40.2 53.8 22.1 12.5 23.1 25.0 23.8
4000 8.2 6.0 24.1 41.0 52.4 19.8 10.2 26.1 31.2 24.3
4500 8.3 5.4 24.1 41.3 54.4 20.6 15.2 24.2 28.1 24.6
5000 8.5 7.0 26.0 40.5 54.9 21.7 13.9 25.5 34.4 25.8
5500 8.7 4.0 23.2 41.1 54.8 20.5 14.4 26.5 21.9 23.9
6000 8.3 5.0 24.8 41.3 54.3 23.2 14.0 25.3 25.0 24.6
6500 8.6 6.4 24.5 41.6 55.1 22.2 14.4 26.5 25.0 24.9
7000 8.9 6.0 23.4 40.5 53.4 22.0 15.8 27.3 28.1 25.0
7500 9.0 4.4 23.8 41.9 56.4 22.2 15.6 26.8 31.2 25.7

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Table 25: Full evaluation results of LLAMA-2 continual pre-training on OpenWebMath with raw data.
Note that about 1B tokens are trained per 1000 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 14.1 3.8 39.5 51.6 63.6 30.9 12.5 32.9 34.4 31.5

1k 17.2 3.6 39.1 50.4 63.0 30.2 18.9 31.8 31.2 31.7
2k 19.7 6.0 43.9 55.5 68.3 32.9 19.0 33.0 37.5 35.1
3k 19.6 8.6 42.9 56.3 68.4 32.2 17.4 34.6 40.6 35.6
4k 21.8 8.8 44.6 57.3 72.0 28.9 23.6 35.8 40.6 37.0
5k 22.6 10.4 45.9 57.0 73.5 31.5 23.9 39.0 43.8 38.6
6k 24.5 10.0 44.9 57.6 73.7 35.5 25.8 36.1 43.8 39.1
7k 23.3 10.4 46.5 59.0 75.3 32.9 27.7 39.0 50.0 40.5
8k 29.0 12.4 46.4 59.7 77.0 33.1 30.2 38.8 50.0 41.8
9k 26.1 12.8 48.8 59.9 74.3 35.0 28.3 39.2 50.0 41.6
10k 29.6 13.6 49.2 61.9 78.4 36.3 31.9 40.5 43.8 42.8

Table 26: Full evaluation results of LLAMA-2 continual pre-training on OpenWebMath with PROX-
D. Note that about 1B tokens are trained per 1000 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 14.1 3.8 39.5 51.6 63.6 30.9 12.5 32.9 34.4 31.5

1k 17.1 7.2 39.8 51.6 68.4 31.4 21.4 35.2 40.6 34.7
2k 21.9 9.2 43.2 57.0 72.8 33.1 24.0 37.6 56.2 39.4
3k 20.5 10.8 45.7 58.6 76.2 35.3 25.8 38.3 53.1 40.5
4k 27.2 11.8 45.7 58.7 76.6 35.9 29.2 41.0 31.2 39.7
5k 28.9 14.2 49.3 60.2 77.9 38.8 32.8 41.7 53.1 44.1
6k 31.9 15.0 51.5 62.0 79.0 39.2 33.3 41.4 68.8 46.9
7k 31.5 16.8 51.9 63.2 77.9 36.5 35.9 43.8 43.8 44.6
8k 30.3 13.8 51.9 63.7 80.6 38.3 36.1 41.3 59.4 46.2
9k 30.6 14.0 52.7 62.6 78.7 37.5 36.1 43.2 43.8 44.4
10k 30.3 16.0 54.2 63.8 79.5 37.3 37.2 44.2 46.9 45.5

Table 27: Full evaluation results of LLAMA-2 continual pre-training on OpenWebMath with PROX-
D+C. Note that about 1B tokens are trained per 1000 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 14.1 3.8 39.5 51.6 63.6 30.9 12.5 32.9 34.4 31.5

1k 18.8 6.8 40.1 54.4 66.1 29.7 22.9 35.6 53.1 36.4
2k 23.1 8.6 45.7 56.5 72.7 30.7 25.1 35.6 46.9 38.3
3k 23.4 11.8 47.9 59.1 74.6 30.4 28.2 38.3 59.4 41.5
4k 25.2 14.2 49.0 57.8 72.7 32.8 33.1 40.7 40.6 40.7
5k 24.4 13.6 48.0 58.7 72.1 28.9 33.0 40.6 50.0 41.0
6k 29.6 12.8 46.1 63.4 75.6 33.7 31.6 42.8 53.1 43.2
7k 29.9 13.6 50.5 61.5 75.2 36.4 34.5 41.7 53.1 44.0
8k 30.2 15.8 50.8 63.7 77.1 37.7 36.3 43.4 43.8 44.3
9k 34.0 15.4 52.1 62.4 79.3 35.9 40.2 44.0 56.2 46.6
10k 30.6 16.8 50.2 63.7 79.3 37.3 40.1 43.8 53.1 46.1

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Table 28: Full evaluation results of CODELLAMA-7B continual pre-training on OpenWebMath with
raw data. Note that about 1B tokens are trained per 250 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 11.8 5.0 44.2 50.7 62.6 30.6 14.3 20.4 21.9 29.1

250 16.7 8.2 45.2 52.2 65.3 33.9 16.0 28.8 43.8 34.5
500 18.3 7.8 43.1 53.9 69.0 29.3 15.3 22.5 37.5 33.0
750 20.2 8.0 45.2 54.2 71.9 29.9 17.1 31.2 37.5 35.0

1000 24.7 9.8 40.6 58.6 72.7 29.3 20.7 31.9 34.4 35.9
1250 24.3 10.4 44.0 57.5 74.8 29.2 21.4 36.1 50.0 38.6
1500 26.2 13.2 48.4 58.8 75.4 29.4 28.1 34.9 50.0 40.5
1750 25.5 11.8 49.1 58.7 76.6 32.4 26.7 37.3 43.8 40.2
2000 28.0 13.6 46.3 61.7 80.0 33.8 29.4 37.2 50.0 42.2
2250 27.7 13.6 48.9 62.2 80.3 32.5 28.9 39.1 59.4 43.6
2500 31.1 14.8 51.4 62.1 81.2 33.6 30.4 40.5 43.8 43.2

Table 29: Full evaluation results of CODELLAMA continual pre-training on OpenWebMath with
PROX-D. Note that about 1B tokens are trained per 250 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 11.8 5.0 44.2 50.7 62.6 30.6 14.3 20.4 21.9 29.1

250 21.1 9.2 48.7 56.1 71.3 33.4 22.2 34.1 50.0 38.5
500 23.7 11.6 49.8 57.4 74.7 32.9 28.5 35.8 59.4 41.5
750 25.1 15.4 48.1 58.9 78.8 36.8 29.4 37.6 53.1 42.6

1000 28.4 14.2 50.9 61.2 79.8 36.7 27.7 37.6 50.0 42.9
1250 33.0 15.2 49.3 62.9 81.1 33.4 32.8 41.0 46.9 44.0
1500 36.0 15.0 54.2 65.0 81.0 39.3 34.1 42.0 62.5 47.7
1750 34.7 14.6 53.1 63.6 83.3 40.6 35.9 43.4 62.5 48.0
2000 35.7 17.6 53.3 65.4 83.5 42.4 37.1 42.4 56.2 48.2
2250 37.2 18.8 54.5 65.4 83.2 41.9 41.0 44.9 71.9 51.0
2500 38.1 17.0 54.2 67.0 83.1 40.9 39.8 43.7 50.0 48.2

Table 30: Full evaluation results of CODELLAMA continual pre-training on OpenWebMath with
PROX-D+C. Note that about 1B tokens are trained per 250 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 11.8 5.0 44.2 50.7 62.6 30.6 14.3 20.4 21.9 29.1

250 18.1 10.2 46.0 54.5 71.9 33.0 21.3 34.4 50.0 37.7
500 22.4 10.0 50.3 59.7 76.4 31.3 26.1 36.0 59.4 41.3
750 26.8 11.4 51.2 61.0 78.5 34.9 26.4 38.0 53.1 42.4

1000 29.0 14.4 54.1 62.8 80.1 36.9 34.2 40.4 62.5 46.0
1250 31.4 15.0 51.7 63.8 81.1 37.2 32.5 41.4 75.0 47.7
1500 31.5 17.4 53.4 64.4 80.7 39.6 35.4 41.6 71.9 48.4
1750 33.7 15.2 50.6 64.3 81.5 39.2 36.1 40.5 53.1 46.0
2000 36.2 16.0 54.7 65.1 83.1 39.9 39.1 43.4 71.9 49.9
2250 37.1 16.6 55.3 65.6 82.4 41.3 36.5 42.7 75.0 50.3
2500 35.6 17.6 55.8 67.9 82.7 41.3 38.9 42.6 62.5 49.4

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Table 31: Full evaluation results of MISTRAL-7B continual pre-training on OpenWebMath with raw
data. Note that about 1B tokens are trained per 1000 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 40.6 11.4 65.4 68.5 87.0 52.9 32.3 50.0 56.2 51.6

1k 31.6 12.0 56.5 66.0 80.1 43.9 27.1 45.1 56.2 46.5
2k 32.4 10.8 54.7 63.5 82.6 40.8 31.6 45.7 59.4 46.8
3k 33.6 14.8 60.4 64.7 84.5 43.5 33.1 47.2 68.8 50.1
4k 35.1 14.8 58.7 65.2 84.4 41.2 38.5 47.3 62.5 49.7
5k 33.4 16.0 59.3 65.0 83.8 46.7 34.6 49.1 62.5 50.0
6k 38.7 16.6 61.5 68.1 86.1 47.4 35.3 48.5 37.5 48.9
7k 39.6 17.2 60.5 68.2 86.2 44.4 38.5 49.3 53.1 50.8
8k 44.0 16.4 64.5 69.8 88.7 45.5 41.3 50.6 59.4 53.4
9k 43.9 19.4 63.7 69.7 87.6 44.9 42.9 51.0 62.5 54.0
10k 44.4 19.2 65.2 69.6 88.4 46.6 43.1 50.8 65.6 54.8

Table 32: Full evaluation results of MISTRAL-7B continual pre-training on OpenWebMath with
PROX-D. Note that about 1B tokens are trained per 1000 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 40.6 11.4 65.4 68.5 87.0 52.9 32.3 50.0 56.2 51.6

1k 36.8 14.6 57.2 66.1 83.1 45.7 32.6 47.7 59.4 49.2
2k 38.5 17.0 57.9 69.0 86.3 44.7 33.6 49.2 56.2 50.3
3k 40.0 19.0 59.3 68.7 87.0 46.8 41.0 48.0 68.8 53.2
4k 38.5 20.4 59.3 66.2 85.1 42.6 42.8 49.5 68.8 52.6
5k 42.5 20.2 63.0 70.5 86.6 47.2 43.4 49.8 62.5 54.0
6k 46.8 17.8 62.5 72.7 88.2 51.2 47.7 51.3 56.2 54.9
7k 47.5 22.4 64.1 71.8 89.1 51.4 47.9 52.4 65.6 56.9
8k 44.6 23.8 63.2 70.8 87.7 47.6 49.1 54.1 65.6 56.3
9k 46.6 24.6 61.6 72.3 86.4 46.9 49.8 53.2 65.6 56.3
10k 46.7 22.6 63.5 72.4 88.9 48.3 48.2 54.1 62.5 56.4

Table 33: Full evaluation results of Mistral-7B continual pre-training on OpenWebMath with PROX-
D+C. Note that about 1B tokens are trained per 1000 steps.

Train
Steps GSM8K MATH SVAMP ASDiv MAWPS TAB MQA MMLU

STEM
SAT

MATH AVG

0 40.6 11.4 65.4 68.5 87.0 52.9 32.3 50.0 56.2 51.6

1k 30.9 16.0 60.1 64.5 85.3 40.8 33.9 48.0 59.4 48.8
2k 40.3 17.6 63.0 66.3 86.2 48.0 33.9 48.7 53.1 50.8
3k 42.4 17.8 59.6 69.1 85.7 50.1 38.5 49.9 59.4 52.5
4k 43.8 20.4 63.7 69.3 88.2 46.2 46.3 50.9 65.6 54.9
5k 42.5 18.4 59.3 69.6 87.9 44.3 46.1 51.9 65.6 54.0
6k 47.7 21.8 62.7 71.7 89.2 47.9 48.4 54.0 68.8 56.9
7k 46.8 21.6 62.9 72.1 88.4 50.1 46.4 52.5 68.8 56.6
8k 48.4 21.6 65.0 72.7 89.2 51.1 49.4 52.9 65.6 57.3
9k 48.5 24.8 64.4 72.6 88.3 50.7 48.1 53.4 62.5 57.0
10k 51.0 22.4 64.9 72.9 89.2 49.8 53.0 54.2 75.0 59.2

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

F ANALYSIS

F.1 TOKEN LENGTH DISTRIBUTION

Table 34: Average length of token per document for different refining methods.

Methods General Domain Math Domain
N/A 1217.5 1815.8
Rule 1329.4 1955.6
PROX (ours) 2004.8 1734.9

As previously discussed in §4.1, our analysis reveals a notable document length distribution shift in
the data refined by PROX, specifically a significant increase in the average token length (from 1217.5
to 2004.8 tokens per document). When further compared to the rule-based method (we compare to
FineWeb rules), we only observe a marginal increase in token length within the general domain (from
1217.5 to 1329.4 tokens).

Interestingly, in the math domain, we observe an opposite trend. The raw data shows an average token
length of 1815.8, which our method reduces to 1734.9, while the rule-based method increases it to
1955.6. And the training performance in Table 5 follows the order: PROX > original > rule-based
method for TINYLLAMA-1.1B. This again implies that mathematical documents used for pre-training
exhibit significant differences in distribution and characteristics compared to those in the general
domain.

F.2 CASE STUDIES

We provide several cases to qualitatively illustrate the refinement effect of PROX, as shown in
Tables 35-36. For the general domain, using RedPajama-V2 as an example, we observe that PROX
can drop low-information documents, remove meaningless content such as navigation bars, and
replace URL links (see Table 35). In the mathematics domain, PROX demonstrates the ability to
eliminate documents with minimal relevance to mathematical reasoning and remove less important
elements like functional buttons (see Table 36). These refinements enhance the quality and relevance
of the processed data across different domains.

F.3 ERROR ANALYSIS

As shown in Table 37, the failure ratio across both refining stages (document-level and chunk-level)
and domains (General and Math) is remarkably low (< 0.5%). This demonstrates that ProX’s
refining tasks are well-suited for small models. Specifically, for the General domain, failure ratios
are 0.04% for document-level and 0.36% for chunk-level refining, with an average of 3.7 function
calls per program in the chunk-level stage. For the Math domain, these ratios are 0.06% and 0.11%,
respectively, with an average complexity of 2.7 function calls at the chunk-level stage.

Despite the low failure rates, we observed two prevalent failure cases in ProX’s programs:

1. Repeated output or empty output: This occurs when a program inadvertently generates
duplicate outputs or fails to produce any meaningful results. Such failures are typically
linked to improper loop conditions or insufficient constraints in processing logic.

2. Non-existent target removal: In some cases, ProX’s programs attempt to remove a string
or line that does not exist in the input data. This leads to incomplete execution or errors in
the program output, particularly in datasets with irregular formats or unexpected variations.

As shown in Table 38, we present two failure cases to illustrate instances of repeated output and
non-existent target strings.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Table 35: Cases from RedPajama-V2 after applying PROX. Text in red indicates content to be
removed or replaced. “...” denotes omitted content due to limited space.

Case 1

TagCollegeEducationJournalismWar

: Michael Lewis

ContributorMichael Lewis

Michael Lewis is possibly the most entertaining nonfiction writer alive. If that’s not true it’s at least close to true.
Liar’s Poker, Moneyball, The Blind Side, his NYT article about Jonathan Lebed (Google it): what’s not to love?

504: How I Got Into College

Act Two: My Ames is True

Writer Michael Lewis tells the story of a man named Emir Kamenica, whose path to college started with fleeing the
war in Bosnia and becoming a refugee in the United States. Then he had a stroke of luck: a student teacher read an
essay he’d plagiarized from a book he’d stolen from a library back in Bosnia, and was so impressed that she got him
out of a bad high school and into a much better one.

Act Three

Michael Lewis’ story continues, and he figures out why Emir Kamenica insists on remembering, and telling, the story
of his life the way he does — even when he finds out that some of the facts may be wrong.

Output by PROX:
drop_doc()

Case 2

Home > Staff > Staff search > Dr Tim Overton
Dr Tim Overton BSc PhD
School of Chemical EngineeringSenior Lecturer
Telephone (+44) (0) 121 414 5306Emailt.w.overton@bham.ac.uk
AddressSchool of Chemical EngineeringUniversity of Birmingham
B15 2TT
Dr Tim Overton is a biochemist and molecular microbiologist who is interested in applying molecular biology and single-
cell techniques to understand and develop bioprocesses. He is active in microbial flow cytometry research and collaborates
widely with bioprocess engineers, molecular microbiologists, cell biologists and environmental microbiologists to develop
new methods of answering fundamental questions on a single-cell level.
His research also focuses on using bacteria to make useful products such as protein drugs and small molecules, and the
bacterial responses to stress encountered in such processes. Current and recent research funding has come from the
BBSRC, TSB and EU FP7. He is the director of the MSc in Biochemical Engineering. Pages: 1 3 4

...

Google scholar: http://scholar.google.co.uk/citations?user=tF_eBKEAAAAJ
...

Output by PROX:
keep_doc()
remove_lines(line_start=0, line_end=5)
normalize(source_str="http://scholar.google.co.uk/citations?user",
target_str="")
normalize(source_str="Pages: 1 3 4", target_str="")
...

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

Table 36: Cases from OpenWebMath after applying PROX. Text in red indicates content to be
removed or replaced. “...” denotes omitted content due to limited space.

Case 1

unhybridized pi bonds

sp, sp2, sp3, dsp3, d2sp3

Tatiana 4B

Posts: 30

Joined: Fri Sep 28, 2018 12:28 am

unhybridized pi bonds

...

Re: unhybridized pi bonds

I am not too sure in my knowledge about this, but I think that both have hybridized orbitals. Since hybridization is
defined as the phenomenon of intermixing of the orbitals such as sp, sigma and pi bonds are just different types of
covalent bonds formed depending on the way the atomic orbitals hybridize with each other. Sigma bonds are a result
of when the overlap of orbitals of two atoms takes place along the line joining the two orbitals, while pi bonds are
when two atoms overlap due to the sideways overlap of their ’p’ orbitals.

Hannah Yates 1K

Posts: 59

Joined: Fri Sep 28, 2018 12:27 am

Re: unhybridized pi bonds

I am also not too sure on my answer, but I am pretty sure that a sigma bond has just hybridized orbitals, but the reason
a pi bond can form is because of an extra (not hybridized) p orbital. This allows for a double and triple bond to form.

Output by PROX:
drop_doc()

Case 2

Solution - Trigonometric Identities

Account
Register

Share

Books Shortlist
ConceptTrigonometric Identities

Question

Prove the following trigonometric identities:

(i) sin θ
1−cos θ

= cosecθ + cot θ
Solution

You need to to view the solution
Is there an error in this question or solution?

Reference Material

Solution for concept: Trigonometric Identities. For the course CBSE
S

Output by PROX:
keep_doc()
remove_lines(line_start=0, line_end=7)
remove_lines(line_start=18, line_end=24)

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

Table 37: Failure ratio and average complexity (function calls) for ProX refining stages across
domains.

Domain Failure Ratio (doc-level) Failure Ratio (chunk-level) Complexity (AVG. function calls)
General Domain 0.04% 0.36% 3.7
Math Domain 0.06% 0.11% 2.7

Table 38: Failure cases from RedPajama-V2 during applying PROX. “...” denotes omitted content
due to limited space. The notation like [004] is used to indicate the line number.

Case 1: Repeated output (or Empty output)

...

[004] P: 114 1. The problem statement, all variables and given/known data Mercury is poured into a U-tube as in
Figure P15.18a....Basically I don’t understand why you would know to set the two volumes equal to each other? How
do you know the volumes are the same?

...

[007] Related Discussions Mechanical Engineering 6 Introductory Physics Homework 0 General Engineering 1
Introductory Physics Homework 2 Introductory Physics Homework 2

Output by PROX:
remove_lines(start=1, end=1)
remove_lines(start=6, end=6)
remove_lines(start=7, end=7)
remove_lines(start=7, end=7)
remove_lines(start=7, end=7)
remove_lines(start=7, end

Case 2: Non-existent target string

...

[195] 18. Sathyamoorthi, C. R., Mbekomize, C., Mapharing, M., & Selinkie, P. (2018). The Impact of Corporate
Governance on Working Capital Management Efficiency: Evidence from the Listed Companies in the Consumer Services
Sector in Botswana. International Journal of Economics and Finance, 10, 135. https://doi.org/10.5539/ijef.v10n12p135

[196] 19. Vu, T. M. T., Tran, C. Q., Doan, D. T., & Le, T. N. (2020). Determinants of Capi-
tal Structure: The Case in Vietnam. Journal of Asian Finance, Economics, And Business, 7(9), 159-168.
https://doi.org/10.13106/jafeb.2020.vol7.no9.159

...

Output by PROX:
Analysis: this ‘source_str‘ can not be found in the original text
normalize(source_str="https://doi.org/10.13106/jafeb.2020.vol6.no2.53",
target_str="")

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

F.4 COMPUTING OVERHEAD ANALYSIS

According to Kaplan et al. (2020), both training and inference computational FLOPs for Transformer-
based Language Models (denoted as Ctrain and Cinference) can be approximated as the product of model
parameters (non-embedding parameter) N and the number of tokens D. This can be expressed as:

Ctrain ≈ 6 ·NDtrain, (9)

Cinference ≈ 2 ·N (Dprefill +Ddecode) . (10)

In PROX, we go through two data refining stages before final training, which incurs additional
inference-time computational FLOPs. Suppose the refining model parameter for each stage is denoted
as Nrefine, and the raw data size in tokens is Draw.

For the first document-level stage, the computational cost can be approximated as:

Cdoc ≈ 2 ·Nrefine (Draw +Doutput) ≈ 2 ·NrefineDraw, (suppose Doutput ≪ Draw) (11)

resulting in a new pool of data sized Ddoc.

Similarly, for the second chunk-level stage, the computational cost is:

Cchunk ≈ 2 ·Nr (Ddoc +Doutput) ≈ 2 ·NrDdoc, (suppose Doutput ≪ Ddoc) (12)

which produces the final refined data size of DProX.

Thus, the total computational overhead for PROX can be calculated as the sum of the two stages:

CPROX = Cdoc + Cchunk ≈ 2 ·Ndoc_refineDraw + 2 ·Nchunk_refineDdoc. (13)

In general, we use refining models with the same sizes, so the final inference overhead can be
estimated as

CPROX ≈ 2 ·Nrefine(Draw +Ddoc). (14)

Additionally, we omit the FLOPs for fine-tuning since they are negligible compared to the large-scale
pre-training and inference FLOPs.

47

	Introduction
	Approach: Programming Every Example
	Data Refinement Task Formulation
	ProX Framework
	Model Adaptation for ProX

	Experiments
	Experiment Setup
	Verifying ProX's effectiveness
	Applying ProX across model sizes and pre-training corpora
	Applying ProX to Domain-Specific Contiual Preraining

	Analysis
	Impact on the original data
	Computing Overhead Analysis

	Related Works
	Conclusion
	ProX Implementation Details
	Supervised Fine-tuning Data Collection
	Supervised Fine-tuning Details
	Evaluation Metrics for ProX Refining Tasks
	ProX Inference at scale

	Pre-training Details
	Training Infrastructure
	Pre-training Corpora
	Model Configuration and Training Parameters

	ProX Baseline Selection
	Downstream Tasks Evaluation
	General Pre-training Evaluation
	Continual Pre-training Evaluation

	Full Evaluation Results
	Detailed Performance on 10 Benchmarks in Sec 3.2
	Detailed Performance on 8 Benchmarks used in Data Selection Experiments
	Detailed Performance in SEC 3.3
	Evaluation Results of Continual Pre-training in Sec 3.4

	Analysis
	Token Length Distribution
	Case Studies
	Error Analysis
	Computing Overhead Analysis

