
Learning Non-Autoregressive Models from Search
for Unsupervised Sentence Summarization

Anonymous ACL submission

Abstract
Text summarization aims to generate a short001
summary for an input text. In this work, we002
propose a Non-Autoregressive Unsupervised003
Summarization (NAUS) approach, which does004
not require parallel data for training. Our005
NAUS first performs edit-based search to-006
wards a heuristically defined score, and gener-007
ates a summary as pseudo-groundtruth. Then,008
we train an encoder-only non-autoregressive009
Transformer based on the search result. We010
also propose a dynamic programming ap-011
proach for length-control decoding, which is012
important for the summarization task. Ex-013
periments on two datasets show that NAUS014
achieves state-of-the-art performance for unsu-015
pervised summarization, yet largely improving016
inference efficiency. Further, our algorithm is017
able to perform explicit length-transfer sum-018
mary generation.1019

1 Introduction020

Text summarization is an important natural lan-021

guage processing (NLP) task, aiming at generating022

concise summaries for given texts while preserving023

the key information. It has extensive real-world024

applications such as headline generation (Nenkova025

et al., 2011).026

State-of-the-art text summarization models are027

typically trained in a supervised way with large028

training corpora, comprising pairs of long texts and029

their summaries (Zhang et al., 2020; Aghajanyan030

et al., 2020, 2021). However, such parallel data are031

expensive to obtain, preventing the applications to032

less popular domains and less spoken languages.033

Unsupervised text generation has been attracting034

increasing interest, because it does not require par-035

allel data for training. One widely used approach036

is to compress a long text into a short one, and to037

reconstruct it to the long text by a cycle consis-038

tency loss (Miao and Blunsom, 2016; Wang and039

1Our code is released on real but anonymized repo:
https://github.com/ARR-NAUS/NAUS

Lee, 2018; Baziotis et al., 2019). Due to the in- 040

differentiability of the compressed sentence space, 041

such an approach requires reinforcement learning 042

(or its variants), which makes the training difficult 043

(Kreutzer et al., 2021). 044

Recently, Schumann et al. (2020) propose an 045

edit-based approach for unsupervised summariza- 046

tion. Their model maximizes a scoring function 047

that evaluates the quality (fluency and semantics) 048

of the generated summary, achieving higher perfor- 049

mance than cycle-consistency methods. However, 050

the search approach is slow in inference because 051

hundreds of search steps are needed for each data 052

sample. Moreover, their approach can only select 053

words from the input sentence with the word order 054

preserved. Thus, it is restricted and may gener- 055

ate noisy summaries due to the local optimality of 056

search algorithms. 057

To address the above drawbacks, we propose 058

a Non-Autoregressive approach to Unsupervised 059

Summarization (NAUS). The idea is to perform 060

search as in Schumann et al. (2020) and, inspired 061

by Li et al. (2020), to train a machine learning 062

model to smooth out such noise and to speed up the 063

inference process. Different from Li et al. (2020), 064

we propose to utilize non-autoregressive text gen- 065

erators, which generate all tokens in the output in 066

parallel, based on our following observations: 067

• Non-autoregressive models are several times 068

faster than autoregressive generation, which is im- 069

portant when the system is deployed. 070

• The input and output of the summarization task 071

have a strong correspondence. Non-autoregressive 072

generation supports encoder-only architectures, 073

which can better utilize such input–output cor- 074

respondence and even outperform autoregressive 075

models for summarization. 076

• For non-autoregressive models, we can design 077

a length-control algorithm based on dynamic pro- 078

gramming. This can satisfy the output length con- 079

straint, which is typical in summarization but can- 080

1

https://github.com/ARR-NAUS/NAUS

not be easily achieved with autoregressive models.081

We conducted experiments on Gigaword head-082

line generation (Graff et al., 2003) and DUC2004083

(Over and Yen, 2004) datasets. Experiments show084

that our NAUS achieves state-of-the-art perfor-085

mance on unsupervised summarization; especially,086

it outperforms its teacher (i.e., the search approach),087

confirming that NAUS can indeed smooth out the088

search noise. Regarding inference efficiency, our089

NAUS with truncating is 1000 times more efficient090

than the search approach; even with dynamic pro-091

gramming for length control, NAUS is still 100092

times more efficient than search and several times093

more efficient than autoregressive models. Our094

NAUS is also able to perform length-transfer sum-095

mary generation, i.e., generating summaries of dif-096

ferent lengths from training.097

2 Approach098

In our approach, we first follow Schumann et al.099

(2020) and obtain a summary by discrete search100

towards a heuristically defined objective function101

(§2.1). Then, we propose a non-autoregressive102

model for the summarization task (§2.2). We103

present the training strategy and the proposed104

length-control algorithm in §2.3.105

2.1 Search-Based Summarization106

Consider a given source text x = (x1, x2, . . . , xn).107

The goal of summarization is to find a shorter text108

y = (y1, y2, . . . , ym) as the summary.109

Our work on unsupervised summarization fol-110

lows the recent progress of search-based text gen-111

eration. Schumann et al. (2020) formulate summa-112

rization as word-level extraction (with order pre-113

served), and apply edit-based discrete local search114

to maximize a heuristically designed objective.115

Specifically, the objective function considers116

two aspects: (1) a language fluency score fLM(y),117

given by the reciprocal of a language model’s118

perplexity; and (2) a semantic similarity score119

fSIM(y;x), given by the cosine embeddings. The120

overall objective combines the two aspects as121

f(y;x) = fLM(y) · fSIM(y;x)γ (1)122

where γ is a weighting hyperparameter. Interested123

readers are referred to Schumann et al. (2020) for124

the details of the scoring function.125

Further, the desired summary length can be spec-126

ified as a hard constraint, achieved by searching127

only among sentences of the correct length. Sup-128

pose the desired summary length is T , the approach 129

selects T random words from the input, and max- 130

imizes the scoring function (1) by changing the 131

selection and non-selection of two words. 132

A greedy hill-climbing algorithm determines 133

whether the change is accepted or not. In other 134

words, a change is accepted if the score improves, 135

or rejected otherwise. Such a process continues 136

until a (possibly local) optimum is found. 137

A pilot analysis in Schumann et al. (2020) shows 138

that words largely overlap between a source text 139

and its summary. This explains the high perfor- 140

mance of such a word extraction approach, being 141

a state-of-the-art unsupervised summarization sys- 142

tem and outperforming strong competitors, e.g., 143

cycle consistency (Wang and Lee, 2018; Baziotis 144

et al., 2019). 145

2.2 Non-Autoregressive Model for 146

Summarization 147

Despite the high performance, such edit-based 148

search has several drawbacks. First, the search 149

process is slow because hundreds of local search 150

steps are needed to obtain a high-quality summary. 151

Second, their approach only extracts the original 152

words with order preserved. Therefore, the gener- 153

ated summary is restricted and may be noisy. 154

To this end, we propose a Non-Autoregressive 155

approach to Unsupervised Summarization (NAUS) 156

by learning from the search results. In this way, 157

the machine learning model can smooth out the 158

search noise and is much faster, largely alleviat- 159

ing the drawbacks of search-based summarization. 160

Compared with training an autoregressive model 161

from search (Li et al., 2020), non-autoregressive 162

generation predicts all the words in parallel, further 163

improving inference efficiency by several times. 164

Moreover, a non-autoregressive model enables 165

us to design an encoder-only architecture, which is 166

more suited to the summarization task due to the 167

strong correspondence between input and output, 168

which cannot be fully utilized by encoder–decoder 169

models, especially autoregressive ones. 170

Specifically, we propose to use multi-layer 171

Transformer (Vaswani et al., 2017) as the non- 172

autoregressive architecture for summarization. 173

Each Transformer layer is composed of a multi- 174

head attention sublayer and a feed-forward sub- 175

layer. Additionally, there is a residual connection 176

in each sublayer, followed by layer normalization. 177

Let X(n) ∈ RT×d be representation at the nth 178

2

Output: high productivity doesn't in the auto industry

high

producti
vit

y
Input:

co
rre

sp
ondn't

alw
ays

profitsdoes
with high in the

auto

industr
y

CTC training
from search
results

Length-control decoding w/
dynamic programming

Input:

Hi
ll-

cl
im

bi
ng

 se
ar

ch

. . .

Output: high productivity doesn't always profit auto industry

𝜖
𝑤!
𝑤"

high productivity … 𝜖 auto industry

…

… … … … … …

high productivity the auto industrydoes

Figure 1: The overview of our NAUS approach.

layer, where T is the number of words and d is the179

dimension. Specially, the input layer X(0) is the180

embeddings of words. Suppose we have h atten-181

tion heads. The output of the ith head in the nth182

attention sublayer is A(n)
i = softmax

(
QiK

>
i√

dk

)
Vi,183

where Qi, Ki, and Vi are matrices calculated by184

three distinct multi-layer perceptrons (MLPs) from185

X(n−1); dk is the attention dimension.186

Multiple attention heads are then concatenated:187

A(n) = Concat
(
A

(n)
1 , . . . , A

(n)
h

)
WO188

where WO ∈ Rd×d is a weight matrix.189

Then, we have a residual connection and layer190

normalization by191

Ā(n) = LayerNorm
(
X(n−1) +A(n)

)
(2)192

Further, an MLP sublayer processes Ā(n), followed193

by residual connection and layer normalization,194

yielding the nth layer’s representation195

X(n) = LayerNorm
(
Ā(n) + MLP(Ā(n))

)
(3)196

The last layer X(N) is fed to softmax to pre-197

dict the summary in a non-autoregressive manner,198

that is, the probability at the tth step is given by199

softmax(Wx
(N)
t), where x

(N)
t is the tth row of200

the matrix X(N) and W is the softmax weight.201

It is emphasized that, in the vocabulary, we in-202

clude a special blank token ε, which is handled by203

dynamic programming during both training and in-204

ference (§2.3). This enables us to generate a shorter205

summary than the input with such a multi-layer206

Transformer.207

Our model can be thought of as an encoder-208

only architecture, differing from a typical encoder–209

decoder model with cross attention (Vaswani et al.,210

2017; Baziotis et al., 2019; Zhou and Rush, 2019).211

Previously, Su et al. (2021) propose a seemingly212

similar model to us, but put multiple end-of-213

sequence (EOS) tokens at the end of the generation; 214

thus, they are unable to maintain the correspon- 215

dence between input and output. Instead, we allow 216

blank tokens scattering over the entire sentence; 217

thus, the residual connections in Eqns (2) and (3) 218

can better utilize such input–output correspondence 219

for summarization. 220

2.3 Training and Inference 221

In this section, we first introduce the Connectionist 222

Temporal Classification (CTC) training. Then, we 223

propose a length-control decoding approach for 224

summary generation. 225

CTC Training. The Connectionist Temporal 226

Classification (CTC, Graves et al., 2006) algorithm 227

allows a special blank token ε in the vocabulary, 228

and uses dynamic programming to marginalize out 229

such blank tokens. In addition, non-autoregressive 230

generation suffers from a common problem that 231

words may be repeated in consecutive steps (Gu 232

et al., 2018; Lee et al., 2018); thus, CTC merges 233

repeated words unless separated by ε. For example, 234

the sequence of tokens aεεaabbε is reduced to the 235

text aab, denoted by Γ(aεεaabbε) = aab. The 236

CTC training is by maximum marginal likelihood 237

estimation, treating the predictors as unobserved 238

latent variables. 239

Concretely, the likelihood is marginalized over 240

all possible fillings of ε, i.e., all possible token 241

sequences that are reduced to the groundtruth text: 242

P (y|x) =
∑

w:Γ(w)=y
P (w|x) (4) 243

where P (w|x) is the probability of generating a 244

sequence of tokens w. Although enumerating every 245

candidate in {w : Γ(w) = y} is intractable, such 246

marginalization fortunately can be computed by 247

dynamic programming in an efficient way. 248

Let αs,t =
∑

w1:s:Γ(w1:s)=y1:t
P (w1:s|x) be the 249

marginal probability of generating y1:t up to the 250

3

sth decoding slot. Moreover, αs,0 is defined to be251

the probability that w1:s is all ε, thus not having252

matched any word in y. The αs,t variable can be253

further decomposed into two terms αs,t = αεs,t +254

α¬εs,t, where the first term is such probability with255

ws = ε, and the second term ws 6= ε. Apparently,256

the initialization of α variables is257

αε1,0 = P (w1 = ε|x) (5)258

α¬ε1,1 = P (w1 = y1|x) (6)259

αε1,t = 0,∀t ≥ 1 (7)260

α¬ε1,t = 0,∀t > 1 or t = 0 (8)261

Eqn. (7) is because, at the first prediction slot, the262

empty token ε does not match any target words;263

Eqn. (8) is because the predicted non-ε first token264

must match exactly the first target word.265

The recursion formula for αεs,t is266

αεs,t = αs,t−1P (wt = ε|x)267

since the newly predicted token ε with probabil-268

ity P (wt = ε|x) does not match any target word,269

inheriting αs,t−1.270

The recursion formula for α¬εs,t is271

α¬εs,t =


(
αεs−1,t−1 + α¬εs−1,t

)
P (ws = yt|x),

if yt = yt−1

αs−1,t−1P (ws = yt|x), otherwise.
272

Here, ws is not ε, so we must have ws = yt, having273

the predicted probability P (ws = yt|x).274

If yt = yt−1, then we have two sub-cases: first,275

w1:s−1 is reduced to y1:t−1 with ws−1 = ε separat-276

ing two repeating words in y, having probability277

αεs−1,t−1; or second, w1:s−1 is reduced to y1:t with278

ws−1 = yt 6= ε, having probability α¬εs−1, which279

implies we are merging ws−1 and ws.280

If yt 6= yt−1, then we only require ws−1 is281

reduced to yt−1, where ws−1 can be either ε or282

non-ε. This is given by probability αs−1,t−1 =283

αεs−1,t−1 + α¬εs−1,t−1.284

Finally, α|w|,|y| is the marginal probability in285

Eqn. (4), as it is the probability that the entire gen-286

erated sequence matches the entire target text.287

The CTC maximum likelihood estimation is to288

maximize the marginal probability, which is equiv-289

alent to minimizing the loss −α|w|,|y|. Since the290

dynamic programming formulas are differentiable,291

the entire model can be trained by backpropagation292

in an end-to-end manner with auto-differentiation293

tools (such as PyTorch).294

Length-Control Inference. Controlling output295

𝑏!"# or 𝜖non-𝜖 or
non-𝑏!"#

Ge
ne

ra
tio

n
slo

t 𝑠

Partial sentence length 𝑡

𝑠 − 1, 𝑡 − 1 𝑠 − 1, 𝑡

𝑠, 𝑡

Figure 2: Illustration of our length-control algorithm.

length is the nature of the summarization task, for 296

example, displaying a short news headline on a mo- 297

bile device. Moreover, Schumann et al. (2020) 298

show that the main evaluation metric ROUGE 299

(Lin, 2004) is sensitive to the summary length, and 300

longer summaries tend to achieve higher ROUGE 301

scores. Thus, it is crucial to control the summary 302

length for fair comparison. 303

We propose a length-control algorithm by dy- 304

namic programming (DP), following the nature of 305

CTC training. However, our DP is an approximate 306

algorithm because of the dependencies introduced 307

by removing consecutive repeated tokens. Thus, 308

we equip our DP with a beam search mechanism. 309

We define Bs,t to be a set of top-B sequences 310

with s predicted tokens that are reduced to t words. 311

Bs,t is constructed by three scenarios. 312

First, the blank token ε is predicted for the sth 313

generation slot, and thus the summary length t re- 314

mains the same, shown by the blue arrow in Fig- 315

ure 2. This yields a set of candidates 316

B
(1)
s,t =

{
b⊕ ε |b ∈ Bs−1,t

}
(9) 317

where ⊕ refers to string/token concatenation. 318

Second, a repeated word is predicted for the sth 319

generation slot, i.e., bs−1 for a subsequence b of 320

length s−1. In this case, the summary length t also 321

remains the same, also shown in the blue arrow in 322

Figure 2. This gives a candidate set 323

B
(2)
s,t =

{
b⊕ bs−1 |b ∈ Bs−1,t

}
(10) 324

Third, a non-ε, non-repeating word ws is gener- 325

ated, increasing the summary length from t− 1 to 326

t, shown by the red arrow in Figure 2. This gives 327

B
(3)
s,t =

{
b⊕ w∗ |b ∈ Bs−1,t−1, 328

w∗ = argmax
ws 6=ε,ws 6=bs−1

P (ws|x)
}

(11) 329

Based on the three candidates sets, we select top-B 330

sequences to keep the beam size fixed: 331

Bs,t = topB(B
(1)
s,t ∪B

(2)
s,t ∪B

(3)
s,t) (12) 332

where topB ranks the sequences by their predicted 333

joint probabilities. 334

4

Theorem 1. (1) If repeating tokens are not merged,335

then the proposed length-control algorithm with336

beam size B = 1 finds the exact optimum BS,T337

being the most probable length-T sentence given338

by S prediction slots. (2) If we merge repeating339

tokens predicted by CTC-trained models, the above340

algorithm may not be exact.341

Appendix A presents the proof of the theorem342

and provides a more detailed analysis, showing343

that our length-control algorithm, although being344

approximate inference, can generate a summary of345

the desired length properly. Compared with trun-346

cating an overlength output, our approach is able347

to generate more fluent and complete sentences.348

Also, our length-control algorithm is different from349

conventional beam search, shown in Appendix C.350

3 Experiments351

3.1 Setup352

Datasets. We evaluated our NAUS model on Giga-353

word headline generation and DUC2004 datasets.354

The head generation dataset (Rush et al., 2015)355

is constructed from the Gigaword news corpus356

(Graff et al., 2003), where the first sentence of a357

news article is considered as input text and the358

news title is considered as the summary. The359

dataset contains 3.8M/198K/1951 samples for train-360

ing/validation/test. Based on the curve in Ap-361

pendix B, we used 3M samples for training NAUS.362

It should be emphasized that, when NAUS learns363

from search, we only use the input of the training364

corpus: we perform search (Schumann et al., 2020)365

for each input, and train our NAUS from the search366

results. Therefore, we do not utilize any labeled367

parallel data, and our approach is unsupervised.368

Moreover, we considered two settings with de-369

sired summary lengths of 8 and 10, following Schu-370

mann et al. (2020). Our NAUS is trained from371

respective search results.372

The DUC2004 dataset (Over and Yen, 2004) is373

designed for testing only with 500 samples, where374

we also take the first sentence of an article as the375

input text. Our NAUS is transferred from the above376

headline generation corpus. Based on the length377

of DUC2004 summaries, we trained NAUS from378

search results with 13 words, also following Schu-379

mann et al. (2020) for fair comparison.380

Evaluation Metrics. We evaluated the quality381

of predicted summaries by ROUGE scores (Lin,382

2004), which are the most widely used metrics383

in previous work (Wang and Lee, 2018; Baziotis384

et al., 2019; Zhou and Rush, 2019). Specifically, 385

ROUGE-n evaluates n-gram overlap between a 386

predicted summary and its reference summary; 387

ROUGE-L, instead, measures the longest common 388

sequence between the predicted and reference sum- 389

maries. 390

Different ROUGE variants are adopted in previ- 391

ous work, depending on the dataset. We followed 392

the standard evaluation scripts and evaluated head- 393

line generation by ROUGE F1 (Wang and Lee, 394

2018; Baziotis et al., 2019; Schumann et al., 2020) 395

and DUC2004 by Truncate ROUGE Recall (Dorr 396

et al., 2003; West et al., 2019). 397

In addition to summary quality, we also evalu- 398

ated inference efficiency of different methods, as 399

it is important for the deployment of deep learning 400

models in real-time applications. We report the 401

average inference time in seconds for each data 402

sample, and compare the speedup with Schumann 403

et al. (2020)’s search approach, which achieves 404

(previous) state-of-the-art ROUGE scores. Our ex- 405

periments were conducted on an i9-9940X CPU 406

and an RTX6000 graphic card. Other implementa- 407

tion details are presented in Appendix B. 408

3.2 Results and Analyses 409

Main Results. Table 1 presents the performance of 410

our model and baselines on the Gigaword headline 411

test set. For a fair comparison, we categorize all 412

approaches by average summary lengths of ~8 and 413

~10 into Groups A and B, respectively. 414

The Lead baseline extracts the first several words 415

of the input sentence. Despite its simplicity, the 416

Lead approach is a strong summarization baseline 417

adopted in most previous work (Févry and Phang, 418

2018; Baziotis et al., 2019). 419

Wang and Lee (2018) utilize cycle consis- 420

tency (Miao and Blunsom, 2016) for unsupervised 421

summarization; Zhou and Rush (2019) perform 422

beam search towards a step-by-step decomposable 423

score of fluency and contextual matching. Both are 424

unable to explicitly control the summary length: 425

in a fair comparison of length 10 (Group B, Ta- 426

ble 1), their performance is worse than the (pre- 427

vious) state-of-the-art approach (Schumann et al., 428

2020),2 which performs edit-based local search. 429

Our NAUS approach follows Schumann et al. 430

2Schumann et al. (2020) present a few variants that use
additional datasets for training language models (in an unsu-
pervised way). In our study, we focus on the setting without
data augmentation, i.e., the language model is trained on non-
parallel the Gigawords corpus.

5

Group # Approach Len
ROUGE F1

Inf.Time Speedup
R-1 R-2 R-L ∆R

A
(desired
length 8)

1 Baseline Lead (8 words)† 7.9 21.39 7.42 20.03 -11.12 – –
2

Search
Schumann et al. (2020)† 7.9 26.32 9.63 24.19 0.18 – –

3 Our replication 7.9 26.17 9.69 24.10 0 6.846 1x
4

Learn from
search

Su et al. (2021) 7.7 26.88 9.37 24.54 0.83 0.017 403x
5 NAUS (truncate) 7.8 27.27 9.49 24.96 1.76 0.005 1369x
6 NAUS (length control) 7.8 27.94 9.24 25.51 2.73 0.041 167x

B
(desired

length 10)

7
Baseline

Lead (10 words)† 9.8 23.03 7.95 21.29 -10.2 – –
8 Wang and Lee (2018)† 10.8 27.29 10.01 24.59 -0.58 – –
9 Zhou and Rush (2019)† 9.3 26.48 10.05 24.41 -1.53 – –
10

Search
Schumann et al. (2020)† 9.8 27.52 10.27 24.91 0.23 – –

11 Our replication 9.8 27.35 10.25 24.87 0 9.217 1x
12

Learn from
search

Su et al. (2021) 9.4 27.86 9.88 25.51 0.78 0.020 461x
13 NAUS (truncate) 9.8 28.24 10.04 25.40 1.21 0.005 1843x
14 NAUS (length control) 9.8 28.55 9.97 25.78 1.83 0.044 210x

Table 1: Results on the Gigaword headline generation test set. Len: Average length of predicted summaries. R-1,
R-2, R-L: ROUGE-1, ROUGE-2, ROUGE-L. ∆R: The difference of total ROUGE (sum of R-1, R-2, and R-L)
in comparison with the (previous) state-of-the-art search method under replication. Inf.Time: Average inference
time in seconds for one sample on an i9-9940X CPU and a RTX6000 GPU. Speedup: Relative to Schumann et al.
(2020). †Results quoted from previous papers; others are given by our experiments.

(2020), but trains a non-autoregressive model from431

search results. We consider two settings for con-432

trolling the summary length: truncating longer433

summaries and decoding with our proposed length-434

control algorithm. Both of our variants outperform435

Schumann et al. (2020) by 1.21–2.73 in terms of the436

total ROUGE score (Rows 5–6 & 13–14, Table 1).437

As mentioned, Schumann et al. (2020) only extracts438

original words with order preserved, yielding noisy439

sentences. Our NAUS, as a student, learns from the440

search-based teacher model and is able to smooth441

out its noise. This is a compelling result, as our442

student model outperforms its teacher.443

Regarding inference efficiency, our NAUS444

method with truncating is more than 1300 times445

faster than Schumann et al. (2020), because we446

do not need iterative search. Even with dynamic447

programming and beam search for length control,448

NAUS is still over 100 times faster. This shows our449

NAUS is extremely efficient in inference, which is450

important for real-time applications.451

Although the efficiency of Wang and Lee (2018)452

and Zhou and Rush (2019) is not available, we453

still expect our approach to be a few times faster454

(despite our higher ROUGE scores) because their455

models are autoregressive. By contrast, our NAUS456

is non-autoregressive, meaning that it predicts all457

words simultaneously. We will provide a con-458

trolled comparison between autoregressive and non-459

autoregressive models in Table 3.460

Table 2 shows the results on the DUC2004461

Model
ROUGE Recall

Time Speedup
R-1 R-2 R-L ∆R

Lead (75 characters)† 22.50 6.49 19.72 -8.34 – –
Zajic et al. (2004)† 25.12 6.46 20.12 -5.35 – –

Baziotis et al. (2019)† 22.13 6.18 19.30 -9.44 – –
West et al. (2019)† 22.85 5.71 19.87 -8.62 – –

Schumann et al. (2020)† 26.04 8.06 22.90 -0.05 – –
Our replication 26.14 8.03 22.88 0 12.314 1x
Su et al. (2021) 26.25 7.66 22.83 -0.31 0.022 559x

NAUS (truncate) 26.52 7.88 22.91 0.26 0.005 2463x
NAUS (length control) 26.71 7.68 23.06 0.40 0.048 257x

Table 2: Results on the DUC2004 dataset. †Quoted
from previous papers.

dataset. The cycle-consistency approach (Bazio- 462

tis et al., 2019; West et al., 2019) does not per- 463

form well on this dataset, outperformed by an 464

early rule-based syntax tree trimming approach (Za- 465

jic et al., 2004) and the state-of-the-art edit-based 466

search (Schumann et al., 2020). 467

The performance of our NAUS model is con- 468

sistent with Table 1, outperforming all previous 469

methods in terms of the total ROUGE score, and 470

being 100–1000 times faster than the search ap- 471

proach (Schumann et al., 2020). 472

In general, the proposed NAUS not only achieves 473

state-of-the-art ROUGE scores for unsupervised 474

summarization, but also is more efficient when de- 475

ployed. Results are consistent on both datasets, 476

demonstrating the generality of our NAUS. 477

In-Depth Analyses. We conduct in-depth anal- 478

yses on the proposed NAUS model in Table 3. Due 479

to the limit of time and space, we chose the Giga- 480

word headline generation as our testbed. All the 481

6

autoregressive (AR) and non-autoregressive (NAR)482

variants learn from the search output of our replica-483

tion (Rows 2 & 11), where we achieve very close484

results to those reported in Schumann et al. (2020).485

We first tried vanilla encoder–decoder NAR486

Transformer (Rows 4 & 13, Gu et al., 2018), where487

we set the number of decoding slots as the de-488

sired summary length and thus length-control is489

not needed. As seen, a vanilla NAR model does490

not perform well, and CTC largely outperforms491

vanilla NAR in both groups (Rows 5–6 & 14–15).492

Such results are highly consistent with the trans-493

lation literature (Saharia et al., 2020; Chan et al.,494

2020; Gu and Kong, 2021; Qian et al., 2021).495

The proposed encoder-only NAUS model out-496

performs encoder–decoder ones in both groups in497

terms of the total ROUGE score, when the sum-498

mary length is controlled by either truncating or499

length-control decoding (Rows 8–9 & 17–18). Pro-500

foundly, our non-autoregressive NAUS is even501

better than the autoregressive Transformer (Rows502

3 & 12) . We also experimented with previous503

non-autoregressive work for supervised summa-504

rization (Su et al., 2021)3 in our learning-from-505

search setting. Although their approach appears to506

be encoder-only, it adds end-of-sequence (EOS) to-507

kens at the end of the generation, and thus is unable508

to utilize the input–output correspondence. Their509

performance is higher than vanilla NAR models,510

but lower than ours. By contrast, NAUS is able to511

capture such correspondence with the residual con-512

nections, i.e., Eqns. (2) and (3), in its encoder-only513

architecture.514

Generally, the efficiency of encoder-only NAR4515

(without length-control decoding) is ~2 times faster516

than encoder–decoder NAR and ~20 times faster517

than the AR Transformer.518

Further, our length-control decoding improves519

the total ROUGE score, compared with truncating,520

for both encoder–decoder CTC and encoder-only521

NAUS models (Rows 6, 9, 15, & 18), although its522

dynamic programming is slower. Nevertheless, our523

non-autoregressive NAUS with length control is524

~200 times faster than search and ~3 times faster525

3To the best of our knowledge, the other two non-
autoregressive supervised summarization models are Yang
et al. (2021) and Qi et al. (2021). Their code and pretrained
models are not available, making replication difficult.

4The standard minimal encoder–decoder NAR model has
6 layers for the encoder and another 6 layers for the de-
coder (Vaswani et al., 2017). Our NAUS only has a 6-layer
encoder. Our pilot study shows that more layers do not further
improve performance in our encoder-only architecture.

Approach
ROUGE Recall

Speedup
R-1 R-2 R-L ∆R

Group A (desired length 8)
1

Search
Schumann et al. 26.32 9.63 24.19 0.18 –

2 Our replication 26.17 9.69 24.10 0 1x
3 AR Transformer (T) 26.65 9.51 24.67 0.87 58x
4

NAR
enc-dec

Vanilla 24.87 8.33 22.74 -4.02 571x
5 CTC (T) 27.30 9.20 24.96 1.5 571x
6 CTC (LC) 27.76 9.13 25.33 2.26 149x
7

NAR
enc-only

Su et al. (2021) 26.88 9.37 24.54 0.83 403x
8 Our NAUS (T) 27.27 9.49 24.96 1.76 1396x
9 Our NAUS (LC) 27.94 9.24 25.51 2.73 167x

Group B (desired length 10)
10

Search
Schumann et al. 27.52 10.27 24.91 0.23 –

11 Our replication 27.35 10.25 24.87 0 1x
12 AR Transformer (T) 27.06 9.63 24.55 -1.23 66x
13

NAR
enc-dec

Vanilla 25.77 8.69 23.52 -4.49 709x
14 CTC (T) 28.14 10.07 25.37 1.11 709x
15 CTC (LC) 28.45 9.81 25.63 1.42 192x
16

NAR
enc-only

Su et al. (2021) 27.86 9.88 25.51 0.78 461x
17 Our NAUS (T) 28.24 10.04 25.40 1.21 1843x
18 Our NAUS (LC) 28.55 9.97 25.78 1.83 210x

Table 3: Model analysis on headline generation.
AR: Autoregressive models. NAR enc-dec: Non-
autoregressive encoder–decoder. NAR enc-only: Non-
autoregressive encoder-only. T: Truncating. LC:
Length control. All AR and NAR models use the Trans-
former architecture.

Decoding Wins Ties Loses p-val

Overall quality
Truncate 18.6% 40.6% 40.6%

0.0004
Length control 40.6% 40.6% 18.6%

Completeness
& fluency

Truncate 24.6% 26.6% 48.6%
0.0005

Length control 48.6% 26.6% 24.6%

Table 4: Human evaluation comparing truncating and
length control for our NAUS model on 50 samples in
the Gigaword headline generation task. The results are
statistically significant, where the p-value is given by a
one-sided binomial test.

than the AR Transformer. 526

Human Evaluation. We also conducted human 527

evaluation with a focus on truncating and length- 528

control decodings. This is because truncating may 529

generate incomplete sentences, which cannot be 530

adequately evaluated by automatic metrics as their 531

ROUGE scores are close. 532

Specifically, we invited three human annotators 533

to compare the two decoding algorithms for NAUS 534

on 50 randomly selected samples, in the setting of 535

Group B, Table 1 (Gigaword headline generation 536

with a target length of 10). The annotation was 537

conducted in a pairwise manner in terms of overall 538

quality and fluency/completeness; average results 539

(wins/loses/ties) are shown in Table 5. It should be 540

mentioned that our annotation was strictly blind: 541

the samples of two systems were presented in ran- 542

dom order and annotators did not know which sys- 543

tem generated a sample. 544

7

As seen, our length-control decoding algo-545

rithm largely outperforms the truncating approach546

in terms of both the overall quality and flu-547

ency/completeness. The results are statistically548

significant (p-values< 0.01) in a one-sided bino-549

mial test. This verifies that length-control decod-550

ing is important for summarization, as truncating551

yields incomplete sentences, which are reflected by552

ROUGE scores.553

Additional results. We analyze the beam search554

in length-control decoding in Appendix C and555

present a case study in Appendix D. We also show556

length-transfer performance in Appendix E.557

4 Related Work558

Summarization systems can be generally catego-559

rized into two paradigms: extractive and abstrac-560

tive. Extractive systems extract certain sentences561

and clauses from input, for example, based on562

salient features (Zhou and Rush, 2019) or feature563

construction (He et al., 2012). Abstraction systems564

generate new utterances as the summary, e.g., by565

sequence-to-sequence models trained in a super-566

vised way (Liu et al., 2021; Zhang et al., 2020).567

Recently, unsupervised abstractive summariza-568

tion is attracting increasing attention. For example,569

Yang et al. (2020) propose to use the Lead baseline570

(first several sentences) as the pseudo-groundtruth.571

However, such an approach only works with well-572

structured articles (such as CNN/DailyMail). Wang573

and Lee (2018) and Baziotis et al. (2019) use cycle574

consistency for unsupervised summarization. Zhou575

and Rush (2019) propose a step-by-step decompos-576

able scoring function and perform beam search for577

generate summarization. Schumann et al. (2020)578

propose an edit-based local search approach, which579

allows a more comprehensive scoring function and580

outperforms cycle consistency and beam search.581

Our paper follows Schumann et al. (2020) but582

trains a machine learning model to improve effi-583

ciency and smooth out search noise. Previously,584

Liu et al. (2020) fine-tune a GPT-2 model based on585

search results for unsupervised paraphrasing. We586

extend previous work in a non-trivial way by de-587

signing a non-autoregressive generator and further588

proposing a length-control decoding algorithm.589

Non-autoregressive generation is originally pro-590

posed for machine translation (Gu et al., 2018).591

Recently, Jia et al. (2021) apply non-autoregressive592

models to extractive document-level summariza-593

tion. Su et al. (2021) stack a non-autoregressive594

BERT model with a conditional random field (CRF) 595

for abstractive summarization; since the summary 596

is shorter than the input text, their approach puts 597

multiple end-to-sequence (EOS) tokens at the end 598

of the sentence, and thus is unable to utilize the 599

strong input–output correspondence in the summa- 600

rization task. Yang et al. (2021) apply auxiliary 601

part-of-speech (POS) loss and Qi et al. (2021) ex- 602

plore pretraining strategies for encoder–decoder 603

non-autoregressive summarization; their length is 604

given by POS tag/EOS predictions. All these stud- 605

ies concern supervised summarization, and none 606

can explicitly control the output length. By con- 607

trast, our paper focuses on unsupervised summa- 608

rization. We adopt CTC training in our encoder- 609

only architecture, allowing blank tokens to better 610

align input and output words, which is more ap- 611

propriate for summarization. We further propose 612

a dynamic programming algorithm to control the 613

summary length. 614

5 Conclusion 615

In this work, we propose a non-autoregressive un- 616

supervised summarization model (NAUS), where 617

we further propose a length-control decoding al- 618

gorithm based on dynamic programming. Exper- 619

iments show that NAUS not only archives state- 620

of-the-art unsupervised performance on Gigaword 621

headline generation and DUC2004 datasets, but 622

also is much more efficient than search methods 623

and autoregressive models. Appendices present ad- 624

ditional analyses and length-transfer experiments. 625

Limitation and Future Work. Our paper fo- 626

cuses on unsupervised summarization due to the 627

importance of low-data applications. One limita- 628

tion is that we have not obtained rigorous empirical 629

results for supervised summarization, where the de- 630

veloped model may also work. This is because pre- 631

vious supervised summarization papers lack explic- 632

itly categorization of summary lengths (Yang et al., 633

2020; Qi et al., 2021), making comparisons unfair 634

and problematic (Schumann et al., 2020). This is 635

also evidenced by Su et al. (2021), where the same 636

model may differ by a few ROUGE points when 637

generating summaries of different lengths. Never- 638

theless, we have compared with Su et al. (2021) in 639

our setting and show the superiority of the NAUS 640

under fair comparison. We plan to explore super- 641

vised summarization in future work after we estab- 642

lish a rigorous experimental setup, which is beyond 643

the scope of this paper. 644

8

References645

Armen Aghajanyan, Anchit Gupta, Akshat Shrivas-646
tava, Xilun Chen, Luke Zettlemoyer, and Sonal647
Gupta. 2021. Muppet: Massive multi-task rep-648
resentations with pre-finetuning. arXiv preprint649
arXiv:2101.11038.650

Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta,651
Naman Goyal, Luke Zettlemoyer, and Sonal Gupta.652
2020. Better fine-tuning by reducing representa-653
tional collapse. In International Conference on654
Learning Representations.655

Christos Baziotis, Ion Androutsopoulos, Ioannis Kon-656
stas, and Alexandros Potamianos. 2019. Seq3: Dif-657
ferentiable sequence-to-sequence-to-sequence au-658
toencoder for unsupervised abstractive sentence659
compression. In Proceedings of the Conference of660
the North American Chapter of the Association for661
Computational Linguistics: Human Language Tech-662
nologies, pages 673–681.663

William Chan, Chitwan Saharia, Geoffrey Hinton, Mo-664
hammad Norouzi, and Navdeep Jaitly. 2020. Im-665
puter: Sequence modelling via imputation and dy-666
namic programming. In Proceedings of the Inter-667
national Conference on Machine Learning, pages668
1403–1413.669

Bonnie Dorr, David Zajic, and Richard Schwartz. 2003.670
Hedge trimmer: A parse-and-trim approach to head-671
line generation. In Proceedings of the HLT-NAACL672
03 Text Summarization Workshop, pages 1–8.673

Thibault Févry and Jason Phang. 2018. Unsuper-674
vised sentence compression using denoising auto-675
encoders. In Proceedings of the Conference on Com-676
putational Natural Language Learning, pages 413–677
422.678

David Graff, Junbo Kong, Ke Chen, and Kazuaki679
Maeda. 2003. English Gigaword. Linguistic Data680
Consortium, Philadelphia.681

Alex Graves, Santiago Fernández, Faustino Gomez,682
and Jürgen Schmidhuber. 2006. Connectionist683
temporal classification: Labelling unsegmented se-684
quence data with recurrent neural networks. In Pro-685
ceedings of the International Conference on Ma-686
chine Learning, page 369–376.687

Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK688
Li, and Richard Socher. 2018. Non-autoregressive689
neural machine translation. In International Confer-690
ence on Learning Representations.691

Jiatao Gu and Xiang Kong. 2021. Fully non-692
autoregressive neural machine translation: tricks of693
the trade. In Findings of the Association for Compu-694
tational Linguistics: ACL-IJCNLP 2021, pages 120–695
133.696

Zhanying He, Chun Chen, Jiajun Bu, Can Wang, Lijun697
Zhang, Deng Cai, and Xiaofei He. 2012. Document698

summarization based on data reconstruction. In Pro- 699
ceedings of the AAAI Conference on Artificial Intel- 700
ligence, pages 620–626. 701

Ruipeng Jia, Yanan Cao, Haichao Shi, Fang Fang, 702
Pengfei Yin, and Shi Wang. 2021. Flexible non- 703
autoregressive extractive summarization with thresh- 704
old: How to extract a non-fixed number of summary 705
sentences. In Proceedings of the AAAI Conference 706
on Artificial Intelligence, pages 13134–13142. 707

Julia Kreutzer, Stefan Riezler, and Carolin Lawrence. 708
2021. Offline reinforcement learning from human 709
feedback in real-world sequence-to-sequence tasks. 710
In Proceedings of the Workshop on Structured Pre- 711
diction for NLP, pages 37–43. 712

Jason Lee, Elman Mansimov, and Kyunghyun Cho. 713
2018. Deterministic non-autoregressive neural se- 714
quence modeling by iterative refinement. In Pro- 715
ceedings of the Conference on Empirical Methods 716
in Natural Language Processing, pages 1173–1182. 717

Jingjing Li, Zichao Li, Lili Mou, Xin Jiang, Michael 718
Lyu, and Irwin King. 2020. Unsupervised text gen- 719
eration by learning from search. In Advances in Neu- 720
ral Information Processing Systems, pages 10820– 721
10831. 722

Chin-Yew Lin. 2004. ROUGE: A package for auto- 723
matic evaluation of summaries. In Text Summariza- 724
tion Branches Out, pages 74–81. 725

Xianggen Liu, Lili Mou, Fandong Meng, Hao Zhou, 726
Jie Zhou, and Sen Song. 2020. Unsupervised para- 727
phrasing by simulated annealing. In Proceedings of 728
the Annual Meeting of the Association for Computa- 729
tional Linguistics, pages 302–312. 730

Yixin Liu, Zi-Yi Dou, and Pengfei Liu. 2021. RefSum: 731
Refactoring neural summarization. In Proceedings 732
of the Annual Meeting of the Association for Com- 733
putational Linguistics, pages 1437–1448. 734

Clara Meister, Ryan Cotterell, and Tim Vieira. 2020. 735
If beam search is the answer, what was the ques- 736
tion? In Proceedings of the Conference on Empiri- 737
cal Methods in Natural Language Processing, pages 738
2173–2185. 739

Yishu Miao and Phil Blunsom. 2016. Language as a 740
latent variable: Discrete generative models for sen- 741
tence compression. In Proceedings of the Confer- 742
ence on Empirical Methods in Natural Language 743
Processing, pages 319–328. 744

Ani Nenkova, Sameer Maskey, and Yang Liu. 2011. 745
Automatic summarization. In Proceedings of the An- 746
nual Meeting of the Association for Computational 747
Linguistics, pages 1–86. 748

Paul Over and James Yen. 2004. An introduction to 749
DUC-2004: Intrinsic evaluation of generic news text 750
summarization systems. In Proceedings of the Doc- 751
ument Understanding Conference. 752

9

https://arxiv.org/abs/2101.11038
https://arxiv.org/abs/2101.11038
https://arxiv.org/abs/2101.11038
https://openreview.net/forum?id=OQ08SN70M1V
https://openreview.net/forum?id=OQ08SN70M1V
https://openreview.net/forum?id=OQ08SN70M1V
https://aclanthology.org/N19-1071/
https://aclanthology.org/N19-1071/
https://aclanthology.org/N19-1071/
https://aclanthology.org/N19-1071/
https://aclanthology.org/N19-1071/
https://aclanthology.org/N19-1071/
https://aclanthology.org/N19-1071/
http://proceedings.mlr.press/v119/chan20b.html
http://proceedings.mlr.press/v119/chan20b.html
http://proceedings.mlr.press/v119/chan20b.html
http://proceedings.mlr.press/v119/chan20b.html
http://proceedings.mlr.press/v119/chan20b.html
https://aclanthology.org/W03-0501
https://aclanthology.org/W03-0501
https://aclanthology.org/W03-0501
https://aclanthology.org/K18-1040
https://aclanthology.org/K18-1040
https://aclanthology.org/K18-1040
https://aclanthology.org/K18-1040
https://aclanthology.org/K18-1040
https://catalog.ldc.upenn.edu/LDC2003T05
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://openreview.net/forum?id=B1l8BtlCb
https://openreview.net/forum?id=B1l8BtlCb
https://openreview.net/forum?id=B1l8BtlCb
https://aclanthology.org/2021.findings-acl.11
https://aclanthology.org/2021.findings-acl.11
https://aclanthology.org/2021.findings-acl.11
https://aclanthology.org/2021.findings-acl.11
https://aclanthology.org/2021.findings-acl.11
https://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/viewPaper/4991
https://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/viewPaper/4991
https://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/viewPaper/4991
https://ojs.aaai.org/index.php/AAAI/article/view/17552
https://ojs.aaai.org/index.php/AAAI/article/view/17552
https://ojs.aaai.org/index.php/AAAI/article/view/17552
https://ojs.aaai.org/index.php/AAAI/article/view/17552
https://ojs.aaai.org/index.php/AAAI/article/view/17552
https://ojs.aaai.org/index.php/AAAI/article/view/17552
https://ojs.aaai.org/index.php/AAAI/article/view/17552
https://aclanthology.org/2021.spnlp-1.4
https://aclanthology.org/2021.spnlp-1.4
https://aclanthology.org/2021.spnlp-1.4
https://aclanthology.org/D18-1149.pdf
https://aclanthology.org/D18-1149.pdf
https://aclanthology.org/D18-1149.pdf
https://proceedings.neurips.cc/paper/2020/file/7a677bb4477ae2dd371add568dd19e23-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/7a677bb4477ae2dd371add568dd19e23-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/7a677bb4477ae2dd371add568dd19e23-Paper.pdf
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/2020.acl-main.28
https://aclanthology.org/2020.acl-main.28
https://aclanthology.org/2020.acl-main.28
https://aclanthology.org/2021.naacl-main.113.pdf
https://aclanthology.org/2021.naacl-main.113.pdf
https://aclanthology.org/2021.naacl-main.113.pdf
https://aclanthology.org/2020.emnlp-main.170.pdf
https://aclanthology.org/2020.emnlp-main.170.pdf
https://aclanthology.org/2020.emnlp-main.170.pdf
https://aclanthology.org/D16-1031
https://aclanthology.org/D16-1031
https://aclanthology.org/D16-1031
https://aclanthology.org/D16-1031
https://aclanthology.org/D16-1031
https://dl.acm.org/doi/abs/10.5555/2002465.2002468
https://www-nlpir.nist.gov/projects/duc/pubs/2004slides/duc2004.intro.pdf
https://www-nlpir.nist.gov/projects/duc/pubs/2004slides/duc2004.intro.pdf
https://www-nlpir.nist.gov/projects/duc/pubs/2004slides/duc2004.intro.pdf
https://www-nlpir.nist.gov/projects/duc/pubs/2004slides/duc2004.intro.pdf
https://www-nlpir.nist.gov/projects/duc/pubs/2004slides/duc2004.intro.pdf

Weizhen Qi, Yeyun Gong, Jian Jiao, Yu Yan, Weizhu753
Chen, Dayiheng Liu, Kewen Tang, Houqiang Li,754
Jiusheng Chen, Ruofei Zhang, Ming Zhou, and Nan755
Duan. 2021. Bang: Bridging autoregressive and756
non-autoregressive generation with large scale pre-757
training. In Proceedings of the International Con-758
ference on Machine Learning, pages 8630–8639.759

Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin760
Qiu, Weinan Zhang, Yong Yu, and Lei Li. 2021.761
Glancing transformer for non-autoregressive neural762
machine translation. In Proceedings of the Annual763
Meeting of the Association for Computational Lin-764
guistics and the International Joint Conference on765
Natural Language Processing, pages 1993–2003.766

Alexander M. Rush, Sumit Chopra, and Jason Weston.767
2015. A neural attention model for abstractive sen-768
tence summarization. In Proceedings of the Con-769
ference on Empirical Methods in Natural Language770
Processing, pages 379–389.771

Chitwan Saharia, William Chan, Saurabh Saxena, and772
Mohammad Norouzi. 2020. Non-autoregressive ma-773
chine translation with latent alignments. In Proceed-774
ings of the Conference on Empirical Methods in Nat-775
ural Language Processing, pages 1098–1108.776

Raphael Schumann, Lili Mou, Yao Lu, Olga Vechto-777
mova, and Katja Markert. 2020. Discrete optimiza-778
tion for unsupervised sentence summarization with779
word-level extraction. In Proceedings of the Annual780
Meeting of the Association for Computational Lin-781
guistics, pages 5032–5042.782

Yixuan Su, Deng Cai, Yan Wang, David Vandyke, Si-783
mon Baker, Piji Li, and Nigel Collier. 2021. Non-784
autoregressive text generation with pre-trained lan-785
guage models. In Proceedings of the Conference of786
the European Chapter of the Association for Compu-787
tational Linguistics, pages 234–243.788

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob789
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz790
Kaiser, and Illia Polosukhin. 2017. Attention is all791
you need. In Advances in Neural Information Pro-792
cessing Systems, pages 5998–6008.793

Yaushian Wang and Hung-Yi Lee. 2018. Learning794
to encode text as human-readable summaries using795
generative adversarial networks. In Proceedings of796
the Conference on Empirical Methods in Natural797
Language Processing, pages 4187–4195.798

Peter West, Ari Holtzman, Jan Buys, and Yejin799
Choi. 2019. BottleSum: Unsupervised and self-800
supervised sentence summarization using the infor-801
mation bottleneck principle. In Proceedings of802
the Conference on Empirical Methods in Natural803
Language Processing and the International Joint804
Conference on Natural Language Processing, pages805
3752–3761.806

Kexin Yang, Wenqiang Lei, Dayiheng Liu, Weizhen Qi,807
and Jiancheng Lv. 2021. POS-constrained parallel808

decoding for non-autoregressive generation. In Pro- 809
ceedings of the Annual Meeting of the Association 810
for Computational Linguistics and the International 811
Joint Conference on Natural Language Processing, 812
pages 5990–6000. 813

Ziyi Yang, Chenguang Zhu, Robert Gmyr, Michael 814
Zeng, Xuedong Huang, and Eric Darve. 2020. TED: 815
A pretrained unsupervised summarization model 816
with theme modeling and denoising. In Proceedings 817
of the Conference on Empirical Methods in Natural 818
Language Processing, pages 1865–1874. 819

David Zajic, Bonnie Dorr, and Richard Schwartz. 2004. 820
BBN/UMD at DUC-2004: Topiary. In Proceedings 821
of the HLT-NAACL Document Understanding Work- 822
shop, pages 112–119. 823

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and 824
Peter Liu. 2020. PEGASUS: Pre-training with ex- 825
tracted gap-sentences for abstractive summarization. 826
In Proceedings of the International Conference on 827
Machine Learning, pages 11328–11339. 828

Jiawei Zhou and Alexander Rush. 2019. Simple un- 829
supervised summarization by contextual matching. 830
In Proceedings of the Annual Meeting of the Asso- 831
ciation for Computational Linguistics, pages 5101– 832
5106. 833

10

https://proceedings.mlr.press/v139/qi21a.html
https://proceedings.mlr.press/v139/qi21a.html
https://proceedings.mlr.press/v139/qi21a.html
https://proceedings.mlr.press/v139/qi21a.html
https://proceedings.mlr.press/v139/qi21a.html
https://aclanthology.org/2021.acl-long.155
https://aclanthology.org/2021.acl-long.155
https://aclanthology.org/2021.acl-long.155
http://dx.doi.org/10.18653/v1/D15-1044
http://dx.doi.org/10.18653/v1/D15-1044
http://dx.doi.org/10.18653/v1/D15-1044
https://www.aclweb.org/anthology/2020.emnlp-main.83
https://www.aclweb.org/anthology/2020.emnlp-main.83
https://www.aclweb.org/anthology/2020.emnlp-main.83
https://aclanthology.org/2020.acl-main.452
https://aclanthology.org/2020.acl-main.452
https://aclanthology.org/2020.acl-main.452
https://aclanthology.org/2020.acl-main.452
https://aclanthology.org/2020.acl-main.452
https://aclanthology.org/2021.eacl-main.18.pdf
https://aclanthology.org/2021.eacl-main.18.pdf
https://aclanthology.org/2021.eacl-main.18.pdf
https://aclanthology.org/2021.eacl-main.18.pdf
https://aclanthology.org/2021.eacl-main.18.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/D18-1451
https://aclanthology.org/D18-1451
https://aclanthology.org/D18-1451
https://aclanthology.org/D18-1451
https://aclanthology.org/D18-1451
https://aclanthology.org/D19-1389
https://aclanthology.org/D19-1389
https://aclanthology.org/D19-1389
https://aclanthology.org/D19-1389
https://aclanthology.org/D19-1389
https://aclanthology.org/2021.acl-long.467
https://aclanthology.org/2021.acl-long.467
https://aclanthology.org/2021.acl-long.467
https://aclanthology.org/2020.findings-emnlp.168
https://aclanthology.org/2020.findings-emnlp.168
https://aclanthology.org/2020.findings-emnlp.168
https://aclanthology.org/2020.findings-emnlp.168
https://aclanthology.org/2020.findings-emnlp.168
http://users.umiacs.umd.edu/~bonnie/Publications/Attic/DUC2004-HEADLINE.pdf
http://proceedings.mlr.press/v119/zhang20ae.html
http://proceedings.mlr.press/v119/zhang20ae.html
http://proceedings.mlr.press/v119/zhang20ae.html
https://aclanthology.org/P19-1503
https://aclanthology.org/P19-1503
https://aclanthology.org/P19-1503

A Proof of Theorem 1834

Theorem 1. (1) If repeating tokens are not merged,835

then the proposed length-control algorithm with836

beam size B = 1 finds the exact optimum BS,T837

being the most probable length-T sentence given838

by S prediction slots. (2) If we merge repeating839

tokens predicted by CTC-trained models, the above840

algorithm may not be exact.841

Proof. [Part (1)] This part concerns a variant of our842

decoding algorithm, which only removes the blank843

token ε but does not merge consecutive repeated844

tokens to a single word, i.e., Eqn. (10) is removed.845

We denote this by Γ′, for example, Γ′(aεεaabbε) =846

aaabb, as opposed to Γ(aεεaabbε) = aabb in our847

algorithm. We now show that, based on Γ′, our848

dynamic programming algorithm in §2.3 with beam849

size B = 1 is an exact inference algorithm.850

We define βs,t = maxb:|b|=s,|Γ′(b)|=t P (b|x),851

where | · | denotes the length of a sequence. In852

other words, βs,t is the maximum probability of s853

tokens that are reduced to t words.854

According to the definition, we have855

β1,0 = P (w1 = ε|x) (13)856

β1,1 = maxw1 6=ε P (w1|x) (14)857

βs,t = 0 for s > t (15)858

In (13), β1,0 refers to the probability of one to-859

ken that is reduced to zero words, in which case,860

the first predicted token can only be the blank to-861

ken ε, corresponding to Eqn. (9) with s = 1 and862

t = 0. Likewise, β1,1 is the maximum probability863

of one token that is reduced to one word. Thus,864

it is the probability of the most probable non-ε to-865

ken, corresponding to Eqn. (11) with s = 1 and866

t = 0. Eqn. (15) asserts that fewer tokens cannot867

be reduced to more words; it is used for mathe-868

matical derivations, but need not to be explicitly869

implemented in our algorithm in §2.3.870

The recursion variable βs,t is computed by871

βs,t = max
{
βs−1,t · P (ws = ε|x),

βs−1,t−1 ·maxws 6=ε P (ws|x)
}
(16)872

In other words, the variable βs,t can inherit βs−1,t873

with a predicted blank token ε, corresponding to874

Eqn. (9); or it can inherit βs−1,t−1 with a predicted875

non-ε token, corresponding to Eqn. (11). Specially,876

if t = 0, then the second term has βs−1,−1 unde-877

fined, and thus is ignored in the max operation.878

Word P (w1|x) P (w2|x)

I 0.39 0.1
like 0.4 0.9

coding 0.1 0
ε 0.11 0

Table 5: An example of predicted probabilities of two
generation slots, where we have a vocabulary of three
words and a blank token ε.

We need the max operator to take the higher 879

probability in the two cases, since βs,t is the max- 880

imum probability of s tokens being reduced to t 881

words. This corresponds to Eqn. (12) with beam 882

size B = 1. 883

To sum up, our inductive calculation guaran- 884

tees that βS,T is the exact maximum probability of 885

maxb:|b|=S,|Γ′(b)|=T P (b|x) for the desired length 886

T with S generation slots; our algorithm (if not 887

merging repeating tokens) gives the correspond- 888

ing BS,T as argmaxP (b|x) under the same con- 889

straints, concluding the proof of Part (1). 890

[Part (2)] CTC training merges consecutive re- 891

peated tokens to a single word, unless separated by 892

the blank token ε (Graves et al., 2006). Since our 893

model is trained by CTC, we should adopt this rule 894

in inference as well. We show in this part that our 895

algorithm, with beam size B = 1, does not yield 896

the exact optimum with an example in Table 5. 897

We consider generating a sentence of two words 898

from the two prediction slots, i.e., S = T = 2. 899

Apparently, the optimal sequence is “I like” with 900

probability 0.39 · 0.9 = 0.351. However, the al- 901

gorithm would predict B1,1 = {“like”} because 902

“like” is the most probably token in the first slot. 903

Then, our algorithm will give B2,2 = {“like I”}, 904

because it has to select a non-repeating token based 905

on Γ, yielding a non-optimal solution. 906

907

It is noted that, if we do not merge repeating 908

tokens as in Γ′, our algorithm will give the exact 909

optimum “like like” in the above example. This 910

shows that merging consecutive repeated tokens 911

requires the decoding algorithm to correct early 912

predictions, and thus, our dynamic programming 913

becomes an approximate inference. Nevertheless, 914

our algorithm is able to generate a sequence of 915

the desired length properly; its approximation hap- 916

pens only when the algorithm compares more rep- 917

etitions with fewer εs versus more εs with fewer 918

repetitions. Such approximation is further allevi- 919

ated by beam search in our dynamic programming. 920

Therefore, the proposed length-control algorithm is 921

11

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Samples (million)

3.0

1.5

0.0

1.5

3.0

R

Figure 3: Performance versus the number of training
samples in the setting of Group B, Table 1. Notice that
NAUS is trained by pseudo-groundtruth given by un-
supervised edit-based search (Schumann et al., 2020).
Thus, our approach is indeed unsupervised.

better than truncating a longer sentence; especially,922

our approach generates more fluent and complete923

sentences.924

B Implementation Details925

Our NAUS had a Transformer encoder as the ba-926

sic structure, generally following the settings in927

Vaswani et al. (2017): 6 encoder layers, each hav-928

ing 8 attention heads. The dimension was 512 for929

attention and 2048 for feed-forward modules.930

Our training used a batch size of 4K tokens,931

with a maximum of 200K updates. We used Adam932

with β = (0.9, 0.98). In general, the learning rate933

warmed up to 5e-4 in the first 10K steps, and then934

decayed to 1e-9 with the inverse square-root sched-935

ule, except that we find the maximum learning rate936

of 1e-4 worked better for headline generation with937

the summary length of 8. We set the `2 weight de-938

cay to 0.01. Our length-control decoding algorithm939

had a beam size of 6. More details can be found in940

our repository (Footnote 1).941

Our NAUS training is based on Schumann et al.942

(2020)’s prediction on the input of the Gigaword943

headline generation training set. We show perfor-944

mance against the number of training samples in945

Figure 3. As seen, NAUS outperforms its search946

teacher even with a small set of 0.1 million sam-947

ples. The performance saturates as the number of948

samples increases. Based on this analysis, we used949

3 million samples from the 3.8 million Gigaword950

training set to train our NAUS models.951

C Analysis of Beam Search952

As mentioned, our length-control decoding algo-953

rithm involves beam search within its dynamic pro-954

gramming, because the algorithm does not find955

the exact optimum when it merges repeating words.956

1 10 20
Beam Size

1

0

1

2

3

R

(a)
CTC Beam Search
Length Control

1 10 20
Beam Size

0.00

0.05

0.15

0.25

In
fe

re
nc

e
Ti

m
e

(s
)

(b)
CTC Beam Search
Length Control

Figure 4: Performance of our NAUS approach when
equipped with the length-control decoding and the trun-
cated CTC beam search on the Gigaward headline gen-
eration test set. The chosen token at each slot is re-
quired to be 10-most probable.

We analyze the effect of the beam size in our length- 957

control algorithm. 958

In addition, we compare our approach with CTC 959

beam search (Graves et al., 2006).5 Typically, a 960

CTC-trained non-autoregressive model can be de- 961

coded either greedily or by beam search. The 962

greedy decoding finds the most probable token at 963

each step, i.e., w∗i = argmaxwi
P (wi|x), and re- 964

duces the tokens to a sentence by Γ(w1, · · · ,wT), 965

where T is the number of decoding steps. 966

The CTC beam search algorithm searches for 967

the most likely sentence by marginalizing all 968

token sequences that are reduced to y, i.e., 969

argmaxy

∑
w:Γ(w)=y P (w|x). 970

We show results in Figure 4, where we chose 10- 971

word Gigaword headline generation as the testbed 972

with our NAUS model (Group B, Table 1). Notice 973

that CTC beam search does not control the output 974

length, and for fair comparison, we truncated its 975

generated summaries. This also shows that our 976

novel decoding approach and CTC beam search 977

are distinct algorithms. 978

As seen in Figure 4a, the beam search does play 979

a role in our length-control algorithm. When the 980

beam enlarges from 1 to 6, the performance (or- 981

ange solid line) increases by 1.2 points in ∆R, the 982

difference of total ROUGE in comparison with 983

Schumann et al. (2020) under our replication (Row 984

10, Table 1). However, further increasing the beam 985

size does not yield additional performance gain. 986

This is consistent with previous literature in autore- 987

gressive generation (Meister et al., 2020), which 988

also suggests a beam size of 5–7 is the best in 989

their applications. In terms of the efficiency (Fig- 990

ure 4b), a larger beam size monotonically increases 991

the inference time. However, the overhead of beam 992

5Our implementation of CTC beam search is based on
https://github.com/parlance/ctcdecode

12

https://github.com/parlance/ctcdecode

Input: the united nations condemned saturday an attack on
russian embassy employees in baghdad that claimed the life
of one russian and resulted in the kidnapping of four others
Reference: un condemns murder of russians in iraq with
annan comment
Schumann et al. (2020): attack on russian embassy in
baghdad claimed one in four
NAUS (truncate): an attack on russian embassy employees
in baghdad claimed in kidnapping of four others
NAUS (length control): united nations condemned attack
on russian embassy employees in baghdad

Table 6: Example summaries for Gigaword headline
generation. The gray words are truncated for fair com-
parison.

search is relatively small in our dynamic program-993

ming, and thus we chose a beam size of 6 in our994

experiments.995

Our length-control algorithm significantly out-996

performs CTC beam search (dashed blue lines) in997

terms of both ∆R and efficiency. Especially, CTC998

beam search is three times slower, and degrades999

more significantly than our length-control decoding1000

when the beam size increases.1001

D Case Study1002

We show in Table 6 example summaries generated1003

by our NAUS with truncating and length-control1004

decoding, as well as the previous state-of-the-art1005

method (Schumann et al., 2020). We observe that1006

NAUS without length control generates slightly1007

longer summaries, and if truncated, the output may1008

be incomplete; by contrast, our length-control algo-1009

rithm can generate a fluent and complete sentence1010

of the desired length by dynamic programming.1011

Compared with Schumann et al. (2020), our NAUS1012

(length control) generates a more informative sum-1013

mary that includes the main clause (united nations1014

condemned), which also appears in the reference1015

summary.1016

E Length-Transfer Summary1017

Generation1018

In the main paper, we present results where our1019

NAUS is trained on search outputs (Schumann1020

et al., 2020), which have the same length as the1021

inference target. This follows the common assump-1022

tion in machine learning that training and test sam-1023

ples are independently identically distributed.1024

In this appendix, we show the performance of1025

length-transfer summary generation, where the pre-1026

diction has a different length from that of training.1027

We denote such a model by NAUSi→j , referring to1028

training with i words and testing for j words.1029

As seen in Groups A & B in Table 7, NAUS 1030

with length transfer is slightly worse than NAUS 1031

trained on the correct length, which is understand- 1032

able. Nevertheless, length-transfer decoding still 1033

outperforms the search teacher and other baselines. 1034

Moreover, we consider the third setting in Schu- 1035

mann et al. (2020), where the target length is 50% 1036

of the input. Since it takes time to obtain pseudo- 1037

groundtruths given by the edit-based search, we 1038

would directly transfer already trained NAUS mod- 1039

els to this setting by our length-control decoding. 1040

Results are shown in Group C, Table 7. We ob- 1041

serve NASU10→50% is better than NASU8→50%, 1042

which makes much sense because the latter has 1043

a larger gap during transfer. Remarkably, both 1044

NASU8→50% and NASU10→50% outperform Schu- 1045

mann et al. (2020) and other baselines, achieving 1046

new state-of-the-art unsupervised performance on 1047

this setting as well. 1048

We further compare with Su et al. (2021), who 1049

use a length penalty to encourage short summaries. 1050

However, their length control works in the statisti- 1051

cal sense but may fail for individual samples. More- 1052

over, such a soft length penalty cannot generate 1053

longer summaries than trained. Even in the setting 1054

of 10→ 8, their generates summaries are slightly 1055

longer than required, while the performance de- 1056

grades much faster than NAUS. 1057

These results show that our novel length-control 1058

decoding algorithm is not only effective when gen- 1059

erating summaries of similar length to the train- 1060

ing targets, but also generalizes well to different 1061

desired summary lengths without re-training. In 1062

general, our NAUS is an effective and efficient un- 1063

supervised summarization system with the ability 1064

of explicit length control. 1065

13

Group # Approach Len
ROUGE F1

Inf.Time Speedup
R-1 R-2 R-L ∆R

Group A
(desired length 8)

1 Baseline Lead (8 words)† 7.9 21.39 7.42 20.03 -11.12 – –
2

Search
Schumann et al. (2020)† 7.9 26.32 9.63 24.19 0.18 – –

3 Our replication 7.9 26.17 9.69 24.10 0 6.846 1x
4

Learn from
search

Su et al. (2021)8→8 7.7 26.88 9.37 24.54 0.83 0.017 403x
5 Su et al. (2021)10→8 8.4 25.71 8.94 23.65 -1.84 0.018 380x
6 NAUS (truncate) 7.8 27.27 9.49 24.96 1.76 0.005 1369x
7 NAUS8→8 7.8 27.94 9.24 25.50 2.73

0.041 167x
8 NAUS10→8 7.9 27.12 9.08 24.86 1.10

Group B
(desired length 10)

9
Baseline

Lead (10 words)† 9.8 23.03 7.95 21.29 -10.2 – –
10 Wang and Lee (2018)† 10.8 27.29 10.01 24.59 -0.58 – –
11 Zhou and Rush (2019)† 9.3 26.48 10.05 24.41 -1.53 – –
12

Search
Schumann et al. (2020)† 9.8 27.52 10.27 24.91 0.23 – –

13 Our replication 9.8 27.35 10.25 24.87 0 9.217 1x
14

Learn from
search

Su et al. (2021)8→10 – – – – – – –
15 Su et al. (2021)10→10 9.4 27.86 9.88 25.51 0.78 0.020 461x
16 NAUS (truncate) 9.8 28.24 10.04 25.40 1.21 0.005 1843x
17 NAUS8→10 9.9 28.32 9.58 25.46 0.89

0.044 210x
18 NAUS10→10 9.8 28.55 9.97 25.78 1.83

Group C
(desired length

50% of the input)

19
Baseline

Lead (50% words)† 14.6 24.97 8.65 22.43 -4.58 – –
20 Févry and Phang (2018)† 14.8 23.16 5.93 20.11 -11.43 – –
21 Baziotis et al. (2019)† 15.1 24.70 7.97 22.41 -5.55 – –
22

Search
Schumann et al. (2020)† 14.9 27.05 9.75 23.89 0.06 – –

23 Our replication 14.9 27.03 9.81 23.79 0 17.462 1x
24

Learn from
search

Su et al. (2021)8→50% – – – – – – –
25 Su et al. (2021)10→50% – – – – – – –
26 NAUS8→50% 14.9 28.39 9.78 24.94 2.48 0.052 336x
27 NAUS10→50% 14.9 28.53 9.88 25.10 2.88

Table 7: Analysis of length-transfer summary generation. A subscript i→ j (or j%) refers to a model trained with
i words and tested for j (or j%) words. Len: Average length of predicted summaries. R-1, R-2, R-L: ROUGE-1,
ROUGE-2, ROUGE-L. ∆R: The difference of total ROUGE (sum of R-1, R-2, and R-L) in comparison with the
(previous) state-of-the-art model (Schumann et al., 2020) under replication. Inf.Time: Average inference time in
seconds for one sample on an i9-9940X CPU and a RTX6000 GPU. Speedup: Relative to Schumann et al. (2020).
†Results quoted from previous papers; others are given by our experiments. Su et al. (2021)’s approach has a soft
length penalty to encourage short output, but cannot generate longer summaries than trained.

14

