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Abstract
The optimal transport (OT) problem can be re-
duced to a linear programming (LP) problem
through discretization. In this paper, we introduce
the random block coordinate descent (RBCD)
methods to directly solve this LP problem. Our
approach involves restricting the potentially large-
scale optimization problem to small LP subprob-
lems constructed via randomly chosen working
sets. By using a random Gauss-Southwell-q rule
to select these working sets, we equip the vanilla
version of (RBCD0) with almost sure conver-
gence and a linear convergence rate to solve gen-
eral standard LP problems. To further improve the
efficiency of the (RBCD0) method, we explore
the special structure of constraints in the OT prob-
lems and propose several approaches for refining
the random working set selection and accelerating
the vanilla method. Our preliminary numerical
experiments demonstrate that the accelerated ran-
dom block coordinate descent (ARBCD) method
is comparable to Sinkhorn’s algorithm when seek-
ing solutions with relatively high accuracy, and
offers the advantage of saving memory.

1. Introduction

Background and motivation The optimal transport prob-
lem was first introduced by Monge in 1781, which aims to
find the most cost-efficient way to transport mass from a
set of sources to a set of sinks. Later, the theory was mod-
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ernized and revolutionized by Kantorovich in 1942, who
found a key link between optimal transport and linear pro-
gramming. In recent years, optimal transport has become a
popular and powerful tool in data science, where it provides
a very natural way to compare and interpolate probability
distributions (Arjovsky et al., 2017; Lei et al., 2019; Wang
et al., 2022; Haker et al., 2004; Perrot et al., 2016). There
also exist deep connections between the optimal transport
problems with quadratic cost functions and a diverse class
of partial differential equations (PDEs) arising in statistical
mechanics and fluid mechanics; see e.g. (Brenier, 1991;
Benamou & Brenier, 2000; Otto, 2001; Jordan et al., 1998;
Villani, 2021).

Recently, a deep particle method is proposed for learning
and computing invariant measures of parameterized stochas-
tic dynamical systems (Wang et al., 2022). To achieve this
goal, the authors of this paper designed a deep neural net-
work (DNN) to map a uniform distribution (source) to an
invariant measure (target), where the Péclet number is an
input parameter for the DNN. The network is trained by
minimizing the 2-Wasserstein distance (W2) between the
measure of network output µ and target measure ν. They
consider a discrete version of W2 for finitely many samples
of µ and ν, which involves a linear program (LP) opti-
mized over doubly stochastic matrices (Sinkhorn, 1964).
Motivated by the domain decomposition method (Toselli &
Widlund, 2004) in scientific computing, which solves PDE
using subroutines that solve problems on subdomains and
has the advantage of saving memory (i.e., using the same
computational resource, it can compute a larger problem),
the authors of (Wang et al., 2022) devised a mini-batch inte-
rior point method. This approach involves sampling smaller
sub-matrices while preserving row and column sums. It has
proven to be highly efficient and integrates seamlessly with
the stochastic gradient descent method for overall network
training. However, they did not obtain convergence analysis.

The objectives of this paper are twofold. First, we aim to
provide rigorous convergence analysis for the mini-batch
interior point method presented in (Wang et al., 2022), with
minimal modifications. Second, we seek to enhance the
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mini-batch selection strategy, thereby achieving improved
and more robust performance in computing optimal trans-
port problems. We recognize that the mini-batch interior
point method aligns with the random block coordinate de-
scent (RBCD) method in optimization terminology. Specifi-
cally, it applies the block coordinate descent (BCD) method
to the LP problem directly, selects the working set randomly,
and solves subproblems using the primal-dual interior-point
method (Wright, 1997) or any other efficient linear program-
ming solver. Encouraged by the demonstrated efficiency of
this approach, we will develop theoretical results for solving
LP with RBCD methods and explore various strategies for
selecting working sets.

Theorectical contributions In this work, we first intro-
duce an expected Gauss-Southwell-q rule to guide the selec-
tion of the working set. It enables almost sure convergence
and a linear convergence rate in expectation when solving a
general standard LP. Based on this rule, we develop a vanilla
RBCD method - RBCD0, which selects the working set with
complete randomness. Then, we investigate the special lin-
ear system present in the LP formulation of OT. Based on
the analysis of this linear system, we propose various ap-
proaches to refine the working set selection and improve the
performance of RBCD0. A better estimation of the constant
in the linear convergence rate is shown. Moreover, we incor-
porate an acceleration technique inspired by the momentum
concept to improve the algorithm’s efficiency.

Numerical experiments We perform numerical experi-
ments to evaluate the performance of the proposed method
ARBCD (Accelerated RBCD). Synthetic data sets of var-
ious shapes/dimensions and invariant measures generated
from IPM methods are utilized to create distributions. Our
experiments compare ARBCD with Sinkhorn’s algorithm.
Preliminary numerical results show that ARBCD is com-
parable to Sinkhorn’s algorithm in computation time when
seeking solutions with relatively high accuracy. We also test
ARBCD on a large-scale OT problem, where Gurobi runs
out of memory. This further justifies the memory-saving
advantage of ARBCD.

Existing algorithms for OT Encouraged by the success
in applying Sinkhorn’s algorithm to the dual of entropy
regularized OT (Cuturi, 2013), researchers have conducted
extensive studies in this area, including other types of reg-
ularization (Blondel et al., 2018)(Gasnikov et al., 2016),
acceleration (Guminov et al., 2021)(Lin et al., 2022) and nu-
merical stability (Schmitzer, 2019). In (Huang et al., 2021),
a Riemannian block coordinate descent method is applied
to solve projection robust Wasserstein distance. The pro-
posed approach employs entropy regularization, determinis-

tic block coordinate descent, and techniques in Riemannian
optimization. Other works that significantly deviate from the
entropy regularization framework include (Li et al., 2018),
which computes the Schrödinger bridge problem (equiv-
alent to OT with Fisher information regularization), and
multiscale strategies such as (Gerber & Maggioni, 2017)
and (Liu et al., 2022). The RBCD method employed in this
study is a regularization-free method. As a result, it avoids
dealing with inaccurate solutions and numerical stability
issues introduced by the regularization term. Furthermore,
each subproblem in RBCD is a small-size LP, allowing for
flexible resolution choices.

A review of previous research on (R)BCD is in Appendix A.

Organization The rest of the paper is organized as fol-
lows. In Section 2, we review the basic idea of optimal
transport and Wasserstein distance. In Section 3, we in-
troduce the expected Gauss-Southwell-q rule and a vanilla
RBCD (RBCD0) method for solving general LP problems.
In Section 4, we propose several approaches to refine and
accelerate the RBCD0 method. In Section 5, preliminary
numerical results are presented to demonstrate the perfor-
mance of our proposed method. Finally, concluding remarks
are made in Section 6. We keep proofs in the appendix.

Notation. For any matrix X , let X(i, j) denote its element
in the ith column and jth row, and let X(:, j) represent its
jth row vector. For a vector v, we usually use superscripts
to denote its copies (e.g., vk in kth iteration of an algo-
rithm) and use subscripts to denote its components (e.g., vi);
for a scalar, we usually use subscripts to denote its copies.
Occasional inconsistent cases will be declared in context.
mod(k, n) means k modulo n. For any vector v, we define
supp(v) ≜ {i ∈ {1, . . . , n} | vi ̸= 0}. Given a matrix
X ∈ Rn×n, we define its vectorization as follows:

vec(X) ≜ (X(:, 1)T , X(:, 2)T , ..., X(:, n)T )T .

For any positive integer k ≥ 2, we denote [1, k] ≜ {1, ..., k}.
1n×n represents the n× n matrix of all ones.

2. Optimal transport problems and
Wasserstein distance

The Kantorovich formulation of optimal transport can be
described as follows,

inf
γ∈Γ(µ,ν)

∫
X×Y

C(x, y) dγ(x, y) (1)

where Γ(µ, ν) is the set of all measures on X × Y whose
marginal distribution on X is µ and marginal distribution
on Y is ν, C(x, y) is the transportation cost. In this article,
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we refer to the Kantorovich formulation when we mention
optimal transport.

Wasserstein distances are metrics on probability distribu-
tions inspired by the problem of optimal mass transport.
They measure the minimal effort required to reconfigure
the probability mass of one distribution in order to recover
the other distribution. They are ubiquitous in mathematics
(Villani, 2021). One can define the p-Wasserstein distance
between probability measures µ and ν on a metric space Y

with distance function dist by

Wp(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫
Y×Y

dist(ỹ, y)p dγ(ỹ, y)

)1/p

(2)

where Γ(µ, ν) is the set of probability measures γ on Y ×Y

satisfying γ(A×Y ) = µ(A) and γ(Y ×B) = ν(B) for all
Borel subsets A,B ⊂ Y . Elements γ ∈ Γ(µ, ν) are called
couplings of the measures µ and ν, i.e., joint distributions on
Y × Y with marginals µ and ν on each axis. p-Wasserstein
distance is a special case of optimal transport when X = Y

and the cost function c(ỹ, y) = dist(ỹ, y)p.

In the discrete case, the definition (2) has a simple intuitive
interpretation: given a γ ∈ Γ(µ, ν) and any pair of locations
(ỹ, y), the value of γ(ỹ, y) tells us what proportion of µ mass
at ỹ should be transferred to y, in order to reconfigure µ into
ν. Computing the effort of moving a unit of mass from ỹ to
y by dist(ỹ, y)p yields the interpretation of Wp(µ, ν) as the
minimal effort required to reconfigure µ mass distribution
into that of ν.

In a practical setting (Peyré & Cuturi, 2019), referred to
as a point cloud, the closed-form solution of µ and ν may
be unknown, instead only n independent and identically
distributed (i.i.d.) samples of µ and n i.i.d. samples of ν are
available. In further discussion, n refers to the size of the
problem. We approximate the probability measures µ and ν

by empirical distribution functions:

µ =
1

n

n∑
i=1

δỹi and ν =
1

n

n∑
j=1

δyj , (3)

where δx is the Dirac measure. Any element in Γ(µ, ν) can
clearly be represented by a transition matrix, denoted as
γ = (γi,j)i,j satisfying:

γi,j ≥ 0; ∀j,
n∑

i=1

γi,j =
1

n
; ∀i,

n∑
j=1

γi,j =
1

n
. (4)

Then γi,j means the mass of ỹi that is transferring to yj .

We denote all matrices in Rn×n satisfying (4) as Γn, then

(2) becomes

Ŵ (f) :=

 inf
γ∈Γn

n,n∑
i,j=1

dist(ỹi, yj)pγi,j

1/p

. (5)

Remark 2.1. Γn is in fact the set of n× n doubly stochastic
matrix (Sinkhorn, 1964) divided by n.

Another practical setting, which is commonly used in fields
of computer vision (Peleg et al., 1989; Ling & Okada,
2007), is to compute the Wasserstein distance between two
histograms. To compare two grey-scale figures (2D, size
n0 × n0), we first normalize the grey scale such that the
values of cells of each picture sum to one. We denote cen-
ters of the cell as {yi}ni=1 and {ỹi}ni=1, then we can use two
probability measures to represent the two figures:

µ =

n∑
i=1

r1,iδỹi and ν =

n∑
j=1

r2,jδyj ,

where r1,i, r2,j ≥ 0,∀1 ≤ i, j ≤ n,
n∑

i=1

r1,i =
n∑

j=1

r2,j = 1.

The discrete Wasserstein distance (5) keeps the same form
while the transition matrix follows different constraints:

γi,j ≥ 0;∀j,
n∑

i=1

γi,j = r2,j ;∀i,
n∑

j=1

γi,j = r1,i. (6)

Note that in both settings, the computation of Wasserstein
distance is reduced to an LP, i.e.,

min
∑

1≤i,j≤n

Ci,jγi,j

subject to
n∑

j=1

γi,j = r1,i,

n∑
j=1

γi,j = r2,i, γi,j ≥ 0,

(7)

where r1 ≜ (r1,1, ..., r1,n)
T and r2 ≜ (r2,1, ..., r2,n)

T

are two probability distributions, and Ci,j = dist(x̃i, xj)p.
More generally, we let r1 and r2 be two nonnegative vectors
and Ci,j = C(ỹi, yj) be any appropriate transportation cost
from ỹi to yj , so (7) also captures the discrete OT.

However, when the number of particles n becomes large, the
number of variables (entries of γ) scales like n2, which leads
to costly computation. Therefore, we will discuss random
block coordinate descent methods to keep the computational
workload in each iteration reasonable.

3. Random block coordinate descent for
standard LP

In this section, we first generalize the LP problem (7) to a
standard LP (see Eq.(8)). Then we propose a random block
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coordinate descent algorithm for resolution. Its almost sure
convergence and linear convergence rate in expectation are
analyzed.

We consider the following standard LP problem:

min
x∈RN

cTx

subject to Ax = b, x ≥ 0,
(8)

where A ∈ RM×N , b ∈ RM , c ∈ RN , hence M is the
number of constraint and N is the total degree of free-
dom. Assume throughout that M ≤ N . Suppose that N ≜
{1, . . . , N} and denote X ≜ {x ∈ RN | Ax = b, x ≥ 0}
as the feasible set. Assume that (8) is finite and has an
optimal solution. For any x ∈ X and I ⊆ N , denote

D(x; I) ≜ arg min
d∈RN

{
cT d

∣∣∣ x+ d ≥ 0, Ad = 0,

di = 0,∀i ∈ N \ I

}
. (9)

q(x; I) ≜ min
d∈RN

{
cT d

∣∣∣ x+ d ≥ 0, Ad = 0,

di = 0,∀i ∈ N \ I

}
. (10)

Namely, D(x; I) is the optimal solution set of the linear
program in (9) and q(x; I) is the optimal function value.
We have that q(x; I) = cT d for any d ∈ D(x; I). Denote
X ∗ as the optimal solution set of (8). Then the following
equations hold for any x ∈ X :

X ∗ = x+D(x;N ), (11)

q(x;N ) = cTx∗ − cTx, ∀x∗ ∈ X ∗. (12)

Consider the block coordinate descent (BCD) for (8):

find dk ∈ D(xk, Ik),
xk+1 := xk + dk,

(13)

where Ik ⊂ N is the working set chosen at iteration k.
Next, we describe several approaches to select it.

Gauss-Southwell-q rule Motivated by the Gauss-
Southwell-q rule introduced in (Tseng & Yun, 2009b), we
desire to select Ik such that

q(xk; Ik) ≤ vq(xk;N ), (14)

for some constant v ∈ (0, 1]. Note that by (12), we have

q(xk;N ) = cT (x∗ − xk), (15)

where x∗ is an optimal solution of (8). Therefore, (10)-(15)
imply that

cT dk ≤ vcT (x∗ − xk)

(13)
=⇒ cT (xk+1 − xk) ≤ vcT (x∗ − xk)

=⇒ cT (xk+1 − x∗) ≤ (1− v)cT (xk − x∗). (16)

(16) indicates that the gap of function value decays exponen-
tially with rate 1− v, as long as we choose Ik according to
the Gauss-Southwell-q rule (14) at each iteration k. A trivial
choice of Ik to satisfy (14) is N and v = 1. However, this
choice results in a potential large-scale subproblem in the
BCD method (13), contradicting the purpose of using BCD.
Instead, we should set an upper bound on |Ik|, namely, a
reasonable batch size to balance the computational effort in
each iteration and convergence performance of BCD. Next,
we discuss the existence of such an Ik given an upper bound
l on |Ik|, which necessitates the following concept.

Definition 3.1. Vector d̄ ∈ RN is conformal to d ∈ RN if

supp(d̄) ⊆ supp(d), d̄idi ≥ 0,∀i ∈ N .

The following Theorem confirms the existence of such an
Ik that satisfies (14).

Theorem 3.2. Suppose that rank(A) + 1 ≤ N . Given
any x ∈ X , l ∈ {rank(A) + 1, . . . , N} and d ∈ D(x;N ).
There exist a set I ∈ N satisfying |I| ≤ l and a vector
d̄ ∈ null(A) conformal to d such that

I = supp(d̄). (17)

q(x; I) ≤ 1

N − l + 1
q(x;N ). (18)

However, it is not clear how to identify the set I described
in Theorem 3.2 with little computational effort for a general
A. Therefore, we introduced the following.

Expected Gauss-Southwell-q rule We introduce random-
ness in the selection of Ik to reduce the potential computa-
tion burden in identifying an Ik that satisfies (14). Consider
an expected Gauss-Southwell-q rule:

E[q(xk; Ik) | Fk] ≤ vq(xk;N ), (19)

where v ∈ (0, 1] is a constant, and Fk ≜ {x0, . . . , xk}
denotes the history of the algorithm. Therefore, using the
notations of LP (8) and BCD method (13):

(10)(15)(19)

=⇒ E[cT dk | Fk] ≤ vcT (x∗ − xk) (20)

=⇒ E[cT (xk+1 − xk) | Fk] ≤ vcT (x∗ − xk)

=⇒ E[cT (xk+1 − x∗) | Fk] ≤ (1− v)cT (xk − x∗),

(21)

where x∗ is an optimal solution of (8). By Lemma 10,
page 49 in (Polyak, 1987), cT (xk − x∗) → 0 almost surely.
Moreover, if we take expectations on both sides of (21),

E[cT (xk+1 − x∗)] ≤ (1− v)E[cT (xk − x∗)]
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=⇒ E[cT (xk − x∗)] ≤ (1− v)kE[cT (x0 − x∗)].

i.e., the expectation of function value gap converges to 0

exponentially with a rate 1− v.

Vanilla random block coordinate descent Based on the
expected Gauss-Southwell-q rule, we formally propose a
vanilla random block coordinate descent (RBCD0) algo-
rithm (Algorithm 1) to solve the LP (8). Specifically, we
choose the working set Ik with full randomness, that is, ran-
domly choose an index set of cardinality l out of N . Then
with probability at least 1

(Nl )
, the index set will be the same

as or cover the working set suggested by Theorem 3.2. As a
result, (19) will be satisfied with v ≥ 1

(Nl )(N−l+1)
.

Algorithm 1 Vanilla random block coordinate descent
(RBCD0)

(Initialization) Choose feasible x0 ∈ RN and the batch
size l such that rank(A) + 1 ≤ l ≤ N .
for k = 0, 1, 2, . . . do

Step 1. Choose Ik uniformly randomly from N with
|Ik| = l.
Step 2. Find dk ∈ D(xk; Ik).
Step 3. xk+1 := xk + dk.

end for

Based on the previous discussions, Algorithm 1 generates
a sequence {xk} such that the value of cTxk converges to
the optimal with probability 1. Moreover, the expectation
of the optimality gap converges to 0 exponentially. It is
important to note that 1

(Nl )(N−l+1)
is only a loose lower

bound of v. This bound can become quite small when N

grows large due to the binomial coefficient
(
N
l

)
. However,

we expect that this lower bound is rarely reached in practice.
In the following subsection, we will discuss how to further
improve this bound given the structure of the OT problem.

4. Random block coordinate descent and
optimal transport

Denote the cost matrix C ≜ (Ci,j)n×n in (7). Then cal-
culating the OT between two measures with finite support
(problem (7)) is a special case of (8), where c = vec(C),

and N = n2. Then A has the following structure:

A ≜


In In . . . In
1T
n

1T
n

. . .
1T
n


︸ ︷︷ ︸

n blocks

, (22)

where In is an n×n identity matrix, 1n is an n dimensional
vector of all 1’s (then M = 2n). Blank spaces represent 0s.
Right hand side b in (8) has the form b ≜ ((r1)T , (r2)T )T ,
where r1, r2 ∈ Rn

+ can be two discrete probability distribu-
tions. Now we discuss two approaches to carefully select
the support set Ik at iteration k of the block coordinate
descent method (13):

1. Diagonal band. Given 3 ≤ p ≤ n, denote

G ≜


(i, j)

∈ Z2

∣∣∣∣∣
i ∈ [j, j + p− 1]

if j ∈ [1, n− p+ 1];

i ∈ [1, ..., j + p− n− 1] ∪ [j, n]

if j ∈ [n− p+ 2, n]


and construct matrix G ∈ Rn×n such that

G(i, j) =

{
1, if (i, j) ∈ G,
0, otherwise.

(23)

Therefore, G has the following structure:

p




1 1 . . . 1
... 1

. . .
...

1
...

. . . 1

1 1 1

1
. . .

... 1
. . . 1

...
. . .

1 1 . . . 1


n×n

 (p− 1)

It is like a band of width p across the diagonal, hence
the name. Then we may construct D̄k ∈ Rn×n and Ik
as follows:

Obtain D̄k by uniformly randomly

permuting all columns and rows of G.

Let Ik ≜ supp(vec(D̄k)).

(24)

Note that |Ik| = np.

2. Submatrix. Given m < n, obtain D̄k and Ik such that

Uniformly randomly pick two sets of m different
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numbers out of [1, n]: i1, ..., im and j1, ..., jm.

Let D̄k(i, j) =

1
if i ∈ {i1, ..., im}
and j ∈ {j1, ..., jm},

0 otherwise.

Let Ik ≜ supp(vec(D̄k)). (25)

In this case, the support of D̄k is a submatrix of size
m×m. Therefore, |Ik| = m2.

Via the diagonal band approach, we can improve the chance
to guess the potential directions along which the transport
cost is minimized by a large amount. The speed of the
algorithm is enhanced while convergence is maintained.

As for the submatrix approach, we often find it quite effi-
cient in numerical experiments. However, global conver-
gence with a fixed-width submatrix may not be guaranteed.
Therefore, we seek to combine these two approaches to-
gether.

Algorithm 2 Random block coordinate descent - submatrix
and diagonal Band (RBCD-SDB)

(Initialization) Choose feasible X0 ∈ Rn×n, submatrix
row/column dimension m, band width p ∈ [3, n] and
selection parameter s ∈ (0, 1]. Let x0 = vec(X0).
for k = 0, 1, 2, . . . do

Step 1. With probability s, choose Ik according to
(24); otherwise, choose Ik according to (25).
Step 2. Find dk ∈ D(xk; Ik).
Step 3. xk+1 := xk + dk.

end for

Convergence of Alg. 2 is guaranteed by the next theorem.

Theorem 4.1. Consider (8)(22). Then sequence {xk} and
{Ik} generated by Algorithm 2 satisfies the expected Gauss-
Southwell-q rule (19), with v ≥ sn(p−2)

(n2−3)(n!)2 . Therefore,
cT (xk − x∗) → 0 almost surely and E[cT (xk − x∗)] con-
verges to 0 exponentially with rate 1− v.

Remark 4.2. It can be shown that if n is large enough and
p is chosen between O(log(n)) and O(n), then the lower
bound for constant v derived in Theorem 4.1 is better than
the one estimated for Algorithm 1, i.e., 1

(Nl )(N−l+1)
. In fact,

we have the following results.

Lemma 4.3. Suppose that K̄ ≥ 2 and η > 0 satisfies

2K̄ − 3

2(K̄ − 1)
+ log

(
K̄

2

)
> 2/η,

and n satisfies

n ≥ 4(
2K̄−3
2(K̄−1)

+ log
(

K̄
2

))
η − 2

,
n

log(n)
≥ ηK̄, n ≥ 2

s
.

Then for any p ∈ [η log(n), n
K̄
], and p ≥ 3, we have

sn(p−2)
(n2−3)(n!)2 ≥ 1

(n
2

np)(n2−np+1)
.

Let n ≥ 30, η = 1, K̄ = 8, s ≥ 0.1. Then according
to Lemma 4.3, for log(n) ≤ p ≤ n/8, the lower bound

sn(p−2)
(n2−3)(n!)2 is larger. We believe that this is a fairly reason-
able range of p when n grows large. This lower bound is
improved because we have knowledge of the structure of
matrix A in the OT problems. In addition, it is possible to
further sharpen the current convergence rate and we will
address this in our future work.

Accelerated random block coordinate descent Algo-
rithm 3 is an accelerated random block coordinate descent
(ARBCD) algorithm. It selects the working set Ik in a dif-
ferent way from Algorithm 2 intermittently for acceleration.
At times, we build Ik based on the iterates generated by
the algorithm in the past, i.e., xend − xstart. This vector
reflects the progress achieved by running the RBCD-SDB
for a few iterations. It predicts the direction in which the
algorithm potentially makes further improvements. Such
a choice is analogous to the momentum concept and often
employed acceleration techniques in optimization, such as
in the heavy ball method and Nesterov acceleration. Algo-
rithm 3 has a similar convergence rate as Algorithm 2 (note
that acceleration iteration happens occasionally). However,
we expect that the acceleration technique leads to a better
performance than Algorithm 1 and 2.

5. Numerical experiments

In this section, we conduct numerical experiments on var-
ious examples of OT problems1. We focus on ARBCD,
which is the best among Algorithm 1 - 3. In Section 5.1,
we compare ARBCD with Sinkhorn. A large-scale OT
problem is solved using ARBCD in Section 5.2.

5.1. Comparison between ARBCD and the Sinkhorn’s
algorithm

Experiment settings We generated 8 pairs of distribu-
tions/patterns based on synthetic and real datasets. Descrip-
tions are as follows. Note that we use histogram settings
(c.f. Section 2) for datasets 1 and 2, and point cloud settings
(c.f. Section 2) for other datasets. We use norm square cost
function: c(x, y) = ∥x− y∥2.
Dataset 1: Uniform distribution to standard normal distri-

1All experiments are conducted using Matlab R2021b on Dell
OptiPlex 7090 with CPU: Intel(R) Core(TM) i9-10900 @ 2.80GHz
(20 CPUs), ∼2.8GHz and RAM: 65536Mb. Data and codes are
uploaded to https://github.com/gxybrh/RBCDforOT.
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Algorithm 3 Accelerated random block coordinate descent
(ARBCD)

(Initialization) Choose feasible X0 ∈ Rn×n, submatrix
row/column dimension m, band width p ∈ [3, n], selec-
tion parameter s ∈ [0, 1], and acceleration interval T . Let
x0 = vec(X0), xstart = xend = x0. Binary variable
acc.
for k = 0, 1, 2, . . . do

Step 1. Choose Ik as following.
if mod(k+1, T ) ̸= 0 or | supp(xend−xstart)| ≤ m2

then
acc = false. With probability s, choose Ik ac-
cording to (24); otherwise, choose Ik according to
(25).

else
acc = true. Choose Ik uniformly randomly from
supp(xend − xstart) so that |Ik| = m2.

end if
Step 2. Find dk ∈ D(xk; Ik).
Step 3. Update xk+1 := xk + dk;

Step 4. Update xend = xk+1.

if acc = true. then
Update xstart = xk+1.

end if
end for

bution over [−1, 1]. n = 200.

Dataset 2: Uniform distribution to a randomly shuffled2

standard normal distribution over [−1, 1]. n = 1000.

Dataset 3: Uniform distribution over [−π, π]2 to an em-
pirical invariant measure generated from IPM methods.
n = 1000.

Dataset 4: Distribution of
√
Σu to distribution of 2

√
Σv −

(1; 1; 1), where Σ =

 1 0.5 0.25

0.5 1 0.5

0.25 0.5 1

, u and v con-

form uniform distributions on [0, 1]3 and are independent.
n = 1000.

Dataset 5: Similar to Dataset 4, with Σ = 1 0.8 0.64

0.8 1 0.8

0.64 0.8 1

. n = 1000.

Dataset 6: Distribution of Σu to distribution of Σv, where

Σ =

(
1 0 1 1

0 1 1 −1

)T

, u conforms a uniform distribu-

tion on [0, 2π]2 and v conforms a uniform distribution on
[−1, 1]2. n = 1000.

2We randomly shuffled the weights of the normal distribution
histogram.

Dataset 7: Distribution of (1; 1; . . . ; 1)T︸ ︷︷ ︸
10

u to distribution

of (1; 2; 3; . . . ; 10)T v + (1; 1; . . . ; 1)T , where u conforms
uniform distribution over [0, 2π] and v conforms uniform
distribution over [−1, 1]. n = 1000.

Dataset 8: Distibution of a “cylinder” to a ”spiral”, see
Figure 1. n = 1000.

In all cases, we normalize the cost matrix C such that its
maximal element is 1. For all cases, we use the linprog in
Matlab to find a solution with high precision (dual-simplex,
constraint tolerance 1e-9, optimality tolerance 1e-10). We
refer readers to the github repository for more details.

Figure 1. Visualization of dataset 8

Methods Implementation of Sinkhorn and ARBCD are
specified as follows.
Sinkhorn. The algorithm proposed in (Cuturi, 2013) to
compute Wasserstein distance. Let γ be the coefficient of
the entropy term. We let γ = ϵ/(4 log n) as suggested
in (Dvurechensky et al., 2018). We consider the settings
ϵ = 10−4, 10−3, 0.01, 0.1. Iterations of Sinkhorn are pro-
jected onto the feasible region using a rounding procedure:
Algorithm 2 in (Altschuler et al., 2017). Note that this pro-
jection step is added only for evaluation purposes because
Sinkhorn does not provide feasible solutions if early stopped.
It does not affect Sinkhorn’s main steps or Sinkhorn’s con-
vergence at all. A similar approach is used for evaluation
in (Jambulapati et al., 2019). In addition, we take all the
updates to log space and use the LogSumExp function to
avoid numerical instability issues. We stop Sinkhorn after
3× 105 iter. when n = 200 and 105 iterations if n = 1000.
ARBCD. Algorithm 3: Accelerated random block coordi-
nate descent. Let m = 40 when n = 200 and m = 100

when n = 1000. Let p = ⌊m2/n⌋, s = 0.1 and T = 10.
Stop the algorithm after 10000 iterations. To be fair, we also
project the solution in each iteration onto the feasible region
via the rounding procedure. LP subproblems are solved
via linprog in Matlab with high precision (dual-simplex,
constraint tolerance 1e-9).
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Figure 2. Comparison of algorithms to compute Wasserstein distance
X-axis is the wall-clock time in seconds. Y-axis is the optimality gap fk − f∗ = cTxk − cTx∗. This figure shows the trajectory/progress
of Algorithm 3: ARBCD and Sinkhorn with different settings when computing the Wasserstein distance between eight pairs of probability.
ARBCD is run 5 times in each experiment and the curves showcase the average behavior.

Comments on Figure 2 We can observe the following
from Figure 2: although Sinkhorn with larger ϵ may con-
verge fast, the solution accuracy is also lower. In fact, this
is true for all Sinkhorn-based algorithms because the op-
timization problem is not exact - it has an extra entropy
term. Therefore, the larger γ or ϵ is chosen, the less accurate
the solution becomes. On the other hand, when ϵ is set
smaller, the convergence of Sinkhorn becomes slower. As
can be seen from the plots, when ϵ = 0.1 or 0.01, Sinkhorn
converges faster than ARBCD; when ϵ = 10−3, Sinkhorn
is comparable to ARBCD; when ϵ = 10−4, Sinkhorn is
slower than ARBCD. In conclusion, if relatively higher pre-
cision is desired, ARBCD is comparable with Sinkhorn.
Moreover, note that here we solve the subproblems in AR-
BCD using Matlab built-in solver linprog. ARBCD can be
faster if more efficient subproblem solvers are applied.

5.2. Test on a large-scale OT problem

In this subsection, we generate a pair of 1-dim probability
distributions with large discrete support sets (n = 12800).
For the first distribution, locations of the discrete support
(xi, i = 1, . . . , n) are evenly aligned between [−1, 1], and
their weights/probability are uniformly distributed (i.e.,
1/n). For the other distribution, locations of the discrete sup-
port are determined as x̃i = xσ(i) + ui, where σ(i) is a ran-
dom permutation of i = 1, . . . , n, and ui is a random vari-
able that conforms to a uniform distribution over [−0.5, 0.5].
Weights/probability are determined as wi = ϕ(x̃i)∑n

i=1 ϕ(x̃i) ,
where ϕ(x) is the pdf of the standard normal. The bench-
mark optimal solution is quickly computed via a closed-
form formula for 1-d OT problem (f∗ = 6.236×10−3). For
ARBCD, we use the setting m = ⌈

√
10n⌉, p = ⌊m2/n⌋,
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s = 0.1 and T = 10.

Comments on Figure 3 The figure showcases the average
behavior of ARBCD within 10000 iterations. It is able to
locate a solution such that (fk − f∗)/f∗ ≤ 0.1. The conver-

gence is linear by observing the trajectory. We also want to
point out that Gurobi 10.01 (academic license) runs out of
memory on the desktop we use for numerical experiments.
Indeed, memory saving is one of the merits that motivate us
to consider RBCD methods.

Figure 3. Solving large-scale problem via ARBCD
We apply ARBCD to solve the large-scale 1-d problem (n = 12800). y-axis shows the optimality gap fk − f∗ and x-axis records the
iteration number. ARBCD is repeated for 3 times and average results are reported.

6. Conclusion

In this paper, we investigate the RBCD method to solve LP
problems, including OT problems. In particular, an expected
Gauss-Southwell-q rule is proposed to select the working
set Ik at iteration k. It guarantees almost sure convergence
and linear convergence rate and is satisfied by all algorithms
proposed in this work. We first develop a vanilla RBCD,
called RBCD0, to solve general LP problems. Then, by
examining the structure of the matrix A in the linear sys-
tem of OT, we refine the working set selection. We use
two approaches - diagonal band and submatrix - for con-
structing Ik and employ an acceleration technique inspired
by the momentum concept to improve the performance of
RBCD0. In our numerical experiments, we run ARBCD
against Sinkhorn’s algorithm and on a large-scale OT prob-
lem. The results show the advantages of our method in
finding relatively accurate solutions to OT problems and
saving memory. For future work, we plan to extend our
method to handle continuous measures and further improve
it through parallelization and multiscale strategies, among
other approaches.
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A. Previous research on (R)BCD.

BCD and RBCD are well-studied for essentially unconstrained smooth optimization (sometimes allow separable constraints
or nonsmooth separable objective functions): (Beck & Tetruashvili, 2013; Gurbuzbalaban et al., 2017; Sun & Ye, 2021)
investigate BCD with cyclic coordinate search; (Nesterov, 2012; Lu & Xiao, 2015; Richtárik & Takáč, 2014) study RBCD to
address problems with possibly nonsmooth separable objective functions; other related works include theoretical speedup of
RBCD ((Richtárik & Takáč, 2016; Necoara & Clipici, 2016)), second-order sketching ((Qu et al., 2016; Berahas et al., 2020)).
However, much less is known for their convergence properties when applied to problems with nonseparable nonsmooth
functions as summands or coupled constraints. To our best knowledge, no one has ever considered using the RBCD to solve
general LP before and the related theoretical guarantees are absent. In (Necoara et al., 2017), the authors studied the RBCD
method to tackle problems with a convex smooth objective and coupled linear equality constraints x1 + x2 + . . .+ xN = 0;
a similar algorithm named random sketch descent method (Necoara & Takáč, 2021) is investigated to solve problems with a
general smooth objective and general coupled linear equality constraints Ax = b. However, after adding the simple bound
constraints x ≥ 0, the analysis in (Necoara et al., 2017; Necoara & Takáč, 2021) may not work anymore, nor can it be easily
generalized. Beck (Beck, 2014) studied a greedy coordinate descent method but focus on a single linear equality constraint
and bound constraints. In Paul Tseng and his collaborators’ work (Tseng & Yun, 2009a;b; 2010), a block coordinate gradient
descent method is proposed to solve linearly constrained optimization problems including general LP. In these works, a
Gauss-Southwell-q rule is proposed to guide the selection of the working set in each iteration. Therefore, the working
set selected in a deterministic fashion can only be decided after solving a quadratic program with a similar problem size
as the original one. In contrast, our proposed mini-batch interior point/RBCD method approach selects the working set
through a combination of randomness and low computational cost. Another research direction that addresses separable
functions, linearly coupled constraints, and additional separable constraints involves using the alternating direction method
of multipliers (ADMM) (Chen et al., 2016; He & Yuan, 2012; Xie & Shanbhag, 2019; 2021). This method updates blocks of
primal variables in a Gauss-Seidal fashion and incorporates multiplier updates as well.

B. Proof of Theorem 3.2

Proof. If d = 0, then let d̄ = 0 and I = ∅. We have q(x; I) = q(x;N ) = 0. Therefore, both (17) and (18) are satisfied. If
d ̸= 0 and | supp(d)| ≤ l, then let d̄ = d. Thus, I = supp(d̄) satisfies |I| ≤ l and q(x; I) = q(x;N ). If | supp(d)| > l,
then similar to the discussion in Proposition 6.1 in (Tseng & Yun, 2009a), we have that

d = d(1) + . . .+ d(r),

for some r ≤ | supp(d)|− l+1 and some nonzero d(s) ∈ null(A) conformal to d with | supp(d(s))| ≤ l, s = 1, ..., r. Since
| supp(d)| ≤ N , we have r ≤ N − l+1. Since Ad(s) = 0 and xi+d

(s)
i ≥ xi+di ≥ 0,∀s = 1, ..., r and ∀i ∈ {i | di < 0},

we have that x+ d(s) ∈ X ,∀s = 1, ..., r. Therefore,

q(x;N ) = cT d =

r∑
s=1

cT d(s) ≥ r min
s=1,...,r

{cT d(s)}.

Denote s̄ ∈ argmins=1,...,r{cT d(s)} and let I = supp(d(s̄)), then |I| ≤ l and

q(x;N ) ≥ rcT d(s̄) ≥ rq(x; I) ≥ (N − l + 1)q(x; I).

Therefore (17) and (18) hold for this I and d̄ = d(s̄).

C. Theory of the linear system in OT

Property of matrix A in (22) A nonzero d ∈ RN is an elementary vector of null(A) if d ∈ null(A) and there is no
nonzero d′ ∈ null(A) that is conformal to d and supp(d′) ̸= supp(d). According to the definition in (22), we say that a
nonzero matrix X is an elementary matrix of null(A) if vec(X) is an elementary vector of null(A). For simplicity, a matrix
M1 being conformal to M2 means vec(M1) being conformal to vec(M2) for the rest of this paper. Now we define a set EA:

X ∈ EA ⊆ Rn×n ⇐⇒ X ̸= 0, and after row and column permutations, X is a multiple of one of the following matrices:
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E2 =


1 −1

−1 1

0
. . .

0


n×n

, E3 =



1 −1

−1 1

−1 1

0
. . .

0


n×n

, ...,

En−1 =



1 −1

−1 1

−1 1
. . .
−1 1

0


n×n

, En =


1 −1

−1 1

−1 1
. . .
−1 1


n×n

.

First, we state a Lemma about EA, the proof of which is trivial and thus omitted.

Lemma C.1. Every matrix in EA is an elementary matrix of null(A).

We show that EA characterizes all the elementary matrices.

Theorem C.2. Given any D ∈ Rn×n, if vec(D) ∈ null(A), then D has a conformal realization, namely:

D = D(1) +D(2) + . . .+D(s), (26)

where D(1), . . . , D(s) are elementary matrices of null(A) and D(i) is conformal to D, for all i = 1, . . . , s. In particular,
D(i) ∈ EA, ∀i = 1, ..., s. Therefore, EA includes all the elementary matrices of null(A).

Proof. First, we show that for any nonzero D such that vec(D) ∈ null(A), there exists X ∈ EA such that X is conformal
to D. We prove this by contradiction and induction.

Suppose that no X ∈ EA is conformal to D. Note that vec(D) ∈ null(A) is equivalent to
∑m

i=1 D(i, j̄) =
∑n

j=1 D(̄i, j) =

0,∀ī, j̄. WLOG, suppose that D(1, 1) ̸= 0 since we can permute row/column to let D(1, 1) ̸= 0. Further, suppose that
D(1, 1) > 0 since we can otherwise prove the same statement for −D. Since vec(D) ∈ null(A), the first column of D must
have one negative element. Suppose D(2, 1) < 0 WLOG. The second row of D must have one positive element, so suppose
D(2, 2) > 0 WLOG. Since no X ∈ EA is conformal to D, we must have D(1, 2) ≥ 0. Therefore, the 2× 2 principal matrix
of D has the following sign arrangement (after appropriate row/column permutations),(

+ +/0

− +

)
,

where we use +, +/0, −, and −/0 to indicate that the corresponding entry is positive, nonnegative, negative, and nonpositive
respectively. If n = 2, then the above pattern is impossible, leading to a contradiction. Suppose that n ≥ 3. For math
induction, we assume that after appropriate row/column permutations, the k × k principal matrix of D has the following
sign arrangement (2 ≤ k ≤ n− 1), 

+ +/0 +/0 . . . +/0

− + +/0
. . .

...

−/0 − +
. . . +/0

...
. . . . . . . . . +/0

−/0 . . . −/0 − +


, (27)

i.e., D(i, j) ≥ 0, ∀i ≤ j ≤ k; Dij ≤ 0, ∀j < i ≤ k; D(i, i) > 0, ∀1 ≤ i ≤ k; D(i+ 1, i) < 0, ∀1 ≤ i ≤ k − 1.

kth column of D needs to have at least one negative element, so suppose D(k+1, k) < 0 WLOG. No X ∈ EA is conformal
to D, so D(k + 1, i) ≤ 0, ∀i = 1, ..., k − 1. Otherwise, let i0 be the largest index 1, · · · , k − 1 such that D(k + 1, i0) > 0.
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Then the submatrix D(i0 + 1 : k + 1, i0 : k) takes the form,

− + +/0 . . . +/0

−/0 − +
. . .

...
...

. . . . . . . . . +/0

−/0 . . . −/0 − +

+ −/0 . . . −/0 −

 . (28)

Moving the first column of (28) to the last (i.e., for D, move the i0th column and insert it between k and k + 1th column)
and shift the resulting submatrix to the upper left corner through permutation operations, we can see Ek−i0+1 is conformal
to it.

(k + 1)th row of D needs to have at least one positive element, so suppose D(k + 1, k + 1) > 0 WLOG. Similar argument
shows if there is no X ∈ EA is conformal to D, so D(i, k + 1) ≥ 0, ∀i = 1, ..., k.

Therefore, the (k+1)×(k+1) principal matrix of D has exactly the same sign pattern as indicated by (27), after appropriate
row/column permutations. Note that this is true when k + 1 = n. However, D itself cannot have the sign pattern as (27)
after row/column permutations since the summation of each column/row of D is 0. Contradiction.

Suppose that X(1) ∈ EA and X(1) is conformal to D. Then X(1) can be scaled properly by α1 > 0 such that | supp(D −
α1X

(1))| < | supp(D)| and D − α1X
(1) is conformal to D. Denote D(1) ≜ α1X

(1) and D̄(1) = D −D(1). D̄(1) is the
new D and we repeat this process. Eventually, we have that the conformal realization (26) holds since | supp(D)| ≤ n2. If
D is an elementary matrix, by the conformal realization of D as in (26), D must have the same support with all D(i) ∈ EA,
i = 1, ..., s. Therefore, by definition of EA, D must be a multiple of the special matrix in the description of EA after a
certain row/column permutation, and itself is in EA. Thus EA describes all the elementary matrices of null(A).

Working set selection By analyzing the structure of elementary matrices of null(A), we will have a better idea of potential
directions along which the transport cost is minimized by a large amount. This is supported by the following theorem, where
we continue using notations introduced in Section 3.

Theorem C.3. Consider the linear program (8) where A ∈ RM×N and b ∈ RM are defined as in (22) (M = 2n, N = n2).
Given any X ∈ Rn×n and D ∈ Rn×n such that vec(X) ∈ X , and vec(D) ∈ D(vec(X);N ). There exists an elementary
matrix D̄ of null(A) conformal to D such that for any set I ∈ N satisfying

I ⊇ supp(vec(D̄)),

We have

q(vec(X); I) ≤
(

1

n2 − 3

)
q(vec(X);N ). (29)

Proof. Since vec(D) ∈ D(vec(X);N ), vec(D) ∈ null(A). Then based on Theorem C.2, we have the conformal realization:

D = D(1) +D(2) + ...+D(s).

Moreover, proof of Theorem C.2 indicates that we can construct this realization with s ≤ n2 − 3, because the support of
D(i) has cardinality at least 4. Then similar to discussion in Theorem 3.2, we may find s̄ ∈ {1, . . . , s} such that D̄ = D(s̄),
I ⊇ supp(vec(D(s̄))), and

q(vec(X);N ) ≥ (n2 − 3)q(vec(X); I).
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D. Proof of Theorem 4.1

Proof. Given xk, Theorem C.3 guarantees that there exists Dk ∈ EA such that if Ik ⊇ supp(vec(Dk)), then (29) holds for
I = Ik and vec(X) = xk, i.e.,

q(xk; Ik) ≤
(

1

n2 − 3

)
q(xk;N ). (30)

Next, we will estimate the probability that Ik ⊇ supp(vec(Dk)) holds.

First, consider the case when Ik is chosen according to (24). Suppose that after row/column permutations and scaling of
Dk, we obtain Et, 2 ≤ t ≤ n. Then after appropriate row and column swapping, Dk can be written as

t





0

∗ ∗
∗ ∗

∗
. . .

∗ ∗
. . . ∗

∗ ∗ 0
. . .

0


n×n

. (31)

That is, elements (2, 1) and (3, 1) are nonzeros; elements (j, j) and (mod(j +2, n), j) are nonzeros, for all j = 2, ..., t− 1;
elements (t, t) and (mod(t+1, n), t) are nonzeros; all other elements are zeros. Obviously, support of this matrix is covered
by the support of G in (23). Moreover, by moving the whole support in matrix (31) downwards or to the bottom right corner,
we can create at least n(p− 2)− 1 more different matrices whose support are all covered by G. These n(p− 2) matrices
can be obtained by permuting rows and columns of Dk in n(p− 2) in different ways. Therefore, the probability that Ik will
cover the support of Dk is at least n(p−2)

(n!)2 .

Second, consider the case when Ik is chosen according to (25). Suppose that after row/column permutations and scaling of
Dk, we obtain Et, 2 ≤ t ≤ m. Then Ik will cover the support of Dk with probability(

n−t
m−t

)2(
n
m

)2 =

(
(n− t)!/((m− t)!(n−m)!)

n!/(m!(n−m)!)

)2

=

(
m!/(m− t)!

n!/(n− t)!

)2

.

Then suppose we get Et, m + 1 ≤ t ≤ n after row/column permutations and rescaling of Dk. Then Ik will cover the
support of Dk with probability 0.

In general, the probability that Ik cover the support of Dk can be bounded below by sn(p−2)
(n!)2 , and we have that

E[q(xk; Ik) | xk] =
∑

supp(vec(Dk))⊆I

q(xk; I)P (Ik = I) +
∑

supp(vec(Dk))⊈I

q(xk; I)P (Ik = I)

≤
(

1

n2 − 3

)
q(xk;N )P (supp(vec(Dk)) ⊆ Ik) + 0

≤
(

sn(p− 2)

(n2 − 3)(n!)2

)
q(xk;N )

Therefore, the expected Gauss-Southwell-q rule (19) holds with v at least sn(p−2)
(n2−3)(n!)2 .

E. Proof of Lemma 4.3

Proof. Suppose that

log((n2)!/(n2 − np)!) ≥ 2 log(n!) + log(np)! (32)
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Then

(n2)!/(n2 − np)!)/(np)! ≥ (n!)2

=⇒
(
n2

np

)
/(n!)2 ≥ 1

=⇒ (n
2

np)
(n!)2 · sn(p−2)(n2−np+1)

n2−3 ≥ 1

=⇒ sn(p−2)
(n2−3)(n!)2 ≥ 1

(n
2

np)(n2−np+1)
,

where the third inequality holds because p ≤ n/2 and n ≥ 2/s. So we only need to prove (32). Note that

log
(n2)!

(n2 − np)!
=

n2∑
x=n2−np+1

log(x) ≥
∫ n2

n2−np

(log x)dx

= n2 log(n2)− n2 −
(
(n2 − np) log(n2 − np)− n2 + np

)
= n2 log(n2)− (n2 − np) log(n2 − np)− np

(p=n/K)
= 2np log n+

K − 1

K
· n2 · log K

K − 1
− np

≥ 2np log n+
2K − 3

2K − 2
· np− np. (33)

The last inequality holds because log(1 + x) ≥ x− x2/2 for x ∈ (0, 1) and p = n/K. Meanwhile, right hand side of (32)
satisfies the following:

2 log(n!) + log(np)!

≤ 2(n+ 1) log(n+ 1)− 2n+ (np+ 1) log(np+ 1)− np

≤ 2(n+ 1)(log n+ log 2)− 2n+ (np+ 1)(log(np) + log 2)− np

= (np+ 2n+ 3) log n+ (np+ 1) log p+ 2(n+ 1) log 2− 2n− np+ (log 2)(np+ 1)

(p= n
K )

= 2np log n+ (2n+ 4) log n+ (log 4)n+ (log 2)np+ log 8− 2n− (1 + logK)np− logK

(K≥K̄≥2,n≥pK̄≥6)

≤ 2np log n+ (2n+ 4) log n+ (log 2)np− (1 + logK)np (34)

In order to show (32), we only need to confirm (34) ≤ (33). By observation, this is equivalent to(
2K−3
2K−2 + log

(
K
2

))
np ≥ (2n+ 4) log n

(p≥η logn,K̄≤K)⇐=
(

2K̄−3
2K̄−2

+ log
(

K̄
2

))
ηn ≥ 2n+ 4

⇐⇒ 4

( 2K̄−3
2K̄−2

+log( K̄
2 ))η−2

≤ n.

The last inequality is assumed.


