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ABSTRACT

To make adversarial training (AT) computationally efficient, FGSM AT has at-
tracted significant attention. The fast speed, however, is achieved at the cost of
catastrophic overfitting (CO), whose reason remains unclear. Prior works mainly
study the phenomenon of a significant PGD accuracy (Acc) drop to understand
CO while paying less attention to its FGSM Acc. We highlight an intriguing CO
phenomenon that FGSM Acc is higher than accuracy on clean samples and attempt
to apply non-robust feature (NRF) to understand it. Our investigation of CO by
extending the existing NRF into fine-grained categorization suggests: there exists a
certain type of NRF whose usefulness is increased after FGSM attack, and CO in
FGSM AT can be seen as a dynamic process of learning such NRF. Therefore, the
key to preventing CO lies in reducing its usefulness under FGSM AT, which sheds
new light on understanding the success of a SOTA technique for mitigating CO.

1 INTRODUCTION

Despite impressive performance, deep neural networks (DNNs) (LeCun et al., 2015; He et al., 2016;
Huang et al., 2017; Zhang et al., 2019a; 2021) are widely recognized to be vulnerable to adversarial
examples (Szegedy et al., 2013; Biggio et al., 2013; Akhtar & Mian, 2018). Without giving a false
sense of robustness against adversarial attacks (Carlini & Wagner, 2017; Athalye et al., 2018; Croce
& Hein, 2020), adversarial training (AT) (Madry et al., 2018; Zhang et al., 2019c) has become the de
facto standard approach for obtaining an adversarially robust model via solving a min-max problem
in two-step manner. Specifically, it first generates adversarial examples by maximizing the loss, then
trains the model on the generated adversarial examples by minimizing the loss. PGD-N AT (Madry
et al., 2018; Zhang et al., 2019c) is a classical AT method, where N is the iteration steps when
generating the adversarial samples in inner maximization. Notably, PGD-N AT is N times slower
than its counterpart standard training with clean samples. A straightforward approach to make AT
faster is to set N to 1, i.e reducing the attack in the inner maximization from multi-step PGD to
single-step FGSM (Goodfellow et al., 2015). For simplicity, PGD-based AT and FGSM-based fast
AT are termed PGD AT and FGSM AT, respectively.

FGSM AT often fails with a sudden robustness drop against PGD attack while maintaining its
robustness against FGSM attack, which is called catastrophic overfitting (CO) (Wong et al., 2020).
With Standard Acc denoting the accuracy on clean samples while FGSM Acc and PGD Acc indicating
the accuracy under FGSM and PGD attack, we emphasize that a CO model is characterized by two
main phenomena as follows.

• Phenomenon 1: The PGD Acc drops to a value close to zero when CO happens (Wong et al.,
2020; Andriushchenko & Flammarion, 2020).

• Phenomenon 2: FGSM Acc is higher than Standard Acc for a CO model (Kim et al., 2020;
Andriushchenko & Flammarion, 2020).

Multiple works (Wong et al., 2020; Kim et al., 2020; Andriushchenko & Flammarion, 2020) have
focused on understanding CO by explaining the drop of PGD Acc in Phenomenon 1; however,
they pay less attention to Phenomenon 2 regarding FGSM Acc. Specifically for Phenomenon 1,
FGSM-RS (Wong et al., 2020) attributes it to the lack of perturbation diversity in FGSM AT, which
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is refuted by a follow-up GradAlign (Andriushchenko & Flammarion, 2020) by demonstrating a
co-occurrence of local non-linearity and the PGD Acc drop. However, these understandings cannot
explain why FGSM Acc is higher than Standard Acc for a CO model in Phenomenon 2.

In the context of adversarial learning, numerous works (Goodfellow et al., 2015; Tabacof & Valle,
2016; Tanay & Griffin, 2016; Koh & Liang, 2017; Nakkiran, 2019; Athalye et al., 2018; Zhang et al.,
2020) have attempted to explain why adversarial examples exist from different angles, among which
non-robust feature (NRF) (Ilyas et al., 2019) is a popular one which also aligns well with all other
explanations (Goodfellow et al., 2015; Tabacof & Valle, 2016; Tanay & Griffin, 2016; Koh & Liang,
2017; Nakkiran, 2019; Athalye et al., 2018). Such compatibility suggests that the NRF perspective
constitutes an essential tool for understanding adversarial vulnerability, to which CO is also directly
related. Specifically, the authors of (Ilyas et al., 2019) define the positive-correlation between features
and true labels as feature usefulness (see Section 3.1 for more detailed definitions). Therefore, the
adversarial vulnerability of DNNs is attributed to the existence of non-robust features (NRFs), which
can be made anti-correlated with the true label under adversary. This understanding of NRFs in (Ilyas
et al., 2019) well aligns with the fact that a CO model achieves close to zero robustness against PGD
attack, and thus motivates us to believe that the NRF perspective might be an auspicious direction for
understanding CO in FGSM AT.

The NRF in (Ilyas et al., 2019) is defined with PGD attack, which is followed in this work; how-
ever, we extend their NRF framework by additionally considering FGSM attack for fine-grained
categorization. Considering the difference of adversarial attack strength between FGSM and PGD
attack, GradAlign (Andriushchenko & Flammarion, 2020) explains Phenomenon 1 by demonstrating
how well the attack variant (FGSM or PGD attack) can solve the inner maximization problem in
AT. We start our investigation by providing an alternative interpretation of this adversarial strength
difference between the two attack variants within the NRF framework (Ilyas et al., 2019), named
strength-based NRF categorization. Despite aligning well with Phenomenon 1, We find that this
strength-based categorization cannot explain Phenomenon 2 since the usefulness of these NRFs is
decreased under FGSM attack and leads to an decrease (instead of increase in Phenomenon 2) of
classification accuracy on FGSM adversarial examples than clean samples.

To understand Phenomenon 2 in CO from the NRF perspective, we conjecture that there exists a
type of NRF whose usefulness is increased under FGSM attack, thus can lead to a higher FGSM
Acc than Standard Acc (Phenomenon 2). In other words, if such type of NRFs (NRF2 in the
following categorization) exists, Phenomenon 2 can be justified. Considering whether the usefulness
is decreased or increased under FGSM attack, we propose a direction-based NRF categorization
where NRF2 (NRF1) leads to the increase (decrease) of classification accuracy under FGSM attack.
To prove the existence of NRF2, we follow the procedure of verifying the existence of NRF in (Ilyas
et al., 2019). Moreover, we show that NRF2 can cause a significant PGD Acc drop , which also helps
justify Phenomenon 1 in CO.

Overall, towards understanding CO in FGSM AT, our contributions are summarized as follows:

• Our work shifts the previous focus on PGD Acc in Phenomenon 1 to FGSM Acc in
Phenomenon 2 for understanding CO. Given NRF as a popular perspective on adversarial
vulnerability, we are the first to attempt at applying it to explain Phenomenon 2.

• We extend the existing NRF framework under PGD attack (Ilyas et al., 2019) to more
fine-grained NRF categorization by FGSM attack. We verify the existence of NRF2 and
show that its existence well justifies Phenomenon 2 (as well as Phenomenon 1).

• Very recent works show that adding noise on the image input achieves SOTA performance
for FGSM AT. However, their mechanism of such a simple technique preventing CO remains
not fully clear, for which our NRF2 perspective shed new light on its success.

2 PROBLEM OVERVIEW AND RELATED WORK

2.1 FGSM AT AND EXPERIMENTAL SETUPS

Let D denote a data distribution with (x, y) pairs and f(·, θ) parameterized by θ denote a deep model.
For standard training, the model f(·, θ) is trained on D by minimizing E(x,y)∼D[l(f(x, θ), y)], where
l indicates a cross-entropy loss for a typical multi-class classification task. Adversarial training
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(AT) (Madry et al., 2018) for obtaining a robust model is formalized as a min-max optimization
problem:

argmin
θ

E(x,y)∼D

[
max
δ∈S

l(f(x+ δ; θ), y)

]
, (1)

where S is a perturbation limitation (ϵ with the l∞ constraint in this work). The outer minimization
problem in AT is often the same as standard training; however, AT has an unique inner maximization
problem that seeks a perturbation inside the S for maximizing the optimization loss. PGD AT and
FGSM AT are two typical adversarial training methods with PGD attack and FGSM attack solving
the inner maximization problem, respectively.

Experimental setups. Unless specified, we follow the settings in GradAlign (Andriushchenko &
Flammarion, 2020) during training and evaluation. The experiments are conducted on CIFAR10
with PreAct ResNet-18, trained for 30 epochs with cyclic learning rates and half-precision training.
We adopt SGD optimizer with weight decay 5 × 10−4, and the maximum learning rate is set to
0.2. ℓ∞ attack with perturbation constraint ϵ=8/255 is applied in both training and evaluation.
Following (Wong et al., 2020; Andriushchenko & Flammarion, 2020), we calculate the Standard
accuracy (Standard Acc) on clean samples, FGSM accuracy (FGSM Acc), and PGD accuracy (PGD
Acc) under PGD-50-10 attack (performing PGD-50 attack with ten restarts and step size α = ϵ/4)
for evaluation.

2.2 CATASTROPHIC OVERFITTING IN FGSM AT

What are the CO Phenomena? Notably, a model trained only on adversarial examples generated by
FGSM attack in FGSM AT still has robustness against PGD attack. In practice, this robustness is only
slightly lower than that of much more computationally expensive PGD AT. However, this robustness
level can often not be maintained till the end of training as a classical PGD AT. Specifically, as the
FGSM AT evolves, the model robustness against PGD attack first increases but then enters a phase
where the robustness quickly drops to and stays at zero. Following (Wong et al., 2020), this phase
is termed catastrophic overfitting (CO). Another intriguing phenomenon related to CO is that for
a model at the phase of CO, it achieves a higher FGSM Acc than Standard Acc (Kim et al., 2020;
Andriushchenko & Flammarion, 2020). We term these two phenomena regarding CO as Phenomenon
1 and Phenomenon 2 respectively, as in Section 1.

How to explain the CO phenomena? With the finding that random initialization of perturbation
helps alleviate CO (Wong et al., 2020), a tempting explanation suggests that the CO in FGSM AT
lies in the lack of perturbation diversity, which has been refuted by (Andriushchenko & Flammarion,
2020). Instead, it attributes the reason for the PGD Acc drop to local non-linearity, which is quantified
by the gradient alignment: cos(∇xℓ(x, y; θ),∇xℓ(x+η, y; θ)). The local non-linearity (low gradient
alignment) indicates a low linear approximation quality of FGSM perturbations to PGD perturbations.
In other words, local non-linearity means that the inner maximization problem in Eq 1 cannot be
solved accurately by FGSM. It is demonstrated in (Andriushchenko & Flammarion, 2020) that
local linearity decreases significantly when CO happens in FGSM AT. Their perspective is mainly
dependent on the co-occurrence between non-linearity and the drop of PGD Acc. In other words,
the non-linearity perspective exclusively focuses on explaining Phenomenon 1, for which this work
provides an alternative NRF explanation (see Section 3). More importantly, our work fills the gap to
explain Phenomenon 2 from a NRF perspective (see Section 4).

How to prevent CO? With the focus on Phenomenon 1, numerous works have attempted to prevent
CO. Fast AT (Wong et al., 2020) is the first to show FGSM AT can achieve comparable robustness
as PGD AT of “free" variants (Shafahi et al., 2019; Zhang et al., 2019b). A follow-up work (An-
driushchenko & Flammarion, 2020) shows that CO still occurs in (Wong et al., 2020) when the step
size increases and introduces a regularization loss (GradAlign) for maximizing local linearity to avoid
CO. Other successful attempts for avoiding CO include adaptive perturbation size (Kim et al., 2020),
dynamic dropout scheduling (Vivek & Babu, 2020) and detection-based alternating strategy (Li et al.,
2020). Intriguingly, very recent works (Zhang et al., 2022; de Jorge et al., 2022) have shown that
adding noise on the image input is sufficient for preventing collapse and achieves SOTA performance.
However, the reason for its success remains not fully clear, for which our NRF perspective with
direction-based categorization provides an explanation (see Section 5).
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3 NON-ROBUST FEATURE PERSPECTIVE ON ADVERSARIAL TRAINING

Before investigating CO from the NRF perspective, we first revisit the definition and methodology of
robust and non-robust features defined in (Ilyas et al., 2019) (Fig. 1(a)). Considering the difference of
attack strength between FGSM attack and PGD attack, we extend the non-robust features defined in
(Ilyas et al., 2019) to a fine-grained categorization under FGSM attack (strength-based categorization
in Fig. 1(b)) and discuss its relationship with CO phenomena.

3.1 BACKGROUND ON FEATURE USEFULNESS AND ROBUSTNESS

Here, we revisit the definitions and methodology of DNN features introduced in (Ilyas et al., 2019).
According to (Ilyas et al., 2019), a feature is defined as a function mapping from the input space X to
real numbers, i.e f : X → IR, where IR can be the label space in classification task. Therefore, a DNN
classifier can be perceived as a function utilizing a set of useful features for label prediction (Ilyas
et al., 2019), where useful features in (Ilyas et al., 2019) are characterized by their positive correlation
with true label, defined as:

• ρ-useful features: A feature f is ρ-useful (ρ > 0) if it is correlated with the true label in
expectation, shown as follows:

IE(x,y)∼D[y · f(x)] ≥ ρ. (2)

To understand adversarial vulnerability, (Ilyas et al., 2019) further proposes to dichotomize the above
useful features into robust features (RFs) and non-robust features (NRFs), defined as follows:

• Robust feature (RFs): a useful feature f is robust if there exists a γ > 0 for it to be
γ-robustly useful under some specified set of valid perturbations ∆, shown as follows:

IE(x,y)∼D[ inf
δ∈∆(x)

y · f(x+ δ)] ≥ γ. (3)

• Non-robust feature (NRFs): a useful feature f is non-robust if γ > 0 does not exist.

Figure 1: Strength-based NRFs categorization. (a)
Definitions of RFs and NRFs in (Ilyas et al., 2019),
where the plus(+)/minus(−) sign indicate that the
features are positive-correlated or anti-correlated
with true label, respectively. (b) Definitions of
DNRF. Considering the attack strength, DNRF are
made anti-correlated by both FGSM and PGD
attack, while SNRF is made anti-correlated by
PGD attack but still positive-correlated with true
labels under FGSM attack.

Adversarial vulnerability can be attributed
to the existence of NRFs (Ilyas et al., 2019).
As discussed in (Ilyas et al., 2019), adversarial
vulnerability is caused by the presence of NRFs
which are useful and predictive. According to
(Ilyas et al., 2019), “in the presence of an adver-
sary, any useful but non-robust features can be
made anti-correlated with the true label, leading
to adversarial vulnerability" (Ilyas et al., 2019).
Therefore, adversarial training obtains a robust
model by discouraging from learning NRFs. In
practice, finding a worst-case perturbation under
a certain budget for Eq. 3is not feasible since it
is often an NP-hard problem (Katz et al., 2017;
Weng et al., 2018), and thus (Ilyas et al., 2019)
uses multi-step PGD attack to approximate such
a worst-case solution when investigating NRFs.
Fig. 1 (a) summarizes the feature definition in (Ilyas et al., 2019). Specifically, the plus sign (+)
indicates the useful features which has positive correlation with true labels, while the minus sign (−)
indicates anti-correlated features under PGD attack.

Verifying the existence of NRFs (Ilyas et al., 2019). The procedure verifying the existence of NRFs
in (Ilyas et al., 2019) is summarized in Fig. 2(a) by three steps. At Step 1, it trains a model M1 with
standard training on the original training set (Xtrain, y), where Xtrain and y indicate the training
sample and its corresponding true label, respectively. At Step 2, it first randomly picks a random label
yrand for each training sample to ensure that the training set Xtrain has no features with a positive
correlation with the random label yrand. After that, perturbation δ is generated by PGD attack on M1

by making sample prediction f(x+ δ) close to yrand. This step aims to generate a perturbation δ
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Figure 2: Experiment procedures for verifying the existence of non-robust features with three basic
steps. (a) verifies the existence of NRF (mainly NRF1) in (Ilyas et al., 2019); (b) verifies the existence
of DNRF; and (c) verifies the existence of NRF2.

which includes NRFs related to yrand. At Step 3, model M2 is trained on the new dataset (Xtrain+δ,
yrand) generated at Step 2, and then evaluated on the original test dataset with true labels (Xtest,
y). According to (Ilyas et al., 2019), the perturbation δ is the only connection between Xtrain + δ
and yrand since there is no positive correlation between Xtrain and yrand. Therefore, if model M2

achieves higher accuracy than random prediction (e.g 10% for CIFAR10) on the original test dataset
(Xtest, y) with true labels, the existence of NRFs in δ is verified. We re-implement this experiment in
(Ilyas et al., 2019), and M2 achieves a accuracy of 48.16% (with five independent runs), as shown in
Table 1, which verifies the existence of NRFs as in (Ilyas et al., 2019).

3.2 STRENGTH-BASED NRF CATEGORIZATION

It is widely known that PGD attack is stronger than FGSM attack, which is supported by the finding
that FGSM Acc is higher than PGD Acc under the same l∞ perturbation budget (Madry et al., 2018).
Thus, PGD Acc is often adopted as a common metric to evaluate the model robustness. FGSM
AT is faster than PGD AT but at the cost of a mildly lower PGD Acc (than PGD AT) even when
CO does not happen in FGSM AT. When CO occurs, the PGD Acc drops to a value close to zero
(Phenomenon 1). Since the difference between PGD AT and FGSM AT lies in the attack variant,
GradAlign (Andriushchenko & Flammarion, 2020) explains their difference based on how well the
adopted attack can solve the inner maximization problem. Specifically, FGSM AT yields lower
robustness because FGSM attack cannot solve the problem as accurately as PGD attack because
PGD attack is stronger than its FGSM counterpart. The following discussion provides an alternative
interpretation of the attack strength-based explanation in (Andriushchenko & Flammarion, 2020)
from the NRF perspective.

Intuitive categorization. Considering the attack strength difference, the NRFs can be divided into
two types, as shown in Figure 1(b). The first type of NRFs is named as double non-robust feature
(DNRF) since it can be made anti-correlated with the true labels by both FGSM and PGD attack. The
existence of DNRF explains why FGSM AT yields a more robust model than standard training against
PGD attack during evaluation. By contrast, the other type of NRFs is called single non-robust feature
(SNRF) since it is made anti-correlated with true labels by PGD attack but is still positive-correlated
with true labels under FGSM attack.

Table 1: Verifying the existence of DNRF. The
experimental procedure follows Fig. 2(a) and (b),
with PGD and FGSM attack at Step 2 respectively.

Features Attack at Step 2 Test Acc of M2

NRFs (Ilyas et al., 2019) PGD (Fig. 2(a)) 48.16±5.12
DNRF FGSM (Fig. 2(b)) 20.01±1.16

Experimental verification of DNRF. This
setup follows the procedure in (Ilyas et al., 2019)
(Fig. 2(a)) with a small modification. With
its definition, DNRF has the property of being
made anti-correlated with true labels under both
PGD attack and FGSM attack. Therefore, the
existence of DNRF ensures that the test acc will
also be higher than random guess (10% for CIFAR10) if we replace the PGD attack at Step 2 with
FGSM attack, as shown in Fig. 2(b). This is confirmed by an accuracy of 20.01% on the original test
set, see Table 1.
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On SNRF and its relationship with CO phenomena. It is challenging to directly verify the existence
of SNRF. The phenomenon that 20.01% (FGSM attack) is lower than 48.61% (PGD attack) in Table 1
can be seen as an indirect evidence for the existence of SNRFs which can be extracted by PGD attack
but not FGSM attack. Even though direct empirical verification of SNRF is challenging, its theoretical
existence is straightforward as long as FGSM attack is weaker than PGD attack. Moreover, the
weaker the FGSM attack (compared with PGD attack), the more SNRF. FGSM AT cannot effectively
discourage the model from learning SNRF as PGD AT, and thus we can attribute the lower PGD Acc
of FGSM AT than PGD AT to the existence of SNRF. However, SNRF under strength-based NRF
categorization might (at most) partly explain CO Phenomenon 1 but cannot justify CO Phenomenon
2. The reason is that the model might have a very low PGD Acc, but FGSM Acc cannot be higher
than Standard Acc even in an extreme case when all the NRFs become SNRF due to a very weak
FGSM attack. The following section introduces a new NRF categorization to better explain CO
phenomena, especially Phenomenon 2.

4 DIRECTION-BASED NRF CATEGORIZATION FOR UNDERSTANDING CO
PHENOMENA

Figure 3: Change of usefulness under
attack for NRF1 and NRF2. The ↑/↓
indicate the increase/decrease of feature
usefulness under attack, respectively.

Direction-based NRF categorization. Similar to the
above strength-based NRF categorization, the categoriza-
tion here considers FGSM attack but differs by a key
assumption: whether the usefulness of certain NRFs is
decreased or increased under FGSM attack. We call this
NRF categorization as direction-based, which is defined
as follows:

• NRF1: NRF1 is a type of NRF whose usefulness is decreased after FGSM attack, thus can
be exploited by FGSM attack to decrease the classification accuracy after FGSM attack.

• NRF2: NRF2 is a type of NRF whose usefulness is increased after FGSM attack, thus can
be exploited by FGSM attack to increase the classification accuracy after FGSM attack.

NRF1 and NRF2 still follow the definition of NRF regarding PGD attack. In other words, the
usefulness of both NRF1 and NRF2 is decreased after PGD attack. The change of their usefulness
after attacks is summarized in Fig. 3, where the increase and decrease of feature usefulness are
denoted by the ↑ and ↓, respectively.

4.1 ON NRF2 EXISTENCE AND ITS EXPLANATION FOR PHENOMENON 2

When we discuss DNRF and SNRF in Section 3.2, by default, we assume that their usefulness is
decreased after FGSM attack, and thus they can be seen as NRF1. In other words, the existence of
NRF1 is straightforward; however, it is unclear whether NRF2 actually exists.

Conjecture 1: We conjecture that there exists NRF2, and the FGSM attack in AT encourages the
model to learn NRF2.

Differences between verifying NRF1 and NRF2. The experimental procedure of verifying NRF2
is shown in Fig. 2(c). The key reason why procedures in Fig. 2 can verify the existence of certain
NRFs is that the generated perturbation δ is the only connection between Xtrain+ δ and yrand, and it
should include certain NRFs related to yrand. In other words, the usefulness of certain NRFs should
be increased after attack at Step 2 of Fig. 2. For FGSM attack, f(x+ δ) is optimized to be far from
the true label y by maximizing the loss l(f(x+ δ), y), and the usefulness of NRF1 and NRF2 are
decreased and increased by definition, respectively(see Fig. 3). Therefore, to increase the usefulness
of NRF1 at Step 2, the optimization goal should be close to yrand, as shown in Fig. 2(b). By contrast,
to verify the existence of NRF2, the optimization goal at Step 2 should follow that of FGSM attack,
i.e far from yrand, as shown in Fig. 2(c), which increases the usefulness of NRF2.

Verification of Conjecture 1. As discussed above, verifying the existence of NRF2 requires an
opposite optimization goal with that of NRF1 at Step 2 (see Fig. 2(c)). For the model M1 at Step 1,
we adopt FGSM AT with the results reported in Table 2. When M1 at Step 1 is set to a CO model
with FGSM AT, our model M2 evaluated on the original test set achieves an accuracy of around
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17.52%± 1.59% (with five independent runs), which verifies the existence of NRF2 since it is higher
than 10% (random prediction for CIFAR10). Given that the usefulness of NRF2 is increased after
FGSM attack, the existence of NRF2 in a model after CO justifies why FGSM Acc can be higher
than Standard Acc (CO Phenomenon 2). Moreover, we experiment with setting the M1 at Step 1 to
one with standard training, the Test Acc of M2 is close to random prediction, suggesting that it is the
FGSM attack in AT that encourages the model to learn NRF2.

Table 2: Verifying the existence of NRF2
as shown in Figure 2(c). Ablation stud-
ies of different M1 at Step 1 are also
implemented.

Model M1 Test Acc of M2

Standard Training 10.42±0.74
FGSM AT (After CO) 17.52±1.59

FGSM AT (Before CO) 9.48±2.01

Does NRF2 exist in a model before CO in FGSM AT?
It is interesting to investigate whether NRF2 exists for the
FGSM AT model before CO. To this end, we set M1 at
Step 1 of Fig. 2(c) to a FGSM AT model saved before
CO, which yields an M2 with an accuracy close to ran-
dom prediction(see FGSM AT(Before CO) in Table 2).
This indicates that NRF2 mainly exists in the model after
CO in FGSM AT, which further confirms the relationship
between CO and NRF2.

Can NRF2 be exploited by FGSM attack to decrease FGSM accuracy? (Kim et al., 2020) reports
that FGSM Acc is higher than Standard Acc when CO happens in FGSM AT. Here, we show that
this is not always the case if we evaluate FGSM Acc of the CO model with different step sizes, as
shown in Table 3. Note that the result with step size of zero indicates the Standard Acc. We find that
FGSM Acc is higher (lower) than Standard Acc when the step size is relatively large (small). The
results suggest that NRF2 can still be exploited by an FGSM attack with a smaller step size to be
anti-correlated with the true label. In other words, step size plays a non-trivial role when FGSM
attack exploiting NRF2. The above results well explain why CO only occurs when the step size is set
to a relatively large value (Wong et al., 2020).

Table 3: Evaluate FGSM Acc of CO model under different step sizes.

step size (/255) 0 1 2 3 4 5 6 7 8

FGSM Acc (%) 85.77 37.27 41.57 66.78 86.93 95.16 96.94 96.63 94.72

Figure 4: FGSM Acc with different step sizes. (a)
FGSM AT where CO occurs at epoch 24; (b) GradAlign
model where CO does not occur.

A dynamic view on the CO from the
NRF2 perspective. Prior works analyzing
CO mainly focus on Phenomenon 1 about
low PGD Acc, which seems to be a pseudo-
static state since the PGD Acc stays at zero
after CO. Here, we investigate CO model
further by analyzing FGSM Acc at differ-
ent epochs, as shown in Figure 4. Fig. 4
show that the FGSM Acc under large step
sizes consistently gets higher with more
training epochs, suggesting the model continues to rely more on NRF2. In other words, CO can be
perceived as a dynamic state of learning NRF2, which does not stop after the drop of PGD Acc. This
is reasonable because NRF2 can be very useful features under FGSM attack.

4.2 CAN NRF2 ALSO JUSTIFY PHENOMENON 1?

The above analysis verifies the existence of NRF2 in a CO model, which well justifies the improved
accuracy after FGSM attack (Phenomenon 2). Here, we discuss whether it can be used to justify
Phenomenon 1. Regarding the relationship between NRF2 and PGD Acc, we formulate the following
conjecture.

Conjecture 2: We conjecture that NRF2 can be a cause of a significant PGD Acc drop.

Verification of Conjecture 2. To verify Conjecture 2, we finetune a robust model on a training
dataset with and without such NRF2, respectively, and evaluate the PGD Acc on the original test
set with true labels (Xtest, y). To minimize the influence of other NRF types, we adopt a model
pretrained by PGD AT, which mainly has RFs, for the finetuning experiment. Specifically, we adopt
the generated new training dataset (X + δ, yrand) at Step 2 of Fig. 2(c) as the one with NRF2. For
the counterpart dataset without NRF2, we remove the added perturbation δ, and thus (X , yrand) is
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used for training. The basic loss is set to cross-entropy (CE) to encourage learning the features, if
any, in the generated dataset. However, the accuracy will quickly reduce to zero due to the random
choice of yrand. Thus, a KL loss, which encourages the output of the finetuned model to be close to
that the pretrained mode, is added on top of the CE loss to encourage the model in the finetuning
process to maintain the original RFs. The total loss is shown as follows:

Lossfinetune = CE(f(x+ δ; θ), yrand) + λ ∗KL(f(x+ δ; θpretrain), f(x+ δ; θ)), (4)

Figure 5: Finetuning a pre-
trained PGD AT model.

where f(x; θpretrain) and f(x; θ) indicate the pretrained PGD
model and finetuning model, respectively. A detailed setup for
this experiment is reported in the Appendix. The results with λ
set to 5 are shown in Fig. 5. We observe that the PGD Acc can be
maintained around 25% after 30 epochs of finetuning for the dataset
(X , yrand) which contains no features. By contrast, under the same
setting, the PGD Acc quickly decreases to a value close to zero for
the generated dataset (X + δ, yrand) which contains NRF2. The
contrasting results verify the claim in Conjecture 2.

Additional results with other λ values in Equation 4 are report in Fig. 6. As λ gets larger, the model
finetuned on (X , yrand) maintains more RFs learned in pretrained weights θpretrain, leading to an
increase in accuracy. However, the PGD Acc for the model finetuned on (X + δ, yrand) (with NRF2)
is zero for a wide range of λ values, which is much lower than the model finetuned on (X , yrand)
(without NRF2). This further verifies the claim in Conjecture 2. Interestingly, the result in Fig. 6 can
also be viewed as another proof for Conjeture 1. The Standard Acc, evaluated on the original test set
(Xtest, y), is higher for the model finetuned on (X + δ, yrand) is higher than its counterpart on (X ,
yrand) for all λ in Fig. 6(b). This finding aligns with Conjecture 1 that there exists a type of NRF,
which can be encouraged under FGSM attack.

Figure 6: Accuracy of the finetuned model with different lambda. λ=0 indicates no KL term is
introduced, and the model maintains more features of pretrained weights if λ is larger.

Discussion on the drop speed of PGD Acc from the NRF2 perspective. As demonstrated in
Section 4.1, CO can be perceived as a dynamic process of learning NRF2. With this insight, learning
NRF2 in FGSM AT does not occur suddenly, which is supported by the finding that FGSM Acc still
increases even after CO happens. If this is the case, how can we justify the sudden drop of PGD Acc
within one epoch? At first sight, it seems that NRF2 can only explain the PGD Acc drop but not its
drop speed. However, we argue that the sudden drop of PGD Acc is due to the worst-case property of
PGD attack. Note that PGD attack seeks the most effective adversarial perturbation with multiple
iterations to fool the model by exploiting the most vulnerable features in the model. In other words,
the model is already vulnerable to PGD attack even if it only learns a small amount of NRF2 (one
epoch regarding CO, for instance). After the PGD Acc drops to zero, the model continues to learn
more NRF2, leading to a higher FGSM Acc.

5 NRF2 HELPS EXPLAIN HOW SOTA METHODS PREVENT CO

A recent work (Zhang et al., 2022) outperforms prior methods in FGSM AT by a large margin
without additional computation overhead. Specifically, it shows that adding noise to the input (instead
of initializing the adversarial perturbation with noise as in (Wong et al., 2020)) is critical for its
success (Zhang et al., 2022). A similar finding has also been reported in another recent work (de Jorge
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et al., 2022). However, why such a simple technique of adding noise on the images is so effective
remains not fully clear. Here, we show that NRF2 sheds new light on their success.

Intuitively, the model tends to learn those features that are useful for prediction. Therefore, PGD
AT mainly learns RFs because NRFs are not useful under PGD attack. With FGSM AT, the model
is encouraged to learn NRF2 because FGSM attack increases its usefulness. Moreover, with our
analysis in Section 4, CO can be seen as a dynamic process of learning NRF2. Therefore, the key to
preventing CO in FGSM AT lies in decreasing the NRF2 usefulness under FGSM attack. Regarding
why adding noise to the image input prevents CO, we establish the following hypothesis.

Conjecture 3: We conjecture that adding noise to the input decreases the usefulness of NRF2 under
FGSM attack (indicated by FGSM Acc).

Figure 7: Adding Uniform noise
on input images during evaluation.
Noise scale indicates the multiple
of ϵ.

Verification of Conjecture 3. For facilitating the discussion,
we divide all types of features into NRF2 and non-NRF2. A
CO model has both NRF2 and non-NRF2, while a non-CO
model mainly has non-NRF2. We evaluate the performance on
a model without or with random noise added to the input and
calculate the noise-induced change of Standard Acc and FGSM
Acc (Table 4). Note that for FGSM Acc with noise, the noise
is added to the input before the FGSM attack following (Zhang
et al., 2022). For the model before CO, the noise has almost
the same influence on the change of Standard Acc and FGSM
Acc, i.e ▽SA of −0.70% (Standard Acc change) is close to
▽FGSM of −1.30%. We further conduct the same experiment on a CO model. Before adding
noise, the FGSM Acc (94.67%) is higher than its standard Acc (85.77%), which can be attributed to
NRF2 as in Conjecture 1. After adding noise, this trend is reversed (57.37% < 84.55%), suggesting
Phenomenon 2 disappears in this setup. Moreover, ▽FGSM (−37.30%) is much more significant
than ▽SA (−1.22%). Such a significant drop of FGSM Acc (▽FGSM ) on a CO model (with NRF2)
suggests that the NRF2 usefulness under FGSM attack is significantly decreased. Fig. 7 visualizes
▽FGSM and ▽SA of different noise sizes, which shows the same trend with Table 4 that ▽FGSM

of CO model is the most significant change among all settings. Therefore, Conjecture 3 is verified,
which provides a new understanding on why input noise prevents CO.

Table 4: Adding noise on the input images of FGSM AT model before and after CO during evaluation.
▽SA and ▽FGSM indicate the accuracy drop after adding Uniform noise, with noise scale 2×ϵ
(2×8/255 = 16/255).

Evaluation model NRF2 non-NRF2 Standard Acc FGSM Acc ▽FGSM - ▽SA

original with noise ▽SA original with noise ▽FGSM

FGSM model before CO No Yes 66.83 66.13 -0.70 41.95 40.65 -1.30 -0.60
FGSM model after CO Yes Yes 85.77 84.55 -1.22 94.67 57.37 -37.30 -36.08

More discussion on NRF2 explaining earlier attempts of mitigating CO. Even though we mainly
apply our NRF2 to understanding the SOTA technique of input noise in recent works (Zhang et al.,
2022; de Jorge et al., 2022), it also well justifies earlier successful attempts. For example, the success
of random initialization in (Wong et al., 2020) is conceptually similar to adding the noise on the input
but the noise magnitude is limited by the allowable perturbation size. (Kim et al., 2020) alleviates
CO by limiting the step size, which aligns well with our finding in Table 3. (Li et al., 2020) avoids
CO by switching to PGD AT after detecting the occurrence of CO, the success of which is expected
since PGD attack can effectively discourage the model from learning NRF2.

6 CONCLUSION

The reason for CO in FGSM AT remains not fully clear despite various attempts to mitigate it. In
contrast to prior works mainly studying PGD Acc drop to understand CO, our work focuses on another
intriguing phenomenon that FGSM Acc is higher than Standard Acc. We have found that there exists
NRF2 whose usefulness is decreased under FGSM attack and CO can be seen as a dynamic process of
learning such a type of NRF. Our investigation has also provided a new understanding of successful
attempts on how to mitigate CO in recent works.
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A APPENDIX

Experimental setups for NRF categorization in Fig. 2. At Step 1, we follow the settings in
(Andriushchenko & Flammarion, 2020), and train M1 on CIFAR10 for 30 epochs and cyclic
learning rate with the maximum learning rate 0.3. Both attack radius sizes for training at Step 1 and
perturbation generation at Step 2 are set as 8/255. Based on the new dataset (X + δ, yrand), M2 is
trained for 30 epochs with a constant learning rate 0.015.

Experimental setups for the finetuning experiment in Section 4.2. The first two steps of the
finetuning experiment follow the same settings of that in Fig. 2, generating a new dataset (X + δ,
yrand). at Step 3 , we first follow the settings of PGD AT in (Andriushchenko & Flammarion, 2020)
and train a robust Mpgd. Based on the new dataset (X + δ, yrand), M2 is trained by finetuning on
Mpgd for 30 epochs with a constant learning rate 0.005.
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