
Under Review - Extended Abstract Track 1–18, 2025 Symmetry and Geometry in Neural Representations

On the geometry of recurrent spiking networks

Josue Casco-Rodriguez jc135@rice.edu

Rice University, Houston, TX

Editors: List of editors’ names

Abstract

Biological neural networks are recurrent and transmit information via discrete spikes. How-
ever, neural network theories largely focus on deep feedforward architectures with continu-
ous activations, and it is not clear to what extent these theories are relevant to the analysis
and optimization of recurrent spiking neural networks (SNNs). We propose to study the
geometry of multi-layer recurrent SNNs as piecewise-constant functions, which we visualize
with our new algorithm, SplineCam-SNN. We first study how the parameters of SNNs af-
fect their input-output geometry. In contrast to deep networks with continuous activations,
recurrent (synaptic) weights appear to have a more limited influence on the geometry than
skip connections, leakages, and delays. With these insights, we compare two plasticity
methods: gradient descent aligns input-output geometry around data, while STDP, being
focused on recurrent weights, cannot. Our findings emphasize the importance of skip con-
nections, leakages, and delays for training SNNs, and suggest that these parameters may
be promising targets for future plasticity algorithms.

Keywords: spiking, recurrent, neural, network, geometry, theory, spline, visualization

0

0

ϑ

ϑ

−0.5 2

2

xt0

xt1

No spikes

Spike at
t1 only

Spikes at
t0 and t1

Spike at
t0 only

Hidden: ut = λ(1− st−1)ut−1 +Wxt

Spike: st = Heaviside(Re(ut)− ϑ)

Input: x
t

t0 t1

Figure 1: Spiking neurons are piecewise-constant
functions with discontinuous partitions. Shown here
are the four modes of activity from a single spiking neuron
receiving scalar input xt at times t0 and t1; each mode is
a region of the unrolled input space with a fixed sequence
of output spikes. The first region boundary (xt0 = ϑ) is
where ut0 = ϑ, while the next two (xt0 + xt1 = ϑ and
xt1 = ϑ) are where ut1 = ϑ (depending on st0). Figure
2 investigates how these partitions are affected by various
SNN parameters, Figures 4 and 6 illustrate the specific
influence of recurrent weights, and Figures 3 and 7 use
our algorithm, SplineCam-SNN, to observe how plasticity
changes these partitions in deep multi-neuron SNNs.

1. Introduction

Two longstanding challenges with neural networks are understanding them and connecting
them to neuroscience. Sometimes, these two aims are aligned (e.g., convolutional networks
(1; 2; 3; 4)), but often they are not. For example, much of deep learning theory rests on
a foundation of continuous feedforward networks (5; 6; 7), even though biological neural
networks are recurrent and communicate through binary signals (spikes). In particular,

© 2025 J. Casco-Rodriguez.

Casco-Rodriguez

spiking neural networks (SNNs) (8; 9; 10; 11; 12; 13), which resemble biological neurons,
are frustrating targets of deep learning theory: there is little consensus about how best to
parameterize or train them, and few works try interpreting them (14; 15; 16). SNNs could
bring human-scale energy efficiency to deep networks and newfound insights to neuroscience
(17; 18; 19; 20), but without a comprehensive theory for SNNs, this remains elusive.

Contributions. We propose a theory of SNNs as piecewise-constant functions: at each
timestep, each neuron partitions the input space into regions where it does or does not
spike. We also extend existing region computation methods (21; 22; 23) to SNNs via a
new algorithm, SplineCam-SNN. With this framework, we reveal how SNN parameters
affect the geometry of these regions: (1) skip connections are required for hidden layers
to draw any new partitions, and (2) leakages, delays, input weights, and even resets can
rotate partition boundaries, while recurrent weights can only shift them. Then we describe
plasticity affecting region geometry: gradient descent aligns region boundaries around input
data (like in continuous networks), while local learning via spike-timing-dependent plasticity
can only shift certain region boundaries based on which regions contain the most data
points. Our findings emphasize the importance of skip connections, leakages, and delays,
and suggest that these parameters are promising targets for future plasticity algorithms.

2. Background and Related Work

2.1. Spiking Neural Networks

Leaky integrate-and-fire networks. Spiking neural networks (SNNs) are biologically
inspired recurrent networks with hidden states that communicate only through binary sig-
nals (spikes). They often employ leaky integrate-and-fire (LIF) dynamics: at time t, hidden
states (membrane potentials) ut decay exponentially, with leakage decays λ, and receive
weighted inputs Wxxt and previous spikes Wrst−1. Neurons emit spikes st when ut meets
the firing thresholds ϑ; immediately after spiking, neurons’ hidden states are reset to 0:

ut = λ⊙ (1− st−1)⊙ ut−1 +Wxxt +Wrst−1, st = Heaviside(Re(ut)− ϑ) (1)

We probe a variety of biologically inspired SNN parameters: (a) subthreshold oscillation
(complex λ) (24; 25; 26; 27; 28), soft and hard resets (either subtraction by the threshold or
multiplication by 0 after spiking) (29; 30; 31; 32; 33; 34), dendritic delays (weighted input
delays) (10; 35; 19; 36; 37; 38; 26; 39; 40; 41; 42; 43), (d) recurrent weightsWr (44; 45; 46; 47),
(e) skip connections between layers (48; 49; 50; 51; 52; 11; 12; 53; 54; 55), and local plasticity
methods like spike-timing-dependent plasticity (STDP) (56; 17; 34; 57; 58).

2.2. Continuous Piecewise-Linear Networks

Definition. Deep networks are cascades of linear and nonlinear functions. For example,
an L-layer feedforward network could be a composition of L layers, where the ℓ-th layer has
weights Wℓ, biases bℓ, a nonlinearity σℓ, and the form fℓ(x) = σℓ(Wℓfℓ−1(x) + bℓ), where
f0(x) = x. If all the nonlinearities in a network are continuous piecewise-linear (CPWL),
the network is CPWL and thus partitions its input space into a parameter-dependent set
of regions Ω. Within each region ω ∈ Ω, the network is linear: f(x) = Wω(x)x+ bω(x).

2

On the geometry of recurrent spiking networks

0

0

ϑ

ϑ

−0.5 2

2

x0

xt

Non-leaky: Re(λt) ≈ 1

Leaky: 0 < Re(λt) < 1

Memoryless: Re(λt) ≈ 0

Oscillatory: Re(λt) < 0

(a) Varying leakages

0

0

ϑ

ϑ

−0.5 2

2

x0

xt

Hard: ut = xt + λt(1− s0)x0

Soft: ut = xt + λtx0 − ϑs0
None: ut = xt + λtx0

(b) Varying reset types

0

0

ϑ

ϑ

−0.5 2

2

x0

xt

Equal: ut = xt + x0

Strong: ut =
1
2
xt + x0

Weak: ut = xt +
1
2
x0

Negative: ut = xt − x0

(c) Varying delay strengths Figure 2: Leak-
ages, resets,
and delays can
rotate parti-
tion bound-
aries. Multiple
instances of
Figure 1, but
with varying
parameters.

Applications. CPWL theories of neural networks (59; 60; 61), have yielded insights into
deep network properties like normalization and adversarial robustness (6; 62; 63; 64). Three
phenomena therein are relevant: (1) weights rotate the boundaries of partitions, while biases
shift them; (2) hidden layers divide existing linear regions by drawing new boundaries; and
(3) training a network orients its partitions around data. Additionally, the linear regions of
CPWL networks can be exactly computed (21; 22; 23), but existing methods do not support
nonlinear recurrent networks or discontinuous activations (i.e., SNNs). A few works have
discussed the piecewise behavior of SNNs, but have done so either via spike timings (with
restrictive assumptions) (65; 66) or in the hidden state space of SNNs (16; 67; 68), while we
show how various factors affect the input-output geometry of SNNs in their input space.

3. Results

3.1. Parameters and Partitions

Partition calculation algorithm. We inspect constant regions of an SNN, portions of
input space1 with fixed spike patterns. We calculate them by iterating through each existing
region for each neuron for each timestep. Each region, if applicable, is divided along lines
where hidden states meet spike thresholds. For simple cases, we do this analytically, but
for deep networks, we made an algorithm, SplineCam-SNN (see Appendices B and C).

Leakages and delays rotate partition boundaries; recurrent weights shift them.
Training continuous networks requires fitting their partitions to data: weights rotate bound-
aries, and biases shift them. As for SNNs, Figure 2 reveals that several parameters rotate
boundaries: leakages, delays, input weights, and resets, with the first two being the most di-
rect2. However, partition boundaries from delays and complex leakages are less constrained
than those from real leakages. Meanwhile, Figures 4 and 9 show that recurrent weights
only shifts boundaries (since they transmit binary signals), unlike weights in continuous
networks, which rotate boundaries (Figure 5). These findings imply that recurrent weights
may be less useful than leakages and delays for fitting partitions to data.

1. Our input space is over unrolled sequences, e.g., RT×d for a d-dimensional sequence of T elements.
2. Input weights can rotate partitions, but only by scaling axes of input space rather than directly rotating

any specific boundaries per se. As for resets, only hard ones can rotate boundaries (Figure 2).

3

Casco-Rodriguez

Initial Train Wr Train Wr,Wx Train Wr,Wx,λ

x1

−2

2

x0−2 2 x0−2 2 x0−2 2 x0−2 2

Shift some
bound-
aries

Shift and
scale all
bound-
aries

Shift,
scale, and
rotate all
bound-
aries

Figure 3: Future plasticity algorithms should train all parameters. We use
SplineCam-SNN to compare instances of gradient descent in a deep SNN classifying a 2-
timestep toy dataset. Colors denote true class labels (of data points) and the network’s
classification decisions (of input regions). Feedforward weights to hidden layers are always
trained. Recurrent weights shift some, input weights scale all, and leakages rotate some
boundaries. These differences help explain the limited expressivity of plasticity algorithms
like STDP, which at most train input and recurrent weights (Figure 8).

Hidden layers need input skip connections to draw new partitions. In continuous
networks, hidden layers draw new partitions from those of previous layers, but in SNNs,
they cannot, since previous layers’ outputs are constant within each region. Instead, hidden
layers map their own spike patterns to each existing constant region (e.g., assign a decision
to each region in a classification task, like in Figures 3 and 7). However, hidden layers can
draw new partitions if and only if they observe the original input via skip connections.

3.2. Plasticity and Partitions

SNNs align partitions around data. Continuous networks are known to align their
partitions to data during training. We use SplineCam-SNN in Figures 3 and 7 to confirm
that SNNs trained via gradient descent also align their partitions around data. If SNNs align
partitions to data, then they may be compatible with additional findings and techniques
from spline theory concerning batch normalization and adversarial robustness (62; 63; 64).

Local plasticity methods need to train boundary-rotating parameters. Finally,
we compare two popular SNN plasticity algorithms: surrogate gradient descent (global) and
STDP (local). The former rotates and shifts partitions to align with data, while the latter,
focused on recurrent weights, only shifts the boundaries of existing regions based on where
input data is common (Figures 6 and 3). Under the right conditions, this expansion of
data-heavy partitions could improve robustness to perturbations (69; 70), as in continuous
networks (63; 64). However, plasticity algorithms focused on recurrent weights cannot rotate
partition boundaries to align them with data—new plasticity algorithms should also train
boundary-rotating parameters like leakages and delays.

4. Conclusions and Future Work

We have introduced a theory of SNNs as piecewise-constant functions, and an algorithm
to visualize them as such. Our findings show the relative importance of skip connections,
leakages, and delays, rather than recurrent weights, and suggests they are lucrative targets

4

On the geometry of recurrent spiking networks

of future plasticity algorithms (71). While this message is not wholly unique, our perspective
is uniquely based on a geometric theory of SNNs as functions and unites disparate findings
based on gradients or empirical observations (38; 35; 54; 53). Future work could examine
how adaptation (26; 27), initialization (45; 72), normalization (73; 74; 75; 76; 77; 78; 79),
and regularization (80; 30) affect partition geometry.

References

[1] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics,
36(4), 1980.

[2] Grace W Lindsay. Convolutional neural networks as a model of the visual system:
Past, present, and future. Journal of cognitive neuroscience, 33(10), 2021.

[3] Alessia Celeghin, Alessio Borriero, Davide Orsenigo, Matteo Diano, Carlos Andrés
Méndez Guerrero, Alan Perotti, Giovanni Petri, and Marco Tamietto. Convolutional
neural networks for vision neuroscience: significance, developments, and outstanding
issues. Frontiers in Computational Neuroscience, 17, 2023.

[4] David Daniel Cox and Thomas Dean. Neural networks and neuroscience-inspired com-
puter vision. Current Biology, 24(18), 2014.

[5] Daniel A Roberts, Sho Yaida, and Boris Hanin. The principles of deep learning theory,
volume 46. Cambridge University Press, 2022.

[6] Randall Balestriero, Ahmed Imtiaz Humayun, and Richard G Baraniuk. On the ge-
ometry of deep learning. Notices of the American Mathematical Society, 72(4), 2025.

[7] Franco Scarselli and Ah Chung Tsoi. Universal approximation using feedforward neural
networks: A survey of some existing methods, and some new results. Neural Networks,
11(1), 1998.

[8] Kai Malcolm and Josue Casco-Rodriguez. A comprehensive review of spiking neural
networks: Interpretation, optimization, efficiency, and best practices. arXiv preprint
arXiv:2303.10780, 2023.

[9] Jason K Eshraghian, Max Ward, Emre O Neftci, Xinxin Wang, Gregor Lenz, Girish
Dwivedi, Mohammed Bennamoun, Doo Seok Jeong, and Wei D Lu. Training spiking
neural networks using lessons from deep learning. Proceedings of the IEEE, 2023.

[10] Chenxiang Ma, Xinyi Chen, Yanchen Li, Qu Yang, Yujie Wu, Guoqi Li, Gang Pan,
Huajin Tang, Kay Chen Tan, and Jibin Wu. Spiking neural networks for temporal
processing: Status quo and future prospects. arXiv preprint arXiv:2502.09449, 2025.

[11] Chenlin Zhou, Han Zhang, Liutao Yu, Yumin Ye, Zhaokun Zhou, Liwei Huang,
Zhengyu Ma, Xiaopeng Fan, Huihui Zhou, and Yonghong Tian. Direct training high-
performance deep spiking neural networks: a review of theories and methods. Frontiers
in Neuroscience, 18, 2024.

5

Casco-Rodriguez

[12] Yufei Guo, Xuhui Huang, and Zhe Ma. Direct learning-based deep spiking neural
networks: a review. Frontiers in Neuroscience, 17, 2023.

[13] Guoqi Li, Lei Deng, Huajin Tang, Gang Pan, Yonghong Tian, Kaushik Roy, and
Wolfgang Maass. Brain-inspired computing: A systematic survey and future trends.
Proceedings of the IEEE, 2024.

[14] Youngeun Kim and Priyadarshini Panda. Visual explanations from spiking neural
networks using inter-spike intervals. Scientific reports, 11(1), 2021.

[15] Elisa Nguyen, Meike Nauta, Gwenn Englebienne, and Christin Seifert. Feature at-
tribution explanations for spiking neural networks. In 2023 IEEE 5th International
Conference on Cognitive Machine Intelligence (CogMI), 2023.

[16] Nuno Calaim, Florian A Dehmelt, Pedro J Gonçalves, and Christian K Machens. The
geometry of robustness in spiking neural networks. Elife, 11, 2022.

[17] Kashu Yamazaki, Viet-Khoa Vo-Ho, Darshan Bulsara, and Ngan Le. Spiking neural
networks and their applications: A review. Brain Sciences, 12(7), 2022.

[18] Anthony Zador, Sean Escola, Blake Richards, Bence Ölveczky, Yoshua Bengio,
Kwabena Boahen, Matthew Botvinick, Dmitri Chklovskii, Anne Churchland, Clau-
dia Clopath, et al. Catalyzing next-generation Artificial Intelligence through NeuroAI.
Nature Communications, 14(1), 2023.

[19] Kwabena Boahen. Dendrocentric learning for synthetic intelligence. Nature, 612(7938),
2022.

[20] Dhireesha Kudithipudi, Catherine Schuman, Craig M Vineyard, Tej Pandit, Cory
Merkel, Rajkumar Kubendran, James B Aimone, Garrick Orchard, Christian Mayr,
Ryad Benosman, et al. Neuromorphic computing at scale. Nature, 637(8047), 2025.

[21] Ahmed Imtiaz Humayun, Randall Balestriero, Guha Balakrishnan, and Richard G.
Baraniuk. SplineCam: Exact visualization and characterization of deep network ge-
ometry and decision boundaries. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2023.

[22] Josue Casco-Rodriguez, Tyler Burley, CJ Barberan, Ahmed Imtiaz Humayun, Randall
Balestriero, and Richard Baraniuk. Visualizing linear RNNs through unrolling. In
LatinX in AI @ NeurIPS 2024, 2024.

[23] Arturs Berzins. Polyhedral complex extraction from relu networks using edge subdivi-
sion. In International Conference on Machine Learning (ICML), 2023.

[24] Eugene M Izhikevich. Resonate-and-fire neurons. Neural networks, 14(6-7), 2001.

[25] Saya Higuchi, Sebastian Kairat, Sander Bohte, and Sebastian Otte. Balanced resonate-
and-fire neurons. In International Conference on Machine Learning (ICML), 2024.

6

On the geometry of recurrent spiking networks

[26] Lucas Deckers, Laurens Van Damme, Werner Van Leekwijck, Ing Jyh Tsang, and
Steven Latré. Co-learning synaptic delays, weights and adaptation in spiking neural
networks. Frontiers in Neuroscience, 18, 2024.

[27] Maximilian Baronig, Romain Ferrand, Silvester Sabathiel, and Robert Legenstein. Ad-
vancing spatio-temporal processing through adaptation in spiking neural networks.
Nature Communications, 16(1), 2025.

[28] Wei Fang, Zhaofei Yu, Zhaokun Zhou, Ding Chen, Yanqi Chen, Zhengyu Ma, Timothée
Masquelier, and Yonghong Tian. Parallel spiking neurons with high efficiency and
ability to learn long-term dependencies. Advances in Neural Information Processing
Systems (NeurIPS), 2024.

[29] Bing Han and Kaushik Roy. Deep spiking neural network: Energy efficiency through
time based coding. In European Conference on Computer Vision, 2020.

[30] Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy. RMP-SNN: Residual mem-
brane potential neuron for enabling deeper high-accuracy and low-latency spiking neu-
ral network. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), 2020.

[31] Seijoon Kim, Seongsik Park, Byunggook Na, and Sungroh Yoon. Spiking-YOLO: spik-
ing neural network for energy-efficient object detection. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, 2020.

[32] Yuhang Li, Shikuang Deng, Xin Dong, Ruihao Gong, and Shi Gu. A free lunch from
ANN: Towards efficient, accurate spiking neural networks calibration. In International
Conference on Machine Learning (ICML), 2021.

[33] Yufei Guo, Yuanpei Chen, Liwen Zhang, YingLei Wang, Xiaode Liu, Xinyi Tong,
Yuanyuan Ou, Xuhui Huang, and Zhe Ma. Reducing information loss for spiking
neural networks. In European Conference on Computer Vision, 2022.

[34] Eimantas Ledinauskas, Julius Ruseckas, Alfonsas Juršėnas, and Giedrius Buračas.
Training deep spiking neural networks. arXiv preprint arXiv:2006.04436, 2020.

[35] Ilyass Hammouamri, Ismail Khalfaoui-Hassani, and Timothée Masquelier. Learning
delays in spiking neural networks using dilated convolutions with learnable spacings.
In International Conference on Learning Representations (ICLR), 2024.

[36] Melika Payvand, Simone D’Agostino, Filippo Moro, Yigit Demirag, Giacomo Indi-
veri, and Elisa Vianello. Dendritic computation through exploiting resistive memory
as both delays and weights. In Proceedings of the 2023 International Conference on
Neuromorphic Systems, 2023.

[37] Simone D’Agostino, Filippo Moro, Tristan Torchet, Yiğit Demirağ, Laurent Grenouil-
let, Niccolò Castellani, Giacomo Indiveri, Elisa Vianello, and Melika Payvand. Den-
RAM: neuromorphic dendritic architecture with RRAM for efficient temporal process-
ing with delays. Nature Communications, 15(1), 2024.

7

Casco-Rodriguez

[38] Karim G. Habashy, Benjamin D. Evans, Dan F. M. Goodman, and Jeffrey S. Bowers.
Adapting to time: Why nature may have evolved a diverse set of neurons. PLOS
Computational Biology, 20(12), 2024.

[39] Balázs Mészáros, James C Knight, and Thomas Nowotny. Efficient event-based delay
learning in spiking neural networks. arXiv preprint arXiv:2501.07331, 2025.

[40] Prajna G Malettira, Shubham Negi, Wachirawit Ponghiran, and Kaushik Roy. TSkips:
Efficiency through explicit temporal delay connections in spiking neural networks.
arXiv preprint arXiv:2411.16711, 2024.

[41] Julian Göltz, Jimmy Weber, Laura Kriener, Sebastian Billaudelle, Peter Lake, Jo-
hannes Schemmel, Melika Payvand, and Mihai A. Petrovici. DelGrad: Exact event-
based gradients for training delays and weights on spiking neuromorphic hardware.
arXiv preprint arXiv:2404.19165, 2025.

[42] Balázs Mészáros, James C Knight, and Thomas Nowotny. Learning delays through gra-
dients and structure: emergence of spatiotemporal patterns in spiking neural networks.
Frontiers in Computational Neuroscience, 18, 2024.

[43] Mario Chacón-Falcón, Alberto Patiño-Saucedo, Luis Camuñas-Mesa, Teresa Serrano-
Gotarredona, and Bernabé Linares-Barranco. BAM-SLDK: biologically inspired atten-
tion mechanism with spiking learnable delayed kernel synapses. Neuromorphic Com-
puting and Engineering, 5(2), 2025.

[44] Meenal V Narkhede, Prashant P Bartakke, and Mukul S Sutaone. A review on weight
initialization strategies for neural networks. Artificial Intelligence Review, 55(1), 2022.

[45] Aurora Micheli, Olaf Booij, Jan van Gemert, and Nergis Tömen. Deep activity prop-
agation via weight initialization in spiking neural networks. In 2025 Neuro Inspired
Computational Elements (NICE) Conference, 2025.

[46] Jun-nosuke Teramae and Tomoki Fukai. Computational implications of lognormally
distributed synaptic weights. Proceedings of the IEEE, 102(4), 2014.

[47] György Buzsáki and Kenji Mizuseki. The log-dynamic brain: how skewed distributions
affect network operations. Nature Reviews Neuroscience, 15(4), 2014.

[48] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

[49] Muhammad Shafiq and Zhaoquan Gu. Deep residual learning for image recognition:
A survey. Applied Sciences, 12(18), 2022.

[50] Bobby He and Thomas Hofmann. Simplifying transformer blocks. In International
Conference on Learning Representations (ICLR), 2024.

[51] Marcus Kaiser, Matthias Goerner, and Claus C Hilgetag. Criticality of spreading
dynamics in hierarchical cluster networks without inhibition. New Journal of Physics,
9(5), 2007.

8

On the geometry of recurrent spiking networks

[52] Rafael Lorente De N. Analysis of the activity of the chains of internuncial neurons.
Journal of Neurophysiology, 1(3), 1938.

[53] Yifan Hu, Lei Deng, Yujie Wu, Man Yao, and Guoqi Li. Advancing spiking neural
networks toward deep residual learning. IEEE Transactions on Neural Networks and
Learning Systems, 36(2), 2024.

[54] Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong
Tian. Deep residual learning in spiking neural networks. Advances in Neural Informa-
tion Processing Systems (NeurIPS), 34, 2021.

[55] Yimeng Shan, Xuerui Qiu, Rui-jie Zhu, Jason K Eshraghian, Malu Zhang, and
Haicheng Qu. SynA-ResNet: Spike-driven ResNet achieved through OR residual con-
nection. arXiv preprint arXiv:2311.06570, 2023.

[56] Alexander G Ororbia. Brain-inspired machine intelligence: A survey of
neurobiologically-plausible credit assignment. arXiv preprint arXiv:2312.09257, 2023.

[57] Natalia Caporale and Yang Dan. Spike timing–dependent plasticity: a Hebbian learn-
ing rule. Annual Review of Neuroscience, 31(1), 2008.

[58] Daniel E Feldman. The spike-timing dependence of plasticity. Neuron, 75(4), 2012.

[59] Randall Balestriero et al. A spline theory of deep learning. In International Conference
on Machine Learning (ICML), 2018.

[60] Randall Balestriero and Richard G Baraniuk. Mad max: Affine spline insights into
deep learning. Proceedings of the IEEE, 109(5), 2020.

[61] Justin Sahs, Ryan Pyle, Aneel Damaraju, Josue Ortega Caro, Onur Tavaslioglu, Andy
Lu, Fabio Anselmi, and Ankit B Patel. Shallow univariate ReLU networks as splines:
initialization, loss surface, Hessian, and gradient flow dynamics. Frontiers in Artificial
Intelligence, 5, 2022.

[62] Randall Balestriero and Richard G Baraniuk. Batch normalization explained. arXiv
preprint arXiv:2209.14778, 2022.

[63] Ahmed Imtiaz Humayun, Randall Balestriero, and Richard Baraniuk. Deep networks
always grok and here is why. arXiv preprint arXiv:2402.15555, 2024.

[64] Thomas Walker, Ahmed Imtiaz Humayun, Randall Balestriero, and Richard Baraniuk.
Grokalign: Geometric characterisation and acceleration of grokking. arXiv preprint
arXiv:2506.12284, 2025.

[65] Manjot Singh, Adalbert Fono, and Gitta Kutyniok. Expressivity of spiking neural net-
works through the spike response model. In UniReps: the First Workshop on Unifying
Representations in Neural Models, 2023.

[66] Manjot Singh, Adalbert Fono, and Gitta Kutyniok. Are spiking neural networks more
expressive than artificial neural networks?, 2024.

9

Casco-Rodriguez

[67] William F Podlaski and Christian K Machens. Storing overlapping associative memo-
ries on latent manifolds in low-rank spiking networks. In NeurIPS 2024 Workshop on
Symmetry and Geometry in Neural Representations.

[68] William F Podlaski and Christian K Machens. Approximating nonlinear functions with
latent boundaries in low-rank excitatory-inhibitory spiking networks. Neural Compu-
tation, 36(5), 2024.

[69] Yihui Cui, Ilya Prokin, Alexandre Mendes, Hugues Berry, and Laurent Venance. Ro-
bustness of STDP to spike timing jitter. Scientific Reports, 8(1), 2018.

[70] Karl Lindblad and Axel Nilsson. Adversarial robustness of STDP-trained spiking neural
networks, 2023.

[71] Marissa Dominijanni, Alexander Ororbia, and Kenneth W Regan. Extending
spike-timing dependent plasticity to learning synaptic delays. arXiv preprint
arXiv:2506.14984, 2025.

[72] Julian Rossbroich, Julia Gygax, and Friedemann Zenke. Fluctuation-driven initializa-
tion for spiking neural network training. Neuromorphic Computing and Engineering,
2(4), 2022.

[73] Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-
trained larger spiking neural networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, 2021.

[74] Yufei Guo, Yuhan Zhang, Yuanpei Chen, Weihang Peng, Xiaode Liu, Liwen Zhang,
Xuhui Huang, and Zhe Ma. Membrane potential batch normalization for spiking neural
networks. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), 2023.

[75] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016.

[76] Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in
Neural Information Processing Systems (NeurIPS), 32, 2019.

[77] Youngeun Kim and Priyadarshini Panda. Revisiting batch normalization for training
low-latency deep spiking neural networks from scratch. Frontiers in Neuroscience, 15,
2021.

[78] Chaoteng Duan, Jianhao Ding, Shiyan Chen, Zhaofei Yu, and Tiejun Huang. Tem-
poral effective batch normalization in spiking neural networks. Advances in Neural
Information Processing Systems (NeurIPS), 35, 2022.

[79] Haiyan Jiang, Vincent Zoonekynd, Giulia De Masi, Bin Gu, and Huan Xiong. TAB:
Temporal accumulated batch normalization in spiking neural networks. In International
Conference on Learning Representations (ICLR), 2024.

10

On the geometry of recurrent spiking networks

[80] Yufei Guo, Yuanpei Chen, Liwen Zhang, Xiaode Liu, Yinglei Wang, Xuhui Huang,
and Zhe Ma. IM-Loss: information maximization loss for spiking neural networks.
Advances in Neural Information Processing Systems (NeurIPS), 35, 2022.

11

Casco-Rodriguez

Appendix A. Additional figures

Figure 4: Recurrent weights can only shift partition
boundaries. We examine two neurons in a two-timestep
input plane. If the recurrent weight between them Wr =
0, their partitions are a simply two variants of Figure 1
superimposed. Neuron 0 (red) has a lower threshold and
slower decay (ϑ = 0.5, λ = 1) than neuron 1 (ϑ = 1, λ =
0.5), so it always spikes first if Wr = 0. However, if Wr ̸= 0,
then a spike from neuron 0 at time t0 will shift the threshold
for a neuron 1 spike at time t1 by Wr, thus shifting some
region boundaries of neuron 1.

0

0

ϑ

ϑ

−0.5 2

2

xt0

xt1

Wr = 0

Wr > 0

Wr < 0

Figure 5: Continuous networks rotate
partition boundaries, binary networks
can only shift them. Neuron 0 (black)
feeds neuron 1 (red). The latter draws new
rotated boundaries if neuron 0 is continuous
or new shifted boundaries if it observes inputs
via skip connections and neuron 0 is binary. Input dim 2 Input dim 2 Input dim 2

In
p
u
t
d
im

1

Continuous Binary Binary + skip

0

0

ϑ1

ϑ1

ϑ0

ϑ0

3ϑ1

3ϑ1

−ϑ1 α

β

W0←1

W1←0

W0←1

[
0 0
0 0

]
[
0 0
1 1

]

[
1 0
0 0

]

[
1 0
0 1

]
[
1 1
0 1

]

[
1 1
1 1

]
[
0 1
1 1

]
[
0 1
1 0

]
[
0 1
0 0

]
[
0 0
0 1

]

Entry i, j = st=i,n=j

Time

Neuron

Spike timing of
neurons 0 and 1

:

Potential: ut = λ⊙ (1− st−1)⊙ ut−1 + xt +Wst−1

Parameters: λ =

[
1
1

]
, ϑ =

[
2
1

]
, W =

[
0 0.2
0.2 0

]
Input: x0 =

[
α
β

]
, x1 =

[
β

α/2

]

1 before 0 0 before 1 both

Figure 6: STDP shifts partition boundaries based on where data is concentrated.
Like in Figure 4, we have two neurons, connected via excitatory recurrent weights W ,
stimulated at two timesteps. However, now both dimensions of our input space affect both
timesteps: α controls how much neuron 0 (black) is stimulated before neuron 1 (red),
while β does the opposite. This projection shows how STDP affects partitions: if training
sequences largely satisfy β > α, then neuron 1 frequently spikes before neuron 0, and the
ensuing changes to recurrent weights would expand regions where neuron 1 spikes before
neuron 0. The opposite would happen if training sequences largely satisfied α > β.

12

On the geometry of recurrent spiking networks

Initial Trained

C
la
ss

7
m
ea
n

Class 1 mean Class 1 mean0

Figure 7: Training aligns partitions around data.
We use SplineCam-SNN on a deep (15 hidden + 1 out-
put neuron, all spiking) SNN randomly initialized and
then trained (via gradient descent) to classify repeated
of MNIST digits over 3 timesteps. Partition geometry
aligns itself to data points (blue and orange are classes
7 and 1, respectively) so that the final layer can assign
classification decisions (instead of drawing new parti-
tions, since there are no skip connections).

Initial Gradient DescentSTDP

x1

−2

2

x0−2 2 x0−2 2x0−2 2

Gradient descent:
Training all
parameters shifts
all partitions, and
rotates many (via
λ,Wx).

STDP:
Modulating
recurrent
weights Wr

shifts some
partitions.

Figure 8: Gradient descent is better at orienting partitions around data than
STDP. We use SplineCam-SNN to compare gradient descent and STDP in a deep SNN
classifying a 2-timestep toy dataset. Gradient descent aligns boundaries around data, while
STDP only shifts some boundaries (here, horizontal and diagonal ones). Colors denote true
class labels (of data points) and the network’s classification decisions (of input regions).

Figure 9: Recurrent weights shift, but do not rotate, partition boundaries. Above
are two observations of a two-timestep five-neuron SNN without (left) and with (right)
recurrent weights. In the former case, the partitions simply correspond to shifted or flipped
versions of the diagram established in Figure 1. This is because the activity of the SNN here
without recurrent weights is simply the simultaneous activity of five different two-timestep
single-input SNNs. However, once we introduce recurrent weights (sampled from a normal
distribution), we can see that the nature of the partitions changes.

13

Casco-Rodriguez

Figure 10: Dendritic delays facilitate coincidence processing. Here we have an SNN
of 10 hidden neurons that again observes two inputs, x0 and x1, sequentially. Without
dendritic delays, the SNN evidently exhibits complex behavior with respect to the choices
of x0 and x1. However, with dendritic delays, the SNN views x0 and x1 both at timestep 1,
and is thus much better able to fire in a response that depends equally on x0 and x1. Since
the SNN has a static input weight Wx that is shared between x0 and x1, all lines in the case
with dendritic delay have the same slope, but if the SNN had weighted delays (i.e., different
weights for x0 and x1), then the slopes would vary, which would be good for plasticity.

Figure 11: Initial linear partitions are largely independent of recurrent weights.
Unlike all previous plots, here we observe a 10-timestep 5-neuron SNN that observes a 5-
dimensional input at each timestep. We take a 2D random Gaussian slice of the 5×10 = 50-
dimensional input space of the SNN, and observe what happens when we remove the recur-
rent weights from the SNN. Surprisingly, the overall shape of the partitions remains largely
intact, suggesting that the boundaries of linear behavior in SNNs are strongly dependent
on parameters like input weight matrices and leakage decay rates.

14

On the geometry of recurrent spiking networks

Appendix B. SplineCam-SNN Overview

Goal. The fundamental goal of our algorithm is to take a linear 2D projection from the
input space of a SNN and calculate the boundaries of linear behavior therein, in a similar
fashion as previous works have done for feedforward networks (21; 23) and linear RNNs (22).
The primary challenge in doing so is that in SNNs, outputs are discontinuous, so the parti-
tion boundaries of SNN behavior are also discontinuous—all previous methods have assumed
partition boundaries are continuous (since ReLUs are continuous). All code is available
at https://colab.research.google.com/drive/1kBOu9ho2GD-2uegj9G5Dg63k7G2o3ZWw
and https://colab.research.google.com/drive/1E0B7-y9ZgyQ7IqJsrtrZnTveWDwaOuwb?
usp=sharing.

Conceptual overview. Like previous works, our algorithm begins with a single rect-
angular area comprised of four 2D vertices, and then progressively subdivides this area
according to lines where a single piecewise-linear neuron transitions between two modes of
linear behavior. However, due to the limitations of previous works for SNNs, our algorithm
uses a new method to compute these lines in a given linear region. While a recent algorithm
(23) showed that parallel evaluation of all vertices is massively beneficial for runtime com-
plexity, the discontinuity of SNN activations forces us to perform calculations separately
on each linear region, as done in SplineCam (21; 22). However, SplineCam uses slow CPU
graph cycle discovery operations to divide any given linear region, so we avoid these graph
operations by keeping track of the cycles, or regions, of our overall graph as we are mutating
it. Our algorithm conceptually lies between SplineCam and a recently proposed alternative
(23). Starting from the restriction that the input time series to our given SNN is a linear
function of 2D coordinates, our algorithm conceptually works as follows:

1. Our list of regions Ω starts with a single rectangular linear region of 4 vertices, V .

2. For each timestep t ∈ [0, 1, . . . , T − 1]:

(a) For each neuron n ∈ [0, 1, . . . , N − 1]:

(b) Ωold ← Ω before adding any new regions from neuron n at time t.

i. For each linear region ω ∈ Ωold:

A. Compute Wt,n,ω ∈ R2, bt,n,ω ∈ R, the affine parameters for the n-th
hidden state at time t from any 2D point within ω.

B. UsingWt,n,ω, bt,n,ω, find or calculate the two 2D vertices along the bound-
ary of ω where the n-th hidden state at time t equals the threshold
voltage (ut,n,ω − ϑn = 0).

C. Append any newly created vertices to V .

D. Halve ω along the line formed by connecting the two 2D vertices where
ut,n,ω − ϑn = 0. Both halves share the new line. ω ← one half of ω,
Ω← Ω + the other half of ω.

For a detailed explanation of the algorithm, see Appendix C.

15

https://colab.research.google.com/drive/1kBOu9ho2GD-2uegj9G5Dg63k7G2o3ZWw
https://colab.research.google.com/drive/1E0B7-y9ZgyQ7IqJsrtrZnTveWDwaOuwb?usp=sharing
https://colab.research.google.com/drive/1E0B7-y9ZgyQ7IqJsrtrZnTveWDwaOuwb?usp=sharing

Casco-Rodriguez

Appendix C. SplineCam-SNN Details

C.1. Calculating the Affine Parameters of a SNN

Goal. Here we compute the affine parameters of the hidden state of neuron n at time
t as a function of any 2D vertex within a given region ω. First, before any other part
of our algorithm can run, we must calculate the contribution from any 2D vertex to all
hidden states at all times, in the subthreshold regime. This is necessary because each 2D
vertex represents a different T -timestep D-dimensional time series, which is fed into the
SNN sequentially, but the reset mechanism of SNNs directly modulates how the hidden
state at time t depends on the inputs at previous timesteps.

Impulse responses. We begin by calculating the impulse response of each neuron’s hid-
den state, which are simply exponential functions of time with decay rates λ (since neurons
do not communicate with each other unless they spike):

hn(t) = λt
n ∀ t ∈ [0, . . . , T − 1], n ∈ [0, . . . , N − 1] (2)

Contribution of a 2D vertex from time tin to time tout. The hidden state of neuron
n at time tout is a linear function of its inputs at times [0, . . . , tout], but because of the reset
mechanism of SNNs, we need to characterize exactly how the n-th state at tout depends
on any single prior time tin. We express this dependence for each neuron as a 2D function
Hn(tin, tout) : N2 → R2. Hn(tin, tout) returns a vector describing the weight of any 2D
vertex on the n-th neuron at time tout from the input at time tin prescribed by the 2D
vertex.

Characterizing Hn(tin, tout). At any time tout, contribution to the n-th hidden state
from an input at time tin is necessarily proportional to hn(tout − tin). However, the input
at time tin depends on the input time series projection matrix P ∈ RT×D×2—specifically,
its entry Ptin ∈ RD×2. The D-dimensional input at time tin gets fed to the neurons via
Wx ∈ RN×D, so to get the input to neuron n prescribed by a 2D vertex at time tin, one
need only multiply be the vertex by Wx,nPtin ∈ R2. Therefore, the final expression for
Hn(tin, tout) is:

Hn(tin, tout) = hn(tout − tin)Wx,nPtin (3)

In practice, we precompute Hn(tin, tout) as a 4D tensor of shape T×T×D×2 for simplicity.

Computing the affine parameters Wt,n,ω, bt,n,ω. We now describe the hidden state of
neuron n at time t as a (region-dependent) linear function of any given 2D vertex (without
using any autodifferentiation). If we ignored spike resets and recurrent spikes, this would
simply be

∑t
τ=0Hn(τ, t). However, we must account for resets and recurrent spikes. We

do so by iterating through the SNN update equations (Equation 1) for all neurons, up to
time t; along the way, we update Wt,n,ω, bt,n,ω according to resets and recurrent spikes:

1. Inputs: SNN with parameters Wr ∈ RN×N ,Wx ∈ RN×D,λ ∈ [0, 1]N ,ϑ ∈ RN ; 2D
linear projection tensor P ∈ RT×D×2

2. Initialize hidden states, spikes, and affine parameters: u−1 = s−1 = 0,Wt,n,ω ←
0, bt,n,ω ← 0

16

On the geometry of recurrent spiking networks

3. For τ ∈ [0, 1, . . . , t]:

(a) uτ = WxPτV +Whsτ−1 (feedforward and recurrent inputs)

(b) Incorporate leakage and spike resets

i. If hard reset: uτ ← uτ + λ⊙ (1− sτ−1)⊙ uτ−1

ii. If soft reset: uτ ← uτ + λ⊙ (uτ−1 − ϑ⊙ sτ−1)

(c) sτ = Heaviside(uτ − ϑ) (spikes)

(d) Wt,n,ω ← Wt,n,ω + Hn(τ, t) (add the contribution onto time t from inputs at
time τ)

(e) bt,n,ω ← λnbt,n,ω +Wh,nsτ−1 (exponential moving average of recurrent inputs)

(f) If τ < t and neuron n spiked (sτ,n = 1), then update Wt,n,ω, bt,n,ω:

i. If hard reset: Wt,n,ω ← 0, bt,n,ω ← 0

ii. If soft reset: bt,n,ω ← bt,n,ω − ϑn

4. Return Wt,n,ω, bt,n,ω.

C.2. Dividing an Edge

To divide an input region ω with affine parameters Wt,n,ω, bt,n,ω, we must calculate the line
within ω where the n-th neuron has a hidden state equal to ϑn at time t. To do this for a
piecewise-linear function, we need only find or calculate the two points along the boundary
of ω where ut,n,ω−ϑn = 0. Given an adjacent pair of vertices (i.e., and edge) (V1,V2) where
sign(ut,n,ω − ϑn) changes between -1 and +1, we seek α such that the linear interpolation
Vα = αV1 + (1 − α)V2 satisfies preact(Vα) := Vα ·Wt,n,ω + bt,n,ω − ϑn = 0. The solution
for α is in Equation 8.

Vα ·Wt,n,ω + bt,n,ω − ϑn = 0 (4)

(αV1 + (1− α)V2) ·Wt,n,ω + bt,n,ω − ϑn = 0 (5)

α(V1 ·Wt,n,ω + bt,n,ω − ϑn) + (1− α)(V2 ·Wt,n,ω + bt,n,ω − ϑn) = 0 (6)

α · preactt,n,ω(V1) + (1− α) · preactt,n,ω(V2) = 0 (7)

α =
preactt,n,ω(V2)

preactt,n,ω(V2)− preactt,n,ω(V1)
(8)

Without loss of generality, one could absorb −ϑn into bt,n,ω to recover similar zero-finding
methods used by previous works with ReLU neurons (23; 21; 22).

C.3. Detailed Algorithm

1. Inputs: SNN with parameters Wr ∈ RN×N ,Wx ∈ RN×D,λ ∈ [0, 1]N ,ϑ ∈ RN ; 2D
linear projection tensor P ∈ RT×D×2

2. Start with an adjacency matrix A ∈ R4×4 connecting 4 vertices V ∈ R4×2 in a
2D rectangle centered around 0. Ω is a list representing the cycle basis of A, i.e.,
the regions of linear behavior in our 2D input projection space; at the start, it only
contains one cycle, the 2D rectangle.

17

Casco-Rodriguez

3. For each timestep t ∈ [0, 1, . . . , T − 1]: For each neuron n ∈ [0, 1, . . . , N − 1]:

(a) Compute the center (mean vertex) of each linear region (cycle): Vc ∈ R|Ω|×2

(b) Calculate {Wt,n,ω}ω∈Ω, {bt,n,ω}ω∈Ω around each Vc, the affine parameters of each
linear region ω for the n-th hidden state at time t as a function of any 2D vertex
within ω. Each Wt,n,ω, bt,n,ω are 2D and 1D vectors, respectively.

(c) Ωold ← Ω before adding any new regions from neuron n at time t

(d) For each region (cycle) ω ∈ Ωold:

i. Vω = all 2D vertices in V that form the boundary of ω

ii. ut,n,ω = VωWt,n,ω + bt,n,ω

iii. If −1,+1 are not both in qt,n,ω = sign(ut,n,ω − ϑn):

A. continue

iv. Vnew edge = any vertices in Vω where qt,n,ω = 0

v. For each adjacent vertex pair (V1,V2) where qt,n,ω changes between −1 and
+1:

A. Calculate α such that (αV1 + (1 − α)V2)Wt,n,ω + bt,n,ω − ϑn = 0, from
Equation 8

B. Append the new vertex Vα = (αV1 + (1− α)V2) to V and to Vnew edge.

C. Update A and Ω: all instances of the edge (V1,V2) are replaced by
(V1,Vα), (Vα,V2).

vi. There should be exactly 2 vertices in Vnew edge. Draw a new edge between
them in A.

vii. Halve ω along the new edge where ut,n,ω − ϑn = 0. Both halves share the
new line. ω ← one half of ω, Ω← Ω + the other half of ω.

4. Return vertices V , adjacency matrix A, and linear regions (cycle basis of A) Ω.

18

	Introduction
	Background and Related Work
	Spiking Neural Networks
	Continuous Piecewise-Linear Networks

	Results
	Parameters and Partitions
	Plasticity and Partitions

	Conclusions and Future Work
	Additional figures
	SplineCam-SNN Overview
	SplineCam-SNN Details
	Calculating the Affine Parameters of a SNN
	Dividing an Edge
	Detailed Algorithm

