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Abstract

Protein-ligand interactions (PLIs) are fundamental to the efficacy and toxicity of
drugs, and predicting these interactions with computational models can acceler-
ate drug development. Given an uncharacterized protein and its predicted struc-
ture, putative interactions with ligands can be identified based on structural align-
ment with known binding pockets. However, the accuracy of these predictions
depends on the reliability of the protein model. Functional information offers
an observable comparator for evaluating predicted PLIs. Yet, existing methods
for embedding protein function cluster proteins inconsistently; for the same pro-
tein pairs, their relative distances in a functional latent space can vary depending
on the embedding method used. To assess challenges in scoring protein func-
tion similarity, we evaluate similarity scores using benchmarks that label protein
pairs based on shared attributes. For example, we consider benchmarks that la-
bel proteins based on shared localization or disease associations, where positive
examples share the attribute and negative examples do not. For each benchmark,
we quantify how well popular protein representations differentiate between the
positive and negative groups. We then demonstrate an innovative framework for
leveraging functional similarity scores to characterize drug selectivity and evalu-
ate predicted PLIs. We show that our function-based evaluations remain limited
by uncertainty in similarity scores. Overall, we demonstrate the critical need for
more reliable similarity-scoring metrics and present a framework for their use in
evaluating predicted PLIs during computational drug development.

While there are more than 250,000,000 known protein sequences, there are only around 230,000
experimentally solved protein structures, and the gap between sequences and experimental structures
is continuing to grow [1, 2, 3]. To address this disparity, computational models such as Rosetta and
AlphaFold2 have been developed to efficiently predict protein structures from sequence by capturing
the principles that underlie protein folding [4, 5, 6]. By narrowing the data gap between sequence
and structure, these models have enabled new applications like computational drug design [7, 8, 9],
in which protein-ligand interactions (PLIs) may be predicted from modeled binding pockets [10,
11]. However, given the limited number of experimental structures and the growing reliance on
computational tools, there is an urgent need for new methods to validate predictions.

Protein functions offer observable features with which to evaluate structural predictions. Since pro-
tein function depends heavily on structure, we expect proteins with similar domains to share similar
functions. In computational drug design, we expect proteins targeted by a selective drug to share
similar binding pockets and, therefore, share similar functions [10]. The Gene Ontology (GO) pro-
vides a controlled vocabulary for describing protein functions [12, 13]. Comparing the GO annota-
tions of two proteins offers valuable insights into their functional similarities [14]. However, given
the semantic complexity of GO terms and the subjectivity with which they are assigned, quantifying
functional similarity remains difficult, and function-based evaluations are underutilized.
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In this study, we survey methods for quantifying protein function similarity, highlighting their advan-
tages and limitations when used to evaluate predicted PLIs. We begin by describing several methods
for embedding protein function, revealing that functional similarity scores can vary dramatically
with the choice of embedding method. To quantify this variability and rank embedding methods, we
evaluate benchmarks that label protein pairs based on shared attributes, and we compare how well
different embedding types cluster related proteins. We then introduce a novel framework for aggre-
gating pairwise similarity scores and comparing sets of proteins. Using this framework, we identify
selective drugs and evaluate predicted PLIs. Our results highlight inconsistencies across embedding
methods, emphasizing the critical need for more robust functional similarity scoring methods.

Comparing Methods for Scoring Protein Similarity

We compare several methods for quantifying protein function similarity. We begin by representing
proteins with embeddings from the following deep learning and foundation models: GO2Vec [14],
TransformerGO [15], Protelnfer [16], ProtT5 [17], and Evolutionary Scale Modeling Cambrian
(ESMC) [18]. For Protelnfer, we derive embeddings directly from the GO model, referred to as
“ProteInfer (GO).” We also form concatenated embeddings from the GO, Enzyme Commission
(EC) number, and Pfam models, collectively referred to as “ProteInfer (All).” GO2Vec and Trans-
formerGO embed functions on a per-GO-term basis. Since proteins are represented by sets of GO
terms, we use a variant of the modified Hausdorff distance (MHD) to quantify similarity between
protein pairs (see Eq. 1) [14]. Meanwhile, Protelnfer, ProtT5, and ESMC generate one embedding
per protein; for these embedding types, we use cosine similarity to compare protein pairs. In all
cases, greater scores correspond to more similar proteins. In addition to using embeddings in their
native dimensions, we separately fit principal component analysis (PCA) models for each embedding
type to generate 32-dimensional compressed embeddings. We form an “Ensemble” representation
by concatenating PCA-compressed ProteInfer (All), ProtT5, and ESMC embeddings. See B.1 in the
Appendix for more details on protein similarity scoring methods.

The similarity score for a pair of proteins is highly dependent on the embedding method used (see
Sec. C for details). However, without specific criteria, protein similarity is an abstract concept and
it is difficult to determine which similarity scoring methods are reliable. Therefore, we turn to the
Geno-Prot benchmark to compare similarity scoring methods [19]. We focus on seven benchmarks
that group human proteins based on the following shared attributes: (1) Pfam domains, (2) subcel-
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Figure 1: Benchmark Scores. (A) The benchmark score quantifies the difference in mean similar-
ity scores between positive and negative groups. To demonstrate this, we plot the distributions of
similarity scores assessed by “Protelnfer (All)” for pairs of proteins sharing a Pfam label and pairs
that do not. The distributions are plotted as empirical cumulative distribution functions (eCDFs).
(B) We report benchmark scores for all similarity scoring methods and seven Geno-Prot datasets.
Rows are ordered by average performance across benchmarks, from least (top) to greatest (bottom).



lular locations, (3) anatomical locations, (4) protein-protein interactions, (5) associations with bio-
chemical pathways, (6) drug binding, and (7) disease implications. The Geno-Prot dataset for each
attribute includes positive examples of protein pairs that share the attribute and negative examples of
protein pairs that do not. Using each similarity scoring method, we separately generate similarity-
score distributions for the positive and negative examples. Assuming that positive examples should
typically have higher similarity scores than negative examples, we compute a “benchmark score”
that quantifies the difference between the positive and negative distributions (see Sec. B.2 and Eq. 2).
Accordingly, greater benchmark scores suggest a stronger ability to distinguish similar and dissim-
ilar pairs. Fig. 1 plots the benchmark scores associated with each similarity scoring method. In
general, PCA-compressed models tend to outperform their uncompressed counterparts. Our find-
ings highlight a need for more robust methods of embedding proteins and scoring similarity.

Evaluating Predicted PLIs Based on Functional Information

Using modeled protein structures [4, 5], we predict interactions with ligands based on structural
alignment to known binding pockets (see B.3 in the Appendix). We assume that a modeled protein
with similar structure to a binding pocket in a known protein-ligand complex is capable of binding
the same ligand [10]. However, the modeled structures carry uncertainty and require validation to
increase confidence in the predicted interactions. Using models that embed proteins based on their
functions, we evaluate predicted PLIs with orthogonal information.

Our evaluation framework involves three distributions of similarity scores: a “within-group” distri-
bution that compares protein pairs reported to bind the same ligand, a “random” distribution that
compares 100,000 random pairs of human proteins, and a “query” distribution that compares pre-
dicted and known targets of a ligand (see Fig. 2). First, we quantify ligand selectivity with a “se-
lectivity score,” defined as the mean difference between the within-group and random distributions
(see B.4.1 and Eq. 3). Selective ligands target proteins sharing similar functions; their targets should
tend to have higher similarity scores than random protein pairs, producing positive selectivity scores.
These ligands are strong candidates for using functional information to evaluate predicted PLIs.

We then consider each “query protein” predicted to interact with a functionally selective ligand. We
evaluate the prediction using the associated within-group and query distributions, defining a “mis-
alignment score” by the difference in their means (see B.4.2 and Eq. 4). The misalignment score
reflects how distinct the functions of the query protein are, relative to those of known targets. If the
query protein has a high misalignment score, then its functions provide evidence against the pre-
dicted interaction. Since our metrics for selectivity and misalignment depend on the similarity scor-
ing method used, we report average values derived from three function-specific methods: “GO2Vec
+ PCA,” “TransformerGO + PCA,” and “Protelnfer (All) + PCA.” We weight each method’s contri-
bution to the average by its benchmark scores (see B.4.3).

Fig. 7 in the Appendix shows the distribution of selectivity scores among ligands in a dataset of
reported PLIs from ChEMBL [20, 21]. We identify 14 ligands with strong selectivity for protein
functions. We then use PDBspheres to predict 5,061 interactions between human proteins (with
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Figure 2: Schematic depicting pairwise similarity scores forming the (A) within-group, (B) random,
and (C) query distributions for arbitrary drug A, proteins p1, pa, ..., p12, and query protein Q.



available embeddings) and these ligands [10], and we evaluate these predicted interactions by calcu-
lating their misalignment scores. Fig. 3 illustrates the distribution of misalignment scores associated
with our predicted PLIs. Among predicted interactions, the figure separates those that are also re-
ported in ChREMBL from those that are novel. Novel interactions with low misalignment scores are
supported by both structural and functional evidence and represent potential leads for future drug
studies. For validation, we also iteratively evaluate reported interactions as if they were predictions
using a leave-one-out approach (see B.4.4). As expected, reported interactions tend to be associated
with low misalignment scores, supporting the validity of our framework.

Our framework for evaluating predicted PLIs would benefit from more reliable methods of scoring
protein function similarity. When we apply several models for embedding protein function, we
find that predicted PLIs are evaluated differently. For example, we find that misalignment scores
obtained based on “GO2Vec + PCA” and “Protelnfer (GO) + PCA” embeddings have a correlation
coefficient of just 0.52 (see Fig. 10). To circumvent inconsistencies in the scoring methods, we
propose using an average misalignment score weighted by the performance of each model on the
Geno-Prot benchmarks (see B.4.3). More reliable function-based evaluations of predicted PLIs
would come from additional, robust function-specific representations of the proteins involved.

For ligands with strong selectivity, we expect the functions of their predicted protein targets to
align with those of their known targets. However, more generally, a low misalignment score does
not necessarily imply that the associated PLI will occur. For instance, our method is ill-suited for
detecting low-quality predictions associated with promiscuous ligands. Since these ligands target a
broad range of protein functions, the associated within-group distributions tend to be low, and even
random query proteins can generate low misalignment scores; this could cause high false-negative
rates when detecting low-quality interactions. Therefore, predicted PLIs should always be evaluated
in the context of associated ligand selectivity.

The success of our method also depends on the quality and completeness of the reference data. When
predicting interactions, we assume that the structural complexes in the Protein Data Bank (PDB) are
accurate [2]. When evaluating those predictions, we assume that interactions reported by Heinzke et
al. accurately represent the range of protein targets [20]. For models that embed proteins based on
their GO terms, we also assume that protein annotations are accurate and comprehensive. If these
assumptions are invalid, then we cannot reliably characterize the functions targeted by a ligand and
use those functions in our evaluation. With more orthogonal descriptors of ligands and their targets,
we can further improve our confidence in predicted interactions. Despite its limitations, this work
introduces functional information as an additional descriptor for assessing PLIs, which enhances
confidence over purely structural predictions.
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Figure 3: Misalignment Scores. (A) We plot the distribution of misalignment scores for predicted
PLIs. Bar colors distinguish predictions that represent novel PLIs from those that capture reported
interactions in ChEMBL. Our framework distinguishes putative PLIs with low misalignment scores,
which may confer off-target effects or serve as candidates for drug repurposing, from those with
high misalignment scores, which may be filtered based on functional information. (B) For compari-
son, we evaluate the distribution of misalignment scores associated with reported interactions using
a leave-one-out (LOO) approach (see B.4.4). Since reported interactions have low misalignment
scores, we gain some confidence in our method. Misalignment scores are computed as weighted
averages of the values obtained from “GO2Vec + PCA,” “TransformerGO + PCA,” and ‘ProteInfer
(All) + PCA” methods, with weights determined by each method’s benchmark scores (see B.4.3).



In addition to evaluating predicted PLIs, our work can be used to indirectly evaluate protein struc-
ture models. For targets of functionally selective ligands, proteins with similar binding pockets
should share similar functions. If we assume that reference structures are accurate, proteins are
well-annotated, and similar binding pockets indeed enable similar interactions, then high misalign-
ment scores could indicate errors in predicted protein structures. In this way, we can score predicted
PLIs as a proxy for evaluating structural models. By offering orthogonal features for assessing struc-
tural models and predicted PLIs, functional information may promote more successful drug design
and efficient drug discovery.

Summary

In this study, we develop a framework for leveraging functional information about proteins to assess
ligand selectivity and evaluate predicted PLIs. We first identify 14 selective ligands that target pro-
teins sharing similar functions, based on reported interactions. Then, using structural information,
we predict 5,061 PLIs involving these ligands and human proteins. By our definition of selectivity,
predicted targets of selective ligands should be functionally similar to known targets. Accordingly,
we evaluate predicted PLIs involving selective ligands by comparing the functions of predicted and
known targets. We finally distinguish sets of predicted PLIs that are corroborated and refuted by
functional information. Our approach demonstrates the use of orthogonal evidence to predict and
evaluate PLIs, mitigating biases that are introduced by a single modality.

However, our framework is constrained by a critical challenge: the evaluation of protein similarity.
The assessed similarity of a protein pair depends strongly on how the proteins are embedded. We
compare several models that generate protein embeddings, using benchmarks that group proteins
by shared attributes. When quantifying selectivity and evaluating PLIs, we combine scores from
multiple deep learning and foundation models, weighting each model’s contribution according to
its benchmark performance. Despite this provisional solution, our work demonstrates an open need
for more reliable protein similarity scoring methods. Improved metrics for quantifying protein sim-
ilarity will enhance detection of unlikely PLIs based on functional evidence. This would support
applications like computational drug design where high-quality predictions are critical.

Acknowledgments

This manuscript has been authored by Lawrence Livermore National Security, LLC under Contract
No. DE-AC52-07NA27344 with the U.S. Department of Energy. This material is based upon work
supported by the Department of Energy, Office of Science, Office of Advance Scientific Computing
Research. The United States Government retains, and the publisher, by accepting the article for
publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irre-
vocable, worldwide license to publish or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes. Release Number: LLNL-CONF-2010834.

References

[1] The UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2025. Nucleic
Acids Research, 53(D1):D609-D617, January 2025.

[2] Helen M. Berman, John Westbrook, Zukang Feng, Gary Gilliland, T. N. Bhat, Helge Weissig,
Ilya N. Shindyalov, and Philip E. Bourne. The Protein Data Bank. Nucleic Acids Research,
28(1):235-242, January 2000.

[3] Robin Pearce and Yang Zhang. Toward the solution of the protein structure prediction problem.
Journal of Biological Chemistry, 297(1), July 2021. Publisher: Elsevier.

[4] John Jumper and et al. Highly accurate protein structure prediction with AlphaFold. Nature,
596(7873):583-589, August 2021. Publisher: Nature Publishing Group.

[5] Mihaly Varadi and et al. AlphaFold Protein Structure Database: massively expanding the struc-
tural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research,
50(D1):D439-D444, January 2022.



[6] Kim T. Simons, Charles Kooperberg, Enoch Huang, and David Baker. Assembly of protein
tertiary structures from fragments with similar local sequences using simulated annealing and
bayesian scoring functionsl ledited by f. e. cohen. Journal of Molecular Biology, 268(1):209—
225, 1997.

[7] Mark A. Lindsay. Target discovery. Nature Reviews Drug Discovery, 2(10):831-838, October
2003. Publisher: Nature Publishing Group.

[8] Jaeyoung Ha, Hankum Park, Jongmin Park, and Seung Bum Park. Recent advances in identi-
fying protein targets in drug discovery. Cell Chemical Biology, 28(3):394—423, March 2021.
Publisher: Elsevier.

[9] Caterina Vicidomini and Giovanni N. Roviello. Protein-Targeting Drug Discovery.
Biomolecules, 13(11):1591, October 2023.

[10] Adam T Zemla, Jonathan E Allen, Dan Kirshner, and Felice C Lightstone. PDBspheres: a
method for finding 3D similarities in local regions in proteins. NAR Genomics and Bioinfor-
matics, 4(4):1qac078, December 2022.

[11] Xiliang Zheng, LinFeng Gan, Erkang Wang, and Jin Wang. Pocket-Based Drug Design: Ex-
ploring Pocket Space. The AAPS Journal, 15(1):228-241, November 2012.

[12] Michael Ashburner and et al. Gene Ontology: tool for the unification of biology. Nature
Genetics, 25(1):25-29, May 2000. Publisher: Nature Publishing Group.

[13] The Gene Ontology Consortium and et al. The Gene Ontology knowledgebase in 2023. Ge-
netics, 224(1):1iyad031, May 2023.

[14] Xiaoshi Zhong, Rama Kaalia, and Jagath C. Rajapakse. GO2Vec: transforming GO terms and
proteins to vector representations via graph embeddings. BMC Genomics, 20(9):918, February
2020.

[15] Ioan Ieremie, Rob M Ewing, and Mahesan Niranjan. Transformergo: predicting pro-
tein—protein interactions by modelling the attention between sets of gene ontology terms.
Bioinformatics, 38(8):2269-2277, 02 2022.

[16] Theo Sanderson, Maxwell L Bileschi, David Belanger, and Lucy J Colwell. Proteinfer, deep
neural networks for protein functional inference. eLife, 12:e80942, feb 2023.

[17] Michael Heinzinger, Konstantin Weissenow, Joaquin Gomez Sanchez, Adrian Henkel, Milot
Mirdita, Martin Steinegger, and Burkhard Rost. Bilingual language model for protein sequence
and structure. NAR Genomics and Bioinformatics, 6(4):1qae150, 11 2024.

[18] ESM Team. Esm cambrian: Revealing the mysteries of proteins with unsupervised learning,
2024.

[19] Joseph G. Wakim, Vinayak Gupta, Jose Manuel Marti, Jonathan E. Allen, Brian Bartold-
son, and Bhavya Kailkhura. Benchmarking biomolecular foundation models for cross-modal
genomics-proteomics. In NeurIPS 2025 Workshop on Multi-modal Foundation Models and
Large Language Models for Life Sciences, 2025.

[20] A. Lina Heinzke, Barbara Zdrazil, Paul D. Leeson, Robert J. Young, Axel Pahl, Herbert Wald-
mann, and Andrew R. Leach. A compound-target pairs dataset: differences between drugs,
clinical candidates and other bioactive compounds. Scientific Data, 11(1):1160, October 2024.
Publisher: Nature Publishing Group.

[21] Barbara Zdrazil, Eloy Felix, Fiona Hunter, Emma J Manners, James Blackshaw, Sybilla Cor-
bett, Marleen de Veij, Harris Ioannidis, David Mendez Lopez, Juan F Mosquera, Maria Paula
Magarinos, Nicolas Bosc, Ricardo Arcila, Tevfik Kiziloren, Anna Gaulton, A Patricia Bento,
Melissa F Adasme, Peter Monecke, Gregory A Landrum, and Andrew R Leach. The ChEMBL
Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time
periods. Nucleic Acids Research, 52(D1):D1180-D1192, January 2024.



[22]

[23]

[24]

[25]

[26]

[27]

(28]

Thin Nguyen, Hang Le, Thomas P Quinn, Tri Nguyen, Thuc Duy Le, and Svetha Venkatesh.
Graphdta: predicting drug—target binding affinity with graph neural networks. Bioinformatics,
37(8):1140-1147, 10 2020.

Masashi Tsubaki, Kentaro Tomii, and Jun Sese. Compound—protein interaction prediction with
end-to-end learning of neural networks for graphs and sequences. Bioinformatics, 35(2):309—
318, 07 2018.

Adiba Yaseen, Imran Amin, Nacem Akhter, Asa Ben-Hur, and Fayyaz Minhas. Insights into
performance evaluation of compound—protein interaction prediction methods. Bioinformatics,
38(Supplement_2):ii75-ii81, 09 2022.

Aurélien F.A. Moumbock, Jianyu Li, Pankaj Mishra, Mingjie Gao, and Stefan Giinther. Current
computational methods for predicting protein interactions of natural products. Computational
and Structural Biotechnology Journal, 17:1367-1376, 2019.

Kristy A. Carpenter and Russ B. Altman. Databases of ligand-binding pockets and protein-
ligand interactions. Computational and Structural Biotechnology Journal, 23:1320-1338,
2024.

Charlotte Sweeney, Nele P Quast, Fabian C Spoendlin, and Yee Whye Teh. Estimating protein
flexibility via uncertainty quantification of structure prediction models. 2024. Paper in Machine
Learning in Structural Biology Workshop.

R Prabakaran and Y Bromberg. Quantifying uncertainty in protein representations across mod-
els and task. bioRxiv, 2025.



Technical Appendices for:

“Challenges in Leveraging Functional Information to Evaluate Predicted
Protein-Ligand Interactions”

A Related WOTKS . . ..o 8
B Detailed Methods . ... ... 9
B.1 Generating Embeddings and Scoring Protein Similarity........... ... .. .o i ool 9
B.2  Benchmarking Similarity SCOTES . ... ...t e e 10
B.3  Structure-Based Predictions of PLIS . ... ... .o 10
B.4 Evaluating Predicted PLIs Using Functional Annotations ..................... ... ... ... 11
B.4.1 Quantifying Functional Selectivity ... ... ..ottt 11

B.4.2 Quantifying Misalignment . . .........o.uiuutit ittt i 11

B.4.3 Aggregating Selectivity and Misalignment Scores Across Similarity Scoring Methods.... 12

B.4.4 Internal Validation: Misalignment Scores for Reported Interactions .................... 12

C Effects of Variability in Similarity SCOTES. .. ...ttt e 12

A Related Works

Nguyen et al. and Tsubaki ef al. use machine learning models to predict PLIs based on protein
sequences and ligand structures [22, 23]. One critical limitation in this approach is the lack of
experimentally verified negative examples (i.e., non-interacting protein-ligand pairs) [24]; while ob-
served PLIs are typically reported, non-interacting protein-ligand pairs are often unreported in the
literature. PDBspheres is an extensive collection of curated protein-ligand structures taken from the
PDB. In this work, we use PDBspheres to predict PLIs from structural evidence, adopting the mech-
anistic hypothesis that similar protein binding pockets enable similar interactions [10]. Although
our minimal model neglects additional environmental factors affecting PLIs, grounding predictions
in mechanistic evidence reduces the dependence on negative examples.

Moumbock et al. discuss similar target-based methods for predicting interactions, and Carpen-
ter and Altman review related databases of predicted PLIs derived from ligand-binding pockets
[25, 26]. These works highlight the broad dependency on modeled protein structures to generate
predictions during drug development. Given uncertainty in structural models, evaluating predicted
PLIs is critical.

One approach for assessing uncertainty in predicted PLIs is to directly quantify confidence in the
structural models. Sweeney et al. demonstrate that confidence metrics for structural models can
be correlated with the flexibility of a protein’s structure [27], which can affect a protein’s ability to
interact with a ligand. AlphaFold2 reports confidence in predicted protein structures using metrics
generated by auxiliary prediction heads [4]. However, since these prediction heads are trained on
experimental data, they are limited by artifacts, biases, and noise in the experiments.

Prabakaran and Bromberg report a model-agnostic framework for evaluating predicted protein struc-
tures based on their underlying embeddings [28]. The group generates a dataset containing both
biological and synthetic, non-biological sequences. They find that uncertainty in predicted protein
structures correlates with the quality of the underlying embeddings; sequences with embeddings
that resemble the non-biological examples tend to produce structural models with higher predicted
uncertainty. The work links the biological relevance of a protein sequence to the confidence of its
structural model. While our work shares the use of protein embeddings to assess predictions, we
focus on applications in drug discovery. Specifically, we evaluate predicted PLIs using protein func-
tions, which are often obtained independently from structure and serve as “orthogonal” descriptors.



B Detailed Methods

We first introduce several methods for scoring protein function similarity, then show that the sim-
ilarity scores generated by different methods tend to be inconsistent (see Sec. B.1). In response
to these findings, we compare different similarity scoring methods using benchmarks provided by
Ref. [19]. For each of seven attributes (e.g., Pfam labels, localization, disease associations), the
benchmarks group protein pairs into those sharing the attribute (“positive group”) and those not
sharing the attribute (“negative group”). Using the benchmarks, we quantify how well each simi-
larity scoring method distinguishes protein pairs in the positive and negative groups (see Sec. B.2).
Protein function offers an orthogonal comparator for evaluating predicted PLIs obtained from struc-
tural evidence; for selective ligands affecting a narrow range of protein functions, predicted targets
should have functions that align with known targets. We predict PLIs based on structure-based ev-
idence (see Sec. B.3), then demonstrate how functional similarity scores can be used to quantify
confidence in the predictions (see Sec. B.4).

B.1 Generating Embeddings and Scoring Protein Similarity

To score the similarity of protein pairs, we represent the proteins with vector embeddings and quan-
tify the similarities between them. We consider variants of three methods for embedding protein
function: GO2Vec, TransformerGO, and Protelnfer [14, 15, 16]. By embedding proteins based on
function alone, we can provide an unbiased evaluation of predicted PLIs obtained from structure-
based methods. GO2Vec and TransformerGO embed protein functions on the basis of individual GO
terms. ProteInfer generates embeddings on a per-protein basis, based on three types of functional
annotations: GO terms, EC numbers, and Pfam labels. We consider two forms of ProteInfer embed-
dings: those generated solely by ProteInfer’s GO model, and those concatenating embeddings from
Protelnfer’s GO, EC, and Pfam models.

For comparison, we also embed proteins using more holistic protein models, including ProtT5 and
ESMC. These models encode proteins based on sequence, structure, function, and evolutionary lin-
eage [17, 18]. For ProtT5, we load precomputed protein embeddings reported by UniProt [1]. ESMC
generates embeddings for each amino acid in a protein sequence; to embed proteins using ESMC,
we use the pre-trained 300-million-parameter model and perform mean pooling of the amino-acid
embeddings.

The models we consider generate embeddings of varying length. We compare models before and
after compressing the embeddings to a common dimension of 32, using PCA for dimensionality
reduction. We fit separate PCA models to GO embeddings for GO2Vec and TransformerGO, and to
protein embeddings for ProteInfer, ProtT5, and ESMC. Since Protelnfer (All), ProtT5, and ESMC
all generate embeddings on a per-protein basis, we also test how concatenating their compressed
embeddings affects protein similarity scores. We refer to the concatenated embeddings with the
label “Ensemble.”

Since proteins may be annotated with several GO terms, they may also be represented by sets of GO
embeddings. For GO2Vec and TransformerGO, we score the functional similarity of each protein
pair by computing a variant of the MHD between their sets of GO embeddings. For two proteins, p;
and po, MHD is given by Eq. 1:

1 1
MHD(p;, = min max cos(vi, V), — max cos(v,,V; 1
(pl p2) {NP1 ) Vi€V, ( ’ J) NP2 ) Vi€Vp, ( ! 7)} ( )
Vi€Vp, Vi EVp,

where INV,,, and V,, denote the number and set of GO embeddings for protein p;, respectively, v;
and v; denote individual embeddings in the sets V,,, and V,,, respectively, and the function cos(-)
denotes cosine similarity between two embeddings. Since MHD is computed with cosine similarity,
greater MHDs indicate greater similarity [14]. For Protelnfer, ProtT5, ESMC, and our Ensemble
model, which all generate embeddings on a per-protein basis, we score functional similarity accord-
ing to a cosine similarity metric. In all cases, greater similarity scores indicate more similar proteins.
Table 1 summarizes the methods that we use for quantifying protein similarity.



Table 1: Summary of protein embedding models and methods for scoring similarity. In the
table, “Protelnfer (GO)” refers to embeddings obtained from Protelnfer’s GO model, while “Prote-
Infer (All)” refers to concatenating embeddings from Protelnfer’s GO, EC, and Pfam models. The
“+ PCA” suffix indicates embeddings compressed by PCA. “Ensemble” refers to the concatenation
of compressed Protelnfer (All), ProtT5, and ESMC embeddings.

Embed. Scoring

Model Dim. Basis Function Modality
Original Embeddings

GO2Vec 128 GO term MHD Function
TransformerGO 64 GO term MHD Function
Protelnfer (GO) 1100 Protein Cos. Sim.  Function
Protelnfer (All) 3300 Protein Cos. Sim.  Function
ProtT5 1024 Protein Cos. Sim.  Holistic
ESMC 960 Protein Cos. Sim.  Holistic
PCA-Compressed Embeddings

GO2Vec + PCA 32 GO term MHD Function
TransformerGO + PCA 32 GO term MHD Function
Protelnfer (GO) + PCA 32 Protein Cos. Sim.  Function
Protelnfer (All) + PCA 32 Protein Cos. Sim.  Function
ProtT5 + PCA 32 Protein Cos. Sim.  Holistic
ESMC + PCA 32 Protein Cos. Sim.  Holistic
Ensemble 96 Protein Cos. Sim.  Holistic

B.2 Benchmarking Similarity Scores

We find that similarity scores are largely dependent on the embedding method used. To determine
the most reliable method for scoring protein similarity, we use benchmark datasets that label protein
pairs based on shared attributes. Specifically, the benchmarks assign binary labels to protein pairs
according to: (1) shared Pfam domains, (2) shared subcellular localizations, (3) common anatomi-
cal localizations, (4) reported protein-protein interactions, (5) involvement in common biochemical
pathways, (6) binding to common drugs, and (7) shared disease implications. For each embed-
ding method and benchmark, we generate separate distributions of similarity scores for positive and
negative examples. In all cases, protein pairs in the positive group should tend to have greater sim-
ilarity scores than those in the negative group. We score the performance of each method on the
benchmarks with the benchmark score B(p,n), given by:

B(p,n) = pip — pin ()

where p,, and (i, are the mean similarity scores of the positive and negative groups, respectively.
The benchmark score quantifies how well each method distinguishes similar and dissimilar proteins.
Greater values indicate a stronger ability to distinguish positive and negative groups.

B.3 Structure-Based Predictions of PLIs

The PDB serves as a reference of experimentally verified PLIs and their structural complexes [2].
Zemla et al. introduce a tool called PDBspheres to identify protein binding pockets (“spheres”) in
these structural complexes. Using PDBspheres, they generate a database of experimentally observed
spheres associated with clinically relevant ligands [10].

We predict the structures of human proteins using AlphaFold2 [4]. With modeled structures, we
identify human proteins containing binding pockets that align with known spheres [10]. We assume
proteins that align with a sphere may bind the associated ligand; aligned proteins provide structural
evidence of interactions with the ligand. We predict PLIs based on structural evidence according
to these alignments. Due to fluctuations in protein conformations and uncertainties in structural
models, predicting PLIs from structure alone can produce erroneous results. Therefore, we propose
evaluating predicted interactions using protein function.
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Step 1. Characterize functionally selective ligands based on reported interactions

Identify reported Compute within-group Quantify ligand selectivity by
protein-igand ————— and random distributions ——————— comparing the associated within-
interactions for each ligand group and random distributions

Step 2. Evaluate predicted interactions based on functional information

Generate query distributions from Compare within-group Identify predicted targets
functional similarity scores distribution (from Step 1) with query distributions that

between each predicted target to each predicted target’s tend to be lower than the

and all known targets of a ligand query distribution within-group distribution

Figure 4: Framework for Evaluating PLIs. In Sec. B.3, we describe how AlphaFold2 and PDB-
spheres can be used to predict PLIs based on structural evidence [4, 5, 10]. For selective ligands,
functional information offers an orthogonal comparator for evaluating the predicted interactions.
The flowchart summarizes our use of functional information to evaluate predicted PLIs involving
selective ligands.

B.4 Evaluating Predicted PLIs Using Functional Annotations

By aligning predicted protein structures to experimental binding pockets, we identify potential PLIs
based on structural evidence [10]. However, due to uncertainties in modeled and measured protein
structures, which propagate into the predicted interactions, there is a need to evaluate predictions
based on orthogonal evidence. We propose the use of protein function information for this evalua-
tion. For selective ligands, we expect the functions of predicted protein targets to align with those
of known protein targets. Accordingly, we identify selective ligands (see Sec. B.4.1), then quan-
tify how well the functions of predicted targets match those of known targets of the ligands (see
Sec. B.4.2). Fig. 4 summarizes our framework for evaluating predicted PLIs.

B.4.1 Quantifying Functional Selectivity

We develop a framework for quantifying drug selectivity and evaluating predicted PLIs based on
similarity scores between protein pairs. We first identify drugs that are associated with at least ten
targets in ChEMBL for which embeddings are available [21, 20]. For each drug being evaluated, we
use the reported targets to assess selectivity. We generate a within-group distribution of similarity
scores associated with all pairs of proteins that bind the drug (see Fig. 2A). We then construct a
random distribution of similarity scores between 100,000 random protein pairs (see Fig. 2B). We
form empirical cumulative distribution functions for both distributions. For selective drugs targeting
a narrow range of protein functions, the within-group distribution should typically be greater than
the random distribution. Therefore, we define a selectivity score S(I) of ligand [ by the difference
in the means of the within-group and random distributions, given by:

S(1) = s — pir 3)

where p1,, and p, are the means of the within-group and random distributions for the ligand, re-
spectively. Greater selectivity scores indicate more selective drugs. Fig. 7 plots the distribution of
selectivity scores for ligands, based on reported interactions in ChEMBL [20, 21].

B.4.2 Quantifying Misalignment

Using the scoring scheme defined above, we rank ligands by their selectivity. Predicted PLIs involv-
ing highly selective drugs are strong candidates for our function-based evaluation; by definition,
selective drugs target proteins with a narrow range of functions, so we expect predicted protein
targets to share similar functions with known targets of these ligands. Consider a predicted PLI
between query protein () and selective ligand L. First, we construct a query distribution from the
similarity scores between () and each known target of L (see Fig. 2C). We then score the misalign-
ment of this query distribution with the within-group distribution associated with the ligand. We
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define a misalignment score M (g, w) for query distribution g and within-group distribution w by:

M(‘L w) = Hw — Hq 4
where p, is the mean of the query distribution. Greater misalignment scores suggest more promi-
nent inconsistencies between the query and within-group distributions. If the functions of ) are
consistent with those of known targets for L, the two distributions should appear similar, and the
misalignment score should be close to 0.

B.4.3 Aggregating Selectivity and Misalignment Scores Across Similarity Scoring Methods

Inconsistencies in functional similarity scores make the function-based evaluation of predicted PLIs
sensitive to the choice of similarity scoring method. The uncertainty in functional similarity scores
propagates as uncertainties in the selectivity score (defined by Eq. 3) and the misalignment score
(defined by Eq. 4); as such, a function-based evaluation of predicted PLIs may be ambiguous. We
propose quantifying ligand selectivity and evaluating predicted PLIs using average selectivity scores
and misalignment scores, respectively, obtained from the following function-specific methods: (1)
“G02Vec + PCA,” (2) “TransformerGO + PCA,” and (3) “Protelnfer (All) + PCA.” We weight our
scores by the benchmark scores reported in Fig. 1, assigning proportional weights of 0.071, 0.076,
and 0.173 to the three methods, respectively. These weights are normalized to a sum of one when
computing weighted averages. By restricting our analysis to function-specific similarity scores, we
promote an unbiased evaluation of predicted PLIs obtained from structural information.

B.4.4 Internal Validation: Misalignment Scores for Reported Interactions

To validate our framework for scoring predicted PLIs, we quantify misalignment for known inter-
actions reported in ChEMBL, using a leave-one-out approach. Specifically, we iterate over each
reported interaction, treating the interaction as if it were a prediction. We recompute the within-
group distribution from all other known targets of the ligand, excluding the one we selected. We
then generate a query distribution from pairwise similarity scores between the selected target and all
other targets of the ligand. We compute the misalignment score associated with the within-group and
query distributions, then iterate to the next known target of the ligand. Fig. 3B plots the distribution
of misalignment scores associated with known targets of functionally selective ligands. As expected,
reported PLIs are associated with low misalignment scores.

C Effects of Variability in Similarity Scores

To compare methods for scoring protein function similarity, we start by sampling 100,000 random
protein pairs from the human proteome. For all pairs, we quantify similarity using each method
listed in Tab. 1. Fig. 5 illustrates the correlations in similarity scores for all protein pairs between
the scoring methods. For each protein pair, we then compute the median and interquartile range of
similarity scores across the different scoring methods. We find that more similar protein pairs tend
to be associated with less uncertainty in their similarity scores (see Fig. 6). As proteins become less
alike, quantifying their similarity becomes more difficult.

Our framework involves quantifying ligand selectivity and evaluating predicted PLIs based on dis-
tributions of protein similarity scores (see B.4.1 and B.4.2 for details). Accordingly, the selectivity
scores and misalignment scores we report are affected by uncertainty in protein similarity scores.
To reduce the effect of uncertainty, we propose using average scores derived from three function-
based protein similarity scoring methods (see B.4.3). In this section, we quantify selectivity and
misalignment scores using individual embedding methods from Tab. 1. To do so, we separately
generate distributions of protein similarity scores using each embedding method. We first focus on
the within-group and random distributions, which are used to quantify selectivity. For the 10% most
selective ligands (highlighted in Fig. 7), we plot these distributions in Fig. 8. For all ligands, Fig. 9
plots the correlation coefficients of selectivity scores calculated by the various methods, indicating
relatively strong agreement. However, when considering the within-group and query distributions
used in the evaluation of predicted interactions, we see less consistency. Fig. 10 plots the correlation
coefficients of misalignment scores calculated by various methods for predicted targets of selec-
tive ligands. The results demonstrate that the evaluation of predicted interactions is sensitive to the
choice of embedding method, highlighting the open need for more robust methods of quantifying
protein similarity.
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Figure 5: Correlations in Similarity Scores. For 100,000 random protein pairs, we evaluate sim-
ilarity scores using all methods listed in Tab. 1, then evaluate the correlations in similarity scores
between the methods. The inset scatter plot illustrates the weak correlation in similarity scores be-
tween two function-specific methods, based on 15,000 random protein pairs.

A- Variability in Protein Similarity Scores (Per Pair) B- 0 Median Protein Similarity Scores (Per Pair)
1.

Bottom 10% Top 10%
0.8
w 0.6
8 Bottom 10% IQR
2 0.4 = (least variable
" similarity scores)
i Top 10% IQR
0.2 —— (most variable
similarity scores)
0.0 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
IQR in Similarity Scores for Protein Pair Median Similarity Score

Figure 6: Assessing Heteroscedasticity in Protein Similarity Scores. For 100,000 random protein
pairs, we evaluate similarity scores using the methods listed in Tab. 1. For each protein pair, we
quantify the uncertainty in the similarity score based on its interquartile range (IQR) across scoring
methods. (A) We plot the distribution of IQRs, highlighting the top 10% most uncertain pairs (in
red) and bottom 10% least uncertain pairs (in green). (B) We then plot the distributions of median
similarity scores (across scoring methods) for the protein pairs with the 10% most- and least-variable
values. More similar protein pairs tend to have less uncertainty in their assessed similarity scores.
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Figure 7: Selectivity Scores. Distribution of ligand selectivity scores, based on reported PLIs. The
highlighted region captures the top 10% most selective ligands, based on average selectivity scores;

these ligands are assessed further in Fig. 8.
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Figure 8: Selectivity Evaluated by Each Similarity Scoring Method
tive ligands identified based on reported interactions, we separately plot within-group distributions
obtained from each similarity scoring method. For reference, we include the random distribution
associated with the scoring methods. Recall that the mean difference between the within-group and
random distributions produces the selectivity score. In all cases, the distributions of similarity scores
between targets of selective ligands tend to be greater than random protein pairs.
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Figure 9: Correlations in Selectivity Scores. We evaluate selectivity scores for all ligands based
on reported interactions in ChEMBL [20, 21], using each method in Tab. 1. We then calculate the
correlation coefficient of selectivity scores for each pairing of embedding methods. The inset scatter
plot exemplifies the correlation in selectivity scores obtained between different methods. In general,
we see moderately strong correlations in selectivity scores between different scoring methods.
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Figure 10: Correlations in Misalignment Scores. We evaluate misalignment scores for predicted
interactions involving selective ligands using each method in Tab. 1. The inset scatter plot exempli-
fies the correlation in misalignment scores obtained between different scoring methods. Inconsis-
tencies in the misalignment scores demonstrate the need for more robust similarity scoring methods.
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