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ABSTRACT

Deep learning has achieved great success in modeling dynamical systems, provid-
ing data-driven simulators to predict complex phenomena, even without known
governing equations. However, existing models have two major limitations: their
narrow focus on mechanical systems and their tendency to treat systems as mono-
lithic. These limitations reduce their applicability to dynamical systems in other
domains, such as electrical and hydraulic systems, and to coupled systems. To ad-
dress these limitations, we propose Poisson-Dirac Neural Networks (PoDiNNs),
a novel framework based on the Dirac structure that unifies the port-Hamiltonian
and Poisson formulations from geometric mechanics. This framework enables a
unified representation of various dynamical systems across multiple domains as
well as their interactions and degeneracies arising from couplings. Our experi-
ments demonstrate that PoDiNNs offer improved accuracy and interpretability in
modeling unknown coupled dynamical systems from data.

1 INTRODUCTION

Deep learning has achieved great success in modeling dynamical systems (Chen et al., 2018; Anand-
kumar et al., 2020), following its successes in image processing and natural language processing (He
et al., 2016; Vaswani et al., 2017). It provides a data-driven approach for predicting the behavior
of complex dynamical systems, even when governing equations are unknown (Kasim & Lim, 2022;
Matsubara & Yaguchi, 2023). These models function as computational simulators and show promise
in applications across diverse fields, including weather forecasting, mechanical design, and system
control (Lam et al., 2023; Pfaff et al., 2020; Horie et al., 2021).

However, Greydanus et al. (2019) identified a key limitation of data-driven models: they accumulate
modeling errors in long-term predictions, leading to rapid failure. Hamiltonian Neural Networks
(HNNs) were proposed to overcome this limitation by incorporating Hamiltonian mechanics. In-
spired by this approach, many studies have developed neural network models that not only learn the
dynamics from data, but also adhere to fundamental laws of physics. Examples include Lagrangian
Neural Networks (LNNs) (Cranmer et al., 2020), Neural Symplectic Forms (NSFs) (Chen et al.,
2021), Constrained HNNs (CHNNs) (Finzi et al., 2020), and Dissipative SymODENs (Zhong et al.,
2020), as shown in Table 1. We emphasize that our focus is on modeling unknown dynamical sys-
tems from data, which differs from solving known symbolic equations, such as in Physics Informed
Neural Networks (Sirignano & Spiliopoulos, 2018; Raissi et al., 2019; Du & Zaki, 2021).

Despite recent progress, two key limitations remain in modeling dynamical systems, especially those
described by ordinary differential equations (ODEs). The first limitation is the narrow focus on me-
chanical systems. Models applied to other domains, such as electric circuits or magnetic fields, often
fail to leverage the governing principles of those systems, such as Kirchhoff’s current and voltage
laws (Jin et al., 2022; Matsubara & Yaguchi, 2023). The second limitation is that most methods treat
the system as a single, monolithic entity. In reality, many systems consist of interacting components,
such as robot arms with multiple joints or electric circuits with various elements (Yoshimura & Mars-
den, 2006a). Although the port-Hamiltonian formulation theoretically addresses these interactions,
no prior work has fully leveraged its potential. These limitations prevent current methods from ef-
fectively handling multiphysics scenarios, where systems from different domains interact, such as
those involving through DC motors (van der Schaft & Jeltsema, 2014; Gay-Balmaz & Yoshimura,
2023).
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Table 1: Comparison of Methods for Modeling Dynamical Systems
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HNNs (Greydanus et al., 2019) canonical Hamiltonian ✗ ✗ ✗ ✗ ✗ ✗
LNNs (Cranmer et al., 2020) Lagrangian ✗ ✗ ✗ ✗ ✗ ✗
NSFs (Chen et al., 2021) general Hamiltonian ✗ ✗ ✗ ✗ ✗ ✓
CHNNs (Finzi et al., 2020) constrained canonical Hamiltonian ✗ ✗ ✻ ✗ ✗ ✗
CLNNs (Finzi et al., 2020) constrained Lagrangian ✗ ✗ ✻ ✗ ✗ ✗
PNNs (Jin et al., 2022) Poisson ✗ ✗ ✓ ✗ ✗ ✓
Dis. SymODENs (Zhong et al., 2020) port-Hamiltonian on Darboux coordinates ✗ ✗ ✗ ✓ † ✗

PoDiNNs (proposed) poisson-Dirac with ports ✓ ✓ ✓ ✓ ✓ ✓

✻Available only for known holonomic constraints. † Available only for external force on mass.
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Figure 1: Conceptual diagram of PoDiNNs.

To address these limitations, we propose
Poisson-Dirac Neural Networks (PoDiNNs),
which leverage the Dirac structure to unify
the port-Hamiltonian and Poisson formula-
tions (Courant, 1990; Duindam et al., 2009; van
der Schaft, 1998; van der Schaft & Jeltsema,
2014; Yoshimura & Marsden, 2006a). The Dirac
structure explicitly represents the coupling be-
tween internal and external components. A con-
ceptual diagram is shown in Fig. 1. The advan-
tages of PoDiNNs are summarized below and in Table 1, and are validated through experiments on
seven simulation datasets spanning mechanical, rotational, electro-magnetic, and hydraulic domains.

Identifying Coupling Patterns Many real-world systems are coupled systems, consisting of in-
teracting components (Yoshimura & Marsden, 2006a). While existing methods represent these as
single vector fields or energy functions, PoDiNNs explicitly learn internal couplings as bivectors
on vector bundles, separate from component-wise characteristics modeled by neural networks. This
approach improves both interpretability and modeling accuracy.

Applicable to Various Domains of Systems The Dirac structure allows PoDiNNs to describe
various dynamical systems across multiple domains. While most deep learning models of ODEs
focus on mechanical systems, PoDiNNs can model interactions of mechanical, rotational, electrical,
and hydraulic systems, addressing real-world multiphysics scenarios.

Unifying Various Aspects of Dynamical Systems Previous models have addressed specific as-
pects of dynamical systems, such as degenerate dynamics (Finzi et al., 2020; Jin et al., 2022), energy
dissipation, external inputs (Zhong et al., 2020), and coordinate transformations (Chen et al., 2021;
Jin et al., 2022). PoDiNNs offer a unified framework to address all these aspects together by lever-
aging the Dirac structure.

2 BACKGROUND THEORY AND RELATED WORK

Attempts to learn ODEs have a long history (Nelles, 2001), but Neural Ordinary Differential Equa-
tions (Neural ODEs) transformed this field (Chen et al., 2018). Neural ODEs train networks to
approximate the vector field (the right-hand side of the ODE), which is then integrated by a numeri-
cal integrator. However, these models are often overly general and fail to capture dynamical systems
governed by principles such as energy conservation (Greydanus et al., 2019). To address this, many
refinements have been proposed by integrating insights from analytical mechanics.

2.1 HAMILTONIAN SYSTEMS

Canonical Hamiltonian Systems The Hamiltonian formulation of mechanics defines Hamilton’s
equations of motion, using a pair of n-dimensional generalized coordinates q = (q1, . . . , qn) and
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momenta p = (p1, . . . , pn) as the state. Given an energy function H , the system dynamics evolves
as:

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

, or equivalently,
(

q̇
ṗ

)
=

(
O I
−I O

)
∇H(q,p) (1)

where ˙ denotes the time derivative, I and O are the n-dimensional identity and zero matrices,
respectively, and ∇H denotes the gradient of H . Systems describable by Hamilton’s equations are
Hamiltonian systems. See Appendix A.1 for an example.

HNNs were introduced to learn such systems, with a neural network HNN serving as the energy
function H (Greydanus et al., 2019). HNNs have shown greater long-term robustness than Neural
ODEs (Chen et al., 2022; Gruver et al., 2022).

Hamiltonian Systems of Coordinate-Free Form From the differential geometry perspective, the
equations of motion in Eq. (1) are defined on the cotangent bundle M = T ∗Q of the configuration
space Q = Rn with the standard symplectic form Ω =

∑
i dqi ∧ dpi, where q ∈ Q and p ∈ T ∗

qQ,
respectively. Here, T ∗

qQ denotes the cotangent space to Q at q, and ∧ denotes the exterior product.
The symplectic form Ω leads to a skew-symmetric linear bundle map Ω♭u : TuM → T ∗

uM at each
point u ∈ M, which satisfies ⟨Ω♭u(v),w⟩ = Ωu(v,w) for any u ∈ M and v,w ∈ TuM, where
⟨·, ·⟩ denotes the natural pairing. We will denote by the subscript u an assignment at point u and
omit the subscripts if an equation holds independently of the point u. Given a smooth function
H : M → R, its differential is denoted by dH . A vector field X on M assigns a tangent vector
Xu ∈ TuM to each point u ∈ M. Then, Hamilton’s equations in the coordinate-free form defines
a vector field XH called the Hamiltonian vector field by

Ω♭(XH) = dH. (2)
XH defines the time evolution of the state u as u̇(t) = (XH)u(t) at time t, and u(t) over a certain
period is a solution of the system. Then, the tuple (H,Ω, XH) is called a Hamiltonian system. A
Hamiltonian system with the standard symplectic form Ω is said to be canonical, and its coordinate
system is known as Darboux coordinates.

Hamilton’s equations also describe the same dynamics using generalized velocities v ∈ TqQ instead
of generalized momenta p ∈ T ∗

qQ, i.e., on the tangent bundle TQ rather than the cotangent bundle
T ∗Q. In this case, the symplectic form Ω is replaced by a Lagrangian 2-form (Marsden & Ratiu,
1999). From another viewpoint, the symplectic form Ω defines the coordinate system. Lagrangian
Neural Networks (LNNs) learn the dynamics on the tangent bundle TQ (Cranmer et al., 2020).
Neural Symplectic Forms (NSFs) learn the symplectic form directly from data, generalizing HNNs
and LNNs for arbitrary coordinate systems (Chen et al., 2021). In general, Hamiltonian systems
preserve the energy H , as LXH

H = ⟨dH,XH⟩ = Ω(XH , XH) = 0, where LXH
denotes the Lie

derivative along XH , and the last equality follows from the skew-symmetry of Ω.

Poisson Systems Because the symplectic form Ω is non-degenerate in the sense that the bun-
dle map Ω♭u is non-degenerate, it leads to a 2-tensor B called a Poisson bivector satisfying
B(dH,dG) = Ω(XH , XG) for any smooth functions H,G on M. B leads to a skew-symmetric
linear bundle map B♯

u : T ∗
uM → TuM at each point u ∈ M, which satisfies Bu(α,β) =

⟨α, B♯
u(β)⟩ for any u ∈ M and α,β ∈ T ∗

uM. Then, it holds that B♯ = (Ω♭)−1. Hamilton’s
equations, Eq. (2), are rewritten as

XH = B♯(dH). (3)
The tuple (H,B,XH) is called a Poisson system. On the Darboux coordinates, B =

∑
i
∂
∂pi

∧ ∂
∂qi

.

2.2 DEGENERACY, DISSIPATION, AND EXTERNAL INPUTS

Degenerate Systems If the state u is constrained to a submanifold M̃ ⊂ M, Hamilton’s equations
do not directly describe the dynamics. For example, consider a pair of mass-spring systems, indexed
by i ∈ {1, 2}, with a constraint q1 = q2 such that the two masses are coupled and always have the
same displacement and velocity. While the Hamiltonian is the sum of those of coupled systems,
Hamilton’s equations Ω♭(XH) = dH with the standard symplectic form Ω do not describe the
dynamics. There are two primary methods for handling such degenerate Hamiltonian systems.

The first approach uses coordinate transformations to reduce the system’s degrees of freedom and
define a submanifold M̃ ⊂ M, where Hamilton’s equations describe the dynamics using the stan-
dard symplectic form Ω or Poisson bivector B. The Darboux-Lie theorem ensures the local existence
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of such transformations. The standard Poisson bivector B on M̃ can also be expressed on M while
its bundle map is degenerate, and it represents the coordinate transformation. Hence, degenerate
Hamiltonian systems are included into Poisson systems. See Appendix A.2 for an example. Jin
et al. (2022) introduced Poisson neural networks (PNNs) that combine neural network-based coor-
dinate transformations with SympNets for degenerate systems (Dinh et al., 2017; Jin et al., 2020).
However, this approach lacks interpretability due to non-unique, nonlinear transformations, and ex-
tending it to systems with external inputs or dissipation is challenging.

The other approach introduces constraint forces from the coupling, defining constrained Hamiltonian
systems. Finzi et al. (2020) proposed constrained HNNs (CHNNs) for such systems. However, this
method is limited to holonomic constraints (e.g., constraints on configurations). Furthermore, as the
constraints are predetermined, it remains unclear how to learn these constraints directly from data.

Port-Hamiltonian Systems To incorporate dissipation and external inputs, some studies have ex-
plored the port-Hamiltonian formulation with neural networks (Zhong et al., 2020). Although some
have mentioned the underlying Dirac structure (Eidnes et al., 2023; Neary & Topcu, 2023; Di Persio
et al., 2024), they rely on the following canonical form without fully leveraging its flexibility:(

q̇
ṗ

)
=

((
O I
−I O

)
−

(
O O
O D(q)

))
∇H(q,p) +

(
0

G(q)

)
f , (4)

where D ∈ Rn×n represents dissipation, f ∈ Rm is the control input vector, and G ∈ Rn×m is the
control input matrix. This formulation has several disadvantages. The matrix

(
O I
−I O

)
represents the

standard symplectic form Ω =
∑
i dqi∧dpi on R2n, which cannot handle degeneracies. Dissipation

from multiple sources, such as dampers or friction, is condensed into a single term D, limiting
interpretability and modeling performance. Additionally, this formulation cannot handle externally
defined velocities, as seen in models of buildings shaken by the ground.

3 POISSON-DIRAC NEURAL NETWORKS

To overcome the limitations of existing methods, we propose Poisson-Dirac Neural Networks
(PoDiNNs), which leverage the Dirac structure to unify Poisson and port-Hamiltonian systems.
Detailed background theory and proofs of the following theorems are provided in Appendix C.

3.1 DIRAC STRUCTURE

Let V be an n-dimensional vector space and V ∗ its dual space, with the natural pairing ⟨·, ·⟩ between
them. Define the symmetric pairing ⟨⟨·, ·⟩⟩ on V ⊕ V ∗ as

⟨⟨(v,α), (v̄, ᾱ)⟩⟩ = ⟨α, v̄⟩+ ⟨ᾱ,v⟩ for (v,α), (v̄, ᾱ) ∈ V ⊕ V ∗

where ⊕ denotes the direct sum of two vector spaces (Courant, 1990).
Definition 1 (Courant (1990); Yoshimura & Marsden (2006a)). A Dirac structure on a vector space
V is a vector subspace D ⊂ V ⊕ V ∗ such that D = D⊥, where D⊥ is the orthogonal complement
of D with respect to the pairing ⟨⟨·, ·⟩⟩.

Since D = D⊥, ⟨α, v̄⟩ + ⟨ᾱ,v⟩ = 0 for any (v,α), (v̄, ᾱ) ∈ D, and hence ⟨α,v⟩ = 0 for any
(v,α) ∈ D. A typical Dirac structure can be constructed as follows:
Theorem 1 (Courant (1990); Yoshimura & Marsden (2006a)). Let V be a vector space and ∆ a
vector subspace. Define the annihilator ∆◦ of ∆ as ∆◦ = {α ∈ V ∗ | ⟨α,v⟩ = 0 for all v ∈ ∆} ⊂
V ∗. Then, DV = ∆⊕∆◦ ⊂ V ⊕ V ∗ is a Dirac structure on V .

A vector bundle F over a manifold M is a collection of vector spaces Fu, called fibers, smoothly
assigned to points u ∈ M, where the manifold M is called the base space. A typical example is
the tangent bundle TM, where the fiber at u is the tangent space TuM, and its dual bundle is the
cotangent bundle T ∗M. The Whitney sum ⊕ defines a vector bundle whose fiber at each point is
the direct sum of the fibers of the two bundles at that point. Given a vector bundle F over M and its
dual E = F∗, the Dirac structure is defined as a subbundle of F ⊕ E .
Definition 2 (Courant (1990); Yoshimura & Marsden (2006a); van der Schaft & Jeltsema (2014)).
Consider a vector bundle F over a manifold M. A distribution ∆ is a collection of vector subspaces
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Table 2: Categorization of Components in Different Domains

Domain Mechanical Rotational Electro-Magnetic Hydraulic

Subdomain Potential Kinetic Potential Kinetic Electric Magnetic Potential

flow (input) velocity force angular velocity torque current voltage volume flow rate
effort (output) force velocity torque angular velocity voltage current pressure
state displacement momentum angle angular momentum electric charge magnetic flux volume

energy-storing spring mass (potential) inertia capacitor inductor hydraulic tank
energy-dissipating damper – friction – resistor resistor —
external input external force moving boundary external torque – voltage source current source incoming fluid flow

∆u ⊂ Fu, each assigned smoothly to M at point u, forming a vector subbundle of F . The annihi-
lator ∆◦ of ∆ is a collection of the annihilators ∆◦

u of ∆u, also forming a subbundle of E = F∗.
Then, a Dirac structure D is constructed as D = ∆⊕∆◦, which is a subbundle of F ⊕ E .

If F ⊕ E = TM ⊕ T ∗M, the Dirac structure D can reformulate Hamiltonian, Poisson, and con-
strained Hamiltonian systems (see Appendix C). Here, we assume that the fibers Fu and Eu of the
vector bundles F and E at u are decomposed as

Fu = FS
u ⊕FR

u ⊕FI
u and Eu = ESu ⊕ ERu ⊕ EIu, (5)

where FS
u = TuM and ESu = T ∗

uM. A point on the fibers Fu and Eu is denoted by f =
(fS ,fR,f I) and e = (eS , eR, eI), respectively. We refer to f ∈ Fu as flows, e ∈ Eu as ef-
forts, and both collectively as port variables. Note that our definitions mainly followed those in
Duindam et al. (2009); van der Schaft & Jeltsema (2014), while we can find other definitions in
Yoshimura & Marsden (2006a).

Theorem 2. Consider vector bundles F and E = F∗ over M. The collection of

Du = {(f , e) ∈ Fu × Eu | f = B♯
u(e)}

for the bundle map B♯
u : Eu → Fu of a bivector B is a Dirac structure D ⊂ F ⊕ E .

Here, we define PoDiNNs as a special case of the Poisson-Dirac formulation (Courant, 1990).

Definition 3 (Poisson-Dirac Neural Network). Let F ⊕ G be a vector bundle over a manifold M
defined in Eq. (5), which assigns to each u ∈ M a vector space (FS

u ⊕FR
u ⊕FI

u)×(ESu⊕ERu ⊕EIu).
Let D ⊂ F ⊕ E be a Dirac structure defined in Theorem 2. Let H : M → R be an energy function,
which determines the effort eS = dH ∈ ESu . The effort eR ∈ ERu is determined by a mapping
Ru : FR

u → ERu of the flow fR ∈ FR
u . The effort eI(t) ∈ EIu is a time-dependent function. The

functions H and Ru are implemented using neural networks. If for each u(t) and t ∈ [a, b], it holds
that

((fS(t),fR(t),f I(t)), (eS(t), eR(t), eI(t))) ∈ Du(t),

the tuple (H,B,R, eI ,fS) is called Poisson-Dirac Neural Networks (PoDiNNs).

3.2 FLOWS AND EFFORTS FOR COMPONENTS

The point u at the base space M represents the states of the dynamics, which include the displace-
ment of a spring, the momentum of a mass, the angle and angular momentum of a rotating rod, the
electric charge of a capacitor. Intuitively, flows f are the inputs to components, while efforts e are
the outputs from the components. Components considered in our formulation are summarized in
Table 2, with concrete examples in Appendices B and D.

Similar to Hamiltonian and Poisson systems, the flow fS ∈ TuM represents the vector field XH

on M, defining the time evolution u̇ of the state u. The effort eS ∈ T ∗
uM corresponds to the

differential dH of the Hamiltonian H : M → R. Superscript S indicates that these components
store energy. In electric circuits, capacitors and inductors are examples, with states as electric charge
and magnetic flux, and efforts as the voltages across and currents through them, respectively. In
PoDiNNs, these components are modeled using neural networks that replace the energy functions
H , similar to HNNs and Dissipative SymODENs.
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The flow fR ∈ FR
u and effort eR ∈ ERu represent energy-dissipating components, such as dampers

and resistors. A damper’s flow fR is the velocity (i.e., the rate of extension or compression), and its
effort eR is the force, which are related as eR = −dfR for a linear damper with a damping coefficient
d. Unlike a spring, a damper does not store its own energy, so its flow fR is not on FS

u but on FR
u .

Superscript R indicates that these components are “resistive.” However, components that supply
energy, such as diodes, can also be classified into this category. In any case, each component is
implemented in PoDiNNs by a neural network that approximates its characteristic Ru : fR 7→ eR.

The flow f I ∈ FI
u and effort eI ∈ EIu represent external inputs, such as an external force (where

force is the effort) or a moving boundary (where velocity is the effort). Their efforts eI depend only
on time t, not on other components. Their flows f I are not required for determining the system’s
dynamics but represent the outcomes of external inputs, such as the reaction force exerted on the
moving boundary. In PoDiNNs, these external inputs are fed into the neural networks.

3.3 BIVECTOR FOR REPRESENTING COUPLED SYSTEMS

For the coordinates qi and pi on M, the basis vectors of the tangent space TuM are ∂
∂qi

and ∂
∂pi

,
respectively. The i-th basis vectors of FR

u , FI
u, ERu , and EIu are denoted by ξRi , ξIi , ξR∗

i , and ξI∗i ,
respectively. The bivector B assigns to each point u ∈ M wedge products of the basis vectors of
the flow space Fu, such as ∂

∂pi
∧ ∂
∂qj

, ∂
∂pi

∧ ξRj , and ∂
∂pi

∧ ξIj , thereby defining the coupling patterns

among components. For example, ∂
∂pi

∧ ξIj couples the j-th external input with the i-th mass mi

with the state pi. The effort of the external flow is expressed as eIjξ
I∗
j when the basis is explicit.

This is fed to the bivector ∂
∂pi

∧ ξIj = −ξIj ∧ ∂
∂pi

, resulting in −eIj
∂
∂pi

, which forms part of the flow
fSi

∂
∂pi

for mass mi. Therefore, we can make the following remarks.

Remark 1 (Coupling as Non-zero Elements of Bivector). Coupling between two components is
represented by a non-zero bivector element, which links the effort of one to the flow of the other.
Thus, by learning the bivector B from the observations of the target system, we can identify the
coupling patterns between the system’s components.

Remark 2 (Degeneracy of Dynamics as Degeneracy of Bundle Map). Constraints between compo-
nents that cause degenerate dynamics are reflected in degeneracy of the bundle map B♯. Thus, by
learning the bivector B from the observations of the target system and examining how it degenerates,
we can identify the constraints imposed on the system.

Remark 3 (Coordinate Transformation by Bivector). The bivector B defines the coordinate system,
which allows PoDiNNs to learn system dynamics regardless of the coordinate system used for the
observations.

Remark 4 (Multiphysics). Our formulation can represent systems across various domains, as sum-
marized in Table 2.

These remarks are fundamental in system identification and can aid in reverse engineering, as the
coupling patterns of circuit elements serve as representations of the circuit diagrams. Also, PoDiNNs
are the first neural-network method to handle multiple domains of dynamical systems and their
interactions by leveraging the Dirac structure. See Appendix B for concrete examples.

3.4 DISCUSSIONS FOR COMPARISONS AND LIMITATIONS

As discussed above, PoDiNNs are the first model to cover degenerate dynamics, dissipation, external
inputs, and coordinate transformations in a unified manner.

Previous models, including HNNs, LNNs, NSFs, PNNs, and Dissipative SymODENs, approximate
the Hamiltonian H , Lagrangian L, or dissipative term D using neural networks, which implicitly
learn the relationships between variables. However, these relationships are difficult to extract due to
the implicit nature of the learning and the high nonlinearity of the networks. In contrast, PoDiNNs
separate the coupling patterns B from the energy functions H , improving interpretability and gen-
eralization performance.

In an absolute coordinate system, the displacements of springs were computed from the absolute po-
sitions of springs’ edges internally within the energy function. Although PoDiNNs can handle such

6
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Figure 2: Diagrams of systems that provide datasets. Detailed definitions are found in Appendix D.

system, the bivector for energy-storing components takes the standard form B =
∑
i
∂
∂pi

∧ ∂
∂qi

,
which hinders the identification of their coupling patterns. PoDiNNs are still able to identify cou-
pling patterns involving energy-dissipating components and external inputs. To identify the coupling
patterns between energy-storing components, it is necessary to employ a relative coordinate system
based on displacements, rather than absolute positions.

LNNs and NSFs are designed for non-canonical Hamiltonian systems, where the Hamiltonian vector
field XH is implicitly defined as Ω♭(XH) = dH (Cranmer et al., 2020; Chen et al., 2021). This ap-
proach requires matrix inversion to compute XH , which is computationally expensive, numerically
unstable, and not directly applicable to degenerate dynamics. In contrast, PoDiNNs explicitly define
XH as part of f = B♯(e), offering faster and more stable computations that also handle degenerate
dynamics.

In mechanical systems, energy-dissipating components such as dampers and friction are character-
ized by first setting the velocities set, from which the corresponding forces are then derived. As a
result, flow is always defined as velocity, and effort as force. In the electric circuits, however, the
flow for resistors and diodes can be either current or voltage, depending on their coupling with other
components. In practice, it is advisable to include an abundance of both types of components. Any
excess components will either be ignored or exhibit redundant characteristics, as demonstrated in
the experiments.

The dynamics of electric circuits are generally described by differential-algebraic equations (DAEs).
For example, when a capacitor is connected to a direct voltage source in parallel, infinite current
instantaneously flows into the capacitor, and its voltage matches that of the direct voltage source.
This behavior cannot be represented by ODEs alone. While PoDiNNs cannot fully represent such
systems, they can still describe a wide range of systems and expand the scope of modeling unknown
dynamical systems from observations.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETTINGS

Datasets We evaluated PoDiNNs and related methods to demonstrate their modeling performance
using seven simulation datasets, as shown in Fig. 2. Due to page limitations, we briefly overview
their characteristics. The full explanations can be found in Appendix D.

For the mechanical domain, we prepared three mass-spring(-damper) systems (a)–(c), with the ve-
locities of the masses as observations. In the absolute coordinate system, we used the absolute
positions of the springs’ ends as the springs’ states, and in the relative coordinate system, their dis-
placements. As external inputs, an external force F is applied to system (a), and a moving boundary
b is coupled with system (b). Dissipative SymODENs cannot directly account for the latter. System
(c) has redundant observations; while springs are coupled only with two masses, the displacements
of all five springs were provided as observations. CHNNs cannot model this redundancy, as it does
not arise from holonomic constraints, but PNNs can. In all three systems, the springs and dampers
exhibit nonlinear characteristics.
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We selected two nonlinear electric circuits, (d) the FitzHugh-Nagumo model and (e) Chua’s cir-
cuit, from the electro-magnetic domain (Izhikevich & FitzHugh, 2006; Chua, 2007). The capacitor
voltage and inductor current were used as the observations.

We also used two multiphysics systems (f) and (g). In system (f), a DC motor bridges an electric
circuit in the electro-magnetic domain and a pendulum in the rotational domain. In system (g), a
hydraulic tank in the hydraulic domain is connected to two cylinders with pistons in the mechanical
domain, each of which is also connected to a fixed wall via a spring and damper. An external force
is applied to the smaller piston, which moves the larger piston through the fluid in the tank.

Implementation Details We implemented all experimental code from scratch using Python
v3.11.9, along with numpy v1.26.4, scipy v1.12.1, pytorch v2.3.1, and desolver v4.1.1 (Paszke et al.,
2017). See also Appendix D for more details.

We compared Neural ODEs, Dissipative SymODENs, PNNs, and PoDiNNs. Neural ODEs were
evaluated on all datasets. Dissipative SymODENs were tested on systems (a) and (b), while PNNs
were evaluated on system (c), in the absolute coordinate system. Other combinations were out of
scope of the original studies. For PNNs, we used HNNs in place of SympNets for a fair comparison.
For Dissipative SymODENs and PoDiNNs, we assumed that the kinetic energy in the mechanical
domain could be expressed as 1

2mp2, where m is the mass and p is the momentum. Therefore, we
employed this form with a learnable parameter m, rather than a neural network. The same approach
was applied to capacitors and inductors for PoDiNNs. All other components were assumed to be
nonlinear and were modeled using neural networks. In the absolute coordinate system, the potential
energy was modeled for all configurations q1, . . . , qn plus the position qb of the moving boundary
collectively by a single neural network. In the relative coordinate system or other domains, the
potential energy was modeled separately for each component. We assumed that the number of
energy-dissipating components and the nature of their flows (e.g., current or voltage in electric
circuits) are known, and also examined the impact of inaccurate assumptions.

Each model was trained using one-step predictions on the training subset. Specifically, given a
random state snapshot u(n) at n-th step, each model predicted the next state ũ(n+1) after a time step
∆t. Then, all parameters were updated to minimize the squared error between the predicted state
ũ(n+1) and the ground truth u(n+1), normalized by state standard deviations. It is known that longer
prediction steps can improve robustness against noise (Chen et al., 2020). However, as we aimed to
purely compare the representational performance of models, no noise was added to the datasets. We
confirmed that longer prediction steps only led to performance degradation.

Evaluation Metrics We evaluated models using the accuracy of the solution to the initial value
problem on the test subset. Starting from the initial value of each trajectory, each model predicted
the entire trajectory of N steps and calculated the mean squared error (MSE) between the predicted
state ũ(n) and the ground truth u(n) at each step indexed by n. The mean of these MSEs across all
trajectories and all time steps was computed as the evaluation metric, referred to as the overall MSE;

MSE(ũ;u) = 1
N

∑N
n=1[MSE(ũ(n),u(n))]. (6)

Lower values indicate better performance. Additionally, we defined the valid prediction time (VPT)
as the ratio of the number of steps taken before the MSE first exceeds a certain threshold θ to the
total length N of the test trajectory (Botev et al., 2021; Jin et al., 2020; Vlachas et al., 2020);

V PT (ũ;u) = 1
N argmaxnf

{nf |MSE(ũ(n),u(n)) < θ for all n ≤ nf}. (7)

Higher values indicate better performance. The threshold θ was set to ensure that most models
achieved VPTs between 0.1 and 0.9. For each dataset, models were trained and evaluated from
scratch over 10 trials per dataset.

4.2 RESULTS

Numerical Performance The results, summarized in Table 3, show that PoDiNNs consistently
outperformed all other models across all datasets and metrics. VPTs show that PoDiNNs provided
stable predictions for durations 1.5 to 20 times longer. These differences were statistically signifi-
cant, with p-values less than 0.0005, as evaluated by the Mann-Whitney U test. In some cases, the
difference in MSE is small, while that in VPT is substantial. This happens when a model ignores
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Table 3: Experimental Results.

Mass-Spring-Damper Systems

Dataset with external force with moving boundary (c) with redundancy

Coordinate (a) relative (a’) absolute (b) relative (b’) absolute relative

Model MSE↓ VPT↑ MSE↓ VPT↑ MSE↓ VPT↑ MSE↓ VPT↑ MSE↓ VPT↑
Neural ODEs 4.90±0.27 0.128±0.021 7.68±1.07 0.097±0.008 7.43±1.19 0.153±0.039 5.02±0.56 0.135±0.052 2490.61±1847.24 0.099±0.004
HNN Variants∗ — 8.31±0.56 0.104±0.017 — 5.92±0.12 0.001±0.000 634.22±300.01 0.000±0.000

PoDiNNs 4.33±0.26 0.622±0.002 7.02±0.49 0.437±0.053 0.26±1.12 0.856±0.015 3.74±0.84 0.581±0.040 0000.11±0.02000 0.863±0.017

×10−1 θ = 10−3 ×10−1 θ = 10−3 ×10−2 θ = 10−4 ×10−2 θ = 10−4 ×10−1 θ = 10−3

Electric Circuits Multiphysics

(d) FitzHugh-Nagumo (e) Chua’s (f) DC Motor (g) Hydraulic Tank

Model MSE↓ VPT↑ MSE↓ VPT↑ MSE↓ VPT↑ MSE↓ VPT↑
Neural ODEs 48.96±17.43 0.322±0.041 14.74±1.33 0.287±0.016 16.03±5.15 0.276±0.168 30.62±8.22 0.045±0.010

PoDiNNs 01.64±1.370 0.649±0.072 09.21±0.83 0.469±0.010 02.11±2.90 0.923±0.013 05.42±3.65 0.918±0.013

×10−4 θ = 10−3 ×10−1 θ = 10−3 ×10−3 θ = 10−4 ×10−2 θ = 10−4

Each score represents the median over 10 trials, followed by the ± symbol and the quartile deviation. ∗Dissipative SymODENs for systems
(a) and (b), and PNNs for system (c).
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Figure 3: Visualizations of example results. Each top panel shows ground truth trajectories, while
the other panels show the absolute errors of all 10 trials in semi-transparent color. See also Fig. A1.

oscillations in the trajectory and outputs an average path, which keeps the MSE low but results in
poor VPT. This suggests that VPT is a more reliable metric than MSE (Botev et al., 2021; Jin et al.,
2020; Vlachas et al., 2020). We also show example trajectories and absolute errors in Figs. 3 and
A1.

PoDiNNs perform well both in the absolute and relative coordinate systems, showing their adaptabil-
ity to different coordinate systems. Even in the absolute coordinate system, PoDiNNs decompose
dissipations and external inputs into coupling patterns and individual characteristics, providing a
more effective inductive bias, whereas Dissipative SymODENs treat dissipations and external in-
puts using black-box functions D and G.

PoDiNNs demonstrate excellent accuracy in system (c) because they successfully simplify the dy-
namics by correctly identifying the degeneracy from high-dimensional observations. In contrast,
PNNs struggled to learn the appropriate coordinate transformation. Although the Darboux-Lie the-
orem guarantees the existence of such a transformation, it does not imply that learning it is straight-
forward. Also, Neural ODEs lack guarantees for energy conservation, resulting in diverging trajec-
tories.

Identifying Coupling Patterns and Component Characteristics (e) We examined how the
bivector B identifies coupling patterns in system (e), Chua’s circuit. When two coefficients dif-
fered by a factor of 1000 or more, we considered the larger one as a detected coupling and the
smaller one as effectively zero, indicating no coupling. In all 10 trials, we obtained the bivector
B = −a ∂

∂ψ ∧ ∂
∂Q2

+ bξR1 ∧ ∂
∂Q2

− c1ξ
R
1 ∧ ∂

∂Q1
+ c2ξ

R
2 ∧ ∂

∂Q1
, with trial-wise positive parameters a,

b, c1, and c2. We emphasize that the coefficients of other bivector elements, such as ∂
∂ψ ∧ ∂

∂Q1
and
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ξR2 ∧ ∂
∂Q2

, were effectively zero. Because R1 and R2 cannot be directly observed and their indices
are interchangeable, they were appropriately reordered for analysis.

We normalized the coefficients of the bivector elements and the characteristics of system com-
ponents, as their scales cancel each other out. Then, from the learned bivector B, we can de-
rive Kirchhoff’s current laws, IC1

= −IR1
+ IR2

and IC2
= −IL + IR1

, and Kirchhoff’s
voltage laws, VL = VC2

, VR1
= VC1

− VC2
, and VR2

= −VC1
. This allows us to con-

struct a circuit diagram, which perfectly matches that of Chua’s circuit, shown in Fig. 2 (e).

−3 −2 −1 0 1 2 3
VR2

−2

−1

0

1

2

I R
2

f

Figure 4: The identified
characteristics of R2.

While coupling patterns in more complex circuits may not be unique
due to Norton’s and Thevenin’s theorems, our formulation can learn
one valid realization. Figure 4 illustrates the input-output relationship
of the neural network representing R2. The results from all 10 trials,
shown as colored dashed lines, almost perfectly overlap the true re-
lationship, shown as a black dashed line, within the range of ±2.5.
This demonstrates that PoDiNNs accurately identified the component
characteristics, even though its response was never observed directly.
The region beyond this range was not included in the training subset,
so it is expected that PoDiNNs did not learn the relationship there.

Identifying Coupling Patterns of System (g) We also examined the bivector B identified in sys-
tem (g), hydraulic tank. In all 10 trials, we consistently obtained the bivector B = ∂

∂p1
∧ ∂

∂V −
0.3( ∂

∂p2
∧ ∂
∂V ) + ∂

∂p1
∧ ∂
∂q1

+ ∂
∂p2

∧ ∂
∂q2

between the energy-storing components, with the coeffi-
cients 1.0 or −0.3, accurate to five significant figures. The coefficients of the first two terms, 1.0 and
−0.3, correspond to the cross-sectional areas a1 and a2 of two cylinders attached at the bottom of the
tank, with the negative sign indicating that the flow directions are opposite. The remaining two terms
represent the couplings between the masses and springs. All other couplings—between the dampers
and masses, ∂

∂p1
∧ ∂
∂d1

and ∂
∂p2

∧ ∂
∂d2

, and between the external force and the mass, ∂
∂p2

∧ ∂
∂ξS

—were
also identified with non-zero coefficients, even though the overall scale is indeterminate due to the
cancellation of gravitational acceleration, fluid density, and masses.

Table 4: Impact of # Com-
ponents and VPT.

PoDiNNs Training Test

nd=0 0.005±0.000 0.000±0.000
nd=1 0.009±0.002 0.001±0.000
nd=2 0.015±0.000 0.001±0.000
nd=3 0.925±0.007 0.581±0.040
nd=4 0.932±0.010 0.597±0.058
nd=5 0.935±0.006 0.600±0.035

θ = 10−4 θ = 10−4

Impact of Number of Hidden Components (b) The states of
energy-storing components are provided as observations, and exter-
nal inputs are typically known (or inferred using methods like neural
CDE (Kidger et al., 2020)). PoDiNNs also require specifying the
number and type of energy-dissipating components, which are usu-
ally unknown. To assess the impact of the assumed number of com-
ponents, nd, we tested system (b) in the relative coordinate system
(see Table 4). The correct number of dampers is nd = 3. When
nd < 3, performance was extremely poor, indicating incorrect dy-
namics due to missing dampers. When nd > 3, performance was
similar to the case for nd = 3. Redundant dampers provided the extra parameters, which some-
times made optimization easier, but were often ignored by learning identical properties to existing
dampers, by adopting a zero damping coefficient, or by having zero coupling strength. Interestingly,
this trend appeared in both the training and test subsets, which suggests that assessing performance
on the training subset can help identify the correct number of dampers. In this way, PoDiNNs offer
interpretable insights into the system’s internal structure.

See Appendix E for additional visualizations and analyses.

5 CONCLUSION

In this study, we proposed Poisson-Dirac Neural Networks (PoDiNNs), which use a Dirac struc-
ture to unify the port-Hamiltonian and Poisson formulations. PoDiNNs offer a unified framework
capable of handling various domains of dynamical systems, identifying internal coupling patterns,
learning component-wise characteristics, and effectively modeling multiphysics systems. Our ex-
periments with mechanical, rotational, electro-magnetic, and hydraulic systems validate these capa-
bilities. Developing methods to address dynamical systems that are described by DAEs and partial
differential equations remains for future research.
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This study is purely focused on dynamical systems and modeling, and it is not expected to have any
direct negative impact on society or individuals.

7 REPRODUCIBILITY STATEMENT

The environment, datasets, methods, evaluation metrics, and other experimental settings are given
in Section 4.1 and Appendix D. For full reproducibility, it is recommended to run the source code
attached as supplementary material.
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Appendix
A EXAMPLES OF FORMULATIONS

Consider the time evolution of a point u on a manifold M. If a local coordinate on M is denoted by
xi, the corresponding basis vector of the tangent space TuM is denoted by ∂

∂xi
. A vector field X on

M is expressed as X =
∑
iXi

∂
∂xi

. If the curve u(t) satisfies u̇(t) = Xu(t), Xi represents the local
rate of change of the state u(t) in the xi-direction, i.e., u̇i = Xi. For a function F : M → R, its
differential dF is given by dF =

∑
i
∂F
∂xi

dxi. The differential is a covector field, that is, a collection
of points on cotangent spaces T ∗

uM. The basis vector of the cotangent space T ∗
uM is dxi, and the

following relation holds: dxi ∂
∂xj

= 1 if i = j and 0 otherwise.

When a function F defines dynamics, a two-tensor field links a vector field X and the covector field
dF . Such a two-tensor field can be a symplectic form, Poisson bivector, or Riemannian metric. For
example, a link with the negative of a Riemannian metric defines a gradient flow. A symplectic form
and Poisson bivector are defined using the wedge product ∧, which satisfies the skew-symmetry
dxi ∧ dxj = −dxj ∧ dxi, and the relation (dxi ∧ dxj)(

∂
∂xi

) = dxj . Marsden & Ratiu (1999)
and Hairer et al. (2006) have thoroughly discussed how to describe dynamical systems using these
geometric objects. While theoretical details are left to these textbooks, this section introduces a
mass-spring system as a concrete example.

A.1 MASS-SPRING SYSTEM

Consider a mass-spring system with spring constant k and mass m. We will write its dynamics by
several formulations.

Canonical Hamiltonian Systems In the Darboux coordinates (i.e., on the cotangent bundle T ∗Q),
the generalized coordinate q is the displacement of spring k, and the generalized momentum p is
obtained as p = mv for the velocity v of mass m. The manifold M is a 2-dimensional Euclidean
space R2. The Hamiltonian H is H(q, p) = 1

2mp2 + 1
2kq

2, and the symplectic form Ω is standard,
i.e., Ω = dq ∧ dp.

Hamilton’s equations state that (Ω♭)(XH) = (dq ∧ dp)(q̇ ∂
∂q + ṗ ∂

∂p ) = q̇dp − ṗdq equals dH =
∂H
∂q dq +

∂H
∂p dp, leading to the equations of motion, q̇ = ∂H

∂p = p/m, ṗ = −∂H
∂q = −kq.

Non-Canonical Hamiltonian Systems On the tangent bundle M = TQ, the velocity v is used in
place of the momentum p, and the symplectic form Ω is the Lagrangian 2-form Ω = m(dq ∧ dv).
The Hamiltonian H is H(q, v) = 1

2mv2 + 1
2kq

2.

Hamilton’s equations state that (Ω♭)(XH) = m(dq ∧ dv)(q̇ ∂
∂q + v̇ ∂

∂v ) = mq̇dv − mv̇dq equals
dH = ∂H

∂q dq+
∂H
∂v dv, leading to the equations of motion, q̇ = 1

m
∂H
∂v = v, v̇ = − 1

m
∂H
∂q = −kq/m.

Poisson Systems In the Darboux coordinates, the Poisson bivector B is B = ∂
∂p ∧

∂
∂q . Hamilton’s

equations state that XH = q̇ ∂
∂q + ṗ ∂

∂p equals B♯(dH) = ( ∂∂p ∧ ∂
∂q )(

∂H
∂q dq +

∂H
∂p dp) =

∂H
∂p

∂
∂q −

∂H
∂q

∂
∂p . The equations of motion are q̇ = ∂H

∂p = p/m, ṗ = −∂H
∂q = −kq.

On the tangent bundle M = TQ, the Poisson bivector B is B = 1
m ( ∂∂v ∧

∂
∂q ), and the Hamiltonian

is H(q, v) = 1
2mv2 + 1

2kq
2. Hamilton’s equations state that XH = q̇ ∂

∂q + v̇ ∂
∂v equals B♯(dH) =

1
m ( ∂∂v ∧ ∂

∂q )(
∂H
∂q dq +

∂H
∂v dv) =

1
m
∂H
∂v

∂
∂q − 1

m
∂H
∂q

∂
∂v . The equations of motion are q̇ = 1

m
∂H
∂v =

v, v̇ = − 1
m
∂H
∂q = −kq/m.

A.2 CONSTRAINED MASS-SPRING SYSTEM

Consider a pair of mass-spring systems, indexed by i ∈ {1, 2}, and introduce a constraint such that
the two masses are coupled and always have the same displacement and velocity; the dynamics is
degenerate. This constraint is expressed as q1 = q2. The Hamiltonian is given simply by the sum
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of two systems, H(q,p) = 1
2m1

p21 + 1
2m2

p22 + 1
2k1q

2
1 + 1

2k2q
2
2 . However, Hamilton’s equations

Ω♭(XH) = dH with the standard symplectic form Ω cannot describe the dynamics.

Degenerate Systems with Coordinate Transformation Define new coordinates q = q1 = q2 and
p = m1+m2

m1
p1 = m1+m2

m2
p2, and consider the submanifold M̃ spanned by (q, p). The Hamiltonian

H is unchanged but rewritten as H(q, p) = 1
2(m1+m2)

p2+ 1
2 (k1+k2)q

2. With the standard symplec-

tic form Ω = dq ∧ dp on M̃, the equations of motion are written as q̇ = p
m1+m2

, ṗ = −(k1 + k2)q.

Degenerate Systems with Constraint Force The constraint on the coordinates, q1 − q2 = 0, is
naturally satisfied by the constraint on the velocities, q̇1 − q̇2 = 0, which is written as the constraint
on momenta, p1/m1 − p2/m2 = 0. The constants of motion are q1 − q2 and p1/m1 − p2/m2. A
constraint force can be introduced to satisfy these constraints, yielding the same equation as above.
Finzi et al. (2020) proposed CHNNs by combining this approach with neural networks. However,
the automatic derivation of the constraint on momenta from that on the coordinates is non-trivial,
and it remains unclear how to learn constraints from data.

Degenerate Systems as Poisson Systems The equations of motion on the submanifold M̃, q̇ =
p

m1+m2
, ṗ = −(k1+k2)q, can be rewritten in the original coordinate system as q̇1 = p1+p2

m1+m2
, q̇2 =

p1+p2
m1+m2

, ṗ1 = − m1

m1+m2
(k1q1+k2q2), ṗ2 = − m2

m1+m2
(k1q1+k2q2). Even on the original manifold

M, these equations are obtained from Hamilton’s equations X = B♯(dH) with the Poisson bivector
B = 1

m1+m2
(m1

∂
∂p1

+m2
∂
∂p2

) ∧ ( ∂
∂q1

+ ∂
∂q2

) on M, while its bundle map B♯ is degenerate. This
fact implies that, by adjusting the Poisson bivector from data, we can learn the Hamiltonian systems
with constraints and identify how the dynamics is degenerate.

On the tangent bundle M = TQ, the Hamiltonian is H(q1, q2, v1, v2) = 1
2m1v

2
1 + 1

2m2v
2
2 +

1
2k1q

2
1 + 1

2k2q
2
2 , and the Poisson bivector B is B = 1

m1+m2
( ∂
∂v1

+ ∂
∂v2

) ∧ ( ∂
∂q1

+ ∂
∂q2

). Then, the

equations of motion are q̇1 = m1v1+m2v2
m1+m2

, q̇2 = m1v1+m2v2
m1+m2

, v̇1 = −k1q1+k2q2
m1+m2

, v̇2 = −k1q1+k2q2
m1+m2

.

B POISSON SYSTEMS

B.1 MECHANICAL SYSTEMS

Using the mass-spring systems described above, we provide concrete examples of how the bivector
represents coupling and constraints in mechanical systems.

Coupled Systems as Poisson Systems Consider two masses and two springs, indexed by i ∈
{1, 2}, coupled in sequence from a fixed wall. Let qi denote the displacement of i-th spring. The
equations of motion are given by q̇1 = p1/m1, q̇2 = p2/m2 − p1/m1, ṗ1 = −k1q1 + k2q2, and
ṗ2 = −k2q2. The bivector B leading to these equations is B = ∂

∂p1
∧ ∂
∂q1

− ∂
∂p1

∧ ∂
∂q2

+ ∂
∂p2

∧ ∂
∂q2

for
the Hamiltonian H(q,p) = 1

2m1
p21 +

1
2m2

p22 +
1
2k1q

2
1 +

1
2k2q

2
2 . These terms indicate the couplings

between p1 and q1, p1 and q2, and p2 and q2. The negative coefficient indicates that the coupling
between p1 and q2 is in the opposite direction.

Degenerate Systems as Poisson Systems As shown in Appendix A.2, degenerate systems can
be expressed as Poisson systems. Recall the case of a pair of mass-spring systems, indexed by
i ∈ {1, 2}, constrained so that the two masses always have the same displacement and velocity.
This system is expressed with the Poisson bivector B = 1

m1+m2
(m1

∂
∂p1

+m2
∂
∂p2

) ∧ ( ∂
∂q1

+ ∂
∂q2

),
which is degenerate in the sense that its bundle map B♯ is degenerate. This indicates the absence
of a corresponding symplectic form. Conversely, by learning the bivector B and examining how it
degenerates, one can identify the constraints imposed on the system.

The coefficient m1

m1+m2
for the term ∂

∂p1
∧ ∂
∂q1

indicates the coupling strength between mass p1 and
spring q1. The effort eSq1 = ∂H

∂q1
from spring q1 is distributed to the masses such that m1

m1+m2
eq1 goes

to mass m1 and m2

m1+m2
eq1 goes to mass m2.

Coordinate Transformation by Bivector As shown in Appendix A.2, the elements of the Poisson
bivector B in a Poisson system depend on whether the dynamics are defined on the tangent bundle
TQ (using generalized velocities as part of the state) or the cotangent bundle T ∗Q (using generalized
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momenta as part of the state). Despite this difference, both coordinate systems are represented by
Poisson bivectors. Thus, by learning the bivector B to approximate the dynamics of a given system,
one can implicitly learn the coordinate system employed by that system.

B.2 ELECTRIC CIRCUITS

Our formulation is applicable to electric circuits, as summarized in Table 2. Let IX and VX denote
the current through and voltage across a circuit element X , respectively.

A capacitor with capacitance C has the electric charge Q as its state, and stores the energy HC =
1
2CQ

2. Its flow is the current IC , which leads to the change in the electric charge Q as Q̇ = IC . Its
effort is the voltage VC because the stored electric charge Q generates the voltage VC as VC = Q

C =
∂HC

∂Q .

An inductor with inductance L has the magnetic flux φ as its state, and stores the energy HL =
1
2Lφ

2. Its flow is the voltage VL, which leads to the change in the magnetic flux φ as φ̇ = VL. Its
effort is the current IL because the magnetic flux φ generates the current IL as IL = φ

L = ∂HL

∂φ .

Consider a system composed of an inductor L and a capacitor C coupled in series. The state space
M is the space of the magnetic flux φ and electric charge Q. The total energy is H = HL +HC ,
and its differential is dH = φ

Ldφ+ Q
C dQ. Define a bivector B = ∂

∂φ ∧ ∂
∂Q , which leads to

B♯(dH) =
φ

L

∂

∂Q
− Q

C

∂

∂φ
.

The vector field on M is X = φ̇ ∂
∂φ + Q̇ ∂

∂Q . Hamilton’s equations X = B♯(dH) lead to the
equations of motion:

VL = φ̇ = −Q

C
= −VC and IC = Q̇ =

φ

L
= IL.

However, electrical circuits that can be described as Poisson systems are limited to energy-
conservative LC circuits. Our formulation extends this to include resistors, diodes, voltage sources,
and current sources.

C DIRAC STRUCTURE

C.1 DIRAC STRUCTURE ON A VECTOR SPACE

Proof of Theorem 1(Yoshimura & Marsden, 2006a). By Definition 1,

D⊥
V = {(w,β) ∈ V × V ∗ | ⟨α,w⟩+ ⟨β,v⟩ = 0 for all v ∈ ∆ and α ∈ ∆◦}.

Let (v̄, ᾱ) ∈ DV . Then, v̄ ∈ ∆ and ᾱ ∈ ∆◦, so ⟨α, v̄⟩ + ⟨ᾱ,v⟩ = 0 for all (v,α) ∈ DV . This
implies (v̄, ᾱ) ∈ D⊥

V Thus, DV ⊂ D⊥
V .

Let (w,β) ∈ D⊥
V . In the above definition of D⊥

V , setting α = 0 gives ⟨β,v⟩ = 0 for all v ∈ ∆.
Hence, β ∈ ∆◦. Similarly, setting v = 0 gives ⟨α,w⟩ = 0 for all α ∈ ∆◦, which implies w ∈ ∆.
Hence, (w,β) ∈ DV . Thus, D⊥

V ⊂ DV .

Therefore, DV = D⊥
V .

C.2 DIRAC STRUCTURE ON A MANIFOLD

Definition 4 (Courant (1990); Yoshimura & Marsden (2006a)). A distribution ∆ on a manifold
M is a collection of vector subspaces ∆u of tangent spaces TuM, each assigned smoothly to M
at point u, forming a vector subbundle of TM. The annihilator ∆◦ of ∆ is a collection of the
annihilator ∆◦

u of ∆u, also forming a subbundle of T ∗M. Then, a Dirac structure D is constructed
as D = ∆⊕∆◦, which is a subbundle of the Pontryagin bundle TM⊕ T ∗M.

A type of Dirac structure on a manifold M can be defined using a symplectic form Ω on M.
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Theorem 3 (Yoshimura & Marsden (2006a)). Let ∆M be a distribution on a manifold M. Let Ω
be a symplectic form on a manifold M. Ω is restricted to ∆M and denoted by Ω∆M . Then, the
collection of

(D∆M)u = {(v,α) ∈ TuM× T ∗
uM |v ∈ (∆M)u,

and ⟨α,w⟩ = (Ω∆M)u(v,w) for all w ∈ (∆M)u}

is a Dirac structure D∆M ⊂ TM⊕ T ∗M on M, which is said to be induced by Ω.

Proof of Theorem 3(Yoshimura & Marsden, 2006a). By definition, the orthogonal of D∆M at u ∈
M is given by

(D⊥
∆M

)u = {(w,β) ∈ TuM× T ∗
uM | ⟨α,w⟩+ ⟨β,v⟩ = 0 for all v ∈ (∆M)u,

and ⟨α,w⟩ = (Ω∆M)u(v,w) for all w ∈ (∆M)u}.

Let (v,α), (v̄, ᾱ) ∈ (D∆M)u, ⟨α, v̄⟩+⟨ᾱ,v⟩ = Ω∆M(v, v̄)+Ω∆M(v̄,v) = 0. The latter equality
holds because of the skew-symmetry of Ω. This implies (v,α) ∈ (D⊥

∆M
)u. Thus, (D∆M)u ⊂

(D⊥
∆M

)u.

Let (w,β) ∈ (D⊥
∆M

)u. Then, ⟨α,w⟩ + ⟨β,v⟩ = 0 for all (v,α) ∈ (D∆M)u. First, setting
v = 0 gives ⟨α,w⟩ = (Ω∆M)u(0,w) = 0 for any α ∈ (∆◦

M)u. Thus, w ∈ (∆◦
M)◦u = (∆M)u.

Second, if α satisfies ⟨α,w⟩ = (Ω∆M)u(v,w) for any v ∈ (∆M)u, then ⟨α,w⟩ + ⟨β,v⟩ =
(Ω∆M)u(v,w) + ⟨β,v⟩ = 0 for any v ∈ (∆M)u. This implies ⟨β,v⟩ = (Ω∆M)u(w,v) for
any v ∈ (∆M)u. Because it has been proved that w ∈ (∆M)u, (w,β) ∈ (D∆M)u. Thus,
(D⊥

∆M
)u ⊂ (D∆M)u.

Therefore, (D∆M)u = (D⊥
∆M

)u.

Definition 5 (Hamilton-Dirac System (Yoshimura & Marsden, 2006b)). Let M be a manifold, H :
M → R be an energy function, and D be a Dirac structure on M. Given a vector field XH on M,
if it holds for each u(t) ∈ M and t ∈ [a, b] that

((XH)u(t),dHu(t)) ∈ (D∆M)u(t),

the tuple (H,D∆M , XH) is called a Hamilton-Dirac system (or implicit Hamiltonian system).

Note that the symplectic form restricted to a distribution ∆M, denoted by Ω∆M , satisfies
(Ω∆M)u(v,w) = Ωu(v,w) for any v,w ∈ (∆M)u. The symplectic form Ω is degenerate in the
sense that its bundle map Ω♭ on the tangent space TuM is degenerate, but Ω∆M is non-degenerate
on the distribution (∆M)u. If there is no constraint, ∆M = TM and Ω∆M = Ω. When the Dirac
structure D is given as in Theorem 3 with no constraint, the Hamilton-Dirac system is identical
to the Hamiltonian system Ω♭(XH) = dH in Eq. (2). The distribution ∆M describes constraints
on the velocities, and hence constrained Hamiltonian systems can be rewritten as Hamilton-Dirac
systems. Therefore, Hamiltonian-Dirac systems are generalizations of Hamiltonian and constrained
Hamiltonian systems. For example, the system in Appendix A.2 can be written as a Hamilton-Dirac
system as follows:

Degenerate Systems as Hamilton-Dirac Systems The distribution ∆M is given by (∆M)u =
{(q̇1, q̇2, ṗ1, ṗ2) ∈ TuM | q̇1 − q̇2 = 0, ṗ1/m1 − ṗ2/m2 = 0} = span{ ∂

∂q1
+ ∂

∂q2
, 1
m1

∂
∂p1

+
1
m2

∂
∂p2

}. Define the new coordinates q = q1 = q2 and p = m1+m2

m1
p1 = m1+m2

m2
p2, with

∆M = span{ ∂
∂q ,

∂
∂p}. The symplectic form Ω∆M restricted to the distribution ∆M should satisfy

(Ω∆M)u(v,w) = Ωu(v,w) for any v,w ∈ (∆M)u at u. Such form is given as Ω∆M = dq ∧ dp.
Then, the equations of motion are written as q̇ = p

m1+m2
, ṗ = −(k1 + k2)q.

C.3 PORT-BASED SYSTEMS

Proof of Theorem 2. By definition, the orthogonal of D at u ∈ M is given by

D⊥
u = {(f̄ , ē) ∈ Fu × Eu | ⟨e, f̄⟩+ ⟨ē,f⟩ = 0 for all e ∈ Eu and f = B♯

u(e)}.
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Let (f , e), (f̄ , ē) ∈ Du. Then, ⟨e, f̄⟩ + ⟨ē,f⟩ = ⟨e, B♯
u(ē)⟩ + ⟨ē, B♯

u(e)⟩ = Bu(e, ē) +
Bu(ē, e) = 0 due to the skew-symmetry of B. This implies (f , e) ∈ D⊥

u . Thus, Du ⊂ D⊥
u .

Let (f̄ , ē) ∈ D⊥
u . Then, for any (f , e) ∈ Du (i.e., for any e ∈ Eu and f = B♯

u(e)), 0 = ⟨e, f̄⟩ +
⟨ē,f⟩ = ⟨e, f̄⟩ + ⟨ē, B♯

u(e)⟩ = ⟨e, f̄⟩ + Bu(ē, e) = ⟨e, f̄⟩ − Bu(e, ē) = ⟨e, f̄⟩ − ⟨e, B♯
u(ē)⟩.

⟨e, f̄⟩ = Bu(e, ē) for all e ∈ Eu implies that f̄ = B♯
u(ē). Thus, D⊥

u ⊂ Du.

Therefore, Du = D⊥
u .

By extending the above Hamilton-Dirac system from the Pontryagin bundle TM ⊕ T ∗M to the
vector bundle F ⊕ E , we obtain the so-called port-Hamiltonian systems (Courant, 1990; van der
Schaft & Jeltsema, 2014). However, previous neural network-based methods employed the canoni-
cal form in Eq. (4) and have not attempted to identify coupling patterns or component-wise charac-
teristics (Zhong et al., 2020; Eidnes et al., 2023; Neary & Topcu, 2023; Di Persio et al., 2024).

In a bond graph representation of a dynamical system, a bond represents a component, its ports (flow
and effort) represent points of interaction with other bonds, and the arrows connected to the ports
represent the interactions between them. Both the Port-Hamiltonian and our formulations, as well
as their terminology, are based on this bond graph structure (Duindam et al., 2009).

Instead of the symplectic form Ω, our formulation employs (Poisson) bivector B to define the Dirac
structure D on the tangent and cotangent bundles (TuM = FS and T ∗

uM = ES) plus the vector
bundles for port variables (FR, FI , ER, and EI ). As is the case with the symplectic form Ω, we
can constrain a Poisson bivector B on a codistribution ∆∗

M, which is a subbundle of the cotangent
bundle T ∗M, and then define the Dirac structure. However, because the bivector inherently handles
constraints, we did not adopt this formulation. Thus, our formulation is a special case of the Poisson-
Dirac formulation with ports, as summarized in Table 1. Note that, for a bivector to be called a
Poisson bivector, it must satisfy certain conditions, such as the Jacobi identity (Courant, 1990).
However, the learned bivector in our formulation does not necessarily satisfy these conditions, nor
are these conditions required for the proofs presented earlier. Thus, throughout this paper, we refer
to B simply as a bivector, without restricting it to being a Poisson bivector.

D DATASETS AND EXPERIMENTAL SETTINGS

D.1 IMPLEMENTATION DETAILS

Following previous studies (Greydanus et al., 2019; Matsubara et al., 2020), we used fully-connected
neural networks with two hidden layers to implement any vector fields and energy functions for all
models. Each hidden layer had 200 units, followed by a hyperbolic tangent activation function.
Weight matrices were initialized using PyTorch’s default algorithm.

In PoDiNNs, each element of the bivector B related to energy-dissipating components was initial-
ized from a uniform distribution U(−0.1, 0.1), while the remaining elements are set to zero. These
bivector elements were updated along with the neural network parameters. Elements representing
incompatible couplings are constrained to be zero. For instance, masses cannot couple directly with
each other but can couple with springs, dampers, or external forces.

Unless stated otherwise, the time step size was set to ∆t = 0.1. Each training subset consisted of
1,000 trajectories of 1,000 steps, and each test subset consisted of 10 trajectories of 10,000 steps.
The Dormand–Prince method (dopri5) with absolute tolerance atol = 10−7 and relative tolerance
rtol = 10−9 was used to integrate the ground truth ODEs and neural network models (Dormand &
Prince, 1986). The Adam optimization algorithm (Kingma & Ba, 2015) was applied with parameters
(β1, β2) = (0.9, 0.999) and a batch size of 100 for updates. The learning rate was initialized at 10−3

and decayed to zero using cosine annealing (Loshchilov & Hutter, 2017). The number of training
iterations was set to 100,000.

All experiments were conducted on a single NVIDIA A100 GPU.
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D.2 MECHANICAL SYSTEMS

Overview and Experimental Setting A spring k generates a force that restores it to its original
length when stretched or compressed. Specifically, this force is given by eS = −k(∆q), where ∆q
is the spring’s displacement. In both the Hamiltonian and our formulations, the potential energy U
is obtained by integrating this force eS with respect to the displacement ∆q. Conversely, the force
eS is obtained as to the partial derivative of the potential energy U with respect to the displacement
∆q. The spring’s flow fS is the rate of extension, ∆q̇.

A mass m has a velocity v, and its momentum is given by p = mv. The kinetic energy is 1
2mv2 =

1
2mp2. In general, velocity v is more easily observed than momentum p as the state of a mass.
Therefore, we provided velocity v as the observation.

Coupling between two components means the output (effort) of one flows into the input (flow)
of the other. Hence, possible couplings are limited to interactions between potential and kinetic
components, as shown in Table 2. Specifically, the following couplings are possible: mass and
spring ∂

∂pi
∧ ∂
∂qj

, mass and damper ∂
∂pi

∧ ξRj , mass and external force ∂
∂pi

∧ ξIj , moving wall and

spring ξIi ∧ ∂
∂qj

, and moving wall and damper ξIi ∧ ξRj . These combinations were incorporated as
elements of the learnable bivector B, while all other possible pairings were fixed to zero.

In the absolute coordinate system, the positions qi are used to represent the states of the springs, and
their displacements ∆qi are then calculated within the potential energy function U . Therefore, the
potential energy function U depends on all positions qi of springs and moving boundaries collec-
tively. In the relative coordinate system, the displacements ∆qi are used instead, and in this case,
the potential energy function Ui is defined individually for each displacement ∆qi.

In both Dissipative SymODENs and PoDiNNs, since we assume to know the symbolic expression
1

2mp2 for the kinetic energy, this was used, rather than a neural network. Also, the velocity v was
transformed into momentum p using the learnable parameter m with p = mv. This approach was
originally adopted by Dissipative SymODENs and is a realistic and practical choice.

For Dissipative SymODENs and PoDiNNs in the absolute coordinate system, a single neural net-
work was trained to approximate the potential energy function U using all positions qi of springs
and moving boundaries as inputs. In the relative coordinate system, a separate neural network Ui
was used for the potential energy of each spring ki.

For Dissipative SymODENs, the dissipative terms D and input gain G were modeled using neural
networks. In the original paper (Zhong et al., 2020), D was defined as a symmetric matrix that
depended solely on the positions q of the springs, which is suitable for modeling linear dampers. To
extend this to nonlinear dampers, we modified D to also depend on the velocity v of the masses.

(a) Mass-Spring-Damper System with External Force This system consists of three springs ki
and three masses mi arranged sequentially and indexed by i ∈ {1, 2, 3} from a fixed wall. Two
dampers d1 and d3 are placed in parallel with springs k1 and k3, respectively. An external force is
applied to mass m3.

The masses were set to mi = 0.8 + 0.2i. The characteristics of the nonlinear spring were given by
ki(∆qi) = (0.1+0.1i)∆qi+0.1∆q3i . The characteristics of the nonlinear dampers were defined as
di(vi) = (0.1 − 0.02i) sgn(vi)|vi|1/3, where vi denotes the extension velocity of the i-th damper,
and sgn is the sign function that returns 1 for a positive value and −1 for a negative value. The
initial positions of the springs and the initial velocities of the masses were sampled from the uniform
distributions U(−0.5, 0.5) and U(−0.3, 0.3), respectively. The external force eI(t) was defined as
the sum of three sine waves, with each wave’s amplitude, angular velocity, and initial phase sampled
from the uniform distributions U(0.2, 0.5), U(0.1π, 0.2π), and U(0, 2π), respectively.

(b) Mass-Spring-Damper System with Moving Boundary This system consists of three springs
ki and three masses mi arranged sequentially and indexed by i ∈ {1, 2, 3} from a moving wall b.
Three dampers di are placed in parallel with springs ki. This potentially represents a building’s
response during an earthquake.

The masses were set to mi = 1.6 − 0.2i. The characteristics of nonlinear spring were given by
ki = (0.6 − 0.1i)∆qi + 0.1∆q3i , where ∆qi denotes the displacement of the i-th spring. The
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characteristics of nonlinear damper were defined as di(vi) = d̃i sgn(vi)|vi|1/3 for d̃1 = 0.10, d̃2 =

0.05, and d̃3 = 0.02. The initial positions of springs ki and the initial velocities of masses mi were
sampled from the uniform distributions U(−0.5, 0.5) and U(−0.3, 0.3), respectively. The position
qb of moving wall b was set as the sum of three sine waves, with each wave’s amplitude, angular
velocity, and initial phase sampled from the uniform distributions U(0.2, 0.4), U(0.05π, 0.2π), and
U(0, 2π), respectively.

In the absolute coordinate system, it is necessary to represent the potential energy of spring k1
connected to the moving wall b. For both Dissipative SymODENs and PoDiNNs, the position qb of
the moving wall b was included as part of the inputs to the neural network U for the potential energy,
along with the positions qi of all springs ki. It was also fed to Neural ODEs.

The effort eI of the moving wall b was its velocity vb, which was fed to PoDiNNs and Neural ODEs
as part of the external inputs. However, no such mechanism exists for Dissipative SymODENs.
Without this, models cannot represent the force generated by damper d1, connected to moving wall
b.

(c) Mass-Spring System with Redundancy This system consists of five springs ki and two
masses mi arranged in 2-dimensional space, as shown in Fig. 2 (c). Masses m1 and m2 are con-
nected to a fixed wall via springs k1 and k2, respectively. These masses are also connected to
each other by spring k3. Additionally, springs k4 and k5 diagonally connect masses m2 and m1

to the fixed wall, respectively, similar to cross braces. Since there are no energy-dissipating com-
ponents or external inputs, the total energy is conserved. The masses were set to m1 = 5.0 and
m2 = 3.0. The natural lengths of spring k1 and k2 to l1 = 3.0, that of k3 to l3 = 4.0, and those
of k4 and k5 to l4 = 5.0. The characteristics of nonlinear spring were k1(∆q) = 2.5∆q + 3.4∆q3,
k2(∆q) = 3.0∆q + 0.5∆q3, k3(∆q) = 2.1∆q + 4.1∆q3, k4(∆q) = 3.5∆q + 2.4∆q3, k5(∆q) =
2.5∆q + 1.6∆q3 for the displacement ∆q. The initial positions of masses m1 and m2 were sam-
pled from uniform distributions U(−0.5, 0.5) in both x and y directions, and their velocities from
U(−0.1, 0.1).

Because of two masses in 2-dimensional space, the system has 4 degrees of freedom for configu-
ration, or 8 when including velocities. However, the observations were composed of the velocities
of both masses and the displacements of all five springs, resulting in a 14-dimensional observation
space M. Hence, the dynamics is degenerate.

Due to the degeneracy, HNNs are not applicable (Greydanus et al., 2019). Also, since this degener-
acy does not come from a holonomic constraint, CHNNs are also not applicable (Finzi et al., 2020).
In PNNs, we used a Real-NVP consisting of four coupling layers for the coordinate transformation.
Each coupling layer was made of a fully-connected neural network with two hidden layers of 200
units, followed by a hyperbolic tangent activation function. The 14-dimensional observations were
transformed, and the eight dimensions were extracted (with the remaining six dimensions considered
constant) as input to the energy function of HNNs.

D.3 ELECTRICAL SYSTEMS

Overview and Experimental Settings Refer to Appendix B.2 for basic characteristics of capaci-
tors and inductors. Since the electric charge is analogous to displacement, a capacitor corresponds
to a spring, while an inductor corresponds to a mass in mechanical systems.

The states of a capacitor C and inductor L are the electric charge Q and magnetic flux φ, respec-
tively, but these are difficult to observe directly. We used the capacitor voltage VC = Q/C and
inductor current IL = φ/L as the observations, which linearly correlate with their states. PoDiNNs
learned the element characteristics C and L as learnable parameters and internally performed the
transformations Q = CVC and φ = LIL. This is the same approach used by Dissipative SymOD-
ENs for masses. Strictly speaking, since PoDiNNs can learn coordinate transformations, they can
approximate the dynamics even without such transformations.

In a mass-spring-damper system, the damper always has velocity as flow and force as effort, but
the flow of a resistor can be either current or voltage. This depends on the overall coupling pattern
and the formulation step, though the total number remains constant. If two resistors with different
types of flow are coupled, PoDiNNs would result in a DAE, which cannot be solved explicitly. Ad-
ditionally, components that share the same effort type, such capacitors and current voltage sources,

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

may couple. In this case, an infinite current instantaneously flows into the capacitor, and its voltage
matches that of the direct voltage source. This dynamics also requires a DAE, rather than an ODE.
In this study, we assumed that the system does not include couplings requiring DAEs. Methods
capable of handling such circuits will be a topic for future research.

A separate neural network was used for approximating the characteristics of each energy-storing and
dissipating component.

(d) FitzHugh-Nagumo Model FitzHugh-Nagumo model is a model for the electrical dynamics of
a biological neuron, exhibiting oscillatory behavior when the external current J is applied (Izhike-
vich & FitzHugh, 2006). The governing equations are written as:

V̇ = V − V 3

3
−W + J,

Ẇ = 0.08(V + 0.7− 0.8W ),

(A1)

where V denotes the membrane potential, W is the recovery variable, and J is the input.

A circuit representation consists of a resistor R2, an inductor L, a capacitor C, a current voltage
source E, and a tunnel diode R1, with an external current J . The characteristics of these elements
are defined as L = 1/0.08, R2 = 0.8, C = 1.0, and E = −0.7. The current IR1

through tunnel
diode R1 is characterized by IR1

= D(VR1
) = V 3

R1
/3 − VR1

, where VR1
is the voltage across the

diode. The membrane potential V and recovery variable W are represented by the capacitor voltage
VC and the inductor current IL. In our formulation, resistor R2 and diode R1 have the current
and voltage as their flows, respectively. Also, because the voltage generated by the current voltage
source E is unchanged for any trials, it can be treated as a part of resistor R2.

The initial values of V and W were sampled from the uniform distribution U(−3.0, 3.0). The
external current J was sampled at evenly spaced intervals within the range of 0.1 to 1.5 for each
trajectory, and it was kept constant within each individual trajectory to evaluate whether each model
can learn the oscillatory behavior.

Since the external current J was kept constant, the variability of the dynamics was reduced, making
the learning process easier. To preserve the challenge of the task, only 30 trajectories were generated
for the training subset.

(e) Chua’s Circuit Chua’s circuit is a nonlinear electronic circuit known for its chaotic behav-
ior (Chua, 2007). It consists of linear elements (a resistor R1, two capacitors C1 and C2, and an
inductor L) and a nonlinear element R2, known as Chua’s diode. With R1 = 1, the governing
equations are:

V̇C1 = α(VC2 − VC1 − f(VR2)),

V̇C2
= VC1

− VC2
+ IL,

İL = −βVC2
,

VR2 = VC1 .

(A2)

The parameters are α = 1/C and β = 1/L. The nonlinear function f(VR2) describes the voltage-
current characteristic of Chua’s diode:

f(VR2) = m1VR2 + 0.5(m0 −m1)(|VR2 + 1| − |VR2 − 1|), (A3)

where VR2 is the voltage across the diode, equal to VC1 , and m0 and m1 are parameters. In our
formulation, both resistor R1 and diode R2 have voltages as flows.

We set α = 15.6, β = 28, m0 = −8/7, and m1 = −5/7. The initial values of VC1
, VC2

, and IL
were sampled from the uniform distribution U(−0.5, 0.5).

Due to its chaotic behavior, we set the time step size to ∆t = 0.01 and the number of training
iterations to 1,000,000.

D.4 MULTIPHYSICS

Overview A multiphysics system involves components from different domains that are coupled
together. Our formulation inherently handles multiphysics systems as long as careful attention is
paid to which components can and cannot be coupled.
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(f) DC Motor

In this system, a DC motor bridges the electro-magnetic and the rotational domains. In the electric
circuit, an inductor L and a resistor R represent the inductance and resistance of the motor’s armature
winding, respectively. Additionally, a voltage source E serves as an external input. A massless
pendulum rod of length l is attached to the DC motor. The pendulum’s angle θ is measured from the
vertical position, and its angular velocity is denoted by ω. With a mass m at the rod’s end and the
gravitational acceleration g, the pendulum has a potential energy of −mgl cos θ and experiences a
torque of −mgl sin θ. Additionally, friction d occurs at the pivot point of the pendulum.

The DC motor generates torque τDC based on the current IDC through the armature. We assume a
linear relationship with constant K, such that τDC = KIDC . Conversely, when the motor rotates at
an angular velocity ω, it produces a back electromotive force given by VDC = −Kω. The governing
equations are:

θ̇ = ω,

ml2ω̇ = −mgl sin θ +KI − d(ω),

Lİ = −ωK + E −R(I).

We set L = 2.5, m = 2.0, l = 1.5, g = 1.0, and K = 0.5, respectively. Also, we set d(ω) =
0.02 sgn(ω)|ω|1/3 for friction d, and R(I) = 0.05I3 for resistor R.

PoDiNNs can model this multiphysics system seamlessly. In the magnetic domain, inductor L has
magnetic flux φ = LI as its state, voltage as its flow, and current as its effort. For the pendulum’s
motion in the rotational domain, the state is angular momentum p = ml2ω, the flow is torque, and
the effort is angular velocity (see Table 2). Because the properties of the armature are represented by
inductor L and resistor R, the remaining function of the DC motor can be represented by a coupling
between inductor L and the pendulum’s motion p, that is, the bivector element K ∂

∂φ ∧ ∂
∂p . Both

inductor L and mass m are considered to store kinetic energies, and this type of coupling is referred
to as a gyrator.

Therefore, the only notable point for the implementation is that magnetic flux φ and angular mo-
mentum p, which belong to different domains, can be coupled. Since there are only a few elements
in each domain, the coupling patterns are unique, and their strengths were set to 1.0 while keeping
the coefficient K of the bivector element ∂

∂φ ∧ ∂
∂p learnable.

(g) Hydraulic Tank Consider a hydraulic tank storing incompressible fluid, which belongs to the
hydraulic domain and can couple with components in the mechanical domain. Let V denote the
volume of the fluid inside the tank. The tank has a cross-sectional area A and a fluid height h,
giving the relationship V = Ah. Let ρ represent the density of the fluid per unit volume, and g the
gravitational acceleration. The pressure p exerted on the bottom of the tank per unit area is given by
p = ρgh = ρgV

A , and the total force acting on the bottom surface is ρghA.

Assuming that fluid is supplied from the bottom of the tank, the potential energy stored in the tank
can be expressed as:

UV =

∫ h

0

ρghAdh =
1

2
ρgh2A =

ρg

2A
V 2.

Then, ∂UV

∂V = ρgV/A = p.

Consider two cylinders attached in opposite directions at the bottom of the tank, with cross-sectional
areas a1 and a2. Each cylinder contains a piston, with masses m1 and m2, respectively. The forces
acting on the pistons are −pa1 and pa2, where the positive direction is towards m2. When piston m1

moves by a displacement q1, a volume of fluid a1q1 flows into the tank. Similarly, when piston m2

moves by q2, a volume a2q2 flows out of the tank. For simplicity, we assume that these inflows and
outflows occur adiabatically, without any resistance. However, compressible fluids, non-adiabatic
process, fluid momentum, and fluid resistance could also be incorporated (Duindam et al., 2009).

Each piston mi moves with a velocity vi, and is connected to a fixed wall via a spring ki and a
damper di for each i. An external force F is applied to piston m2.
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The equations of motion for the system can be written as:

V̇ = a1v1 − a2v2,

m1v̇1 = −pa1 − k(q1)− d1(v1),

m2v̇2 = pa2 − k(q2)− d2(v2),

Each piston has kinetic energy, and each spring has potential energy. The state of each piston can be
expressed as momentum, pi = mivi, and the state of the spring can be described by the displacement
qi for each i. Thus, the total energy of the system is given by:

H =

2∑
i=1

p2i
2mi

+

2∑
i=1

Ui(qi) +
ρg

2A
V 2,

where Ui denotes the potential energy stored in spring ki, as well as the characteristics of dampers
di.

The above equations of motion can be expressed using the energy function H with the following
bivector B:

B =a1

(
∂

∂p1
∧ ∂

∂V

)
− a2

(
∂

∂p2
∧ ∂

∂V

)
+

∂

∂p1
∧ ∂

∂q1
+

∂

∂p2
∧ ∂

∂q2

+
∂

∂p1
∧ ξR1 +

∂

∂p2
∧ ξR2 − ∂

∂p2
∧ ξI ,

where ξRi and ξI represent the basis vectors of the spaces FR and FI for dampers di and external
force F , respectively.

From this, it seems that the hydraulic tank behaves similarly to a spring, but the key difference is
that the coupling strength depends on the cross-sectional areas a1 and a2 of the cylinders. This type
of coupling is referred to as a transformer. If the cross-sectional area of the tank is not constant, the
tank would behave like a nonlinear spring.

We set the parameters as follows: A = 5.0, g = 1.0, ρ = 10.0, a1 = 1.0, a2 = 0.3, m1 = 3.0, and
m2 = 1.0. The spring forces were defined as ki(qi) = 0.1qi + 0.01q3i , and the damping forces as
di(vi) = (0.1− 0.04i) sgn(vi)|vi|1/3 for i = 1, 2.

As the system tends to reach equilibrium around V = 5, q1 = −10, and q2 = 6, the initial fluid
volume V and the springs’ displacements q1 and q2 were sampled from the uniform distributions
U(5− 0.25, 5 + 0.25), U(−10− 0.3,−10 + 0.3), and U(6− 0.3, 6 + 0.3), respectively, The initial
velocities of the pistons were sampled from the uniform distribution U(−0.3, 0.3). The external
force eI(t) was defined as the sum of three sine waves, where the amplitude, angular velocity, and
initial phase of each wave were sampled from the uniform distributions U(0.05, 0.2), U(0.1π, 0.3π),
and U(0, 2π), respectively.

In Fig. 3, for clarity, we displayed the changes relative to 5, −10, and 6, rather than the actual values
of V , q1, and q2.

E ADDITIONAL RESULTS AND DISCUSSIONS

E.1 ADDITIONAL RESULTS

Additional Visualization We show example visualizations of trajectories and absolute errors in
Fig. A1 in addition to Fig. 3. Across all datasets, PoDiNNs demonstrate superior predictive perfor-
mance compared to other methods. However, in both systems (b) and (b’), there was one failure.
This was due to minor inaccuracies in the learned bivectors, as discussed later. While this issue
only occurred twice out of 90 trials, it indicates that there is room for further improvement of the
initialization and regularization of bivector elements.

Identifying Coupling Patterns of System (b) We examined how the bivector B identifies the
coupling patterns using system (b), that is, the mass-spring-damper system with moving boundary.
When two coefficients differ by a factor of 1,000 or more, we considered the larger one as a detected
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Figure A1: Visualizations of example results. Each top panel shows ground truth trajectories, while
the other panels show the absolute errors of all 10 trials in semi-transparent color. See also Fig. 3.

coupling and the smaller one as effectively zero, indicating no coupling. The basis vector ∂
∂qi

corresponds to spring ki, ∂
∂pi

to mass mi, and ξS to moving boundary b.

In the relative coordinate system, we obtained the bivector B = ( ∂
∂p1

− ξS) ∧ ( ∂
∂q1

+ a1ξ
R
1 ) +

( ∂
∂p2

− ∂
∂p1

) ∧ ( ∂
∂q2

+ a2ξ
R
2 ) + ( ∂

∂p3
− ∂

∂p2
) ∧ ( ∂

∂q3
+ a3ξ

R
3 ) in all 10 trials. Here, the basis vectors

ξR1 , ξR2 , and ξR3 for dampers d1, d2, and d3 were appropriately reordered because their indices are
interchangeable. a1, a2, and a3 are trial-wise positive parameters. This result matches the ground
truth coupling pattern in Fig. 2 (b). Notably, the coefficients of other bivector elements, such as
ξS ∧ ∂

∂q3
and ∂

∂p3
∧ ∂

∂q2
, were effectively zero, indicating that PoDiNNs correctly identified the

absence of non-existent couplings.

The coefficients expected to be 1 or −1 were accurate to five significant figures in 9 out of 10 trials.
However, in one trial, there was a small error of approximately 0.002. This trial corresponded with
the failure case shown in Fig. A1. This suggests that even minor errors in the coefficients of the
bivector elements can lead to significant prediction failures. Nonetheless, as mentioned earlier, such
occurrences are extremely rare.

Identifying Coupling Patterns of System (b’) In the absolute coordinate system, we obtained
the bivector B = ∂

∂p1
∧ ∂
∂q1

+ ∂
∂p2

∧ ∂
∂q2

+ ∂
∂p3

∧ ∂
∂q3

+ a1(
∂
∂p1

− ξS) ∧ ξR1 + a2(
∂
∂p2

− ∂
∂p1

) ∧
ξR2 + a3(

∂
∂p3

− ∂
∂p2

) ∧ ξR3 in 9 out of 10 trials, where coefficients with a difference of less than 1%
were considered identical. The relationship between the masses and the springs is represented by the
standard Poisson bivector

∑
i
∂
∂pi

∧ ∂
∂qi

, as indicated by the first three terms. Due to this, PoDiNNs
cannot identify their specific coupling pattern. The springs’ displacements are computed internally
within the potential energy function. However, we can still identify how the dampers are coupled
with the masses and the moving boundary, as indicated by the latter three terms. In one trial, the
coefficients of bivector elements between the dampers and masses were disorganized, and this trial
corresponded with the failure case shown in Fig. A1.

Identifying Coupling Patterns of System (c) We also examined case of system (c). We denote
the displacement of i-th spring in x-direction by qxi. The learned bivector B was B = ∂

∂mx1
∧
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∂
∂qx1

+ ∂
∂my1

∧ ∂
∂qy1

+ ∂
∂mx2

∧ ∂
∂qx2

+ ∂
∂my2

∧ ∂
∂qy2

− ∂
∂mx1

∧ ∂
∂qx3

− ∂
∂my1

∧ ∂
∂qy3

+ ∂
∂mx2

∧
∂

∂qx3
+ ∂

∂my2
∧ ∂
∂qy3

+ ∂
∂mx2

∧ ∂
∂qx4

+ ∂
∂my2

∧ ∂
∂qy4

+ ∂
∂mx1

∧ ∂
∂qx5

+ ∂
∂my1

∧ ∂
∂qy5

in all 10 trials.
The coefficients were exactly 1.0 or -1.0, accurate to five significant figures. This is because the
velocities of the masses and the displacements of the springs are all observable, and their scales are
known. However, the scales of spring constants ki and masses mi still cancel each other out, which
means the parameters cannot be uniquely determined for the system as a whole.

The masses and springs are coupled in either the x- or the y-directions, which implies that the data
is neatly separated along the x- and y-axes. From the bivector B, we can say the following; mass
m1 is coupled with springs k1 and k5, while mass m2 is coupled with springs k2 and k4; and spring
k3 is coupled with both masses m1 and m2, but the coupling to m1 is in the opposite direction.
This means that the coupling pattern shown in Fig. 2 (c) was fully identified. By reorganizing the
expression for B, we get B = ∂

∂mx1
∧ ( ∂

∂qx1
− ∂

∂qx3
+ ∂

∂qx5
) + ∂

∂my1
∧ ( ∂

∂qy1
− ∂

∂qy3
+ ∂

∂qy5
) +

∂
∂mx2

∧ ( ∂
∂qx2

+ ∂
∂qx3

+ ∂
∂qx4

) + ∂
∂my2

∧ ( ∂
∂qy2

+ ∂
∂qy3

+ ∂
∂qy4

), which indicates that system (c) has
eight degrees of freedom. In this way, PoDiNNs can identify the constraints and handle degenerate
dynamics.

Table A1: Impact of # Compo-
nents and VPT.

PoDiNNs Training Test

nd=0, ng =0 0.000±0.000 0.000±0.000
nd=1, ng =0 0.000±0.000 0.000±0.000
nd=2, ng =0 0.000±0.000 0.000±0.000
nd=3, ng =0 0.000±0.000 0.000±0.000
nd=4, ng =0 0.000±0.000 0.000±0.000
nd=5, ng =0 0.000±0.000 0.000±0.000
nd=0, ng =1 0.007±0.000 0.000±0.000
nd=0, ng =2 0.007±0.000 0.000±0.000
nd=0, ng =3 0.007±0.000 0.000±0.000
nd=0, ng =4 0.007±0.000 0.000±0.000
nd=0, ng =5 0.007±0.000 0.000±0.000

nd=1, ng =1 0.985±0.002 0.640±0.070
nd=1, ng =2 0.985±0.000 0.630±0.038
nd=2, ng =1 0.985±0.003 0.681±0.062
nd=2, ng =2 0.985±0.006 0.656±0.108
nd=2, ng =3 0.984±0.001 0.577±0.072
nd=3, ng =2 0.978±0.008 0.553±0.061
nd=3, ng =3 0.984±0.008 0.557±0.040

θ = 10−3 θ = 10−3

Impact of Number of Hidden Components for System (d)
In the electric circuits, the flow for resistors and diodes can
be either current or voltage, depending on their coupling with
other components. Let nd denote the assumed number of resis-
tors whose flow is current, and ng the assumed number of resis-
tors whose flow is voltage. We tested system (d), the FitzHugh-
Nagumo model, to explore the impact of the assumed numbers
nd and ng , and summarized the results in Table A1. The correct
numbers for this model are nd = 1 and ng = 1. When fewer
components are assumed, VPT values became significantly poor.
On the other hand, assuming more components yields similar ac-
curacy to the correct configuration. This trend is consistent in
both the training and test subsets. Therefore, similar to the case
with system (b) in Table 4, we can identify the number of un-
observable energy-dissipating components and their flow types
using the training subset.

E.2 ADDITIONAL DISCUSSIONS

Non-Identifiability The characteristic scales of the energy-storing and dissipating components
(e.g., spring constants k, masses m, and damper constants d) and the coefficients of the bivector
elements among them cancel each other out. Hence, the overall scale of the system is indeterminate.
Once the coupling pattern has been identified, the coefficients of the bivector elements can be nor-
malized, as shown in Section 4.2. If external forces are present, they determine the scale of force,
which, in turn, uniquely determines the scale of the coupled mass. This cascading effect determines
the system’s overall scale.

When the characteristics of elements are linear, different coupling patterns can result in the same
dynamics. Additionally, a weighted average of these coupling patterns can also be a valid solution.

While non-identifiability may be problematic for system identification, it does not impact prediction
accuracy.

Passivity and Convexity In understanding the behavior of dynamical systems, passivity can be
a crucial concept (Khalil, 2002). Passivity implies that the system always dissipates energy and,
without external inputs, converges to a stable invariant set. In PoDiNNs, general neural networks
are used to model energy-dissipating components, which may sometimes learn energy-supplying
characteristics, like a negative resistance. This flexibility is beneficial for learning special diodes
used in the FitzHugh-Nagumo model or Chua’s circuit, but it poses a problem when passivity is
desired in the system. A simple solution to this issue is to replace the general neural networks
with ones specialized for functions that have zero output for zero input and are monotonic non-
decreasing (Wehenkel & Louppe, 2019). This ensures the system remains passive. If convexity is
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required in the energy function, a neural network enforcing this property can be introduced (Amos
et al., 2017).

PoDiNNs decompose coupled systems into individual components, along with their coupling pat-
terns, and learn the specific characteristics of each component. This structure allows for the intro-
duction of constraints beforehand and ensure each component to meet the necessary properties. This
flexibility is another key advantage of PoDiNNs.

F RELATION TO PREVIOUS MODELS

In the main body, we have introduced PoDiNNs in a coordinate-free form for a general and theoret-
ical derivation. However, by introducing a specific coordinate system, we can rewrite PoDiNNs in
a more intuitive form at the cost of generality. In this section, we will clarify the relationship with
previous work through such rewrite.

As stated in Theorem 2, PoDiNNs use a bivector B to define the Dirac structure D as a subbundle
of F ⊕ E . When local coordinates xi are introduced on M, the corresponding basis vectors for
the tangent space TuM (that is, FS

u ) are ∂
∂xi

. Additionally, the basis vectors for FR
u and FI

u are
specified as ξRi and ξIi , respectively. The basis vectors for Eu are then defined as their duals. The
bivector B at u can be expressed as a linear combination of wedge products of pairs of basis vectors
for Fu = FS

u ⊕FR
u ⊕FI

u.

We assume that the state space M is a Euclidean space. Then, at a specific point u, flows f and
efforts e can be represented as vectors, and the linear bundle map B♯

u is represented as a skew-
symmetric matrix B♯

u ∈ Rm×m, where m denotes the total number of dimensions of Fu (Marsden
& Ratiu, 1999). A skew-symmetric matrix M satisfies the property M = −M⊤, which implies that
the maximum number of independent degrees of freedom is 1

2m(m − 1). This characteristic arises
from the skew-symmetry of the wedge product, particularly the relation ∂

∂xj
∧ ∂
∂xi

= − ∂
∂xi

∧ ∂
∂xj

.
Each bivector element corresponds to a specific pair of elements within this matrix.

In this context, the equation f = B♯
u(e) in Theorem 2 can be expressed with a matrix-vector

product: fSfR
f I

 = B♯
u

eSeR
eI

 .

By substituting the variables as in Definition 3, we obtain: u̇

fR

f I

 = B♯
u

∇uH(u)

Ru(f
R)

eI(t)

 ,

where the differential dH reduces to the gradient ∇uH in a Euclidean space.

In the absence of dissipation (R) and external inputs (I), the equation reduces to

u̇ = B♯
u∇uH(u).

This form aligns with those derived in NSFs and CHNNs, up to certain constraints imposed on the
matrix (Chen et al., 2021; Finzi et al., 2020). In this sense, PoDiNNs are a generalization of these
previous models. Since NSFs are a generalization of LNNs, PoDiNNs are also a generalization of
LNNs.

Furthermore, if the Darboux coordinates are introduced on M, the state u can be decomposed into
the position q and momentum p, and the bivector B takes the standard form

∑
i
∂
∂pi

∧ ∂
∂qi

. The
equation reduces to: [

q̇

ṗ

]
=

[
O I

−I O

] [
∇qH(q,p)

∇pH(q,p)

]
,

where u = [ qp ]. This is identical to Hamilton’s equations in Eq. (1), which is the form HNNs
employed. Therefore, PoDiNNs are a generalization of HNNs. If the target system is known to be
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learnable by HNNs, it is also learnable by PoDiNNs of the form identical to HNNs. Consequently,
a performance comparison between PoDiNNs and HNNs is not meaningful.

In general, the coordinate systems are not limited to the Darboux coordinates, components can
exhibit a variety of coupling patterns, and the matrix B♯

u can contain elements beyond the restricted
values of -1, 0, or 1. The state u is not confined to mechanical position and momentum; it may also
be decomposed into various quantities such as electric charge, voltage, or the volume of fluid in a
tank, depending on the domain from which these states are derived, as shown in Table 2.
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