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Abstract—The prescribed performance event-triggered optimal
tracking control problem is considered for a class of uncertain
strict-feedback nonlinear systems with external disturbances. The
disturbance observers are employed to estimate external distur-
bances. The fuzzy logic systems are employed to approximate
unknown nonlinearities and cost function. The controller contains
an adaptive fuzzy controller and an optimal compensation term.
Firstly, an adaptive fuzzy controller is established by the dynamic
surface control (DSC) technique, which is addressed to handle
“computation complexity” issue occurred in conventional back-
stepping approach. An event-triggered mechanism is established
to reduce communication load. Subsequently, based on adaptive
dynamic programming (ADP) method, an optimal compensation
term is developed by minimizing the cost function. In addition,
the tracking error can be restricted in the prescribed region
with the aid of the prescribed performance control. Thus, the
whole control scheme can not only ensure that the tracking error
converges to a boundary with prescribed performance but also
minimize the cost function, reduce the communication burden
and avoid “computation complexit” issue. The boundedness of
all signals in the closed-loop is proved. Finally, the simulation
example illustrates the validity of the designed control scheme.

Index Terms—Fuzzy control, adaptive dynamic programming,
event-triggered control, prescribed performance, strict-feedback
nonlinear systems.

I. INTRODUCTION

As a matter of fact, strict-feedback nonlinear form can be
adopted to characterize many classical physical systems, such
as the hypersonic flight vehicle [1], spacecrafts [2], robot
manipulators [3] and so on. Thus, strict-feedback nonlinear
systems have received extensive attention and lots of remark-
able control approaches have been discussed. In particular,
adaptive backstepping method has been regarded as an effec-
tive approach in the control field of strict-feedback nonlinear
systems with uncertainties [4]. It is worth noting that there
exists a widespread class of uncertainties named unstructured
uncertainties, which cannot be modeled or repeated and bring
a great difficulty for controller design. To handle this chal-
lenge, adaptive control approaches with approximators were
explored to handle unstructured uncertainties using neural
network (NN) or fuzzy logic systems (FLSs) approximators,
for example, [5]. Nevertheless, these control schemes men-
tioned above suffered from a major limitation of “computation

complexity” problem. The “computation complexity” issue is
generated by the repeated derivation of the virtual controllers
in every step within the conventional backstepping method. To
cope with this weakness, the dynamic surface control (DSC)
technique was firstly presented in [6], in which the filtering
variable is generated via a first-order filter and the “computa-
tion complexity” can be eliminated. The DSC technique was
expanded to adaptive control area for strict-feedback nonlinear
systems with parametric uncertainties in [7]. Later, the NN-
based adaptive control for the SISO systems with arbitrary
uncertainty was proposed in [8]. Thereafter, in [9], combined
with “minimal learning parameter” technique, the adaptive
NN DSC control method proposed in [8] was improved to
settle the “ explosion of learning parameters” issue caused by
introducing NN as approximator for the investigated systems.
Recently, the DSC-based adaptive NN control scheme in [8]
was further extended for pure-feedback stochastic nonlinear
systems [10], nonstrict-feedback stochastic nonlinear systems
[11] and so on.

As a popular control method, optimal control has at-
tracted much attention, such as [12]. As we all know, for
linear systems, with the aid of dynamic programming (DP)
method, the optimal strategy is calculated associated with
Ricatti equation. For nonlinear systems, the optimal solu-
tion can be produced related to Hamilton-Jacobian-Bellman
(HJB) equation[13]. Nevertheless, the HJB equation can not
be obtained via numerical methods. To break through this
limitation, adaptive dynamic programming (ADP) method was
firstly developed by Werbos [14]. The basic idea of ADP is
to approximate the solution of HJB equation by using the
function approximation structure according to the optimality
principle. Murray et al. [15] firstly proposed the ADP-based
value iteration algorithm for continuous systems and proved
the convergence of algorithm, which is viewed as a major
improvement in ADP area. On the basis of [15], in [16],
the ADP-based policy iteration algorithm was designed to
approximate optimal saturation controller for nonlinear sys-
tems with saturation constraints. With the development of
ADP, some modified ADP algorithms have been derived. For
instance, in [17], a new concept called “min-Hamiltonian”



was defined, and an iterative ADP algorithm considering the
approximation error was established. In [18], by applying the
control input into the tracking error, the optimal strategy can
be yielded without taking the reference signal into account.
Based on ADP, many practical optimal control problems had
been investigated, such as [19] and [20]. These results made
a significant contribution on optimal control on the basis of
ADP method.

Some of the aforementioned control schemes can allow that
the error converges to a small residual set with unknown size.
In other words, control accuracy cannot be specified a priori
[21]. Nevertheless, in engineering fields, the designed control
scheme often requires to meet the prescribed transient and
steady-state performance. As an alternative, the prescribed
performance control (PPC) was developed in [22] for the
first time, which is an effective method to change the steady
state and transient state tracking error performance into the
performance constraints. With an error transformation, an
expected tracking performance can be obtained accordingly.
Subsequently, Bechlioulis and Rovithakis extended PPC to
MIMO strict-feedback nonlinear systems in [23]. Combined
with PPC, many researches have been carried out, such as neu-
ral control [24], sliding mode control[25], finite-time control
[26] and so on. Currently, numerous improved PPC approaches
have also been put forward to realize lower complexity. For
example, in [27], an improved PPC with low complexity was
provided to deal with the presence of discontinuous reference
signal.

These aforementioned results belong to time-driven-based
control methods. In the classical time-driven control frame-
work, the actuator updates at any time instant, which results
in wasting of resources and wearing of actuator. The event-
triggered (ET) control strategy has several advantages over
classical time-driven control strategy, such as releasing the
communication load, saving the computation resources and
reducing the abrasion of actuators [28]. Therefore, ET control
approaches have been extensively adopted for varied systems,
such as discrete-time systems [29], networked control systems
[30], stochastic systems [31], linear systems [32], constrained
nonlinear systems [33] and so on. The ET fuzzy controller
was developed for the considered system in [34].

The main contributions are summarized as follows.
(1) Compared with [35], [36] that did not employ PPC

technique, in this paper, to keep the transient state and
steady state performance within the predefined residual
set, a performance function is introduced in the procedure
of controller design, thus the tracking performance has
been improved.

(2) In this paper, the DSC method is combined with ADP
for the investigated systems. The proposed controller
is composed of an adaptive fuzzy controller and an
optimal compensation term, so that the stability of the
closed-loop system is guaranteed and the optimal tracking
performance is achieved.

(3) In contrast to [37] without discussing saving unnecessary
waste of communication, the relative-threshold-based ET

mechanism is applied to reduce the communication load.
Meanwhile, DSC technique is introduced to circumvent
the “computation complexity” issue in this paper.

The structure is listed as follows. In Section II, the consid-
ered system and some concepts are given. In Section III, the
main results for designing disturbance observer and controller
are presented. In Section IV, the stability analysis is provided.
Simulation results and conclusion are presented in Section V
and Section VI, respectively.

Notations: Throughout this article, for any value or function
ϱ, ϱ̂ denotes the estimation value. εfi(·), i = 1, · · · , n is the
approximation error.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. System Model

Give the model as follows

ẋi = fi(x̄i) + xi+1 + di(t), 1 ≤ i ≤ n− 1

ẋn = fn(x̄n) + u+ dn(t), n ≥ 2

y = x1

(1)

where x̄i = [x1, x2, . . . , xi]
T ∈ Ri, i = 1, . . . , n, denotes the

state vector, u ∈ R is the control input and y ∈ R is the output
of the system. fi(x̄i) ∈ R, i = 1, . . . , n is the unknown smooth
nonlinear function, and di(t) ∈ R, i = 1, . . . , n is unknown
external disturbance of the nonlinear system.
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