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Abstract

Entity Alignment, which aims to identify equiv-001
alent entities from various Knowledge Graphs002
(KGs), is a fundamental and crucial task in003
knowledge graph fusion. Existing methods004
typically use triple or neighbor information to005
represent entities, and then align those enti-006
ties using similarity matching. Most of them,007
however, fail to account for the heterogeneity008
among KGs and the distinction between KG009
entities and relations. To better solve these010
problems, we propose a Relation-gated Het-011
erogeneous Graph Network (RHGN) for entity012
alignment in knowledge graphs. Specifically,013
RHGN contains a relation-gated convolutional014
layer to distinguish relations and entities in the015
KG. In addition, RHGN adopts a cross-graph016
embedding exchange module and a soft relation017
alignment module to address the neighbor het-018
erogeneity and relation heterogeneity between019
different KGs, respectively. Extensive experi-020
ments on four benchmark datasets demonstrate021
that RHGN is superior to existing state-of-the-022
art entity alignment methods.023

1 Introduction024

Knowledge Graphs (KGs), which are sets of triples025

like (head entity, relation, tail entity), have been026

widely constructed and applied in various fields027

in recent years, such as DBpedia (Lehmann et al.,028

2015) and YAGO (Rebele et al., 2016). In the029

real world, a single KG is usually incomplete as030

limited sources can be collected by one KG. From031

this perspective, entity alignment, which aims to032

determine equivalent entities from various KGs, is033

a crucial task of knowledge graph fusion and is034

being increasingly researched (Sun et al., 2020c).035

Specifically, entity alignment is a task to find036

equivalent entities with the same color across two037

KGs, as illustrated in Figure 1. As the neighbors038

and relations of the same entity in various KGs039

are often different, also known as the heterogene-040

ity problem, it is time-consuming to find aligned041
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Figure 1: An example of entity alignment between two
KGs. Nodes with the same color refer to the same entity
in different graphs.

entities manually. To align the entities efficiently, 042

many embedding-based methods have been pro- 043

posed. Traditional methods (Chen et al., 2017; Zhu 044

et al., 2017) follow the translational principle, such 045

as TransE (Bordes et al., 2013), to represent entity 046

embedding, which consider the triples but disre- 047

gard the local neighbors. Recently, many methods 048

(Wang et al., 2018; Sun et al., 2020b) have adopted 049

the Graph Convolutional Network (GCN) and its 050

variants to capture local neighbor information due 051

to the GCNs’ remarkable ability (Welling and Kipf, 052

2016). Additionally, researchers have proposed 053

some models to utilize relations as weights (Cao 054

et al., 2019) or information (Mao et al., 2021; Yu 055

et al., 2021) in the GCN-based framework. De- 056

spite this, the following two primary challenges 057

have been encountered by the vast majority of prior 058

methods when attempting to use relation informa- 059

tion to solve KG heterogeneity: 060

First, relations should not be directly incorpo- 061

rated into entity representation, since confusing 062

relations with entities leads to smooth entity repre- 063

sentations. In DBpedia, there are 4,233,000 enti- 064

ties but only 3,000 relations, making the same rela- 065

tion often established between various entities (e.g., 066

Country in Figure 1(b)). To separate relations from 067

entities, R-GCN (Schlichtkrull et al., 2018) learns 068
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relation matrices but numerous relations bring trou-069

ble for parameter optimization (Vashishth et al.,070

2019). Therefore, existing models (Nathani et al.,071

2019; Mao et al., 2020) employ vectors to repre-072

sent relations and apply simple functions (e.g., sub-073

traction and projection) as the neighbor message074

functions. However, these simple functions barely075

distinguish relations from entities and still bring076

much noise to entity representation.077

Second, due to KG heterogeneity, it is challeng-078

ing to unify the semantic representations between079

KGs during the alignment process. Specifically,080

KG heterogeneity includes (1) neighbor hetero-081

geneity and (2) relation heterogeneity. Neighbor082

heterogeneity indicates that the same entity in dif-083

ferent KGs have different neighbors. As illustrated084

in Figure 1, neighbor heterogeneity is reflected in085

that Da Vinci have different neighbors in two KGs,086

which may make us mistakenly match Da Vinci in087

KG1 with Florence Cathedral in KG2 as they have088

more identical neighbors. Relation heterogeneity089

means that the relation between the same entity090

pair can be expressed in various ways, even though091

these relations have similar intentions. As Figure 1092

shows, relation heterogeneity is expressed as that093

the relation between Da Vinci and Italy is Nation-094

ality in KG1, while it is Citizenship in KG2, which095

causes trouble for aligning these triples though they096

have the similar meaning.097

To tackle these obstacles, we propose a Relation-098

gated Heterogeneous Graph Network (RHGN) for099

entity alignment. Specifically, we first propose a100

novel Relation Gated Convolution (RGC) to make101

entity representations more discriminative. RGC102

uses relations as signals to control the flow of neigh-103

bor information, which separates relations from en-104

tities and avoids noise flowing into entities in repre-105

sentation learning. Second, to tackle the neighbor106

heterogeneity between two KGs, we devise Cross-107

graph Embedding Exchange (CEE) to propagate in-108

formation via aligned entities across different KGs,109

thereby unifying the entity semantics between two110

KGs. Third, we design Soft Relation Alignment111

(SRA) to deal with the relation heterogeneity. SRA112

leverages entity embedding to generate soft labels113

for relation alignment between KGs, hence reduc-114

ing the semantic distance of similar relations across115

KGs. Finally, extensive experiments on four real-116

world datasets demonstrate the effectiveness of our117

proposed method. We will release our source code118

after acceptance.119

2 Related Works 120

2.1 Entity Alignment 121

Entity alignment is a fundamental task in knowl- 122

edge graph study. It seeks to recognize identical 123

entities from different KGs (Sun et al., 2020c). 124

To efficiently find identical entities, embedding- 125

based models have been extensively studied. Tradi- 126

tional models, such as MtransE (Chen et al., 2017), 127

used translation-based models (e.g., TransE (Bor- 128

des et al., 2013)) to make the distance between 129

aligned entities get closer. Following this thought, 130

IPTransE (Zhu et al., 2017), JAPE (Sun et al., 131

2017), and BootEA (Sun et al., 2018) constrained 132

models from semantic space, attributes, and labels, 133

respectively. Traditional models, however, neglect 134

neighbor structures in favor of triples. 135

Inspired by the great success of Graph Neu- 136

ral Networks (GNNs), numerous methods (e.g, 137

GCN-Align (Wang et al., 2018), AliNet (Sun 138

et al., 2020b)) employed the GNNs and the vari- 139

ants to capture local neighbor information (Zeng 140

et al., 2021). Since the knowledge graph contains 141

abundant relations, RDGCN (Wu et al., 2019a), 142

RSN4EA (Guo et al., 2019), and Dual-AMN (Mao 143

et al., 2021) utilized relations as weights, paths, 144

and projection matrices in GNNs. RREA (Mao 145

et al., 2020) proposed a unified framework for en- 146

tity alignment using relations. IMEA (Xin et al., 147

2022) encoded neighbor nodes, triples, and relation 148

paths together with transformers. Unfortunately, 149

they have not paid enough attention to the differ- 150

ences between entities and relations, and ignored 151

semantic differences between different graphs due 152

to KG heterogeneity. 153

Relation alignment, meantime, greatly aids in 154

entity alignment. MuGNN (Cao et al., 2019) and 155

ERMC (Yang et al., 2021) directly used the rela- 156

tion alignment labels but relation alignment labels 157

are scarce in the real world. RNM (Zhu et al., 158

2021) and IMEA (Xin et al., 2022) applied post- 159

processing to relation alignment with statistical 160

features. However, post-processing can mine lim- 161

ited aligned relations. HGCN-JE (Wu et al., 2019b) 162

jointly learned entity alignment and relation align- 163

ment, which incorporated neighbor relations into 164

entities. Unfortunately, non-aligned entities may 165

also have similar neighbor relations, which means 166

relation alignment and entity alignment should be 167

separated. Therefore, effective relation alignment 168

methods remain to be explored. 169
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Figure 2: The illustration of RHGN structure, which contains: (a) Graph Data Preprocessing (GDP); (b) Relation
Gated Convolution (RGC); (c) Cross-graph Embedding Exchange (CEE); (d) Soft Relation Alignment(SRA).

2.2 Graph Convolutional Network170

Graph Convolutional Networks (GCNs) general-171

ize convolution operations from traditional data172

(e.g., images or grids) to non-Euclidean data struc-173

tures (Defferrard et al., 2016). The fundamental174

idea of graph convolutional networks is to enhance175

node self-representation by using neighbor infor-176

mation. Therefore, GCNs are typically expressed177

as a neighborhood aggregation or message-passing178

scheme (Gilmer et al., 2017).179

In the broad application of GCNs, GCN (Welling180

and Kipf, 2016) and GAT (Velickovic et al., 2017)181

showed the powerful ability to capture neighbor182

information. Despite this, they performed poorly183

in KG representation as they ignored relations. To184

emphasize the essential role of relations in entity185

representation, R-GCN (Schlichtkrull et al., 2018)186

used a matrix to represent each relation. How-187

ever, massive relations in the knowledge graph188

make it challenging for the relation matrixes to189

be fully learned. Thus, most follow-up works used190

vectors to represent relations. For example, KB-191

GAT (Nathani et al., 2019) concentrated the neigh-192

bor triples as information. CompGCN (Vashishth193

et al., 2019) leveraged the entity-relation composi-194

tion operations from knowledge embedding meth-195

ods like TransE (Bordes et al., 2013) as message.196

KE-GCN (Yu et al., 2021) passed the gradient of197

the scoring function to the central node. Never-198

theless, none of the above models takes account199

of the inequality of relations and entities. In con-200

trast, our RHGN is able to make a clear distinction201

between relations and entities, resulting in more202

distinct entity representations.203

3 RHGN: Relation-gated Heterogeneous 204

Graph Network 205

In this section, we first present the problem of entity 206

alignment, followed by an overview of our RHGN. 207

Then we introduce the technical details of RHGN. 208

3.1 Problem Definition 209

In this paper, we formally define a KG as G = 210

(E, R, T ), where E is the set of entities, R is the 211

set of relations, and T = E × R × E is the set 212

of triples like (Florence, Country, Italy) as il- 213

lustrated in Figure 1. Without loss of generality, 214

we consider the entity alignment task between two 215

KGs, i.e., G1 = (E1, R1, T1) and G2 = (E2, R2, 216

T2). The goal is to find the 1-to-1 alignment of enti- 217

ties SKG1,KG2 = {(e1, e2) ∈ E1 × E2|e1 ∼ e2}, 218

where ∼ denotes the equivalence relation. To 219

train the model, a small subset of the alignment 220

S′
KG1,KG2

∈ SKG1,KG2 is given as the training 221

data, and we call it seed alignment set. 222

3.2 An Overview of RHGN 223

As shown in Figure 2, our approach contains four 224

components: (a) Graph Data Preprocessing (GDP), 225

(b) Relation Gated Convolution (RGC), (c) Cross- 226

graph Embedding Exchange (CEE), and (d) Soft 227

Relation Alignment (SRA). Specifically, GDP first 228

preprocesses graphs through two aspects: complet- 229

ing graphs by adding inverse relations and con- 230

structing the cross graph by exchanging aligned 231

entities. Then, several RGC layers are devised to 232

aggregate information in both original and cross 233

graphs to get the representation of entities and rela- 234

tions. Meanwhile, CEE exchanges the embedding 235
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Figure 3: The Illustration of Relation Gated Convolution

of original graphs and cross graphs between each236

RGC layer for efficient information propagation.237

Finally, SRA employs the embedding of entities to238

produce soft labels for relation alignment and the239

embedding of entities and relations will be sent to240

the model loss for optimization.241

3.3 Graph Data Preprocessing242

In order to make better use of the relations and243

address heterogeneity, we first perform data prepro-244

cessing on graphs to make graphs more complete.245

In detail, GDP contains two parts: Inverse Relation246

Embedding and Cross Graph Construction.247

3.3.1 Inverse Relation Embedding248

Since relations in KGs are normally unidirec-249

tional, following previous works (Sun et al., 2020b;250

Vashishth et al., 2019), we also add inverse relation251

to KGs. The inverse relation is defined as:252

rinvi = Winvri, (1)253

where and rinvi is the inverse relation of relation254

ri. Winv is the weight matrix of inverse relation255

transformation. Therefore, we extend graphs as:256

T ′ = T ∪ {(t, rinv, h)|(h, r, t) ∈ T}, (2)257

where (h, r, t) is the triple in the original graph.258

3.3.2 Cross Graph Construction259

As we discussed in Section 1, to address neigh-260

bor heterogeneity, in this part, we first construct261

cross graphs through the aligned entities in the262

seed alignment set for efficient information prop-263

agation across KGs. Specifically, as Figure 2(a)264

shows, Cross Graph Construction generates cross265

graphs by exchanging the aligned entities in the266

seed alignment set S′
KG1,KG2

. The entities Ecross
1 267

in the cross graph Gcross
1 are defined as: 268

ecross1 =

{
e2 if e1 ∈ S′

KG1,KG2
and e1 ∼ e2,

e1 else.
(3) 269

Similarly, the entities Ecross
2 in the cross graph 270

Gcross
2 are defined as: 271

ecross2 =

{
e1 if e2 ∈ S′

KG1,KG2
and e2 ∼ e1,

e2 else.
(4) 272

Taking Figure 1 as an example, (Da Vinci, Citi- 273

zenship, Italy) will be in cross KG2 as we exchange 274

Da Vinci in KG1 and Leonardo da Vinci in KG2. 275

Finally, the cross graphs Gcross
1 and Gcross

2 276

are defined as Gcross
1 = (Ecross

1 , R1, T cross
1 ) and 277

Gcross
2 = (Ecross

2 , R2, T cross
2 ).The embeddings of 278

entities and relations are randomly initialized. 279

3.4 Relation Gated Convolution 280

After getting the preprocessed graphs, in Fig- 281

ure 2(b), we use RGC to aggregate neighbors and 282

relations to the central entity. As discussed in 283

Section 1, directly incorporating relation into en- 284

tity representation may introduce much noise. To 285

tackle this, we separate the semantic space of rela- 286

tions and entities. Specifically, in figure 3, we use 287

a non-linear activation function (σ2) as a gate to 288

aggregate neighbors and relations. The gate treats 289

relations as control signals to regulate the inflow of 290

neighbor information. For the entity i at k-th layer 291

eki , the embedding of entity i at k+1-th layer ek+1
i 292

is computed as follows: 293

ek+1
i = σ1(

∑
j∈N(i)

W k
e (e

k
j ⊗ σ2(r

k
i,j))), (5) 294

where N(i) is the set of neighbors of entity i, and 295

rki,j is the relation from entity j to entity i, W k
e is 296

the entity weight matrix of k-th layer, ⊗ denotes 297

element-wise multiplication between vectors, σ1(·) 298

and σ2(·) are non-linear activation functions. We 299

use tanh(·) for σ1(·) and sigmoid(·) for σ2(·). 300

Moreover, inspired by (Vashishth et al., 2019), 301

we also update the embedding of relations rki,j as: 302

rk+1
i,j = W k

r r
k
i,j , (6) 303

where W k
r is the relation weight matrix of the k-th 304

layer. In order to reduce the semantic gap between 305

the two KGs, we share the weights of the RGCs 306

between two graphs in each layer. 307
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3.5 Cross-graph Embedding Exchange308

According to Section 3.3, we build the cross graph309

to address neighbor heterogeneity among different310

KGs. In this section, to make information propa-311

gation across KGs more efficient, we introduce a312

cross-graph embedding exchange method on both313

original and cross graphs to reduce the entity se-314

mantic distance between KGs. As illustrated in315

Figure 2(c), we exchange entity embeddings be-316

tween the original graph and the cross graph at317

each intermediate layer. Formally, Ek and Ek
cross318

represent the entity embedding of original graph319

and cross graph in k-th layer respectively, the k+1-320

th layer can be computed as:321

Ek+1 = RGC(Ek
cross, R

k, Gk,W k), (7)322
323

Ek+1
cross = RGC(Ek, Rk

cross, G
k
cross,W

k). (8)324

Compared with previous work (Cao et al., 2019)325

that adds edges between aligned entities in the seed326

alignment set, CEE can effectively reduce the dis-327

tance of information propagation across two KGs.328

Taking the entity Florence in Figure 1 as an exam-329

ple, if we assume that Italy in two KGs is aligned,330

the information from Florence in KG1 can propa-331

gate to Florence in KG2 only through 3 edges and332

2 nodes with the help of CEE. According to Huang333

et al. (2020), a shorter propagation distance spreads334

more information across two KGs, making the two335

graphs’ entity semantics closer.336

3.6 Soft Relation Alignment337

As discussed in Section 1, relation heterogeneity338

also complicates entity alignment. Relation align-339

ment, which seeks out mutually similar ties across340

KGs, is one direct method for resolving this prob-341

lem. However, due to the lack of labels, we need to342

produce soft relation alignment labels by ourselves.343

Inspired by prior arts (Wu et al., 2019b; Zhu344

et al., 2021), we make use of entities to produce soft345

relation alignment labels as shown in Figure 2(d).346

We define relation label embedding as:347

r′ = concat[
1

Hr

∑
ei∈Hr

ei,
1

Tr

∑
ej∈Tr

ej ], (9)348

where Hr and Trare the sets of head entities and349

tail entities of relaiton r, respectively. Then, the350

relation alignment label is defined as:351

yij = I(cos(r′i, r′j) > γ), (10)352

where γ is the hyperparameter of the threshold.353

It is noteworthy that our method may either pro- 354

duce multiple alignment labels or no alignment la- 355

bels for one relation since relation alignment does 356

not obey 1-to-1 constraints. As shown in Figure 1, 357

Nationality and Famous People in KG1 may be 358

similar to Citizenship in KG2, while Location in 359

KG2 has no similar relation KG1. This feature 360

makes us decide to convert relation alignment task 361

to a multi-label classification task in model loss. 362

3.7 Training 363

In this subsection, we introduce our loss compo- 364

nents: the entity alignment loss and the relation 365

alignment loss, which capture alignment informa- 366

tion of entities and relations, respectively. 367

3.7.1 Entity Alignment Loss 368

Following previous work (Sun et al., 2020b; Xin 369

et al., 2022), we minimize the contrastive align- 370

ment loss to make the distance between the aligned 371

entities as close as possible, while the distance 372

between the non-aligned entities is very far. The 373

alignment loss is defined as: 374

L1 =
∑

(i,j)∈A+

||ei−ej ||+
∑

(i′,j′)∈A−

α1[λ−||ei′−ej′ ||]+,

(11) 375

where ei is the entity embedding concentration of 376

all layers in the original graph and cross graph. 377

A− is the set of negative samples generated by 378

truncated-ϵ negative sampling strategy, || · || de- 379

notes L2 distance. [·]+ = max(0, x), and we hope 380

the distance of negative samples to be larger than 381

a margin λ. α1 is a hyperparameter to keep the 382

balance between positive and negative samples. 383

3.7.2 Relation Alignment Loss 384

As we mentioned in Section 3.6, we transform rela- 385

tion alignment into a multi-label classification task. 386

Consequently, we first calculate the cosine similar- 387

ity of relations in the last layer between graphs: 388

xij = cos(ri, rj). (12) 389

Then, we use the soft labels produced in SRA to 390

calculate the relation alignment loss, we adopt the 391

multi-label soft margin loss: 392

L2 = − 1

|R|
∑
i

(yi · log(
1

1 + exp(−xi)
)

+(1− yi) · log
exp(−xi)

1 + exp(−xi)
).

(13) 393

5



Dataset KG #Ent. #Rel. #Rel tr.

EN-FR
EN 15,000 267 47,334
FR 15,000 210 40,864

EN-DE
EN 15,000 215 47,676
DE 15,000 131 50,419

D-W
DB 15,000 248 38,265
WD 15,000 169 42,746

D-Y
DB 15,000 165 30,291
YG 15,000 28 26,638

Table 1: The Statistics of OpenEA Datasets

Finally, RHGH combines the two losses as:394

L = L1 + α2L2, (14)395

where α2 is a hyperparameter to keep the balance396

between entity alignment and relation alignment.397

4 Experiments398

4.1 Dataset399

For the reliability and authority of experimental re-400

sults, we use the dataset (V1) in OpenEA (Sun et al.,401

2020c) for evaluation since it closely resembles the402

data distribution of real KGs. It contains two cross-403

lingual settings extracted from multi-lingual DBpe-404

dia: English-French and English-German, as well405

as two monolingual settings among popular KGs:406

DBpedia-Wikidata and DBpedia-YAGO. We use407

the setting that datasets contain 15K pairs of ref-408

erence entity alignment and no reference relation409

alignment. Table 1 provides further information410

about the datasets. We adhere to OpenEA’s dataset411

divisions, which use a 20% seed for training, 10%412

for validation, and 70% for testing.413

4.2 Implementation Details414

We implement our method through PyG (Fey and415

Lenssen, 2019) on Pytorch. We initialize the train-416

able parameters with Xavier initialization (Glo-417

rot and Bengio, 2010) and optimize loss with418

Adam (Kingma and Ba, 2015). As for hyper-419

parameters, the number of RGCs’ layers is 4, the420

hidden size of each layer is 256, the batch size is421

256, and the learning rate is 0.001. We set α2 = 10422

to keep the balance of alignment loss and semantic423

loss. We randomly sample 25 negative samples424

for each pre-aligned entity pair. After every 25425

epochs, we resample 25 negative samples based on426

the CSLS (Lample et al., 2018) and resample 100 427

head and tail entities respectively to generate soft 428

relation alignment labels. The threshold γ is 0.5, 429

the negative sample distance margin λ is 1.5 and 430

the negative sample weight α1 is 0.1. 431

Followed the previous work (Sun et al., 2020b; 432

Xin et al., 2022), we also use early stopping to 433

terminate training based on Hits@1 performance 434

on the validation set with a patient of 25 epochs, 435

and the maximum training epochs is 1000. Accord- 436

ing to most previous work, we report the Hits@1, 437

Hits@5 and MRR (mean reciprocal rank) results 438

to assess entity alignment performance. 439

4.3 Benchmark Methods 440

To evaluate the effectiveness of RHGN, we com- 441

pare it with the state-of-the-art supervised structure- 442

based entity alignment methods. In general terms, 443

we can classify them as follows. 444

• Triple-based Models. These models focus 445

on triple, they usually use TransE (Bordes 446

et al., 2013) to represent entities and relations, 447

including MTransE (Chen et al., 2017), IP- 448

TransE (Zhu et al., 2017), AlignE (Sun et al., 449

2018), and SEA (Pei et al., 2019). 450

• Neighbor-based Models. These models 451

emphasize neighbor information but ignore 452

the relation information, they usually use 453

GNNs to represent entities, including GCN- 454

Align (Wang et al., 2018), AliNet (Sun et al., 455

2020b), and HyperKA (Sun et al., 2020a). 456

• Relation-enhanced Models. These models 457

take into account the importance of relation 458

information and incorporate relation infor- 459

mation into entity representations, including 460

RSN4EA (Guo et al., 2019), KE-GCN (Yu 461

et al., 2021), and IMEA (Xin et al., 2022). 462

Our model and the above baselines all focus 463

on the structural information of KGs. For a fair 464

comparison, we disregard additional models that 465

incorporate side information (e.g., attributes, en- 466

tity names and descriptions) like RDGCN (Wu 467

et al., 2019a), KDCoE (Chen et al., 2018) and At- 468

trGNN (Liu et al., 2020). 469

4.4 Experimental Results 470

The results of all methods on OpenEA datasets are 471

shown in Table 2. In general, the RHGN model has 472

achieved the best performance compared with these 473
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Dateset EN_FR_V1 EN_DE_V1 D_W_V1 D_Y_V1

Category Method H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR

Triple-based

MTransE 0.247 0.467 0.351 0.307 0.518 0.407 0.259 0.461 0.354 0.463 0.675 0.559
IPTransE 0.169 0.320 0.243 0.350 0.515 0.430 0.232 0.380 0.303 0.313 0.456 0.378
AlignE 0.357 0.611 0.473 0.552 0.741 0.638 0.406 0.627 0.506 0.551 0.743 0.636
SEA 0.280 0.530 0.397 0.530 0.718 0.617 0.360 0.572 0.458 0.500 0.706 0.591

Neighbor-based
GCN-Align 0.338 0.589 0.451 0.481 0.679 0.571 0.364 0.580 0.461 0.465 0.626 0.536

AliNet 0.364 0.597 0.467 0.604 0.759 0.673 0.440 0.628 0.522 0.559 0.690 0.617
HyperKA 0.353 0.630 0.477 0.560 0.780 0.656 0.440 0.686 0.548 0.568 0.777 0.659

Relation-enhanced
RSN4EA 0.393 0.595 0.487 0.587 0.752 0.662 0.441 0.615 0.521 0.514 0.655 0.580
KE-GCN 0.408 0.670 0.524 0.658 0.822 0.730 0.519 0.727 0.608 0.560 0.750 0.644

IMEA 0.458 0.720 0.574 0.639 0.827 0.724 0.527 0.753 0.626 0.639 0.804 0.712

Ours RHGN 0.500 0.739 0.603 0.704 0.859 0.771 0.560 0.753 0.644 0.708 0.831 0.762

Table 2: Entity Alignment Results on OpenEA Datasets

Dateset EN_FR_V1 D_W_V1

Method H@1 H@5 MRR H@1 H@5 MRR

GCN 0.391 0.612 0.488 0.474 0.649 0.550
GAT 0.362 0.577 0.457 0.448 0.625 0.525

R-GCN 0.468 0.708 0.572 0.538 0.736 0.624
CompGCN 0.473 0.726 0.584 0.524 0.729 0.613

RGC 0.500 0.739 0.603 0.560 0.753 0.644

Table 3: Entity Alignment of Various Convolution

SOTA baselines. Specifically, our method outper-474

forms the best-performing baseline (i.e., IMEA,475

KE-GCN) on Hits@1 by 3%-6%, on MRR by476

1%-5%, and on Hits@5 by 1%-3% (except for477

D_W_V1). Additionally, we discover some inter-478

esting phenomena as follows:479

First, on all datasets, relation-enhanced mod-480

els outperform neighbor-based models, and both481

outperform triple-based models. This fully demon-482

strates that relation information plays an impor-483

tant role in neighbor information aggregation. Sec-484

ond, our model has significant improvements on485

EN_DE_V1 and D_Y_V1, but the improvements486

of our model are relatively limited on EN_FR_V1487

and D_W_V1, and we find that all baselines do488

not perform well on datasets EN_FR_V1 and489

D_W_V1. We believe that the semantic distance490

between the graphs in the two datasets is far apart,491

which makes it is hard to find aligned entities.492

4.5 Ablation Study493

4.5.1 RGC’s Ability to Utilize Relations494

To compare the ability to utilize relations of495

various convolutions, We replace the RGC496

with re-tuned GNN variants GCN (Welling497

and Kipf, 2016), GAT (Velickovic et al.,498

2017), R-GCN (Schlichtkrull et al., 2018), and499

0.460

0.480

0.500

0.520

0.540

0.560

EN_FR_V1 D_W_V1

H
it

s@
1

Datasets

RHGN RHGN-CEE RHGN-SRA

Figure 4: The Impact of Different Heterogeneity

CompGCN (Vashishth et al., 2019). The results 500

are shown in Table 3. Among these models, our 501

RGC also achieves the best performance, as GCN 502

and GAT ignore the relations, while R-GCN and 503

CompGCN can not take advantage of the rela- 504

tions well. Meanwhile, the result that R-GCN and 505

CompGCN outperform GCN and GAT proves the 506

essential role of relations in entity representation. 507

4.5.2 The Impact of Different Heterogeneity 508

To verify the impact of different heterogeneity, fig- 509

ure 4 reports the performances after removing CEE 510

and SRA, respectively. We observe that both com- 511

ponents contribute to performance improvement, 512

demonstrating that each component design in our 513

framework is reasonable. Meanwhile, the effects 514

of the two components on different datasets are 515

also different, implying that the impact of neighbor 516

heterogeneity and relationship heterogeneity varies 517

between different KGs. 518

4.6 The Distance of Information Propagation 519

We explore the effect of RGC’s layer number on 520

model performance as layer numbers reflect the 521

distance of information propagation. In Figure 6, 522

we present the effect of RGC’s layer numbers with 523

7



(a) GCN (b) GAT (c) R-GCN (d) CompGCN (e) RHGN

Figure 5: Visualization of the entity embedding. The same color means the entities are in the same KG.

Figure 6: Results with Various RGC’s Layer Numbers

1 to 5 on EN_FR_V1. Obviously, RHGN with 4524

layers achieves the best performance over all three525

metrics. When the number of layers exceeds 4, the526

performance decline as adding more layers allows527

the model to collect more distant neighbor data and528

adds noise during information propagation. We529

also observe that RHGN with 2 layers has a huge530

improvement over RHGN with 1 layer. We believe531

that due to the lack of exchange entity embedding,532

RHGN with 1 layer cannot obtain information from533

the other KGs, resulting in poor performance.534

Then we calculate the shortest path length from535

the test set entities to the training set entities in536

the EN_FR_V1 dataset. The average shortest path537

length is 1.5 in EN, and the length is 1.6 in FR.538

This shows that most entities need 3 to 4 hops to539

pass their own information to the aligned entity of540

another graph with CEE module. As a matter of541

fact, RHGN with 3 and 4 layers achieves similar542

performance and is ahead of other variants, which543

also verifies that our CEE module is effective.544

4.7 Visualization of Entity Embedding545

For a more intuitive comparison of how our pro-546

posed model addresses heterogeneity across dif-547

ferent KGs with other methods, we conduct visu-548

alization on the D_W_V1 datasets. Specifically,549

we perform dimensionality reduction on entity em-550

bedding of GCN, GAT, R-GCN, CompGCN, and551

RHGN with t-SNE (Van der Maaten and Hinton, 552

2008). Results are shown in Figure 5, where the 553

same color means entities are in the same KG. Ide- 554

ally, the entity distributions of two graphs should 555

overlap as much as possible, and entity embeddings 556

should be sparsely distributed. 557

From Figure 5, we find some phenomena as fol- 558

lows. First, entities represented by previous meth- 559

ods have obvious clustering in space, while incorpo- 560

rating relation can effectively alleviate the cluster- 561

ing. This phenomenon suggests that relations play 562

an essential role in distinguishing entities and pre- 563

venting over-smoothing. Second, all previous arts 564

have significant space that is not aligned, which 565

demonstrates that they are unable to bridge the 566

semantic space gap caused by KG heterogeneity. 567

However, our RHGN model’s entity embeddings 568

are sparsely distributed in space and have a high 569

degree of overlap, making the model distinguish 570

entities well and easily find aligned entities. 571

5 Conclusion 572

In this paper, we studied the problem of entity align- 573

ment and proposed the RHGN model, which could 574

distinguish relation and entity semantic spaces, and 575

further address heterogeneity across different KGs. 576

Specifically, we first designed a novel relation- 577

gated convolutional layer to regulate the flow of 578

neighbor information through relations. Then, we 579

proposed an innovative cross-graph embedding ex- 580

change module, which reduces the entity semantic 581

distance between graphs to address neighbor het- 582

erogeneity. Finally, we devised a soft relation align- 583

ment module for the unsupervised relation align- 584

ment task, which solves the relation heterogeneity 585

problem between graphs. Extensive experiments 586

on four real-world datasets verified the effective- 587

ness of our proposed methods. In future work, we 588

will explore more ways to utilize the relation in- 589

formation in entity alignment, such as the relation 590

path matching in different KGs. 591
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