
Neuro-Symbolic Bi-Directional Translation - Deep Learning Explainability for
Climate Tipping Point Research

Chace Ashcraft,1 Jennifer Sleeman,1 Caroline Tang,1 Jay Brett,1 Anand Gnanadesikan2

1 Johns Hopkins University Applied Physics Laboratory
11100 Johns Hopkins Road Laurel, Maryland 20723

2 Johns Hopkins University
3400 N. Charles St. Baltimore, MD 21218-2683

{chace.ashcraft,jennifer.sleeman,caroline.tang,jay.brett}@jhuapl.edu,gnanades@jhu.edu

Abstract

In recent years, there has been an increase in using deep learn-
ing for climate and weather modeling. Though results have
been impressive, explainability and interpretability of deep
learning models are still a challenge. A third wave of Arti-
ficial Intelligence (AI), which includes logic and reasoning,
has been described as a way to address these issues. Neuro-
symbolic AI is a key component of this integration of logic
and reasoning with deep learning. In this work we propose
a neuro-symbolic approach called Neuro-Symbolic Question-
Answer Program Translator, or NS-QAPT, to address ex-
plainability and interpretability for deep learning climate sim-
ulation, applied to climate tipping point discovery. The NS-
QAPT method includes a bidirectional encoder-decoder ar-
chitecture that translates between domain-specific questions
and executable programs used to direct the climate simula-
tion, acting as a bridge between climate scientists and deep
learning models. We show early compelling results of this
translation method and introduce a domain-specific language
and associated executable programs for a commonly known
tipping point, the collapse of the Atlantic Meridional Over-
turning Circulation (AMOC).

Introduction
The abundance of climate-related natural disasters (Botzen,
Deschenes, and Sanders 2019; Coronese et al. 2019; Jafino
et al. 2020), weather extremes (Ebi et al. 2021; Robinson
2021), and poor air quality (Jacob and Winner 2009; Nolte
et al. 2018) in recent years has created a sense of urgency
in the development of new methodologies for climate re-
search that reduces computation requirements and enables
better forecasting, tolerant of a changing environment. Arti-
ficial Intelligence (AI) and in particular, deep learning has
shown promise in recent years in both data-driven mod-
els (Singh et al. 2021) and those which incorporate physi-
cal and dynamical properties (Pathak et al. 2022). However,
these methods still tend to suffer from poor interpretability
and lack of explainability (Garcez and Lamb 2020). In cli-
mate and weather related research both of these properties
are critical, as often forecasts influence guidance to the gen-
eral public and policy makers.

As described by Garcez et al.(Garcez and Lamb 2020), the
third wave of AI includes deep learning and symbolic rep-
resentation, described as neuro-symbolic. By incorporating
symbolic representation, the black box properties of deep

learning models can be informed by a logical understand-
ing of the input and output of the model. Neuro-symbolic
refers to the hybridization of symbolic reasoning or compu-
tation techniques with deep learning methods. The strengths
of deep learning, such as complex pattern recognition and
sequence prediction can be augmented by AI methods such
as graph-based search and logic systems to produce systems
capable of generating robust, human-interpretable predic-
tions that provide a means of explainability.

In this work, we describe a neuro-symbolic model, called
Neuro-Symbolic Question-Answer Program Translator, or
NS-QAPT, which symbolically represents deep learning
problems and links these representations to natural lan-
guage. NS-QAPT is a bi-directional translator, that converts
natural language questions into surrogate climate model pro-
grams and surrogate climate model programs (generated by
a deep learning climate simulator) into natural language
questions with associated answers. NS-QAPT was designed
to bridge the gap between climate tipping point researchers
and deep learning models.

To test this methodology, we applied the neuro-symbolic
translator and deep learning climate simulator to a known
climate problem, the collapse of the Atlantic Meridional
Overturning Circulation (AMOC). We demonstrate how NS-
QAPT could be integrated with a deep learning climate sim-
ulator by using a climate tipping point Generative Adver-
sarial Network (TIP-GAN) (Sleeman et al. 2023b) for cli-
mate simulation. Though TIP-GAN could be used to sig-
nificantly reduce the parameter space by discovering com-
binations of parameters that lead to models which result in
a tipping point, climate researchers need a way to interact
with this model and interpret what has been learned. By
combining NS-QAPT with TIP-GAN, climate researchers
are able to ask natural language questions of what is learned
by TIP-GAN, enabling them to potentially direct their own
climate research to smaller parameter spaces. We evaluated
NS-QAPT using a common neuro-symbolic dataset CLEVR
(Johnson et al. 2017) in our previous work (Sleeman et al.
2023a) and in this work we evaluate NS-QAPT with a cus-
tom AMOC-specific question program translation language.

Background–The AMOC
The AMOC is a globally circulating current in the Atlantic
ocean characterized by warm surface water flowing north-



ward, then cooling, sinking, and flowing back southward.
The cooling and increase of salinity of ocean water as it
flows northward increases the density of surface water, caus-
ing it to sink. It then slowly moves southward along the
ocean floor until it can rise in the Pacific and Indian oceans.
The northern flow of ocean water from the equator is a sig-
nificant source of heat energy in the northern hemisphere.

In general, the AMOC plays an important role in the
global climate. Small changes to its strength can have poten-
tially global effects, such as significant cooling in the north-
ern hemisphere and changes in precipitation. Some models
suggest that the AMOC could weaken or even collapse in
the near future (Thornalley et al. 2018; Jackson and Wood
2018), consequences of which may include food insecu-
rity (Benton 2020) and sea level rise (Bakker 2022).

AMOC Box Models
Large climate systems are sometimes reduced to surro-
gate models such as a box model (Levermann and Fürst
2010), which simplifies some of the more complex details
of the system while maintaining its essential characteris-
tics. This allows the model to theoretically represent the
dynamics of their larger counterparts, but are reduced en-
abling research that would otherwise be computationally in-
feasible. To experiment with the AMOC and identify states
when the AMOC may collapse, we use a four box model
from Gnanadesikan et. al. (Gnanadesikan, Kelson, and Sten
2018a), re-implemented in Python1, as a surrogate for a
larger global model. A high-level figure of the box model
is shown in Figure 1. South and North refer to segments of
surface water in those latitudes of the Atlantic ocean. The
Low box similarly represents the surface water in-between,
and the Deep box represents all deep water flow. Mn refers
to the mass transported through the northern box, and is the
primary measure of the AMOC’s strength. F s

w and Fn
w are

the freshwater fluxes in the southern and northern boxes, re-
spectfully. Due to warming climate, it is possible for these
fluxes to grow due to the melting of ice in each region. The
influx of freshwater into the ocean affects the salinity of wa-
ter, potentially perturbing the the whole system. Freshwater
flux perturbations are one possible contributor to eventual
AMOC collapse.

Related Work
As discussed in (Garcez and Lamb 2020), neuro-symbolic
methods are not necessarily new. Khsola and Dillon pub-
lished a taxonomy of neuro-symbolic approaches along with
a neuro-symbolic system called GENUES, which was de-
signed for real-time alarm processing and based some of
their previous work (Khosla and Dillon 1993, 1998). An-
other example of early neuro-symbolic work is (Neagu and
Palade 2002), which attempts to fuse artificial neural net-
works and fuzzy logic. At that time, neural network models
generally consisted of shallow, one or two-layer, perceptron
models with less than 100 nodes in the hidden layers and
perhaps tens of thousands of parameters (Lawrence, Giles,
and Tsoi 1998; Canziani, Paszke, and Culurciello 2016;

1https://github.com/JHUAPL/PACMANs

Figure 1: The Gnanadesikan Four Box Model of the AMOC

Macukow 2016). AlexNet (Krizhevsky, Sutskever, and Hin-
ton 2012) consists of over 60 million parameters. Contin-
ued advancements both in neural network architecture de-
sign and faster compute have been integral to the success of
deep learning. Early attempts at applying to neuro-symbolic
techniques to climate include forecasting red tides (Fdez-
Riverola and Corchado 2003) and energy management (Ve-
lik, Zucker, and Dietrich 2011; Velik 2013). Fdez-Riverola
uses neural networks to index into a case-based reasoner,
which stores latent representations of previous fuzzy logic
rules that predicted accurate phytoplankton concentrations
in the past. Velik uses neural networks to help covert raw
sensor information into aggregate latent information, which
is then used by a rule-based planning and control module to
regulate the power consumption of the electrical devices in
a home.

While recent applications of deep learning to climate are
becoming plentiful (Rasp, Pritchard, and Gentine 2018; Re-
ichstein et al. 2019; Bury et al. 2021; Singh et al. 2021;
Schultz et al. 2021), and climate related neuro-symbolic
work with shallow neural networks exists, we were not
able to find recent applications of neuro-symbolic (i.e. that
use deep learning) methods applied to climate change–and,
more specifically, to climate tipping points–in our literature
survey.

Model Design
NS-QAPT is inspired by the neuro-symbolic Concept
Learner (NS-CL) by Mao et. al. (Mao et al. 2019) and
CLEVRER (Yi et al. 2019). The NS-CL learns to associate
latent representations of objects in a scene with given con-
cept words from a domain specific language (DSL), as well
as learning to manipulate and execute quasi-symbolic pro-
grams to answer questions about the scene. The authors
leverage the CLEVR dataset (Johnson et al. 2017), which
consists of sets of computer generated images of objects,
questions about the relationships between objects in the im-
ages, and corresponding “programs” that answer the given
questions. First, the NS-CL uses a perception network to ex-
tract latent representations of objects in an image. Then the
extracted representations are given to a reasoning module,



which identifies the concepts represented in the latent rep-
resentations and what operations to perform on each con-
cept to answer the question. The reasoning operations con-
sist of implementations of the programs given in the CLEVR
dataset. Training is done end-to-end using stochastic gradi-
ent decent and the REINFORCE (Williams 1992) algorithm.

NS-QAPT differs from NS-CL (Mao et al. 2019) or
CLEVRER (Yi et al. 2019) in that it does not require a
perception module to extract concepts from an image since
this is a text-only problem. NS-QAPT is also a bidirectional
translation between natural language and programs, which is
not part of NS-CL (Mao et al. 2019) or CLEVRER (Yi et al.
2019) methodology. NS-QAPT learns programs in a purely
sequence-to-sequence manner, rather than from search or re-
inforcement learning.

The bidirectional question-to-program translation is ac-
complished via a triangular shaped system of model ar-
chitectures as seen in Figure 2. The three pieces of
NS-QAPT include a question-to-question (QTQ) auto-
encoder, a question-to-program (QTP) encoder-decoder, and
a program-to-question (PTQ) encoder-decoder. All parts
share the same latent space and token embedding, and are
optimized jointly during training.

Let B denote a batch of N examples xi = (xQ
i , x

P
i ),

where xQ
i is the vector of integer tokens representing the

ith natural language question in the batch, and xP
i is

the vector representing the corresponding tokenized pro-
gram. We denote NS-QAPT’s predicted output of xi as
ŷi = (ŷQTQ

i , ŷQTP
i , ŷPTQ

i ), where ŷQTQ
i is NS-QAPT’s

question-to-question auto-encoder prediction, ŷQTP
i its

question-to-program encoder-decoder prediction, and ŷPTQ
i

its program-to-question encoder-decoder prediction. Then
ground truth may be written as

yi = (yQTQ
i , yQTP

i , yPTQ
i ) = (xQ

i , x
P
i , x

Q
i ).

Let LCE denote the standard cross-entropy loss, we define
the total cross-entropy, LTCE , as

LTCE(ŷ,y) =LCE(ŷ
QTQ, yQTQ)

+ LCE(ŷ
QTP , yQTP )

+ LCE(ŷ
PTQ, yPTQ).

Let |v| be the length of a vector v, and
∣∣∣z∣∣∣, be the absolute

value of a scalar z. We define the total length difference,
LTLD, as

LTLD(ŷ,y) =
∣∣∣|ŷQTQ| − |yQTQ|

∣∣∣
+
∣∣∣|ŷQTP | − |yQTP |

∣∣∣
+
∣∣∣|ŷPTQ| − |yPTQ|

∣∣∣.
Finally, let α be a constant scalar. Using this notation, we
may write the loss function, L, for NS-QAPT as follows:

L(B) =
1

N

N∑
i

LTCE(ŷi,yi)− αLTLD(ŷi,yi)

where α = 0.001. In the cases where LTLD(ŷ,y) > 0, the
inputs to LTCE are truncated to the length of the shorter of
the predicted and ground truth vectors.

At a high level, the loss on a batch consists of summing
the cross-entropy between model predictions and ground
truth for QTQ, QTP, and PTQ data, subtracting the abso-
lute values of the differences in sequence lengths between
predictions and ground truth, scaled down by a constant fac-
tor, and then returning the mean over all N examples in the
batch.

NS-QAPT’s question and program encoders share a se-
quence representation consisting of a word embedding of
size 512 and a modified learned positional embedding (Mao
et al. 2019) of size 128. Both encoders are bidirectional, 2-
layer Gated Recurrent Units (GRUs) (Cho et al. 2014) with
a hidden size of 512. The decoders have a similar architec-
tures, each being a single-direction, single-layer GRU with
hidden size 1024 followed by two linear layers. The first
layer is size 512 and followed by a LeakyReLU (Maas et al.
2013), and the second is size 253, which is the size of the
vocabulary. The vocabulary was constructed from tokens in
the CLEVR dataset and tokens from the AMOC questions
(For the CLEVR experiment, the vocabulary only consisted
of CLEVR tokens, and thus these layers were smaller for our
CLEVR experiment.). Currently, numerical values are con-
verted to “VALUE” tokens pre-encoding and are stored in a
dictionary to be passed to the decoders. VALUE tokens are
replaced with numerical values post-decoding in the same
order they were encoded. While dealing with numerical val-
ues this way works reasonably well, we hope future work
will use more advanced methods, such as a learned asso-
ciation with numerical values and their position in the se-
quence.

AMOC Dataset
We evalauted our method using two question-answer-
program translation datasets. The first was based on the
CLEVR (Johnson et al. 2017) dataset, which a well-
developed dataset about relationships of geometric objects
in images used to benchmark neuro-symbolic methods. We
described the results of evaluating our methodology using
the CLEVR dataset in our previous work (Sleeman et al.
2023a). The second is based on AMOC-related questions
and answers, and program translations, created specifically
for this work.

We generated a custom set of AMOC-collapse questions
and their corresponding programs to further evaluate our
model. Our approach is to define question “forms” in which
words and numerical values may be inserted to create valid
questions answerable by a set of implemented programs. For
example, one question form is “What is the value of M n at
time step {1} if {2} is {3}?” where M n represents the mass
transported through the northern box (Mn), and {1}, {2},
and {3} are placeholders for possible values. Replacing {1}



Figure 2: NS-QAPT’s bidirectional text-to-program translation architecture. NS-QAPT is a combination of an auto-encoder
and two encoder-decoder models. All encoders and decoders share a latent space.

with 4000, {2} with Fwn, and {3} with 5000 results in the
question:

“What is the value of M n at time step 4000 if Fwn
is 5000?”

The corresponding program is:

“FinalValue(
four box model(

SetTo(N,4000),SetTo(Fwn,5000)),
M n)”

where “four box model” runs the Four Box Model sim-
ulation for a vector of parameters, “SetTo(x, y)” sets the
Four Box Model parameter x to y, and “FinalValue(V ,
z)” extracts the data representing the variable z from V , the
set of outputs of the Four Box Model simulation, and returns
value of that data at the final step of the simulation.

Each question has a discrete set of parameters from which
question, program pairs may be generated. If a question re-
quires a numerical entry, a value is generated by adding
noise to the default box-model value for the associated pa-
rameter, or from a standard normal distribution if the entry
does not have a related default box-model value. Noise is
also constrained to ensure each value is within a reasonable
range for its a parameter.

Some questions allow for repeated phrases using differ-
ent words or numbers, creating a combinatorial expansion
of similar questions. For example, “If I set Fwn to 5.8e4,

M ek to 2.6e7, will M n increase?” could be extended to “If
I set Fwn to 5.8e4, M ek to 2.6e7, and D low0 to 439, will
M n increase?” essentially adding another SetTo call to the
four box model function. Each SetTo call (or clause)
can be given in any order, and for as many parameters as
desired, creating the combinatoral expansion of questions.
For our dataset, we use no more than three parameters per
question.

Finally, some phrases may also be substituted with differ-
ent, synonymous phrases, in order to build more diversity
into dataset. For example “If I set Fwn to” may be replaced
with “Setting the freshwater flux in the northern ocean to.”
without changing the meaning of the question and thus not
changing the corresponding program. We include several
such replacements to generate our current dataset.

Table 1 shows some example questions from the dataset,
with Table 2 showing their corresponding programs.

Experimental Setup and Results
We describe the experimental setup when applying this
methodology to the AMOC question dataset. The metric we
report is the normalized Levenshtein distance (Yujian and
Bo 2007). Levenshtein distance is a distance metric for the
number of replacements required to change one sequence
into another. Normalized Levenshtein distance converts this
measure to be in the interval [0, 100], and like accuracy,
greater values mean more similar sequences. Therefore ap-
proaching 100 is the desired behavior.



Example
What is the value of M n at time step
4000 if Fwn is 5000?
If Fwn is 45113 and M ek is 2.7e7, does
the AMOC collapse?
What is the final value of the AMOC
when Fwn is 49243?
Does Fwn collapse the AMOC at
49483?
If I set Fwn to 5.8e4, M ek to 2.6e7, and
D low0 to 439, will M n increase?
If I increase Fwn by 2052, will M n in-
crease?
If I increase Fwn by 720, will salinity in
the northern box increase?

Table 1: Examples of question types generated for our
AMOC-collapse dataset. Variables from the Four Box
model (Gnanadesikan, Kelson, and Sten 2018b): M n
(mass transport through the northern box), Fwn (fresh-
water flux in the northern box), M ek (Ekman trans-
port), and D low0 (start depth of the low box).

AMOC
We train NS-QAPT for three epochs on a dataset consisting
of 250,000 examples, balanced to have approximately equal
numbers of each question and equal numbers of question
sequence lengths. We then test on a holdout set of 25,000
examples, which are separated from the training data prior
to balancing, and does not contain repeat examples like in
the training data in order to maintain balance. We perform
this experiment three times with different seeds, and refer to
each simply as Experiment 1, Experiment 2, and Experiment
3. As seen in Figure 3, all models converge within the first
epoch (∼4000 steps).

In Table 3, we also see that the performance between the
models is also very similar.

Analysis
Figure 4 shows the distribution of normalized Levenshtein
distances over all examples in the test dataset. We can see
that the QTQ and QTP CDFs are completely concentrated
over the 95-100 distances, while PTQ is more spread out
over distances from 20 to 100. The overall distribution helps
show the contribution of PTQ performance to the overall
normalized Levenshtein distance.

In general, we see that the model performs quite well on
the QTQ and QTP portions of evaluation, but struggles with
PTQ. For QTQ and QTP, the model appears to reproduce
ground truth with almost 100% accuracy for all the different
types of questions, but the normalized Levenshtein distance
for PTQ is closer to 70 (100 is perfect). Closer examina-
tion shows that this may, in part, be a consequence of the
lack of variety in the set of training programs. 23,502 of the
25,000 test questions all came from the same question form.
Indeed, as seen in Table 4, the consequence of the data gen-
eration and train and test split is a very small number of test
examples for most questions.

Example
FinalValue(

four box model(
SetTo(N,4000),SetTo(Fwn,5000)),

M n)
ChangeSign(

four box model(
SetTo(Fwn,45113),SetTo(M ek,2.7e7)),

M n)
FinalValue(

four box model(SetTo(Fwn,49243)),M n)
ChangeSign(

four box model(SetTo(Fwn,49483)),M n)
IncreaseOf(

four box model(
SetTo(Fwn, 5.8e4),
SetTo(M ek, 2.6e7),
SetTo(D low0, 439)),

M n)
IncreaseOf(

four box model(IncreaseBy(Fwn,2052)),M n)
IncreaseOf(

four box model(IncreaseBy(Fwn,720)),S north)

Table 2: Examples of programs generated for our AMOC-
collapse dataset. The four box model function represents
a run of the Four Box model (Gnanadesikan, Kelson, and
Sten 2018b). Arguments are model parameters to update
from the defaults. We assume the output of this model is
AMOC time-series data, including north box mass trans-
port M n. S north represents the salinity of the water in the
northern box (see Table 1 for information on other Four
Box model variables).

Figure 5, shows test performance by question for Exper-
iment 1. The NS-QAPT model performs well on questions
1-7, nearing 100 normalized Levenshtein distance, but drops
to between 60% and 80% for questions 8-10. As these ques-
tions constitute more than 99% of the dataset, the PTQ per-
formance in Table 3 is close to the performance on just ques-
tion 8. Taking an unweighted mean of the performance over
questions gives a mean normalized Levenshtein distance of
88.8, which is significantly higher.

Questions 8-10 have so many more examples because
they their forms allow for multiple calls to the SetTo
method, and have several synonymous phrases that many in-
terchanged to produce variants of the same question. How-
ever, while this is helpful for producing many questions with
subtle variations, the many of these variations produce the
same program. The lack of variety in the program set may
be the cause of poorer performance on these questions.

It is also worth noting that the normalized Levenshtein
distance measure does not capture correctness of meaning
between predictions and ground truth. For example, con-
sider the following prediction vs versus ground truth for both
CLEVR and AMOC PTQ outputs:



Figure 3: AMOC mean loss per optimization step between three experiments training the translation model.

Model QTQ QTP PTQ
1 99.99 99.99 61.69
2 99.99 99.99 61.16
3 99.99 99.99 63.04

Mean 99.99 99.99 61.97
StDev 0.0006 0.0002 0.79

Table 3: AMOC mean evaluation scores between the three
NS-QAPT models. Normalized Levenshtein distance (Yu-
jian and Bo 2007) is a normalized measure of the number
of replacements required to convert the predicted sequence
to the ground truth sequence. NS-QAPT shows low variance
between training runs.

Figure 4: CDF plot of normalized Levenshtein distance per-
formance on AMOC questions for Experiment 1 NS-QAPT
models.

Q1 Q2 Q3 Q4 Q5
4 26 3 4 67

Q6 Q7 Q8 Q9 Q10
4 4 23,502 198 1,188

Table 4: Resulting question counts for the test set after 90/10
train-test split.

Figure 5: Mean and standard deviation normalized Leven-
shtein distance by question for Experiment 1 PTQ perfor-
mance.



Prediction: “if i increase epsilon by 4.24e-06, will temper-
ature in the low latitude box increase?”
Ground Truth: “by increasing epsilon by 4.24e-06, will
temperature in the low latitude box increase?”
Levenshtein distance 93.4

Examining various model predictions shows that common
mistakes include missing and repeated tokens, in addition to
semantically related errors such as synonym substitutions.

Conclusions and Future Work
Neuro-symbolic methods have the potential to overcome re-
luctance in using deep learning models for weather and cli-
mate forecasting, as they provide a means to interrogate
what is learned by the neural methods and a natural lan-
guage for easy adoption. By coupling the neuro-symbolic
method with a deep learning simulator, these methods can
work together to reduce the search spaces that are required
for climate modeling problems such as AMOC collapse or
other types of climate tipping points, potentially enabling
faster and more accurate forecasting, with results that are
interpretable and explainable.

We described a neuro-symbolic bi-directional translation
model to translate between questions and programs that per-
tain to a neural simulation built to identify areas in state
space that warrant climate modeling exploration as it re-
lates to AMOC collapse. We introduced an AMOC ques-
tion dataset, and showed how our model is able to translate
from questions to programs with a high degree of accuracy
and translate from programs to questions with slightly lower
accuracy. As we advance the AMOC language further we
expect to enable a richer set of questions and improve the
program-to-question performance. Future work will also in-
clude exploring semantic methods to support one-to-many
translations from programs to question.
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