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Abstract. Video segmentation is critical for many medical imaging ap-
plications; however, developing video-aware models is challenging as they
require densely annotated large-scale datasets. Most mainstream seg-
mentation models process each frame independently, often resulting in
inconsistent segmentation masks across consecutive frames. Although the
recently proposed Segment Anything Model 2 (SAM2) has demonstrated
promising segmentation capabilities with its memory mechanism, apply-
ing SAM2 in clinical settings is challenging due to its reliance on user
prompts.

To address these issues, we introduce the Temporal Memory Augmen-
tation Module (TMAM). TMAM adapts any pre-trained 2D segmenta-
tion model by encoding past-frame predictions via SAM2’s memory en-
coder and applying memory attention to refine current-frame features.
By leveraging temporal redundancy in video sequences, TMAM cap-
tures contextual cues that may be overlooked by single-frame processing,
thereby improving robustness to occlusions and boundary artifacts.
Experiments on public surgical video datasets demonstrate that TMAM
enhances Dice scores and temporal consistency across various base archi-
tectures. These results highlight TMAM’s ability to produce smoother,
more coherent segmentations, paving the way for more reliable video
analysis in surgical image navigation systems and robotic surgery, where
precise and consistent segmentation is essential.

Keywords: Video Segmentation - Endoscopic Video - Temporal Con-
sistency.

1 Introduction

Accurate and temporally consistent video segmentation is crucial in medical im-
age analysis, particularly for high-stakes applications such as surgical support
systems and robotic surgery. In these settings, reliable segmentation not only
enhances the precision of tissue and instrument tracking but also directly con-
tributes to improved patient outcomes. Recent advances, exemplified by the Seg-
ment Anything Model 2 (SAM2), have demonstrated that incorporating memory
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mechanisms to capture temporal context can dramatically enhance segmentation
performance [11].

Based on recent trends in MICCATI EndoVis Challenges [10, 13, 18], the main
approach for organ and instrument segmentation has been to apply frame-by-
frame segmentation models to videos. This method tends to yield stable perfor-
mance, particularly in challenging and data-scarce medical imaging scenarios.
However, this approach fails to leverage the rich temporal continuity inherent in
video data—an issue that is particularly pronounced in medical videos, where
occlusions, rapid motion, and partial object appearances are common, and tem-
porally dense annotations are rarely available.

On the other hand, video-specific segmentation methods have been proposed
[2,5,8]. Yet, adapting such models to the medical domain is nontrivial; high
training costs, the need for temporally dense annotations, and prolonged training
times pose significant challenges. Moreover, while considerable progress has been
made in video segmentation for natural images, methods tailored for medical
videos—characterized by subtle anatomical differences and limited data—remain
sparse.

Motivated by these challenges, we propose the Temporal Memory Aug-
mentation Module (TMAM). By leveraging transfer learning, TMAM re-
duces the cost of learning temporal information and effectively extracts and
integrates temporal redundancy from even sparsely annotated medical video
datasets. TMAM transfers SAM2’s memory encoder and memory attention mech-
anisms to enhance existing 2D segmentation architectures. The key contributions
of our paper are:

1. By integrating past-frame predictions through a memory encoder and refin-
ing current-frame features via memory attention, our approach mitigates in-
consistencies caused by occlusions and boundary artifacts while significantly
improving temporal coherence. It is expected to provide stable boundaries
in long surgical videos, resulting in easily interpretable masks for humans
and noise free for the surgical system.

2. The TMAM is designed as a plug-and-play module compatible with all
encoder-decoder segmentation architectures, seamlessly enabling temporal
inference capabilities without extensive modifications.

3. The TMAM leverage a domain-specific encoder during the frame propagation
process, which is not possible with the standard SAM2 framework. This
allows TMAM to recover from initial prediction errors and robustly handle
challenges like occlusions

4. Furthermore, regarding automation, a simple tracking approach based on
SAM2 would fail as the video progresses. It cannot predict instruments or
organs that appear after the initial frame. Requiring new prompts for every
new object during a surgical procedure is impractical. TMAM solves this by
enabling true end-to-end automatic segmentation.
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Fig. 1. Comparison of Conventional segmentation model, SAM2, and our proposed
model incorporates a Temporal Memory Alignment Module (TMAM) to enhance fea-
ture consistency and segmentation accuracy. Trainable and frozen components are in-
dicated.

Overall Framework. Figure 1 illustrates the architecture of TMAM and its
functionality. TMAM is designed to integrate with any pretrained 2D segmenta-
tion model consisting of an encoder and decoder. It incorporates the memory en-
coder and memory attention components from SAM2.1-base, performing feature
alignment to adjust tensor sizes and dimensions. With this alignment, TMAM
performs segmentation without the prompts required in SAM2. Additionally,
TMAM employs an internal memory module that stores temporal representa-
tions from previous frames, which are retrieved during memory attention to
refine current-frame predictions.

Memory Attention. The deepest feature map from the encoder is resized to 64
x 64, then reshaped to match the channel dimensions required by the memory-
attention mechanism. Following the cross-attention operation, the refined feature
map is resized back to its original resolution and passed to the decoder. The
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mask for the first frame is generated using the base model, skipping the memory
attention module. To ensure consistency, we reuse SAM2’s positional encoding.

Feature Alignment, Memory Encoder and Module. For multi-class seg-
mentation, a single-channel mask is generated by inverting the background prob-
abiliy. The memory encoder produces a 64 x 64 tensor, reshaped to (B,HxW,C).
At each new frame, memory representations from the 10 most recent frames are
concatenated along the batch dimension. This aggregated memory is stored in-
ternally and utilized by the memory-attention mechanism to integrate contextual
information from prior frames.

3 Experiments

3.1 Experimental Setup

SAR-RARPS50. This is a publicly available dataset. We adopt the data split as
described in the original SAR-RARP50 paper[10]. This dataset contains surgical
videos with nine instrument classes, annotated every 60 frames.

CholecSeg8k. This is a dataset consists of 8,080 pixel-wise annotated frames
extracted from 17 laparoscopic cholecystectomy videos in the Cholec80 dataset.
Each frame includes semantic segmentation masks for 13 anatomically and sur-
gically relevant classes, supporting detailed analysis of endoscopic scenes.[4]

Training Settings. We first trained baseline models (e.g., U-Net [12]/EfficientNet-
B7[15], U-Net/MaxViT-T [16], DeepLabV3+ [1]/ResNet-101 with RAdamSched-
ulefree [3]. The learning rate is set to 1 x 10~% for MaxViT encoders and 1 x 1073
otherwise. The models were trained for 75 epochs with a batch size of 16, ap-
plying TrivialAugment [9]. For TMAM fine-tuning and ablation studies, no aug-
mentation was applied. We used a batch size of 1 and trained for three epochs,
including unlabeled frames to facilitate learning of temporal relationships. Both
training and fine-tuning utilized Generalized Dice Focal Loss, defined as:

‘Ctotal = EGeneralizedDice + EFocal (1)

where LgeneralizedDice 18 Generalized Dice Loss[14], and Lgocal is Focal Loss[6].

Evaluation Metrics. We measure spatial segmentation accuracy using the
per-class Dice Score, calculated for each individual image and then averaged. To
assess temporal consistency, we modified the approach defined in [7]. Instead of
using the original implementation, we employed RAFT [17] to predict optical
flow between consecutive frames. The mask ¢ — 1 is warped to frame t using
the predicted flow, and the mean Intersection over Union (mloU) is computed
between the warped mask and the predicted mask for frame ¢. This metric is
averaged across all frames in each video. For each dataset, temporal consistency
is evaluated at fps = 60 (SAR-RARP50) and fps = 25 (CholecSeg8k).
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Ablation Study An ablation study was conducted to isolate the effect of
TMAM. Using the same training settings—minimal augmentation with resiz-
ing only, batch size 1, and 3 epochs, we fine-tuned the base segmentation models
both with and without the TMAM components.

Implementation Details. All experiments were conducted on a system equipped
with an NVIDIA Quadro RTX 8000 GPU (48GB VRAM) running Ubuntu
22.04.3 LTS. The CPU is an AMD EPYC 7702P 64-Core Processor. The source
Code is available at: https://github.com/JmeesInc/TMAM.

3.2 Results

Table 1. SAR-RARP50: Average Dice and average Temporal Consistency (TC) at 60
fps. * means additional training on 3 epochs for ablation study. Proposal method is
indicated by (+TMAM).

Model Dice TCQ@60fps
DeepLabV3+/ResNet-101 0.913 0.662
DeepLabV3+/ResNet-101* 0.907 0.657
DeepLabV3+/ResNet-101(+TMAM) 0.922 0.673
U-Net/EfficientNet-B7 0.867 0.608
U-Net/EfficientNet-B7* 0.865 0.604
U-Net/EfficientNet-B7(+TMAM) 0.877 0.654
U-Net/MaxViT-T 0.872 0.583
U-Net/MaxViT-T* 0.882 0.590
U-Net/MaxViT-T(+TMAM) 0.923 0.669

Table 2. CholecSeg8k: Average Dice and average Temporal Consistency (TC) at 25
fps. * means additional training on 3 epochs for ablation study. Proposal method is
indicated by (+TMAM).

Model Dice TCQ25fps
DeepLabV3+/ResNet-101 0.844 0.645
DeepLabV3+/ResNet-101* 0.842 0.645
DeepLabV3+/ResNet-101(+TMAM) 0.873 0.686
U-Net/EfficientNet-B7 0.869 0.608
U-Net/EfficientNet-B7* 0.872 0.609
U-Net /EfficientNet-B7(+ TMAM) 0.877 0.647
U-Net/MaxViT-T 0.867 0.574
U-Net/MaxViT-T* 0.866 0.572

U-Net/MaxViT-T(+TMAM) 0.872 0.577
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Table 1 summarizes the experimental results for the SAR-RARP50 dataset
across three base model configurations. In each configuration, incorporating
TMAM improves the Dice Score by approximately 1 to 4 percentage points
on average compared to the corresponding 2D model. TMAM also consistently
enhances temporal consistency, yielding an improvement of around 15 percent-
age points for the first two models equipped with U-Net. Notably, temporal
consistency improvements are observed.

Table 2 shows the results for the CholecSeg8k dataset. While the Dice Score
improvements with TMAM are more limited depending on the model, TMAM
consistently leads to performance gains across configurations.

The inference speed was not significantly different from SAM2, ran at 4 FPS
on our system. The slowest configuration (ResNet+DeepLabV3-+) ran at 2 FPS,
while the fastest (MaxViT-UNet++) achieved 9 FPS.

3.3 Qualitative Evaluation

] Past Label

2D-Model

Fig. 2. Comparison under extreme motion. TMAM leverages temporal context to ac-
curately segment the heavily blurred input frame (upper right). The ground truth
(upper left) is from a previous, clearer frame. Sample: Video 11-1, index 180 (GT) &
210 (input).

In addition to quantitative metrics, we conducted a qualitative analysis in
challenging scenarios. First, we examine cases where single-frame information is
severely compromised. In Figure 2, extreme motion blur significantly degrades
the input image. In Figure 3, the input image has extreme dark regions. In both
cases, while 2D model fails to capture the accurate contour and instance classes,
TMAM successfully reconstructs the scene and delivers a precise segmentation.

Next, we evaluate the crucial aspect of temporal consistency, especially dur-
ing events like occlusion and partial visibility. Figure 4 illustrates an occlusion
scenario where an instrument is temporarily hidden. While 2D models lose track
of such objects, TMAM retains the instrument class once it reappears. Figure 5
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Fig. 3. Comparison in a low-light scenario. TMAM accurately segments the instrument
in the dark, where the baseline model fails. Sample: Video 2, index 960.
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Fig. 4. Temporal consistency during an occlusion. The white arrow indicates the in-
strument hidden at frame t. TMAM retains the object’s memory, ensuring consistent
segmentation at frame ¢ + 1. Sample: Video 36, indices 120, 180, 240.

TMAM 2D-Model
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further demonstrates this capability in a scenario with limited visibility, where
TMAM correctly identifies an instrument whose key features are off-camera by
recalling its appearance from memory.

t-1

Input

TMAM 2D-Model

Fig. 5. Temporal consistency with limited visibility. TMAM correctly identifies the
partially visible instrument at frame ¢ by recalling its appearance from memory. Sample:
Video 7, indices 1500, 1560, 1620.

4 Discussion and Conclusion

Input Ground Truth

2D Model TMAM after memory-attention

Fig. 6. Comparison of feature map between 2D model and TMAM.

Analysis of the feature maps in Figure 6 further demonstrates that the
memory-attention mechanism compensates for critical temporal features often
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overlooked by single-frame models. Comparing the input image, feature maps
from a conventional 2D model, and those before and after TMAM’s memory-
attention suggests that TMAM enriches feature representations by integrating
information from past frames.

Despite these promising results, the computational cost of TMAM remains
high. Future work should explore strategies to reduce this complexity. Ensuring
real-time capability is crucial for clinical applications; therefore, optimizing the
inference pipeline to minimize latency while maintaining accuracy is a critical
direction for further research.

In conclusion, our study demonstrates that TMAM significantly enhances
both spatial segmentation accuracy and temporal consistency across different
base models and datasets. These improvements are particularly pronounced in
multi-class surgical tool segmentation, where zero-shot methods fall short, and
in high-difficulty tasks. These advancements pave the way for more reliable and
robust segmentation systems in medical video analysis, ultimately contributing
to enhanced surgical precision and patient safety.

Supplementary Material A video used for validation with, TMAM inference,
base model inference, and ground truth is available from github repository.

Disclosure of Interests Shunsuke Kikuchi received financial support for a
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Hiroki Matsuzaki is the co-founder and CEO of Jmees Inc.
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