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ABSTRACT

Planning in large state spaces inevitably needs to balance depth and breadth of
the search. It has a crucial impact on planners performance and most manage this
interplay implicitly. We present a novel method Shoot Tree Search (STS), which
makes it possible to control this trade-off more explicitly. Our algorithm can be
understood as an interpolation between two celebrated search mechanisms: MCTS
and random shooting. It also lets the user control the bias-variance trade-off, akin
to TD(n), but in the tree search context.
In experiments on challenging domains, we show that STS can get the best of both
worlds consistently achieving higher scores.

1 INTRODUCTION

Classically, reinforcement learning is split into model-free and model-based methods. Each of these
approaches has its strengths and weaknesses: the former often achieves state-of-the-art performance,
while the latter holds the promise of better sample efficiency and adaptability to new situations.
Interestingly, in both paradigms, there exists a non-trivial interplay between structure and randomness.
In the model-free approach, Temporal Difference (TD) prediction leverages the structure of function
approximators, while Monte Carlo (MC) prediction relies on random rollouts.

Model-based methods often employ planning, which counterfactually evaluates future scenarios.
The design of a planner can lean either towards randomness, with random rollouts used for state
evaluation (e.g. random shooting), or towards structure, where a data-structure, typically a tree or a
graph, forms a backbone of the search, e.g. Monte Carlo Tree Search (MCTS). Planning is a powerful
concept and an important policy improvement mechanism. However, in many interesting problems,
the search state space is prohibitively large and cannot be exhaustively explored. Consequently, it is
critical to balance the depth and breadth of the search in order to stay within a feasible computational
budget. This dilemma is ubiquitous, though often not explicit.

The aim of our work is twofold. First, we present a novel method: Shoot Tree Search (STS). The
development of the algorithm was motivated by the aforementioned observations concerning structure,
randomness, and dilemma between breadth and depth of the search. It lets the user control the depth
and breadth of the search more explicitly and can be viewed as a bias-variance control method.
STS itself can be understood as an interpolation between MCTS and random shooting. We show
experimentally that, on a diverse set of environments, STS can get the best of both worlds. We also
provide some toy environments, to get an insight into why STS can be expected to perform well. The
critical element of STS, multi-step expansion, can be easily implemented on top of many algorithms
from the MCTS family. As such, it can be viewed as one of the extensions in the MCTS toolbox.

The second aim of the paper is to analyze various improvements to planning algorithms and test
them experimentally. This, we believe, is of interest in its own right. The testing was performed on
the Sokoban and Google Research Football environments. Sokoban is a challenging combinatorial
puzzle proposed to be a testbed for planning methods by Racanière et al. (2017). Google Research
Football is an advanced, physics-based simulator of football, introduced recently in Kurach et al.
(2019). It has been designed to offer a diverse set of challenges for testing reinforcement learning
algorithms.

The rest of the paper is organized as follows. In the next section, we discuss the background and
related works. Further, we present details of our method. Section 4 is devoted to experimental results.
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2 BACKGROUND AND RELATED WORK

The introduction to reinforcement learning can be found in Sutton & Barto (2018). In contemporary
research, the line between model-free and model-based methods is often blurred. An early example
is Guo et al. (2014), where MCTS plays the role of an ‘expert’ in DAgger (Ross & Bagnell (2014)), a
policy learning algorithm. In the series of papers Silver et al. (2017; 2018), culminating in AlphaZero,
the authors developed a system combining elements of model-based and model-free methods that
master the game of Go (and others). Similar ideas were also studied in Anthony et al. (2017). In
Miłoś et al. (2019), planning and model-free learning were brought together to solve combinatorial
environments. Schrittwieser (2019) successfully integrated model learning with planning in the
latent space. A recent paper, Hamrick et al. (2020), suggests further integration model-free and
model-based methods via utilizing internal planner information to calculate more accurate estimates
of the Q-function. Soemers et al. (2016) presents expansion much similar to ours. The crucial
algorithmic difference is the aggregate backprop (for details see Section 3). In a similar vain, Coulom
(2006), proposes a framework blending tree search and Monte-Carlo simulations in a smooth way.
Both, Soemers et al. (2016) and Coulom (2006) differ from our work as they do not used learned
value functions, resorting to heuristics and/or long rollouts. In James et al. (2017) a detailed empirical
analysis suggests that the key to the UCT effectiveness is the correct ordering of actions. As most of
these works, we use the model-based reinforcement learning paradigm, in which the agent has access
to a true model of the environment.

Searching and planning algorithms are deeply rooted in classical computer science and classical AI,
see e.g. Cormen et al. (2009) and Russell & Norvig (2002). Traditional heuristic algorithms such as
A∗ (Hart et al. (1968)) or GBFS (Doran & Michie (1966)) are widely used. The Monte Carlo Tree
Search algorithm, which combines heuristic search with learning, led to breakthroughs in the field,
see Browne et al. (2012) for an extensive survey. Similarly, Orseau et al. (2018) bases on the classical
BFS to build a heuristic search mechanism with theoretical guarantees. In Agostinelli et al. (2019)
the authors utilise the value-function to improve upon the A∗ algorithm and solve Rubik’s cube.

Monte Carlo rollouts are known to be a useful way of approximating the value of a state-action
pair Abramson (1990). Approaches in which the actions of a rollout are uniformly sampled are
often called flat Monte Carlo. Impressively, Flat Monte Carlo achieved the world champion level in
Bridge Ginsberg (2001) and Scrabble Sheppard (2002).

Moreover, Monte Carlo rollouts are often used as a part of model predictive control, see Camacho
& Alba (2013). As suggested by Chua et al. (2018); Nagabandi et al. (2018), they offer several
advantages, including simplicity, ease of parallelization. At the same time, they reach competitive
results to other (more complicated) methods on many important tasks. Williams et al. (2016) applied
their Model Predictive Path Integral control algorithm (Williams et al., 2015), the approach based on
stochastic sampling of trajectories, to the problem of controlling a fifth-scale Auto-Rally vehicle in
an aggressive driving task.

Some works aim to compose a planning module into neural network architectures, see e.g., Oh et al.
(2017); Farquhar et al. (2017). Kaiser et al. (2019), recent work on model-based Atari, has shown
the possibility of sample efficient reinforcement learning with an explicit visual model. Gu et al.
(2016) uses model-based methods at the initial phase of training and model-free methods during
‘fine-tuning’. Furthermore, there is a body of work that attempts to learn a planning module, see
Pascanu et al. (2017); Racanière et al. (2017); Guez et al. (2019).

3 METHODS

Reinforcement learning (RL) is formalized with the Markov decision processes (MDP) formalism
see Sutton & Barto (2018). An MDP is defined as (S,A, P, r, γ), where S is a state space, A is a
set of actions available to an agent, P is the transition kernel, r is reward function and γ ∈ (0, 1) is
the discount factor. An agent policy, π : S 7→ P (A), maps states to distribution over actions. An
object central to the MDP formalism is the value function V π : S 7→ R associated with policy π
V π(s) := Eπ

[∑+∞
t=0 γ

trt|s0 = s
]
, where rt denotes the stream of rewards, assuming that the agent

operates with policy π (which is denoted as Eπ) and that at t = 0 the system starts from s. The
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objective is to find a policy, which achieves maximal value. In this work we concentrate on planning
methods, which in each step search a subspace of the state-space S to render robust decision.

A Generic Planner, presented in Algorithm 1, gives a unified view on all methods analyzed in the
paper: Random Shooting, MCTS and, our novel approach, STS. By a suitable choice of functions
SELECT, EXPAND, UPDATE and CHOOSE_ACTION, we can recover each of these methods (see
description below).

Typically, a planner is a part of a reinforcement learning (RL) training process, see Algorithm 2. In a
positive feedback loop, the planner improves the quality of data used for training of the value function
Vθ and a policy πφ. Conversely, the policy and value function might further improve planning.
Implementation details of Algorithm 2 are provided in Appendix A.1.

Algorithm 1 Generic Planner, defines required
constants, variables and objects used in further
algorithms

Require: C planning passes
H planning horizon
γ discount factor

Use: N(s, a) visit count
W (s, a) total action-value
Q(s, a) mean action-value
Vθ value function
πφ policy

model environment simulator
# Initialize N,W,Q to zero
function PLANNER(state)

for 1 . . . C do
path, leaf← SELECT(state)
rollout, leaf← EXPAND(leaf)
UPDATE(path, rollout, leaf)

return CHOOSE_ACTION(state)

Algorithm 2 Training loop, additionally requires
environment env
# Initialize parameters of Vθ, πφ
# Initialize replay_buffer
repeat

episode← COLLECT_EPISODE
replay_buffer.ADD(episode)
B ← replay_buffer.BATCH
Update Vθ, πφ using B and SGD

until convergence
function COLLECT_EPISODE

s← env.RESET
episode← []
repeat

a← PLANNER(s)
s′, r ← env.STEP(a)
episode.APPEND((s, a, r, s′))
s← s′

until episode is done
return CALCULATE_TARGET(episode)

Below we give a detailed description of the planning methods considered in the papers.

Random Shooting In this section we present two instantiations of Algorithm 1, which use Monte
Carlo rollouts to evaluate state-actions pairs: Random Shooting and Bandit Shooting, see Algorithm
3 and Algorithm 4, respectively.

Algorithm 3 Random Shooting Planner
function SELECT(state)

s← state
a ∼ πφ(s, ·)
s′, r ← model.STEP(s, a)
return (s, a, r), s′

function EXPAND(leaf)
s0 ← leaf
rollout← (sk, ak, rk+1)

H−1
k=0

where sk+1, rk+1 ← model.STEP(sk, ak)
and ak ∼ πφ(sk, ·)

return rollout, sH

function UPDATE(path, rollout, leaf)
Ĝ←

∑H
k=1 γ

k−1rk + γHVθ(leaf)
where rk ∈ rollout
s, a, r ← path

quality← r + γ ∗ Ĝ
W (s, a)←W (s, a) + quality
N(s, a)← N(s, a) + 1

Q(s, a)← W (s,a)
N(s,a)

function CHOOSE_ACTION(s)
return argmaxaQ(s, a)
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Algorithm 4 Bandit Shooting Planner, additionally requires exploration weight cpuct
function SELECT(state)

s← state
U(s, a)←

√∑
a′ N(s, a′)/(1 +N(s, a))

a← argmaxa(Q(s, a) + cpuctπφ(s, a)U(s, a))
s′, r ← model.STEP(s, a)
return (s, a, r), s′

function EXPAND(leaf)
Same as in Algorithm 3.

function UPDATE(path, rollout)
Same as in Algorithm 3.

function CHOOSE_ACTION(s)
return argmaxaN(s, a)

The simplest version of Algorithm 3, the so-called flat Monte Carlo Ginsberg (2001); Sheppard
(2002), does not use a policy πφ (instead rollouts are uniformly sampled) nor a value function Vθ (just
truncated sum of rewards Ĝ =

∑H
k=1 γ

k−1rk). The value function is neither used in the experiments
with the pre-trained PPO policy in Section 4.2. Bandit Shooting, presented in Algorithm 4, is a
Multi-armed Bandits variant of Random Shooting and uses PUCT Silver et al. (2018) rule to improve
exploration and thus achieve more reliable evaluations of actions.

Algorithm 5 MCTS, additionally uses tree structure tree, requires exploration weight cpuct and
action sampling temperature τ

function SELECT(state)
s← state
path← []
while s belongs to tree do

a← SELECT_CHILD(s)
s′, r ← tree[s][a]
path.APPEND((s, a, r))
s← s′

return path, s

function EXPAND(leaf)
for a ∈ A do

s′, r ← model.STEP(leaf, a)
tree[leaf][a]← (s′, r)
W (leaf, a)← r + γ ∗Vθ(s

′)
N(leaf, a)← 1
Q(leaf, a)←W (leaf, a)

return [], leaf

function UPDATE(path, rollout, leaf)
quality← Vθ(leaf)
for s, a, r ← reversed(path) do

quality← r + γ ∗ quality
W (s, a)←W (s, a) + quality
N(s, a)← N(s, a) + 1

Q(s, a)← W (s,a)
N(s,a)

function SELECT_CHILD(s)
U(s, a)←

√∑
a′ N(s, a′)/(1 +N(s, a))

a← argmaxa(Q(s, a)+cpuctπφ(s, a)U(s, a))
return a

function CHOOSE_ACTION(s)
a ∼ softmax

(
1
τ
logN(s, ·)

)
return a

Algorithm 6 Shoot Tree Search

function EXPAND(leaf)
s← leaf
rollout← []
for 1 . . . H do

MCTS.EXPAND(s)
a← CHOOSE_ACTION(s)
s′, r ← tree[s][a]
rollout.APPEND((s, a, r))
s← s′

return rollout, s

function SELECT(state)
Same as in Algorithm 5.

function CHOOSE_ACTION(s)
Same as in Algorithm 5.

function UPDATE(path, rollout, leaf)
s′ ← leaf
c← 1
quality← 0
for s, a, r ← reversed(path+ rollout) do

if s′ ∈ path then
v← 0

else
v← Vθ(s

′)
c← c+ 1

quality← c ∗ r + γ ∗ (quality+ v)
W (s, a)←W (s, a) + quality
N(s, a)← N(s, a) + c

Q(s, a)← W (s,a)
N(s,a)

s′ ← s

MCTS Monte Carlo Tree Search (MCTS) is a family of methods, that iteratively and explicitly
build a search tree, see Browne et al. (2012). It follows the schema of Algorithm 1. SELECT traverses
down the tree, according to an in-tree policy, until a leaf is encountered. EXPAND grows the tree by
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adding the leaf’s children. The values of these new nodes are estimated, usually with the help of a
rollout policy in a similar vein as Random Shooting Planner, or via the value network Vθ (see Silver
et al. (2017)). In this work, we refer to the latter version, using value networks, as MCTS. Finally,
UPDATE backpropagates these values from the leaf up the tree. After planning, CHOOSE_ACTION
chooses an action to take by sampling from the empirical child visitation distribution, sharpened
by a predefined temperature parameter τ . This is consistent with MuZero, as used in the Atari
domain (Schrittwieser, 2019). A basic variant of MCTS is presented in Algorithm 5. More details are
provided in Appendix A.5.

Shoot Tree Search Shoot Tree Search (STS) extends MCTS in a novel way, by redesigning the
expansion phase, see Algorithm 6. Given a leaf and a planning horizon H the method expands
H consecutive vertices starting from the leaf. Each new node is chosen according to the in-tree
policy and is added to the search tree. Note a crucial difference between STS and vanilla MCTS
using random rollouts: in contrast to the latter, STS adds visited nodes to the tree, so the explored
paths can easily be branched out during later planning passes. We call this mechanism multi-step
expansion. Intuitively, multi-step expansion tilts slightly the search towards DFS. Its advantage
comes from making ”faster advances” towards the solution, though possibly at risk of missing some
promising nodes. Our experiments support these intuitions, suggesting a sweet-spot around H = 10
(see experiments in Table 4.1 and Section A.9.1).

A similar method was proposed in Soemers et al. (2016), with two crucial differences. First, Soemers
et al. (2016) uses hard-coded heuristics while we embed STS into the RL training. Second, in
Soemers et al. (2016) only the last estimate of value is backpropagated. Our UPDATE backpropagates
an aggregate value estimates calculated on the rollout of multi-step expansion. We weight this update
by the rollout length (hence N(s, a) ← N(s, a) + c). We consider our method more natural and,
importantly, it presents better experimental results; see also Section A.9.4.

STS can be viewed as a sophisticated version of Random Shooting applied to MCTS. In this
interpretation, STS interpolates between the two methods. We demonstrate empirically that the
change introduced by STS is essential to solving challenging RL domains; see Section 4. We note
that H = 1 corresponds to MCTS.

Interestingly, in some of our experiments, we identified that the tree traversal performed during
SELECT was the computational bottleneck. The cost of building the search tree is quadratic with
respect to its depth. STS allows to significantly reduce this cost since a single tree traversal adds
not one but H new nodes. To get this computational benefit we tweak UPDATE to backpropagate
all values from leaf and rollout in one pass. A more formal analysis of computational gains is
presented in Lemma A.6.1.

Equipping STS with additional exploration mechanism (see Appendix A.5, A.4, and A.6), can
guarantee that every state action pair will be visited infinitely often. Combining this with Robbins-
Monro conditions for learning rate, implies the convergence in tabular case, following the classical
tabular Q-learning convergence theorem (see Tsitsiklis (1994)).

4 EXPERIMENTS

We tested the spectrum of algorithms presented in Section 3 on the Sokoban and Google Research
Football domains. Those tasks present numerous challenges, which evaluate various properties of
planning algorithms. Our experiments support the hypothesis that STS build a more efficient search
tree. This is strengthen by measuring the tree size in isolation (see Table 1), its average depth (see
Section A.9.1) and comparisons to AlphaGo (see Section A.9.2). For the training details, a list
of hyper-parameters and network architectures are presented in Appendix A.1, Appendix A.2 and
Appendix A.3 respectively.

We stress that in all comparisons, we set parameters C,H so that MCTS and STS perform the same
number of node expansions during each PLANNER call; see Algorithm 1. This ensures the same
computational power requirements (e.g., number of neural network evaluations) and similar memory
usage.

In Appendix A.10, we present two thought experiments, supported by formal proofs, where we argue
that STS can better handle certain errors in value functions by using the multi-step expansion. We
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show that STS can get quicker to the regions with the accurate values during planning and it is less
prone to entering ’decoy’ paths. The errors are inevitable during training and when using function
approximators.

4.1 SOKOBAN
Scenario C H S. rate Np Nt Ng

av. loops

256 1 95.2% 1224 1224 716
64 4 96.5% 299 1194 830
16 16 95.7% 114 1822 1333
4 64 89% 62 3960 1491

no av. loops
256 1 84.5% 1497 1497 376
32 8 88.4% 185 1483 409
2 128 65.3% 36 4589 967

Table 1: Comparison on evaluation of MCTS and STS. C,H are
parameters in Algorithm 1. S. rate is the ratio of solved boards,
Np, Nt(= Np · H), Ng are the average number of passes, tree
nodes and game states observed until the solution is found. Full
table is available in Table 4.

Sokoban is a well-known combina-
torial puzzle, where the agent’s goal
is to push all boxes (marked as yel-
low, crossed squares) to the designed
spots (marked as squares with a red
dot in the middle), see Figure 1. Addi-
tionally, to the navigational challenge,
Sokoban’s difficulty is attributed to
the irreversibility of certain actions.
A typical example is pushing a box
into a corner, though there are multi-
ple less apparent cases. The environ-
ment’s complexity is formalized by
the fact that, deciding whether a level of Sokoban is solvable or not, is PSPACE-complete, see e.g.
Dor & Zwick (1999). Due to these challenges, the game is often used to test reinforcement learning
and planning methods.

Figure 1: Example (10, 10)
Sokoban board with 4 boxes.
Boxes (yellow) are to be pushed
by agent (green) to designed spots
(red). The optimal solution in this
level has 37 steps.

We use procedurally generated Sokoban levels, as proposed by
Racanière et al. (2017). The agent is rewarded with 1 by putting
a box into a designated spot and additonally with 10 when all the
boxes are in place. We use Sokoban with the board of size (10, 10), 4
boxes, and the limit of 200 steps. We use an MCTS implementation
with transposition tables and a loop avoidance mechanism, see Miłoś
et al. (2019) and Appendix A.5.

In the first experiment, we evaluated the planning capabilities of
STS in isolation from training. To this end, we used a pre-trained
value function (we used MCTS to get this) and varied the number of
passes C and the depth of multi-step expansion H , such that H · C
remains constant. In this way, we ensure a fair comparison because
the same computing power is used. In Table 1 we present quantities
(Np, Nt, Ng), which measure planning costs. Arguably, the most
important of these is Nt, which denotes the total size of the planning
tree used to find the solution. In the two presented scenarios, there is
a sweet spot for the choice of H . For this choice, the number of tree
nodes, Nt, is the smallest, and even more importantly, we observe
an increase in the solved rate. This may possibly be explained by
the fact that the number of distinct visited game states, Ng, grows. This suggests that STS explores
more aggressively and efficiently.

In the second line of experiments, we analyzed the training performance (see Algorithm 2). For
MCTS we used C = 50 passes per step, while for STS we considered C = 10 passes with multi-step
expansionH = 5. The learning curve for STS dominates the learning curve for MCTS, which persists
throughout training, see Figure 2. Since the difficulty of Sokoban levels increases progressively, the
achieved improvement is substantial, even though in absolute terms, it may seem small.

To better understand where the differences in performance stem from, we evaluated MCTS with 50
passes and STS with 10 passes and 5 steps of multi-step expansion, both without the avoid loops
mechanism. We found that 68% of boards is solved by both MCTS and STS, 10% only by STS, and
2.1% only by MCTS. On several examples, we observed that STS could recover better than MCTS
from errors in value function, which are relatively localized in the state space, even though they
might be quite significant in value. This can be attributed to multi-step expansion, which exits from
the erroneous region more quickly by correcting biased value functions estimates with deep search
(note that deep paths, while introducing more variance, will stronger discount biased value function).
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The downside is that sometimes STS is overoptimistic, pushing into dead-end states. We include the
detailed analysis on the example room in the Appendix A.7.3.

Methods based on random shooting perform poorly for Sokoban: we evaluated Bandit Shooting
(Algorithm 4), which struggled to exceed 5% solved rate. Only when the difficulty of boards was
significantly reduced, to the board size of (6, 6) with 2 boxes, this method achieved results above
90%. Our shooting setup included applying loop avoidance improvements. This feature is highly
effective in the case of MCTS (and STS) but did not bring much improvement for shooting methods.
Details are provided in Appendix A.7.2.

We conclude with a conjecture that for domains with combinatorial complexity, tree methods (MCTS
or STS) significantly outperform shooting methods, and STS offers some benefits over MCTS.

STS is predominantly meant to improve search for small computational budgets. In Appendix A.10.1
we present also result for a ten times bigger budget of H · C = 500.

Figure 2: Learning curve for Sokoban domain. Left figure shows full results, right one inspects the
same data for limited interval of values on the y axis. The results are averaged over 10 runs, shaded
areas shows 95% confidence intervals. The x axis is the number of collected samples.

4.2 GOOGLE RESEARCH FOOTBALL

Google Research Football (GRF) is an environment recently introduced in Kurach et al. (2019).
It is an advanced, physics-based simulator of the game of football. It is designed to offer a set of
challenges for testing RL algorithms. At the same time, it is highly-optimized and open-sourced. GRF
is modeled after popular football (a.k.a. soccer) video games, fun and engaging for humans. As such,
it requires both tactical and strategical decision-making. This makes it an interesting benchmark for
planning algorithms. A part of GRF is the Football Academy consisting of 11 scenarios highlighting
various tactical difficulties, see Kurach et al. (2019, Table 10) for description. Due to its diversity, the
GRF Academy is an excellent testing ground of planning methods listed in Section 3, including STS.
GRF provides several state representations, including internal game representation as well as visual
observation. We tested both of them: the former was processed with an MLP architecture, while the
latter with a convolutional neural network. Details are provided in Appendix A.1.

One feature which makes GRF hard (and thus interesting) for planning is its relatively large action
space (19 actions). From the perspective of the design of a low budget planner, this can be viewed as
a challenge.

A GRF Academy episode is considered finished after 100 steps or when the goal is scored by the agent.
The game is stochastic, hence we report the solved rates over at least 20 episodes per environment. In
Table 2 we compare STS with various other methods. To the best of our knowledge, no prior work
has evaluated model-based methods on Google Research Football. Hence we provide two baselines:
model-free PPO results, reported by the authors of GRF, and model-based AlphaZero implemented
by us, with a minor environment-specific modification. To efficiently deal with the large action space,
we use a Q-network Q(s, a) instead of a value network V (s) to evaluate all actions at the same time
when expanding a leaf. We provide an ablation on this architectural choice in Appendix A.9.

We report the median of the solved rates in at least three runs with different seeds.

Random shooting For each of the Random Shooting and Bandit Shooting planners (Algorithm 3
and Algorithm 4, respectively), we performed two batches of experiments: with and without training.
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The former used two different state representation and, as a consequence, two different architectures
(MLP and Conv.). The latter used a uniform policy (flat) or a pre-trained policy (PPO). For all the
variants, we set C = 30 passes and a planning horizon H = 10. More details can be found in
Appendix A.1.

Figure 3: Example from the Google Football League

The flat version cannot solve GRF
Academy tasks. This is rather unsur-
prising and confirms that it is a chal-
lenging test suite. The Bandit Shoot-
ing algorithm generally offers a better
performance both when using the pre-
trained policy or training from scratch.
This indicates that bandit-based ex-
ploration results in more reliable esti-
mates of action values. Bandit Shoot-
ing Conv. experiments are better than
the baseline in 6 cases and worse in
4. This shows that, at least in some
environments, planning can improve
performance. We also tested whether
mixing the policy with Dirichlet noise
(see Silver et al. (2018)) and sampling an action to take in an environment can impact exploration and
training performance. Nevertheless, the results were inconclusive (see Appendix A.4 for details). It
can be seen that the corner scenario is particularly challenging: the baseline scores on the lower end
of the spectrum, the shooting algorithms rather underperformed and the training was quite unstable.
The results improved significantly under the STS algorithm. In the Shooting experiments, we used
approx. 1.5M training samples (median).

STS and MCTS STS achieves state-of-the-art results on the GRF Academy and significantly
outperforms other methods. For STS we used C = 30 passes with H = 10 and for MCTS we set
corresponding C = 300.

STS Conv. completely solves 8 out of 11 academy environments and is the best or close to the best on
the remaining 3. One can observe that in Corner, Counterattack easy and hard, Pass and shoot with
keeper, Run to score with keeper, and Single goal vs. lazy academies the difference between STS
and MCTS, as well as most of the other methods, is substantial. See Table 2 for exact results. We
stress that STS Conv. easily beats any other method in one-to-one comparison across all academies.
STS MLP achieves a close second place. These results provide further evidence that STS gives a
boost in environments requiring long-horizon planning. This stands in sharp contrast with MCTS,
which was not able to achieve impressive results in the considered time budget. We found that
exploration was a challenge in GRF Academy environments. Namely, training often got stuck in
disadvantageous regions of the state space, which was caused by unfavorable random initialization of
the value function. To deal with it, the last layer of the value function neural network was initialized to
0. We suspect this zero-initialization method might be useful in other domains as well. Our findings
is consistent with recent recommendations of (Andrychowicz et al., 2020, Section 3.2) given in the
model-free setting. In the STS experiments we used approx. 0.8M training samples (median).

More details can be found in Appendix A.8, including ablations. They indicate that multi-step
expansion of STS blends well with various elements of the MCTS toolbox as well as demonstrate the
impact of the aforementioned zero-initialization.

5 CONCLUSIONS AND FURTHER WORK

In this paper, we introduced a new algorithm, Shoot Tree Search. STS aims to explicitly address
the dilemma between depth and breadth search in large state spaces. That touches upon interesting
issues of using randomness and structure in search algorithms. The core improvement is multi-step
expansion, which may be used to control the depth of search and inject into planning more randomness
via random multi-step expansions. Having empirically verified the efficiency of this extension in
many challenging scenarios, we argue that it could be included in a standard MCTS toolbox. We
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PPO 0.90 0.10 0.70 0.65 0.90 1.00 0.65 0.90 0.90 1.00 0.90

R
an

do
m

Sh
oo

tin
g flat 0.10 0.00 0.05 0.10 0.00 0.95 0.05 0.10 0.00 0.00 0.00

PPO 0.45 0.10 0.10 0.30 1.00 1.00 0.25 0.80 0.80 0.20 0.30
MLP 0.90 0.87 0.80 0.73 0.93 1.00 0.87 0.70 0.90 0.37 0.67

B
an

di
t

Sh
oo

tin
g flat 0.20 0.10 0.00 0.00 0.05 0.35 0.05 0.05 0.05 0.00 0.00

PPO 1.00 0.05 0.95 0.80 1.00 1.00 0.55 1.00 0.85 0.45 0.60
MLP 0.87 0.47 0.73 0.60 1.00 1.00 0.90 0.80 0.93 1.00 0.60

Conv. 0.97 0.41 0.81 0.44 0.97 1.00 0.94 0.69 1.00 0.91 0.00
MCTS Conv. 0.81 0.50 0.31 0.31 0.99 1.00 0.45 0.89 0.70 0.00 0.00

ST
S MLP 1.00 0.78 1.00 0.97 1.00 1.00 0.94 0.97 1.00 0.94 0.94

Conv. 1.00 0.81 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.97

Table 2: Summary of selected algorithms’ performance on GRF. Entries are rounded solved rates.
PPO results come from Kurach et al. (2019).

speculate that the effectiveness of STS stems from a better balance between breadth and depth search.
While our experiments support this claim, we plan a more detailed analysis, possibly using methods
developed in James et al. (2017).

There are many interesting follow-up research directions involving STS. One of them concerns
the automatic choice of the multi-step expansion depth, H , during training. This could not only
improve the performance of the method, but also alleviate the necessity for fine-tuning this additional
hyper-parameter. Another, quite natural extension of this work is to use learned models. As a research
question, this typically splits into two sub-problems: learn an accurate model, or adjust the planner to
accommodate for the model’s deficiencies. An exciting research avenue, is related to a multi-agent
version of GRF. This constitutes an open challenge both for planning and learning models.

It is interesting to study STS itself. Historically, the fusion of different multi-step estimates (such as
TD(λ) or GAE) lead to significant improvements, and it is only natural to ask if a similar advancement
can be reached here. Moreover, STS could be combined with different statistical tree search methods,
where statistics other than the expected value (e.g. max) are stored and updated (see e.g. Agostinelli
et al. (2019)). The method could also be augmented with uncertainty estimation (e.g. in the spirit of
Miłoś et al. (2019)) to strengthen the exploration, and consequently the algorithm.
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Piotr Miłoś, Łukasz Kuciński, Konrad Czechowski, Piotr Kozakowski, and Maciek Klimek.
Uncertainty-sensitive learning and planning with ensembles. arXiv preprint arXiv:1912.09996,
2019.

Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. Neural network dy-
namics for model-based deep reinforcement learning with model-free fine-tuning. In 2018
IEEE International Conference on Robotics and Automation, ICRA 2018, Brisbane, Australia,
May 21-25, 2018, pp. 7559–7566. IEEE, 2018. doi: 10.1109/ICRA.2018.8463189. URL
https://doi.org/10.1109/ICRA.2018.8463189.

Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. In NIPS, 2017.

Laurent Orseau, Levi Lelis, Tor Lattimore, and Theophane Weber. Single-agent policy tree search
with guarantees. In Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal,
Canada., pp. 3205–3215, 2018.

Razvan Pascanu, Yujia Li, Oriol Vinyals, Nicolas Heess, Lars Buesing, Sébastien Racanière, David P.
Reichert, Theophane Weber, Daan Wierstra, and Peter Battaglia. Learning model-based planning
from scratch. CoRR, abs/1707.06170, 2017.

Sébastien Racanière, Theophane Weber, David P. Reichert, Lars Buesing, Arthur Guez,
Danilo Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li,
Razvan Pascanu, Peter Battaglia, Demis Hassabis, David Silver, and Daan Wierstra. Imagination-
augmented agents for deep reinforcement learning. In NIPS, 2017.

Stéphane Ross and J. Andrew Bagnell. Reinforcement and imitation learning via interactive no-regret
learning. CoRR, abs/1406.5979, 2014. URL http://arxiv.org/abs/1406.5979.

Stuart Russell and Peter Norvig. Artificial intelligence: a modern approach. 2002.

11

https://openreview.net/forum?id=SkeAaJrKDS
https://openreview.net/forum?id=SkeAaJrKDS
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14886
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14886
http://arxiv.org/abs/1903.00374
https://github.com/google-research/football
https://doi.org/10.1109/ICRA.2018.8463189
http://arxiv.org/abs/1406.5979


Under review as a conference paper at ICLR 2021

Antonoglou Ioannis Hubert Thomas Simonyan Karen Sifre Laurent Schmitt Simon Guez Arthur
Lockhart Edward Hassabis Demis Graepel Thore Lillicrap Timothy Silver David Schrittwieser,
Julian. Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model. arXiv preprint
arXiv:1911.08265, 2019. URL https://arxiv.org/abs/1911.08265.

Brian Sheppard. World-championship-caliber Scrabble. Artificial Intelligence, 2002. ISSN 00043702.
doi: 10.1016/S0004-3702(01)00166-7.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George Van Den Driessche, Thore Graepel, and Demis Hassabis. Mastering
the game of Go without human knowledge. Nature, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Thore Graepel, Timothy
Lillicrap, Karen Simonyan, and Demis Hassabis. A general reinforcement learning algorithm that
masters chess, shogi, and Go through self-play. Science, 1144:1140–1144, 2018.

Dennis J. N. J. Soemers, Chiara F. Sironi, Torsten Schuster, and Mark H. M. Winands. Enhancements
for real-time monte-carlo tree search in general video game playing. In IEEE Conference on
Computational Intelligence and Games, CIG 2016, Santorini, Greece, September 20-23, 2016,
pp. 1–8. IEEE, 2016. doi: 10.1109/CIG.2016.7860448. URL https://doi.org/10.1109/
CIG.2016.7860448.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

John N Tsitsiklis. Asynchronous stochastic approximation and q-learning. Machine learning, 16(3):
185–202, 1994.

G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou. Aggressive driving with
model predictive path integral control. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1433–1440. IEEE, 2016. doi: 10.1109/ICRA.2016.7487277.

Grady Williams, Andrew Aldrich, and Evangelos Theodorou. Model Predictive Path Integral Control
using Covariance Variable Importance Sampling. sep 2015. URL http://arxiv.org/abs/
1509.01149.

12

https://arxiv.org/abs/1911.08265
https://doi.org/10.1109/CIG.2016.7860448
https://doi.org/10.1109/CIG.2016.7860448
http://arxiv.org/abs/1509.01149
http://arxiv.org/abs/1509.01149


Under review as a conference paper at ICLR 2021

A.1 TRAINING DETAILS

We provide the code of our methods and hyper-parameters configuration files in https://github.
com/shoot-tree-search/sts.

The training loop follows the logic of Algorithm 2. We use a distributed setup with 30 workers and a
replay buffer of size 30000. We perform 1000 optimizer updates on batches of transitions whenever
all workers collect and store one full episode. During batch sampling, we ensured an equal amount of
examples from solved and unsolved episodes. In GRF and Sokoban experiments, each episode was
limited to 100 and 200 time steps, respectively.

A value function approximator, Vθ, is trained via the MSE loss using targets calculated by
CALCULATE_TARGET. In shooting experiments we use "reward-to-go" targets

∑T
i=t+1 γ

i−t−1ri,
where T is the terminal time-step in an episode. In MCTS and STS in GRF experiments (see
Section A.5 for details) we use "tree action-values" targets, similar to the one used in Hamrick et al.
(2020); Miłoś et al. (2019).

Policy, πφ, is trained using the cross-entropy loss. As targets, we use one-hot encoded actions chosen
in the environment for Random Shooting and the empirical distribution of actions chosen in the root
during the planning for Bandit Shooting, MCTS, and STS.

The total loss is a weighted sum of the value function (or the Q-function) loss, the policy loss
(weighted by 1e−2 in Random Shooting and Bandit Shooting, and 1e−3 in MCTS and STS), and a
regularizing, l2 term (weighted by 1e−6).

A pre-trained PPO policy in Shooting methods was obtained using a script included in the Google
Research Football repository (see Kurach et al. (2019)) and the OpenAI Baselines (Dhariwal et al.
(2017)) PPO2 implementation.

A.2 HYPER-PARAMETERS

Table 3 presents hyper-parameters used in our experiments. These were based on hyper-parameters
previously proposed in the literature and substantial amount of tuning experiments (> 3000).

A.3 NETWORK ARCHITECTURES

In GRF experiments we use two different state representations: ’simple115’ and ’extended’ (see
Section A.8). In the former case, we use an MLP architecture with two hidden layers of 64 neurons,
while in the latter case, we use 4 convolutional layers with 16, 3x3, filters, zero-padding and stride 2,
followed by a dense layer of 64 neurons. In both cases, two heads, corresponding to a value function
(or Q-function for MCTS and STS) and policy, follow.

In Sokoban experiments, we use 5 convolutional layers of 64, 3x3, filters with zero-padding and
stride 1, followed by a dense layer of 128 neurons and heads corresponding to a value function and
policy (policy is used only for Shooting methods).

In all the cases, we use the ReLU non-linearity. We use the standard Keras initialization schemes,
except for MCTS and STS in GRF experiments, see Section A.8.2.
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Sokoban Google Research Football
Parameter Shooting MCTS STS Shooting MCTS STS

Number of passes C 48 50 10 30 300 30
Planning horizon H 5 1 5 10 1 10
Discounting γ 0.99 0.99 0.99 0.95 / 0.991 0.99 0.99
Exploration weight cpuct 10.02 0.0 0.0 1.0 / 2.53 1.0 1.0
Policy πφ temperature4 2.0 - - 2.0 1.0 1.0
Action sampling temp. τ - - - 0.35 0.3 0.3
Dirichlet parameter α - - - 0.035 0.3 0.3
Noise weight cnoise - - - 0.15 0.1 0.1 / 0.36

Depth limit depth limit7 - - - - 30 30
VF zero-initialization8 no no no no yes yes
Optimizer RMS RMS RMS RMS Adam Adam
Learning rate 2.5e−4 2.5e−4 2.5e−4 1.0e−4 1.0e−3 1.0e−3
Batch size 32 32 32 64 64 64
Target function9 rew2goT treeT treeT rew2goT treeT treeT
1 All γ = 0.99 except for Shooting experiments with a uniform and a pre-trained PPO policy, where γ = 0.95.
2 Applies only to Bandit Shooting.
3 cpuct = 1.0 for Bandit Shooting with a uniform and a pre-trained PPO policy and cpuct = 2.5 for Bandit

Shooting with a trained policy.
4 Softmax temperature. MCTS and STS in Sokoban does not use policy, see Section A.5 for details.
5 Applies only to Bandit Shooting with additional exploration mechanisms, see Section A.4.
6 cnoise = 1.0 for STS Conv. and cnoise = 0.3 for STS MLP.
7 The maximum number of nodes visited in a single planning pass, see Section A.5.
8 If the last layer of a value function neural network was initialized to 0, see Section A.8.2.
9 Indicates how training targets (CALCULATE_TARGET in Algorithm 2) are obtained. rew2goT and treeT

corresponds "reward-to-go" and "tree action-values" described in Section A.1.

Table 3: Default values of hyper-parameters used in our experiments.

A.4 BANDIT SHOOTING

Algorithm 7 Bandit Shooting Planner with additional exploration mechanisms, requires exploration
weight cpuct, action sampling temperature τ , noise weight cnoise and Dirichlet distribution parameter
α

function SELECT(state)
s← state
P (s, a)← (1− cnoise)πφ(s, a) + cnoiseD

U(s, a)←
√∑

a′ N(s, a′)/(1 +N(s, a))
a← argmaxa(Q(s, a) + cpuctP (s, a)U(s, a))
s′, r ← model.STEP(s, a)
return (s, a, r), s′

function EXPAND(leaf)
The same as in Algorithm 3.

function UPDATE(path, rollout)
The same as in Algorithm 3.

function CHOOSE_ACTION(s)
a ∼ softmax

(
1
τ
logN(s, ·)

)
return a

Algorithm 7 describes Bandit Shooting with additional exploration mechanisms: mixing the pol-
icy with Dirichlet noise (as in Silver et al. (2018)) and action sampling with temperature τ in
CHOOSE_ACTION(s). The noise variable D is sampled from the Dirchlet distribution Dir(α) each
time when PLANNER is called (see also Algorithm 2).

A.5 MCTS

In our experiments, we used various implementations of MCTS. The reasons were two-fold. First,
some implementation details fit better Sokoban and some GRF. Second, we wanted to check in
various cases that the multi-step expansion is beneficial, see Section A.6.

In Sokoban experiments, we used the MCTS implementation similar to the one in Miłoś et al. (2019),
containing a loop avoidance mechanism and transposition tables. The loop avoidance mechanism
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alters SELECT and CHOOSE_ACTION (see Algorithm 5) so that the selected path does not contain
repetitions of states. The transposition tables are a rather standard technique, which proposes to
accumulate search statistics (i.e., W,N,Q) for states of the environment (rather than for the nodes of
the search tree, as it happens in the standard case).

In GRF, we used our custom implementation of MCTS based on the one in Silver et al. (2017). It uses
leaf evaluation with Q-function and policy networks. The Q-function is used to evaluate all children
of a given node at once (instead of separately invoking value function Vθ in UPDATE). The policy
network is considered to be ’prior’ for choosing actions, similarly as in SELECT in Algorithm 7.
Dirichlet noise, parameterized by α and cnoise, is mixed with the prior in the root and action sampling
with temperature τ is used to choose action on the real environment, similarly as in Bandit Shooting
with additional exploration mechanisms in Section A.4. Additionally, we put a limit, depth limit,
on the maximum number of nodes visited in a single STS pass.

A.6 STS

We tested STS with two MCTS setups described in Section A.5. In both the cases we observed
substantial experimental improvements as reported in Section A.7 and Section A.8. This alone, in our
view, provides enough evidence that the multi-step expansion is a useful method.

Apart from this, STS offers practical computational benefits, which are analyzed below.

A.6.1 COMPUTATIONAL BENEFITS OF STS

We distinguish three types of computational costs in MCTS (see Algorithm 5):

1. Traversing down the search tree (performed in SELECT and EXPAND).

2. Backpropagation of values and counts update (handled by UPDATE).

3. Evaluation of heuristics (value network Vθ, or Q-function and policy as described in Section
A.5)

In large GRF experiments, we found that it was the first cost that dominated the remaining two.
The reason is that the cost of building a search tree is quadratic to its depth. The use of multi-step
expansion significantly reduces this cost as several nodes are added during single tree traversal. In
our case, these benefits allowed for much smoother experimenting with GRF and are, arguably, a
step towards developing more efficient planners. We expect this might be practically useful (i.e.,
costs 1 and 2 are dominant) when the search size is large, or the heuristic evaluation is relatively
cheap compared to the environment step. This is the case in some of our GRF experiments. The GRF
simulator is rather complex and slower than small MLP networks.

The following simple lemma offers some theoretical analysis.

Lemma A.6.1. Assume that STS and MCTS build the same tree T , starting from the root state s0.
Denote the number of nodes in T as C and the number of nodes to be added at a single multi-step
expansion of STS as H . Then the number of steps in T performed by STS will be lower compared to
MCTS by a factor in [h−12 , h].

Proof. Lets consider h consecutive nodes s1, . . . , sh in the search tree added in a single EXPAND step
during STS search. In STS, the number of steps, CSTS , in the tree during SELECT and EXPAND is
equal to h+d, where d is distance between s0 and s1 in T . To add the same set of nodes during MCTS
search, one need h separate calls to SELECT and EXPAND. The total number of steps performed is
CMCTS =

∑h−1
k=0 d+ k + 1 = hd+ hh−12 . Clearly,

h− 1

2
CSTS ≤ CMCTS ≤ hCSTS .

Similar calculation hold for the costs of backpropagation.
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H

Figure 4: Sokoban on simpler boards: training curves for MCTS, STS and Bandit Shooting with
and without loop avoidance. Mean over 5 seeds with shaded regions representing 95% confidence
intervals.

A.7 SOKOBAN EXPERIMENTS

For a description of Sokoban see Section 4.1. In our experiments, we used inputs of dimension
(x, x, 7), where (x, x) is the size of the board ((10, 10) in most cases) and 7 is one-hot encoding
of the state of a given cell (enumerated as follows: wall, empty, target, box_target, box, player,
player_target). In most experiments, we used 4 boxes. The agent is rewarded with 1 by putting a box
into a designated spot and additionally with 10 when all the boxes are in place1. The action space
consists of four movement directions (up, down, right, left).

A.7.1 EVALUATION EXPERIMENTS

In Table 4 we show full details of the evaluation experiment (which complements Table 1). Recall
that in this experiment, we evaluated the planning capabilities of STS in isolation from training. To
this end, we used a pre-trained value function and varied the number of passes C and the depth
of multi-step expansion H , such that H · C remains constant. In Table 4, we present quantities
(Np, Nt, Ng), which measure planning costs for finding a solution (the average number of passes,
tree nodes and game states observed, respectively, until the solution is found). We run experiments
with and without the loop avoidance mechanism (see Section A.5). We observe that there is a sweet
spot for the choice of H . It is evident for the ’no avoid loop’ case, C = 32, H = 8. For this choice,
the number of tree nodes, Nt, which is the most important metric, is the smallest. Interestingly, we
observe a significant increase in the solved rate. This may be explained by the fact that the number
of distinct visited game states, Ng, grows. This suggests that STS explores more aggressively and
efficiently. For bigger H , we observe a further increase of the solved rate until some point, though at
the cost of much bigger Nt.

In experiments with the avoid loop mechanism, there is a similar effect for C = 64, H = 4, though
more subtle, probably because results are already quite strong. Moreover, we observe a more
significant drop in performance as H increases (when planning resembles more shooting methods).

The values presented in Table 4 are averages over more than 5000 boards.

1Our Sokoban code is fully compatible with Racanière et al. (2017).
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Scenario C H S. rate Np Nt Ng

avoid loops

256 1 95.2% 1224 1224 716
128 2 95.9% 569 1137 728
64 4 96.5% 299 1194 830
32 8 95.9% 173 1385 1040
16 16 95.7% 114 1822 1333
8 32 93.4% 79 2527 1528
4 64 89% 62 3960 1491
2 128 80% 52.7 6754 1207

no avoid loops

256 1 84.5% 1497 1497 376
128 2 86.3% 724 1448 332
64 4 87.8% 385 1541 370
32 8 88.4% 185 1483 409
16 16 89.5% 110 1754 539
8 32 89.9% 84 2690 882
4 64 85.2% 68 4463 1300
2 128 65.3% 36 4589 967

Table 4: Evaluation of various STS settings on Sokoban

A.7.2 MCTS AND SHOOTING ON SIMPLER BOARDS

We found the Bandit Shooting method underperforming on Sokoban. As a sanity test, we tested a
simpler setting with smaller boards of size (6, 6) and two boxes. Learning curves are presented in
Figure 4. MCTS and STS experiments quickly learn to solve over 99% of boards. Bandit Shooting
experiment showed stable but much slower progress. We also evaluated the version of Bandit
Shooting, with additional loop avoidance, see Section A.5. This mechanism was beneficial for MCTS
and STS but failed to bring improvements for the shooting algorithms.

A.7.3 CORRECTING BIASED VALUE FUNCTIONS ESTIMATES WITH DEEP SEARCH

To generate value function heatmaps we evaluated the pre-trained MCTS value function for each
possible agent position in a room. Figures 5 and 6 present two chosen rooms with their corresponding
VF heatmaps. Specifically, the room in Figure 6 was solved by the STS with 10 passes and 5
steps of multi-step expansion and wasn’t solved by the MCTS with 50 passes, both without the
avoid loops mechanism. We include movies of both agents in this room in the code repository:
https://github.com/shoot-tree-search/sts/tree/master/movies.

Because the value function is biased, it makes MCTS stuck in states with overestimated value. See
Figure 6, in this room MCTS gets stuck in the bottom-left region. However, with a deeper tree, STS
can get unstuck quicker and still find a solution. Remember that the search statistics (i.e., W,N,Q)
are accumulated for states of the environment (see Appendix A.5). As this overestimated region gets
searched deeper the bias in the value function gets discounted more and the agent figures out there
are no rewards in reality. At some point, other actions will have a higher value and the agent has a
chance to get unstuck and explore other parts of the room. That being said, it should be noted that
this "potential well" will still attract the agent, make its planning paths distracted, even when it gets
unstuck. STS is less vulnerable to this effect and is able to solve this room despite high bias in the
value function.

A.8 GOOGLE RESEARCH FOOTBALL EXPERIMENTS

For a description of Google Research Football see Section 4.2. A Google Research Football academy
environment is considered solved when an agent scores a goal. Reported results correspond to solved
rates over 20 episodes in case of Shooting methods with an uniform and a pre-trained policy and
around 30 episodes in case of all other methods. Results for MCTS, STS, and Shooting methods
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Figure 5: Sokoban value function heatmap,
brighter means higher value estimate.

Figure 6: Sokoban value function heatmap,
brighter means higher value estimate.
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with the trained policy are medians of at least three training runs. During evaluations we disabled
Dirichlet noise and action sampling (in Bandit Shooting Expl., MCTS and STS).

Google Research Football offers two major mode of observations: ’simple115’ and ’extracted’ (also
called the super mini-map).

The simple115 state representation is consists of coordinates of players, players’ movement directions,
the ball position, a ball movement direction, a one-hot encoding of ball ownership, a one-hot encoding
of which player is active. This totals in a vector of length 115.

The extracted state representation consists 4 stacked layers of size (72, 96). Layers contain one-hot
encoding of spatial positions of game entities. These are (on the subsequent layers): players on the
left team, players on the right team, the ball, and the active player.

We note that even though the extracted representation contains ’less information’ than simple115, it
has been reported in Kurach et al. (2019) to generate better results.

In our experiments, we use the so-called checkpoint rewards, which provide an additional signal for
approaching the goal area. Details can be found in Kurach et al. (2019), where they were introduced
and used in large-scale experiments.

The action space in GRF consists of 19 actions representing high-level football behaviors (e.g. "Short
Pass"), see Kurach et al. (2019, Table 1).

Figure 7 shows training curves for our STS agent on Google Research Football. Training was run for
3 days until convergence. On the y-axis is the solved rate calculated as described above in Section A.8.
On the x-axis is the number of real steps in the environment (planning steps in the simulator are not
added). Curves are mean over 3 training runs with different seeds and shaded regions represent 95%
confidence intervals. Moreover, to smooth the curves, data points are averaged in the windows of
10000 steps.

A.8.1 SHOOTING METHODS

Tuning cpuct turned out to be the most important one to make Bandit Shooting work, see Algorithm
4. In a nutshell, it needs to be adjusted to scale of rewards (value function) in a given environment. In
our experiments we found cpuct = 2.5 to work best.

Using additional Dirichlet noise, cnoise > 0, and action sampling on the real environment, τ > 0
(see Algorithm 7) resulted in inferior results with an exception of the "Counterattack hard" scenario.

A.8.2 MCTS AND STS EXPERIMENTS

Apart from multi-step expansion we introduced another simple method, which might be of interest to
the general public. Namely, before starting training, we set the weights of the last layer of the Q-value
neural network to 0 (see Section A.3 for a detailed description of architectures). We observed that
this significantly improved the training stability due to better exploration (and avoiding suboptimal
strategies at the early stages of training). See ’No zero initialization’ on Figure 12. This mechanism is
similar to recent recommendations of (Andrychowicz et al., 2020, Section 3.2) given in the model-free
setting.

A.9 ABLATIONS AND ANALYSIS

This section is devoted to analysis of various aspects of STS and comparisons to MCTS.

A.9.1 ANALYSIS OF THE TREE DEPTH

Recall that our hypothesis is that the benefits of multi-step expansion come from tilting the search
towards DFS. While it is hard to formally prove this statement we were able to pin-point this effect in
Sokoban and Google Football experiments, see Figure 8 and Figure 9 respectively.
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H

Figure 7: Google Research Football training curves for STS on GRF. Mean over 3 seeds with shaded
regions representing 95% confidence intervals.
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Figure 8: Search depth of MCTS and STS on Sokoban.

Figure 9: Search depth of MCTS and STS on three Football Academy tasks.

A.9.2 COMPARISON TO ALPHAGO

We run two additional experiments with rollout-based evaluation using different policies. These
are meant to provide more evidence to support our hypothesis that the benefit of STS is due to the
multi-step expansion mechanism.

In each experiment, the rollout was truncated after 10 steps to ensure fair comparison with STS. The
return after the last step of the rollout was approximated using the Q-value network. This value
and rewards collected were used to calculate the leaf’s value in the same way as in AlphaGo. In
experiments, we tested two strategies for generating rollouts:

1. Actions sampled from the prior policy - the same setup as in AlphaGo, except for rollout
truncation and the choice of the policy. AlphaGo used a policy pretrained on expert data.
Since we do not have access to such data for Google Football, we instead used the prior
policy trained over the course of the algorithm.

2. Actions chosen deterministically, to maximize Q(s, a) + cPUCT ∗ π(a|s). Q was computed
by a neural network and π is the probability given by the trained prior distribution. We recall
that this setup is equivalent to STS except for the crucial fact that STS adds the expanded
leaves to the search tree.

We observed that strategy 1. performed very poorly, which highlights the importance of using neural
networks for leaf evaluation. Strategy 2. performed significantly better but still worse than STS. We
believe that these results strengthen the evidence that the advantage of STS stems from the algorithmic
reasons by building a more efficient search tree. Note the tasks on which the two evaluated strategies
performed the worst, i.e. counterattack_easy, counterattack_hard, single_goal_versus_lazy, are those
with the longest lengths of a successful episode. This supports the argument that STS better handles
problems with long planning horizons.
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T
S Conv. 0.81 0.50 0.31 0.31 0.99 1.00 0.45 0.89 0.70 0.00 0.00

Conv.+r.r. 0.91 0.09 0.00 0.03 0.00 1.00 1.00 1.00 0.00 0.06 0.00
Conv.+d.r. 1.00 0.81 0.06 0.35 1.00 1.00 1.00 1.00 1.00 0.94 0.25

STS Conv. 1.00 0.81 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.97

Table 5: Comparison of STS with leaf evaluation using a Q-value network and MCTS with different
leaf evaluations: Q-value network only (Conv.), network + deterministic rollout (Conv.+d.r.), network
+ random rollout using the prior policy (Conv.+r.r.). In all experiments we used the same convolutional
network architecture. The reported results are the median solved rates across 3 runs.

A.9.3 ABLATIONS OF STS DESIGN CHOICES

The ablations were performed on three environments from GRF Academy: corner, counterattack
hard and empty goal, see Figure 12. The first two environments are difficult, while the last one is
easy. The following parameters or settings were subject to analysis (they correspond to the labels in
Figure 12):

• prior noise weight: a weight in the mixture of Dirichlet noise and the prior.
• depth limit: the maximum number of nodes visited in a single STS pass.
• sampling temperature: temperature for sampling the actions on the real environment.
• MCTS n_passes 300: this corresponds the standard MCTS setting with H = 1 (MCTS)

and C = 300

• Value network n_passes: value network is used instead of Q-function. Note that
n_passes = 2 matches roughly the Q-function version in terms of visited states (re-
call, see Section 5, that Q-function evaluates all children at once and that number of actions
in GRF is 19).
• No policy: instead of a learned policy network, a uniform policy is used.
• No zero initialization: the last layer of the value function neural network was not

initialized to 0 (see description at the beginning of Section A.8.2).

The default setup (denoted as Prior noise weight 0.1) is always positioned at the top in Figure 12.
It uses parameters described in Table 3 in the Google Research Football STS column.

A.9.4 ABLATION - BACKPROP WEIGHT

This ablation aims to verify if there is benefit of the aggregate backprop implemented in UPDATE in
Algorithm 6. We compare to the method proposed by Soemers et al. (2016), which backpropagates
only the last value. We observed a clear advantage of STS on the Sokoban domain, see Figure A.9.4.

A.10 MULTI-STEP EXPANSION ANALYSIS ON TOY PROBLEMS

First, consider an MDP presented at the top of Figure 11. It showcases the situation when the
errors are systematic: in the vicinity of the starting state s0, the estimates of the value function are
biased (for simplicity set to 0 and shown as white vertices), while the values in the area surrounding
terminal states are accurate (shown as color vertices). This example is an exaggeration. However,
something similar can happen in practice, when information is propagated with TD-like methods or
the environment has an “easy” region, which is hard to find. Under these circumstances, STS, given
large enough H , will be able to reach accurate values (color vertices) within a few passes. On the
contrary, MCTS would explore the whole uncertain area (white vertices) in a breadth-first fashion.

Second, consider an MDP shown at the bottom of Figure 11. It illustrates the case when the errors are
“pseudo-random”. In this MDP all rewards are 0 except the marked edges, where they are −a, a > 0.
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Starting from s0, the agent can move only to the right. The perfect value function is 0 in every state,
however we assume that the current noisy value estimates equal to εi on the “tail” part of the diagram.
In this example, we assume that the errors arise in interactions of many factors, thus can be modeled
as i.i.d. centered random variables εi such that E|εi| < +∞.

The optimal path, going over the green edge and later over the tail, is accompanied by several ’decoy’
paths (marked in orange). They will not be entered unless errors on the tail have accumulated below
−a. We denote the probability of such an event by pH , where H is the number of steps in the
multi-step expansion (H = 1 corresponds to MCTS). In Lemma A.10.1, we show that p1 > pH for
H ≥ 2, and in fact pH → 0 when H → +∞.
Lemma A.10.1. Under the above assumptions p1 > pH and pH → 0.

Proof. Assume that for the first ` ≥ 2 steps of the search tree was unfolded via the middle (green)
edge and further via the tail. The state-action value estimated by the MCTS/STS is thus q` =
(ε0 + . . .+ ε`−2)/`. Consequently,

pH = P(∃k∈NqkH < −a).

The claims follow from the fact q` → 0 a.s., which itself is the consequence of the strong law of large
numbers.

As the lemma serves mainly the illustrative purpose we used the i.i.d. assumption, which can
be easily weakened. As a test we simulate the case εi ∼ N (0, 1) and a = 0.3. In this case
p1 = 0.56, p2 = 0.46, p4 = 0.35, p8 = 0.41, p16 = 0.21. Note that p1/pH is as high as 3 for
H = 16 and quite natural choice of a and εi.

A.10.1 HIGH COMPUTATIONAL BUDGETS

STS is predominantly meant to improve the search for modest computational budgets. When the
budget gets bigger, any search becomes more exhaustive, and the benefits are likely to diminish.
To our pleasant surprise, see Figure 10, we still observe certain advantages of STS in later phases
of training, even though MCTS behaves better initially. This observation might suggest another
interesting line of inquiry, namely, developing methods for adaptive breadth/depth balancing (e.g. via
changing H).

A.11 INFRASTRUCTURE USED

We ran our experiments on clusters with servers typically equipped with 24 or 28 CPU cores and
64GB of memory. A typical experiment was 72 hours long (the timeout set on the clusters), which
was enough for most experiments. Experiments that did not converge during this time were resumed.

23



Under review as a conference paper at ICLR 2021

Figure 10: Experiment with big computational budget C · h = 500 on Sokoban.

Figure 11: Visualization of the toy environments.
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Figure 12: Ablations performed GRF Academy environments: corner, counterattack hard and empty
goal.
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