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Abstract

Correlated equilibria—and their generalizations known as Φ-equilibria—are a fun-
damental object of study in game theory, offering a more tractable alternative to
Nash equilibria in multi-player settings. While computational aspects of equilib-
rium computation are well-understood in some settings, fundamental questions
are still open in generalized games, that is, games in which the set of strategies
allowed to each player depends on the other players’ strategies. These classes
of games model fundamental settings in economics, and have been a cornerstone
of economics research since the seminal paper of Arrow and Debreu [1954]. Re-
cently, there has been growing interest, both in economics and in computer sci-
ence, in studying correlated equilibria in generalized games. It is known that
finding a social welfare maximizing correlated equilibrium in generalized games
is NP-hard. However, the existence of efficient algorithms to find any equilibrium
remains an important open question. In this paper, we answer this question in the
negative, showing that this problem is PPAD-complete.

1 Introduction

Game Theory is a fundamental tool to study the interaction between rational agents. From
an application point of view, it has found important applications such as training GANs
[Goodfellow et al., 2020], auctions [Nisan et al., 2007], and superhuman performance in strategic
games [Brown and Sandholm, 2019, FAIR et al., 2022]. In a series of papers, originating from
Papadimitriou [1994] and culminating in Daskalakis et al. [2009], Chen et al. [2009], the problem
of computing a Nash equilibrium in multiplayer games was proven to be complete for the complex-
ity class PPAD, which contains problems for which no efficient algorithm is known. On the other
hand, correlated equilibria [Aumann, 1987], coarse-correlated equilibria [Moulin and Vial, 1978],
and their generalization known as Φ-equilibria [Greenwald and Jafari, 2003], are a relaxation of
Nash equilibria, and provide a computationally tractable alternative to Nash in most instances.

The seminal result of Nash [1951] for the existence of equilibrium in non-cooperative games
was extended to generalized games (also known as pseudo-games or abstract economies) by
Arrow and Debreu [1954] and Rosen [1965]. In these games, the set of feasible strategies of one
player depends on the strategies played by the other players.

Coupled constraints between players model various applications involving finite resources, where
consumption depends on the joint actions of the players. For example, generalized games have been
applied to dynamic pricing [Adida and Perakis, 2010], electricity markets [Hobbs and Pang, 2007],
and Fisher markets [Brânzei et al., 2014, Conitzer et al., 2022]. A particularly relevant example of
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joint constraints is bidding in repeated auctions under budget constraints, where budget consumption
depends on the joint bids of all players. It is well known that when all players follow no-regret strate-
gies, their average play converges to a correlated equilibrium [Cesa-Bianchi and Lugosi, 2006]. In
online advertising, where many companies deploy automated bidders that act as “cost-aware” regret
minimizers on behalf of advertisers [Balseiro and Gur, 2019, Aggarwal et al., 2019], it becomes par-
ticularly important to ask whether similar convergence guarantees hold for “cost-aware” no-regret
algorithms (such as the algorithms presented in Mannor et al. [2009], Mahdavi et al. [2012]).

Thus, an important and natural question is to determine if there are efficient algorithms that compute
correlated equilibria in generalized games. While Bernasconi et al. [2023] proved the computational
infeasibility of computing a social welfare maximizing correlated equilibrium in generalized games,
the complexity of computing any equilibrium remains open (see also Zhang et al. [2025]). In this
paper, we resolve this open question.

1.1 Contributions and Overview of Techniques

The main contribution of this paper is to show that the problem of computing an approximate Φ-
equilibrium in generalized games (as formalized in the CONSTRAINED-Φ-EQUILIBRIUM problem
in Section 3) is PPAD-complete. The hardness holds for approximation factors that are inverse-
polynomial in the instance both in (i) games with two players, and (ii) games with an arbitrary
number of players even for a constant number of actions and constraints per player. By providing
this characterization, our paper puts to rest a recent line of inquiry in the literature [Bernasconi et al.,
2023, Zhang et al., 2025].

At a fundamental level, the question of the complexity of correlated equilibria in generalized games
boils down to the tension between two opposing forces:

1. On the one hand, the introduction of correlation —as opposed to the independence between
the play of different players required by Nash equilibria— is a major driver of computa-
tional feasibility. For instance, while Nash equilibria are believed to be computationally in-
tractable, correlated solution concepts [Aumann, 1987] are typically computable in polynomial
time, even in games with exponentially many actions [Papadimitriou and Roughgarden, 2005,
Farina and Pipis, 2024, Daskalakis et al., 2024].

2. On the other hand, the introduction of coupled constraints often has adverse effects
on computation [Daskalakis et al., 2021, Papadimitriou et al., 2023, Bernasconi et al., 2024,
Anagnostides et al., 2025], even when the constraints are simple, e.g., when they define a poly-
tope in the joint strategy space.

Thus, a natural and fundamental question that tries to resolve this tension is the following:

Which of the two forces prevails? Does correlation remain beneficial in the face of constraints?
Or are constraints so detrimental to push the complexity of correlated equilibria in generalized

games to the realm of intractability?

We resolve this question by showing that correlation is not a sufficient relaxation in the presence
of coupled constraints. We prove this result by a reduction from the problem of computing Nash
equilibria in polymatrix games. At an intuitive level, we could say that the computation of linearly
constrained correlated equilibria is indistinguishable from the computation of unconstrained Nash
(i.e., independent) equilibria. In other words, the combination of correlation and constraints can
simulate independence without constraints.

At the technical level, our main tool is to introduce a “left” and “right” copy of each player in the
polymatrix instance, thus creating two teams of players. Each player on one team then plays only
with players on the opposing team in a team zero-sum game. We then exploit the constraints to
couple the players of the left team to the players of the right team by asking that their marginals
coincide. This allows us to essentially remove the terms that are linear in the correlated strategy and
only keep the ones that are linear in the marginals (which now resemble the ones of Nash equilibria).

One additional implication of our result is that the quasi-polynomial time algorithm for computing
approximate Φ-equilibria of Bernasconi et al. [2023] is tight. Indeed, under the Exponential Time
Hypothesis for PPAD (introduced by Rubinstein [2017]), we show that the problem of computing
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a (coarse) correlated equilibria in generalized games requires quasi-polynomial time, even with a
constant number of players and a constant violation of the incentive compatibility constraints.

Furthermore, we emphasize that although numerous works have established positive convergence
guarantees for regret minimization in the unconstrained setting [e.g., Hart and Mas-Colell, 2000],
our results demonstrate that no efficient no-regret algorithms can, in general, converge to constrained
correlated equilibria. This impossibility has broad implications for systems of constrained no-regret
learners, as it precludes convergence unless specific properties of the problem are exploited. A con-
crete example that has recently attracted significant theoretical and empirical attention is that of In-
ternet advertising platforms, where automated bidding agents are typically operated by the platform
itself (see, e.g., [Agarwal et al., 2014, Balseiro and Gur, 2019, Balseiro et al., 2021, Paes Leme et al.,
2024]). In such environments, convergence to an equilibrium is often desirable since it promotes sta-
bility, predictability, and alignment with the advertisers’ individual incentives. Our result, however,
shows that this goal cannot be achieved in a “black-box” manner. To design autobidders with con-
vergence guarantees, one must develop algorithms that exploit the specific structural properties of
the problem, since no general-purpose approach can ensure convergence in this setting.

2 Preliminaries

2.1 Multi-player Games and Φ-equilibrium

We consider an n-player game. Each player has a set A = [ℓ] of actions, and for each player
i ∈ [n] and each tuple of actions a ∈ A := An, the utility of player i is ui(a) ∈ [0, 1].1 A Φ-
equilibrium is defined on correlated strategies z ∈ ∆(A). In particular, a mediator samples actions
a = (a1, . . . , an) ∼ z and communicates to each player i its own action ai. Conditioned on the
action recommendation, each player can now decide how to deviate. In particular, each player can
pick a function φ ∈ Φ that prescribes its deviation from a set of functions Φ. More specifically,
each function φ ∈ Φ maps each action a ∈ A into a randomized action φ(a) ∈ ∆(A). Note that
each function φ can be represented by a ℓ × ℓ-dimensional right stochastic matrix on which each
row corresponds to a specific action, i.e. φ(a, b) is the probability of playing b when the player is
recommended action a. By applying a deviation φ to a correlated strategy z the i-th player induces
a distribution φ ◦i z on A. Formally, for all a = (ai,a−i) ∈ A we let

(φ ◦i z)(a) =
∑

b∈A

φ(b, ai)z(b,a−i).

Moreover, for a function F : A → R and a distribution z ∈ ∆(A), with abuse of notation we write
F (z) to denote the expected value of F under the distribution z, i.e.

∑
a∈A F (a)z(a). For instance,

we denote the expected utility of player i under distribution z as ui(z) :=
∑

a∈A z(a)ui(a).

An ǫ-Φ-equilibrium is a correlated distribution over strategies such that

ui(z) ≥ ui(φ ◦i z)− ǫ ∀i ∈ [n], φ ∈ Φ.

We call a Φ-equilibrium a 0-Φ-equilibrium. In Appendix A we formally write the sets of functions
ΦCE and ΦCCE, which define correlated (CE) and coarse-correlated equilibria (CCE), respectively.
Intuitively, CCEs deviations are deviations that cannot depend on the recommended action, while
CE deviations are a larger set where deviations could be different based on the recommended action.

2.2 Constrained Φ-equilibria

To model situations in which there are common shared resources, we introduce costs that depend

on the joint actions of all players. In particular, each player i ∈ [n] has m costs {Cj
i (a)}j∈[m] ∈

[−1, 1]m associated with each tuple of action a ∈ A. For any ν ≥ 0, we define as Sν
i the set of

correlated strategies that are ν-safe (in expectation) for the i-th player, i.e.,

Sν
i :=

{
z ∈ ∆(A) : Cj

i (z) ≤ ν ∀j ∈ [m]
}
.

Intuitively, Sν
i guarantees that the expected cost of player i is at most ν for each of its resources.

Moreover, we define the set Sν = ∩i∈[n]Sν
i as the set of strategies that are ν-safe for all players. For

1Given an integer i ∈ N, we denote with [i] the set {1, . . . , i}.
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each z ∈ Sν and player i ∈ [n] we can define the set of safe-deviations, i.e.,

ΦS
i (z) := {φ ∈ Φ : (φ ◦i z) ∈ Si}.

To guarantee that the game is well-defined and the existence of solutions, we make the following
mild assumption. This assumption requires that all agents always have a deviation that ensures that
cost constraints are satisfied. Formally, for all z ∈ ∆(A) and i ∈ [n], it holds that ΦS

i (z) 6= ∅. This
assumption is required to guarantee that players always have safe strategies, and it is common in the
literature. Bernasconi et al. [2023] proved existence (but not PPAD-membership) with a stronger
notion related to strict feasibility, which was then removed in subsequent works [Boufous et al.,
2024, Ni et al., 2025]. This assumption is generally satisfied, as it is reasonable to let players have
a void action with zero utility and zero cost, irrespective of other players’ strategies. We say that a
correlated strategy z ∈ Sν is a Constrained (ǫ, ν)-Φ-equilibrium if it holds that ui(z) ≥ ui(φ◦iz)−ǫ
for all players i ∈ [n] and deviations in φ ∈ ΦS

i (z). Intuitively, ignoring the technicalities related to
the relaxation ν, a correlated strategy z is a constrained ǫ-Φ-equilibrium if z is safe for each player
and each player cannot earn more than ǫ by applying a safe deviation to the correlated strategy z.

2.3 Polymatrix and team games

Polymatrix games are a type of multiplayer games in which the n players interact only with a subset
of other players and the game between any two players is a bi-matrix game. Formally, we can
introduce the following computational problem:

POLYMATRIX

Input: a graph G = (V,E), a matrix Ai,j ∈ [0, 1]k×k for each (i, j) ∈ E, and an approxima-
tion ǫ > 0.

Output: vectors xi ∈ ∆([k]), i ∈ V such that:

∑

j∈V :(i,j)∈E

x⊤
i A

i,jxj ≥
∑

j∈V :(i,j)∈E

x̃⊤
i A

i,jxj − ǫ ∀i ∈ V, x̃i ∈ ∆([k]).

In a breakthrough result Rubinstein [2015] (later improved by Deligkas et al. [2022]) proved con-
stant inapproximability of POLYMATRIX for constant number of actions and degree of the graph.

Theorem 2.1 (Rubinstein [2015, Theorem 1]). There exists a constant ǫ∗ such that POLYMATRIX

is PPAD-complete, even when the graph has degree 3 and each player has 2 actions.

An important subclass of polymatrix games are two-team zero-sum games, in which V can be parti-
tioned into two teams such that: (i) each edge between players of different teams is a zero-sum game,
and (ii) each edge between players of the same team is a coordination game. If one of the teams
has no internal coordination edges, these games are called two-team polymatrix zero-sum game with
independent adversaries [Hollender et al., 2025]. Here we also consider the case in which there are
no coordination games in between both teams, i.e., the graph G is fully bipartite. We call these two-
team polymatrix zero-sum game with independent teams. These games are special cases of zero-sum
polymatrix games that admit LP-based polynomial-time algorithms [Cai et al., 2016].

2.4 PPAD-hardness and Total Problems

The class PPAD is an important subclass of total search problems i.e., TFNP, which includes
search problems with solutions that can be checked in polynomial time. PPAD was introduced
by Papadimitriou [1994] to capture problems whose totality is guaranteed by parity-like arguments
and, equivalently, by fixed-point arguments such as Brouwer’s. PPAD-complete problems are un-
likely to be solvable in polynomial time. This is also supported by several lower bounds based on
cryptographic assumptions [Bitansky et al., 2015, Garg et al., 2016, Choudhuri et al., 2019].

Moreover, for ease of presentation, we use a more manageable class of total problems, as we allow
for promise problems, i.e., problems whose totality is guaranteed only if the instance satisfies some
additional properties (promises) whose validity is not clear how to check in polynomial time.2

2Formally, to guarantee the totality of our problems we should accept as solutions a violation of the promise
(see, Fearnley et al. [2020, 2022], Hollender [2021] for an in-depth treatment of promise-preserving reductions.
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3 Reduction from POLYMATRIX to CONSTRAINED-Φ-EQUILIBRIUM

We define a computational search problem associated with constrained Φ-equilibria.

CONSTRAINED-Φ-EQUILIBRIUM

Input: ǫ′ > 0, ν > 0, an utility function ui : A → [0, 1] and m cost functions Cj
i : A →

[−1, 1], j ∈ [m] for each player i, and a set of possible deviations Φ (given as a list of linear

inequalities, defining a polytope of right stochastic matrices) with A ∈ R
k×2ℓ and b ∈ R

k.

Output: a vector z ∈ Sν such that ui(z) ≥ ui(φ ◦i z)− ǫ′ ∀i ∈ [n], φ ∈ ΦS
i (z).

Promise: It is promised that ΦS
i (z) 6= ∅ for all z ∈ ∆(A) and i ∈ [n].

Formally, to fix a representation of the output, we think of z as a mixture of product distributions.
Notice that such a representation is essential to guarantee a representation polynomial in the support
and independent of |A|.
In the following, we will provide a reduction from POLYMATRIX to CONSTRAINED-Φ-
EQUILIBRIUM.

Intuitive high-level idea of the proof To give a high-level intuition of the reduction, we sketch
a simplified reduction from the problem of computing Nash equilibria in two-player general-sum
games. Given a general-sum game A,B ∈ [0, 1]k×k, we can write a feasibility LP for coarse
correlated equilibria as follows:3

Find z such that:





A(z) ≥ A(x̃⊗ z−1) ∀x̃ ∈ ∆([k])

B(z) ≥ B(z−2 ⊗ ỹ) ∀ỹ ∈ ∆([k])

z ∈ ∆([k]2)

(1a)

(1b)

If we were to add a constraint forcing z to be a product distribution, i.e., z = x⊗y, then Equation (1)
would turn into a feasibility problem whose solutions are Nash equilibria of A,B.4 This (non-linear)
constraint is exactly what makes computing Nash equilibria hard. Thus, ideally, we would like
to impose constraints to force the correlated strategy to be a product distribution. However, the
constraints we can employ are linear in z, and we cannot follow this idea directly.

By observing Problem 1, we can see that the right-hand sides of the two incentive compatibility
(IC) constraints (1a) and (1b), are linear only in the marginals. Thus, it could be convenient to: (i)
impose the costs to the x player such that the marginal of the x player copies the marginal of the y
player, i.e., z−1 = z−2 (note that this is a linear constraint in z), (ii) take A = −B so to erase the
terms linear in z when summing the two IC constraints of Equation (1).

It is easy to see that, due to (i), we also have that the deviations x̃ admissible to the x player are just
{z−1}. On the other hand, there are no costs on the second player, and thus the deviations ỹ are free.
Define h = z−1 = z−2. Then summing (1a) and (1b) we obtain

A(z) +B(z) ≥ A(h⊗ h) +B(h⊗ ỹ)
Due to (ii)
=⇒ h⊤Bh ≥ h⊤Bỹ ∀ỹ ∈ ∆([k]).

It is easy to choose B such that it is PPAD-hard to find a solution to the right-hand side inequality

above. For example, we can choose B =

[
0 Ã
B̃⊤ 0

]
for another two-player general-sum game

Ã, B̃. This choice introduces two additional players for each player of the original game, essentially
creating two opposing teams playing a zero-sum game.

The above construction is informal and skips many of the technical challenges, such as the fact that
we are only allowed to use constraints that are satisfied approximately. Also, we derive a more
general result and broader consequences by reducing from POLYMATRIX instead of computing
Nash in two-player games (see Section 3.2). This is indeed one central part of the formal reduction
that we will present in the next section.

Given a graph G = (V,E), we denote with deg(G) the maximum degree of graph G. Then, the
main result of this section reads as follows:

3We denote with z−i the marginalization of z with respect to the i-th player.
4Note that A(x⊗ y) = x⊤Ay.
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a c

b

( Aa,b , Ab,a ) ( Ab,c , Ac,b )

(a) Example of a POLYMATRIX instance
with three players V = {a, b, c}.

aL

bL

cL

aR

bR

cR

( −(Aa,b)⊤ , Aa,b )

( −(Ac,b)⊤ , Ac,b )( −(Ab,c)⊤ , Ab,c )

( −(Ab,a)⊤ , Ab,a )

(b) Corresponding instance of CONSTRAINED-Φ-
EQUILIBRIUM with NL = {aL, bL, cL} and NR = {aR, bR, cR}.

Figure 1: On the edges, we reported the matrix corresponding to the utilities of the players. Col-
ors indicate the row player of the bi-matrix game and the player associated with the utility that is
associated with the matrix.

Theorem 3.1. There is a polynomial-time reduction from instances G = (V,E) of POLYMA-
TRIX with n players, k actions per player, and approximation ǫ to instances of CONSTRAINED-
Φ-EQUILIBRIUM with approximation ǫ′ = O( ǫ

n
) and ν = O( ǫ

nk deg(G) ) and CCE deviations.

3.1 Proof of Theorem 3.1

Construction Given an instance of POLYMATRIX with graph G = (V,E), matrices {Ai,j}(i,j)∈E

and approximation ǫ, we build an instance of CONSTRAINED-Φ-EQUILIBRIUM as follows:

◮ Set of players N = NL ∪ NR, where NL = {iL : i ∈ V } and NR = {iR : i ∈ V };

◮ For each player in N the set of actions is A = [k] as in the original POLYMATRIX instance;

◮ For every i ∈ V , the utility of a player iL ∈ NL, under an action profile a ∈ A|N |, is defined as
uiL

(a) = −∑
j:(i,j)∈E(A

j,i)⊤(aiL
, ajR

), while the utility of a player iR ∈ NR under action profile

a is uiR
(a) =

∑
j:(i,j)∈E Ai,j(aiR

, ajL
);

◮ The set of deviations is ΦCCE (see Appendix A for a definition);

◮ For each player iL there are 2k costs. For each j ∈ [2k], let

Cj
iL
(a) =





2I(j ≤ k)− 1 if aiL
= j mod k and aiR

6= j mod k

2I(j > k)− 1 if aiR
6= j mod k and aiL

= j mod k

0 otherwise

;

For more intuition on the construction, we refer to Figure 1.

Properties of the instance The instance of CONSTRAINED-Φ-EQUILIBRIUM resulting from this
construction has twice as many players as the original instance, and the same degree number of ac-
tions per player k as the original instance. Moreover, the CONSTRAINED-Φ-EQUILIBRIUM instance
guarantees that each player has at most 2k costs.

The game resulting from the reduction is a two-team polymatrix zero-sum game with independent

teams. Indeed, we implicitly defined a graph G̃ = (N , Ẽ) which has edges only between players
NL and NR. More specifically, an edge is included between iL ∈ NL and jR ∈ NR if and only if
there was an edge between i and j in the original POLYMATRIX instance. Moreover, the game is
zero-sum. Indeed, for each couple of players iL ∈ NL and jR ∈ NR, the utilities are given by payoff

matrices ÃiL,jR = −(Aj,i)⊤ and ÃiR,jL = Ai,j , respectively. Finally, the costs of player iL only
depend on the actions of player iR.

Summing over the utilities of all players on each side, we get the following lemma:

Lemma 3.2. For each tuple a ∈ A, define the utility of the “left team” as uL(a) =
∑

i∈V uiL
(a)

and the utility of the “right team” as uR(a) =
∑

i∈V uiR
(a). Then uL(a) = −uR(a).

Marginalization Before delving into the correctness of the reduction, we need to introduce some
additional notation that helps bridge between correlated equilibria and Nash equilibria. For any
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subset of players Ñ ⊆ N and any tuple of actions a ∈ A, we denote with aÑ the actions pertaining

to players in Ñ . We also denote with −Ñ = N \ Ñ the complement of Ñ .

Now, we can define the marginalization of the correlated strategy z restricted to a set of players Ñ
by summing over the actions of all other players. Formally, we write

mÑ (z|aÑ ) =
∑

a−Ñ∈A|N\Ñ| z(aÑ ,a−Ñ ).

We can then consider mÑ (z) as a vector indexed by all the tuples aÑ ∈ A|Ñ | which, clearly, is a

distribution over A|Ñ |.

Effects on the costs We now prove the main properties related to costs. Intuitively, every safe
strategy guarantees that the marginals of players iL are close to the marginals of the players iR for

each i ∈ V . In particular, each action j has two associated costs Cj
iL

and Cj+k
iL

that force the
marginal of the first player to mimic the marginal of the second player. Namely,

Lemma 3.3. Given a z ∈ Sν , and i ∈ V , it holds that ‖miL
(z) − miR

(z)‖∞ ≤ ν. Moreover,

given a z ∈ ∆(A|N |) and an i ∈ V , the set of safe deviations of player iL is ΦS
iL
(z) = {xiL

:

‖xiL
−miR

(z)‖∞ ≤ 0}, which guarantees ΦS
iL
(z) 6= ∅.

Correctness We recall that k = |A| is the number of actions of each player and n = |V | is
the number of players. Take any z ∈ Sν that is a solution to CONSTRAINED-Φ-EQUILIBRIUM,
combining it with Lemma 3.3, we get that for all i ∈ V it holds:

uiL
(z) ≥ uiL

(xiL
⊗mN\iL

(z))− ǫ′ ∀xiL
∈ ∆(A) : ‖xiL

−miR
(z)‖∞ ≤ 0 (2)

and

uiR
(z) ≥ uiR

(xiR
⊗mN\iR

(z))− ǫ′ ∀xiR
∈ ∆(A). (3)

Notice that we can write explicitly the right-hand side of Equation (2) as

uiL
(xiL

⊗mN\iL
(z)) = −

∑

j:(i,j)∈E

x⊤
iL
(Aj,i)⊤mjR

(z) = −
∑

j:(i,j)∈E

mjR
(z)⊤Aj,ixiL

,

We then specialize Equation (2) for xiL
= miR

(z) and sum over all i ∈ V . This results in the
following inequality (where we also swapped the identity of i and j in the last equality):

uL(z) ≥ −
∑

(i,j)∈E

mjR
(z)⊤Aj,imiR

(z)− nǫ′ = −
∑

(i,j)∈E

miR
(z)⊤Ai,jmjR

(z)− nǫ′. (4)

Similarly, we analyze Equation (3) and use the first statement of Lemma 3.3:

uR(z) ≥
∑

i∈V

uiR
(xiR

⊗mN\iR
(z))− nǫ′

=
∑

(i,j)∈E

x⊤
iR
Ai,jmjL

(z)− nǫ′

=
∑

(i,j)∈E

x⊤
iR
Ai,jmjR

(z) +
∑

i∈V

∑

j:(i,j)∈E

x⊤
iR
Ai,j(mjL

(z)−mjR
(z))− nǫ′

≥
∑

(i,j)∈E

x⊤
iR
Ai,jmjR

(z)− n(νk deg(G) + ǫ′) ∀{xiR
}i∈V ∈ ∆(A)n. (5)

Summing Equation (4) and Equation (5), and using the fact that uR(z) = −uL(z) from Lemma 3.2,
we obtain that∑

(i,j)∈E

miR
(z)⊤Ai,jmjR

(z) ≥
∑

(i,j)∈E

x⊤
iR
Ai,jmjR

(z)−n(νk deg(G)+2ǫ′) ∀{xiR
}i∈V ∈ ∆(A)n.

Which, for all players i ∈ V can be specialized to∑

j:(i,j)∈E

miR
(z)⊤Ai,jmjR

(z) ≥
∑

j:(i,j)∈E

x⊤
iR
Ai,jmjR

(z)− n(νk deg(G) + 2ǫ′) ∀xiR
∈ ∆(A),

by setting xjR
= mjR

(z) for all j 6= i.

Thus, taking hi = miR
(z) for all players i ∈ V , and ǫ′ = ǫ/4n and ν = ǫ/(2nk deg(G)) we prove

that hi is a solution of POLYMATRIX with approximation ǫ.
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3.2 Implications of the PPAD-hardness

The class of deviations used in the reduction of Theorem 3.1 is ΦCCE, which is a subset of the
deviations of ΦCE, thus, our hardness works also for correlated equilibrium in generalized games.

We now discuss some special cases in which our problem is PPAD-hard. POLYMATRIX is
PPAD-hard even when ǫ, deg(G), k = O(1) (see Theorem 2.1). Thus, Theorem 3.1 implies that
CONSTRAINED-Φ-EQUILIBRIUM is hard when each player has m = O(1) constraints and actions,
when the slackness ν and approximation ǫ are O(n−1).

Moreover, the instances resulting from our reduction form a bipartite graph and, more specifically, a
two-team zero-sum polymatrix game with independent teams, as defined in Section 2.3. Importantly,
for this case of two-team zero-sum polymatrix game with no constraints, there are known LP-based
polynomial-time algorithms [Cai et al., 2016]. It is an interesting open question whether it is possi-
ble to prove hardness for constant approximations, arbitrary number of players, constant number of
actions per player, and constant number of constraints per player.

We can also consider the bi-matrix instance of POLYMATRIX in which we have only 2 players and
an arbitrary number of actions k. This shows that our problem is PPAD-hard even with a constant
number of players when ǫ′ = O(1) and ν = O(k−1).

Moreover, assuming the Exponential Time Hypothesis for PPAD (namely that solving the canoni-
cal problem END-OF-THE-LINE requires exponential time), Rubinstein [2017] showed that it must

take at least klog
1−o(1)(k) time to find a constant approximation for any k × k bi-matrix game. This

imposes a quasi-polynomial lower bound on the CONSTRAINED-Φ-EQUILIBRIUM problem for con-
stant ǫ and ν = poly(k−1). On the other hand, Bernasconi et al. [2023, Corollary 4.3] provides a
quasi-polynomial time algorithm for constant approximation and a constant number of players in

klog(k) time, thus essentially closing the gap.

4 PPAD-membership

We now introduce a computational problem related to quasi-variational inequalities that will serve
as the basis for our membership reduction.

QUASIVI

Inputs: G,L, ǫ > 0, ν > 0, a circuit implementing a G-Lipschitz function F : Rd → R
d,

and two circuits implementing a L-Lipschitz continuous matrix valued function A : [0, 1]d →
R

n×d and a L-Lipschitz continuous vector valued function b : Rn → R
d defining the corre-

spondence Qν(z̃) := {z ∈ [0, 1]d : A(z̃)z ≤ b(z̃) + ν1d}.a

Output: a point z ∈ Qν(z) such that F (z)⊤(z̃ − z) ≥ −ǫ, for all z̃ ∈ Qν(z).

Promise: The correspondence is promised to satisfy Q0(z) 6= ∅ for all z ∈ [0, 1]d, the function
F is G-Lipschitz and the correspondence Q0(z) is L-Lipschitz.

aWe say that a matrix-valued function A : [0, 1]d → R
n×d is L-Lipschitz if the function z̃ 7→ A(z̃)z

is L-Lipschitz for every z ∈ [0, 1]d in the ℓ2-norm.

Theorem 4.1 (Bernasconi et al. [2024, Theorem 3.4]). QUASIVI ∈ PPAD.

To prove that CONSTRAINED-Φ-EQUILIBRIUM is total and more specifically in PPAD we reduce
it to QUASIVI. Our idea is to restrict to Nash-like equilibria with CCE deviations, i.e., restrict to
product strategies×i∈[n]

pi ∈ ∆(A)n, where pi ∈ ∆(A). We will show that these are a subset of

constrained Φ-equilibria for any set of deviations Φ.

Proposition 4.2. CONSTRAINED-Φ-EQUILIBRIUM ∈ PPAD.

Proof. The proof hinges on showing that for any instance of CONSTRAINED-Φ-EQUILIBRIUM with
CCE deviations: (i) we can build an instance of QUASIVI in polynomial time and (ii) from the
solution of QUASIVI, we can build a solution to the original CONSTRAINED-Φ-EQUILIBRIUM

instance which is a product distribution. We show that considering CCE deviations is enough, since
these deviations are the most expressive when applied to product distributions. Indeed, the image
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of any product distribution under the set of deviations ΦCCE is a superset of the image under any
possible set of phi deviations. Formally, given a player i ∈ [n], a product distribution p =

⊗
i∈[n] pi,

a set of deviations Φ, and a deviation φ ∈ Φ, there exists a marginal p̃i of the i-th player such that
φ ◦i p = p̃i ⊗ p−i. In particular, we can take p̃i ∈ ∆(A) such that p̃i(ai) =

∑
b∈A φ(b, ai)pi(b) for

each ai ∈ A. Then, a CCE deviation can replicate the marginal p̃i by taking φ ∈ ΦCCE such that
each row of the stochastic matrix is p̃i. This also proves that there exists a safe CCE deviations for
every product distribution, from the existence of a safe deviation of the original set of deviations Φ.

Indeed, any instance of CONSTRAINED-Φ-EQUILIBRIUM is guaranteed by assumption to have the
set of feasible deviations non-empty for each correlated distribution. As a direct consequence of our
previous observation, we have that the set of feasible deviations in CCE is not empty when consid-
ering only product distributions z. This can be proven by observing that the strategies obtained by
applying deviations from any set Φ to product distributions form a subset of the strategies obtained
by applying CCE deviations.

Construction To define an instance of QUASIVI, we define a correspondence Q : Rd
⇒ R

d and
an operator F : Rd → R

d satisfying the appropriate conditions of the QUASIVI problem. Namely,
we need the correspondence Q(z̃) to be linear for every z̃ and with Lipschitz coefficients. Moreover,
we also require that the operator F is Lipschitz.5

Since we only consider product distributions, ℓn numbers suffice to uniquely specify the distribution.
Thus, we can “flatten” the product strategies p =

⊗
i∈[n] pi into z = [p⊤1 | · · · |p⊤n ]⊤ (equivalently z̃

is the flattening of p̃) and consider the correspondence Q(z̃) =
{
z ∈ [0, 1]ℓn : A(z̃) z ≤ b(z̃)

}
, that

encodes both the costs and the simplex constraints. Formally: A(z̃) = diag(A1(z̃), . . . , An(z̃)) ∈
R

n(m+2)×ℓn and b(z̃) = [b1(z̃)
⊤| . . . |bn(z̃)⊤]⊤ ∈ R

n(m+2), where Ai(z) is a block matrix Ai(z̃) =

Di(z̃)
1⊤ℓ
−1⊤ℓ


 ∈ R

(m+2)×ℓ, bi(z̃) =

[
0m
1
−1

]
∈ R

m+2, and Di(z̃) ∈ R
m×ℓ is such that

[0m×ℓ, · · · , Di(z̃), · · · , 0m×ℓ]z ≤ 0m ⇐⇒ Cj
i (pi ⊗ p̃−i) ≤ 0∀j ∈ [m].

The explicit definition of Di(z̃) is cumbersome due to the flattening notation and we defer it to
Appendix C.1.

It is easy to check that z ∈ Q(z) if the corresponding “unflattened” product strategies p satisfy the
simplex and cost constraints for each player. The next claim shows that the instances created by our
reduction satisfy the promises needed by the QUASIVI problem.

Claim 4.3. The functions z̃ 7→ A(z̃)z and z̃ 7→ b(z̃)⊤z defining the correspondence are L-Lipschitz

for every z ∈ [0, 1]ℓn where L has a representation polynomial in the size of the instance.

Now, we build the operator F of the QVI by stacking the gradients of the utilities. For any
product distribution p =

⊗
i∈[n] pi and flattening z we define, with slight abuse of notation,

F (z) := (−∇p1
u1(p), . . . ,−∇pn

un(p)). The following claims that the operator F satisfies the
properties required by the QUASIVI problem. This shows that the constructed instance satisfies all
the promises of the QUASIVI problem.

Claim 4.4. The operator F : [0, 1]ℓn → [0, 1]ℓn is G-Lipschitz where G has a representation
polynomial in the size of the instance.

Correctness For every vector r ∈ [0, 1]ℓn, define ri = r[ℓ(i−1),...,ℓi−1], which effectively divides
(and “unflattens”) the vector r in n components of length ℓ each corresponding to the strategies of the
i-th player. We will use this notation to reconstruct a solution to CONSTRAINED-Φ-EQUILIBRIUM

from a solution z of QUASIVI. Indeed, take a solution z of the QUASIVI problem, instantiated
with ǫ′ and ν′ later to be defined. We now claim that the renormalization p = ⊗i∈[n]pi (where

5Crucially, the Lipschitz constants are inputs of the QUASIVI problem, and thus, we need to make sure that
they have a polynomial representation in the original CONSTRAINED-Φ-EQUILIBRIUM instance.
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pi = zi/‖zi‖1) is a solution to CONSTRAINED-Φ-EQUILIBRIUM.6 The only tricky part is simply
handling the fact that all the constraints are only approximately satisfied.

Claim 4.5. Let ν′ = min( ǫ2 ,
ν2

2n ) and ǫ′ = ǫ
2 (1− nν′), then p is such that

ui(p) ≥ ui(p̃i ⊗ p−i)− ǫ ∀p̃i ∈ ΦS
i (p)

and p ∈ Sν .

This concludes the proof, as it shows that p (which is a product distribution) is a CONSTRAINED-
Φ-EQUILIBRIUM for CCE deviations, with approximation ǫ and slackness ν and thus a
CONSTRAINED-Φ-EQUILIBRIUM for any set Φ.
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• The answer NA means that the paper does not include experiments.
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make their results reproducible or verifiable.
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reproduce that algorithm.
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be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [NA]

Justification: This is mainly a theoretical paper, and no experiments are performed.
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• The answer NA means that paper does not include experiments requiring code.
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: This is mainly a theoretical paper, and no experiments are performed.
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• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for ex-
ample, train/test split, initialization, random drawing of some parameter, or overall run with
given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.
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8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [NA]

Justification: This is mainly a theoretical paper, and no experiments are performed.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual experi-
mental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors conformed with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a devia-
tion from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

Justification: This is mainly a theoretical paper, and there are no direct negative societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal impact
or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation strate-
gies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]

Justification: There is no model or data released with the paper.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with neces-
sary safeguards to allow for controlled use of the model, for example by requiring that users
adhere to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of service
of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.
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• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper in-
clude the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with hu-
man subjects.

• Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with hu-
man subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if appli-
cable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only
for writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: the core method development in this research does not involve LLMs.

Guidelines:

• The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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A Examples of Φ-equilibria

We now introduce two notable examples of sets Φ, namely Correlated and Coarse Correlated equi-
libria.

Correlated equilibria (CEs) are obtained by considering all possible deviation strategies, i.e.,

ΦCE =

{
φ ∈ [0, 1]ℓ×ℓ :

∑

b∈A

φ(a, b) = 1 ∀a ∈ A

}
.

This set models a player that can observe its own recommendation and deviate to any other action
with some probability.

Another important class of equilibria is Coarse Correlated Equilibria (CCEs) that are defined by the
set

ΦCCE =

{
φ ∈ [0, 1]ℓ×ℓ : φ(a, b) = φ(a′, b) ∀a, a′ ∈ A ∧

∑

b∈A

φ(a, b) = 1 ∀a ∈ A

}
.

This models a player whose deviations are forced to be equal for each recommended action a ∈ A.
Intuitively, the player has to decide their own deviation strategy before seeing the recommended
action a. This greatly simplifies the possible deviation since φ ∈ ΦCCE can simply be identified with
the marginals it induces.

B Missing proof from Section 3 (hardness)

Lemma 3.2. For each tuple a ∈ A, define the utility of the “left team” as uL(a) =
∑

i∈V uiL
(a)

and the utility of the “right team” as uR(a) =
∑

i∈V uiR
(a). Then uL(a) = −uR(a).

Proof. The statement follows from straightforward calculations

uL(a) =
∑

i∈V

uiL
(a)

=
∑

i∈V

∑

j:(i,j)∈E

ÃiL,jR(aiL
, ajR

)

= −
∑

i∈V

∑

j:(i,j)∈E

(Aj,i)⊤(aiL
, ajR

)

= −
∑

i∈V

∑

j:(i,j)∈E

(Ai,j)⊤(ajL
, aiR

)

= −
∑

i∈V

∑

j:(i,j)∈E

Ai,j(aiR
, ajL

)

= −
∑

i∈V

∑

j:(i,j)∈E

ÃiR,jL(aiR
, ajL

)

= −
∑

i∈V

uiR
(a)

= −uR(a),

(ÃiL,jR = −(Aj,i)⊤)

(By swapping the sum and the identity of i and j)

(ÃiR,jL = Ai,j)

concluding the proof.

Lemma 3.3. Given a z ∈ Sν , and i ∈ V , it holds that ‖miL
(z) − miR

(z)‖∞ ≤ ν. Moreover,

given a z ∈ ∆(A|N |) and an i ∈ V , the set of safe deviations of player iL is ΦS
iL
(z) = {xiL

:

‖xiL
−miR

(z)‖∞ ≤ 0}, which guarantees ΦS
iL
(z) 6= ∅.
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Proof. Consider the case j ≤ k:

Cj
iL
(z) =

∑

a∈A

Cj
iL
(a)z(a)

=
∑

a∈An:aiL=j ,aiR 6=j

z(a)−
∑

a∈An:aiL 6=j ,aiR=j

z(a)

=
∑

a∈A:aiL=j

z(a)−
∑

a∈A:aiR=j

z(a)

= miL
(z|j)−miR

(z|j)

and thus Cj
iL
(z) ≤ ν, with j ≤ k implies that miL

(z|j) − miR
(z|j) ≤ ν. On the other hand

Cj
iL
(z) ≤ 0, with j > k implies that miR

(z|j)−miL
(z|j) ≤ 0 which concludes the statement.

C Missing proofs and additional details from Section 4 (membership)

C.1 Explicit definition of A(z̃)

The correspondence Q : [0, 1]ℓn ⇒ [0, 1]ℓn is given by Q(z̃) = {z : A(z̃)z ≤ b(z̃)} where

A(z̃) =




D1(z̃)

1⊤ℓ
−1⊤ℓ

D2(z̃)

1⊤ℓ
−1⊤ℓ

. . .

Dn(z̃)

1⊤ℓ
−1⊤ℓ




ℓ

m

1

1

∈ R
n·(m+2)×ℓn

where Di(z̃) ∈ R
m×ℓ is a matrix such that [0m×ℓ, · · · , Di(z̃), · · · , 0m×ℓ]z ≤ 0m ⇐⇒ Cj

i (p̃)pi ≤
0∀j ∈ [m]. In particular, for each i, only the components of z corresponding to the strategies of the
i-th player matter and correspond to the strategy pi. We define g the flattening function which takes a
product distribution p̃ =

⊗
i∈[n] p̃i and returns the corresponding “unflatted” vector z̃ while we call

h its inverse. Thus, we can write that Di(g(p̃))pi ≤ 0m if and only if Cj
i (pi ⊗ p̃−i) ≤ 0 for all j ∈

[m]. Notice that pi 7→ Cj
i (pi⊗ p̃−i) is linear and can be written as Cj

i (pi⊗ p̃−i) = cji (p̃)
⊤pi, where

cji (p̃) ∈ R
ℓ and each component cji (p̃)ā, indexed by ā, is given by

∑
a∈A:ai=ā C

j
i (a)

∏
k 6=i p̃k(ak).

Consequently, we can take

Di(z̃) =



c1i (h(z̃))

...
cmi (h(z̃))


 ∈ R

m×ℓn

C.2 Proof of Claim 4.3 and Claim 4.4 from Proposition 4.2

Claim 4.3. The functions z̃ 7→ A(z̃)z and z̃ 7→ b(z̃)⊤z defining the correspondence are L-Lipschitz

for every z ∈ [0, 1]ℓn where L has a representation polynomial in the size of the instance.

Proof. First note that b(z̃) does not depend on z̃ and thus is trivially 0-Lipschitz. Thus, we only need
to prove the statement about A(z̃). We recall the exact definition of A(z̃) given in Appendix C.1.
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We analyze the Jacobian of the Di(z̃). Any entry of Di(z̃) would correspond to a cost j of the i-th
player (rows) and to an action â ∈ A (columns), and any component ℓ of z̃ would correspond to
a player i′ (possibly different from i) and an action ā ∈ A. Thus, by defining p̃ = h(z̃), we can
compute the following

∂cji (h(z̃))â
∂z̃ℓ

=
∂cji (p̃)â
∂p̃i′(ā)

∂p̃i′(ā)

∂z̃ℓ

The second term is clearly 1, as the function h just rearranges the components z̃, while the first term
is easily bounded as follows

∣∣∣∣∣
∂cji (p̃)â
∂p̃i′(ā)

∣∣∣∣∣ =
∣∣∣∣∣
∂
∑

a∈A:ai=â C
j
i (a)

∏
k∈[n],k 6=i p̃k(ak)

∂p̃i′(ā)

∣∣∣∣∣

=

∣∣∣∣∣∣

∑

a∈A:ai′=ā,ai=â

Cj
i (a)

∏

k∈[n],k 6=i′,k 6=i

p̃k(ak)

∣∣∣∣∣∣
≤ ℓn.

The following elementary lemma lets us conclude the proof.

Lemma C.1. Let M : RK → R
m×n be a matrix valued function such that

∣∣∣∂Mi,j(z̃)
∂z̃k

∣∣∣ ≤ C for all

i ∈ [m], j ∈ [n], k ∈ [K] then

‖(M(z̃)−M(z̃′))z‖ ≤ Cm
√
nK‖z̃ − z̃′‖,

for all z ∈ [0, 1]K .

Indeed,

‖(A(z̃)−A(z̃′))z‖ ≤ ℓn(ℓn)
√

ℓn · n(m+ ℓ+ 2)‖z̃ − z̃′‖
≤ 2ℓn+2n2

√
m‖z̃ − z̃′‖

and thus L = poly(ℓn,m, n) concluding the proof.

Claim 4.4. The operator F : [0, 1]ℓn → [0, 1]ℓn is G-Lipschitz where G has a representation
polynomial in the size of the instance.

Proof. We can get a simple upper bound on the Lipschitz constant of F by bounding its gradient. In
particular F (z) = (−∇p1

u1(p), . . . ,−∇pn
un(p)), where as usual z is the unrolling of the product

distribution p =
⊗n

i=1 pi. We can consider any component of F , which will correspond to some
player i ∈ [n] and action ā ∈ A, and consider some component of z which will correspond to some

player j ∈ [n] and some action ã ∈ A. The component of F selected corresponds to −∂ui(p)
∂pi(ā)

We

can then consider the following:

− ∂2ui(p)

∂pj(ã)∂pi(ā)
= −

∑

a∈A:ai=ā,aj=ã

ui(a)
∏

k 6=i,j

pk(ak)

and thus

∣∣∣ ∂2ui(p)
∂pj(ã)∂pi(ā)

∣∣∣ ≤ ℓn. The mean value theorem trivially concludes the proof:

‖F (z)− F (z′)‖ ≤ ‖JF (ξ)‖ · ‖z − z′‖
for some ξ on the segment connecting z and z′. Now for any matrix M ∈ R

m×n it holds that
‖M‖ ≤ √

mn · supi,j |Mi,j | and thus ‖JF (ξ)‖ ≤ nℓn+1 = G, concluding the proof.

Claim 4.5. Let ν′ = min( ǫ2 ,
ν2

2n ) and ǫ′ = ǫ
2 (1− nν′), then p is such that

ui(p) ≥ ui(p̃i ⊗ p−i)− ǫ ∀p̃i ∈ ΦS
i (p)

and p ∈ Sν .

21



Proof. First, observe that if ν ≥ 1 then the costs bear no effects and PPAD-membership can be
established by the PPAD-membership of Nash equilibria. Thus, we can assume w.l.o.g. that ν ≤ 1.

Step 1: Safety First, we claim that p is ν-safe. Indeed, ‖zi‖1 ∈ [1 − ν′, 1 + ν′] and for each
i ∈ [n], j ∈ [m] and we can directly compute

∑

a∈An

Cj
i (a)

∏

j∈[n]

zj(aj) ≤ ν′,

then, we can divide the left and right hand side by
∏

j∈[n] ‖zj‖1 ≥ (1− ν′)n and, obtain that:

Cj
i (p) =

∑

a∈An

Cj
i (a)

∏

j∈[n]

pj(aj) ≤
ν′

(1− ν′)n
≤ ν′

1− nν′
≤ ν,

where in the last inequality we used ν′ ≤ ν2

2n ≤ ν
1+nν

for all ν ≥ 0 and n ≥ 1. This shows that

indeed p ∈ Sν .

Step 2: Simulating deviations Now we prove that we can simulate safe deviations p̃i with appro-
priate choices of z̃.

Take any safe deviation p̃i ∈ ∆(A) (i.e., it holds that Cj
i (p̃i ⊗ p−i) ≤ 0), and consider z̃ defined as

z̃ = [z1, . . . , z̃i, . . . , zn], where z̃i = p̃i. By the definition of the correspondence (see Appendix C.1
for notation and details on the explicit construction of the correspondence Q) we have that z̃ ∈
Qν′(z). Indeed, from the definition of Di in Appendix C.1, we get that

[Di(z)z̃
i]j = cji (h(z))

⊤z̃i

=
∑

ā∈A

∑

a∈An,ai=ā

Cj
i (a)

∏

k 6=i

zk(ak)z̃
i(ā)

=
∑

a∈An,ai

Cj
i (a)

∏

k 6=i

zk(ak)z̃
i(ai)

≤ 0

(by construction)

(def. of cji (h(z)))

(Cj
i (p̃i ⊗ p−i) ≤ 0)

Moreover, it is easy to verify that 1⊤z̃i ∈ [1− ν′, 1+ ν′] for all i ∈ [n]. This shows that z̃ ∈ Qν′(z).

Formally, what we proved is that: for any player i ∈ [n] and for any safe deviation p̃i such that

Cj
i (p̃i ⊗ p−i) ≤ 0, there exists z̃ ∈ Qν′(z) which “simulates” p̃i. Moreover, z̃j = zj for all j 6= i

and z̃i = p̃i.

Step 3: Equilibrium conditions Now, we also claim that p =
⊗

i∈[n] pi satisfies the equilibrium

constraints. Since z is a solution to QUASIVI we have that for all z̃ ∈ Qν′(z) the following holds:

F (z)⊤(z̃ − z) ≥ −ǫ′ =⇒ −
∑

i∈[n]

∑

ā∈A

∑

a∈A:ai=ā

ui(a)
∏

j 6=i

zj(aj)(z̃
i(ā)− zi(ā)) ≥ −ǫ′,

which implies that: ∑

a∈A

ui(a)
∏

j 6=i

zj(aj)(z
i(ai)− z̃i(ai)) ≥ −ǫ′,

once we specialize to z̃ to the one built in step 2, since z̃j = zj for all j 6= i.

Now we can use the exact definition of z̃i constructed in step 2, in the above equation, which leads
to the following:
∑

a∈A

ui(a)
∏

j 6=i

zj(aj)(z
i(ai)− z̃i(ai)) =

∑

a∈A

ui(a)
∏

j∈[n]

zj(aj)−
∑

a∈A

ui(a)
∏

j 6=i

zj(aj)p̃i(ai) ≥ −ǫ′.

Rearranging it, we obtain
∑

a∈A

ui(a)
∏

j∈[n]

zj(aj) ≥
∑

a∈A

ui(a)
∏

j 6=i

zj(aj)p̃i(ai)− ǫ′.
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We can now divide each term by γ =
∏

j∈[n] ‖zj‖1, which finally leads to

ui(p) ≥
ui(p̃i ⊗ p−i)

‖zi‖1
− ǫ′

γ
≥ ui(p̃i ⊗ p−i)−

(
ǫ′

γ
+ ν′

)

and since ‖zj‖1 ∈ [1− ν′, 1+ ν′] for all j ∈ [n] this implies that γ ≥ (1− ν′)n ≥ 1−nν′ and thus

ui(p) ≥ ui(p̃i ⊗ p−i)−
(

ǫ′

1−nν′ + ν′
)
.

Consider the first term ǫ′

1−nν′ . The following inequalities hold:

ǫ′

1− nν′
≤ ǫ

2

since ǫ′ ≤ ǫ
2 (1− nν′).

Moreover, ν′ ≤ ǫ
2 thus proving that ui(p) ≥ ui(p̃i ⊗ p−i)− ǫ as desired.

C.3 Additional technical lemmas

Lemma C.1. Let M : RK → R
m×n be a matrix valued function such that

∣∣∣∂Mi,j(z̃)
∂z̃k

∣∣∣ ≤ C for all

i ∈ [m], j ∈ [n], k ∈ [K] then

‖(M(z̃)−M(z̃′))z‖ ≤ Cm
√
nK‖z̃ − z̃′‖,

for all z ∈ [0, 1]K .

Proof. Let {mi : [0, 1]K → R
n}mi=1 be the functions defining the rows of M and hi(z̃|z) =

mi(z̃)
⊤z. With this notation it is easy to check that ∇z̃hi(z̃|z) = Jmi

(z̃)⊤z and thus

‖∇z̃hi(z̃|z)‖ ≤ ‖Jmi
(z̃)‖‖z‖ ≤ C

√
mnK.

By the mean value theorem, we have that for some ξ in the segment connecting z̃ and z̃′, we have

|(mi(z̃)−mi(z̃
′))⊤z| ≤ ‖∇z̃h(ξ|z)‖ · ‖z̃ − z̃′‖

≤ C
√
mnK‖z̃ − z̃′‖

Finally,

‖(M(z̃)−M(z̃′))z‖2 =

m∑

i=1

((mi(z̃)−mi(z̃
′))⊤z)2

≤ C2m2nK‖z̃ − z̃′‖2
concluding the proof.
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