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Abstract

Bilevel optimization has gained significant pop-
ularity in recent years due to its ability to
formulate various machine learning problems.
For instance, in meta-learning, the upper-level
(UL) problem offers a good initialization for the
lower-level (LL) model to facilitate adaptation.
However, the decision variables can impact
data features and outcomes, leading to the
phenomenon known as performativity. In this
work, we investigate the inclusion of decision-
dependent distributions in bilevel optimization.
Specifically, we consider the scenarios where
the UL data distribution depends on the LL
optimization variable, and the LL data distribu-
tion also depends on the UL decision variable.
We first establish sufficient conditions for the
existence of performatively stable (PS) solutions
in this class of bilevel problems. Also, we
propose efficient stochastic algorithms to find
the PS point with theoretical convergence rate
analysis and discuss the theoretical optimality of
the obtained solution. Our theoretical analysis
is corroborated through a series of numerical ex-
periments, wherein we evaluate the performance
of the bilevel performative prediction algorithms
alongside non-performative counterparts in the
context of meta strategic learning problems.

1. Introduction
In this work, we consider the following class of bilevel
performative prediction (PP) problems, where the data
distribution at each level is dependent on the decision
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variable from the other level:

P : min
x

E
Z∼Dx(y∗(x))

f(x, y∗(x);Z) (1a)

s.t. y∗(x) = argmin
y

E
Z∼Dy(x)

ℓ(x, y;Z) (1b)

where x, y respectively denote the decision/optimization
variables at the upper-level (UL) and lower-level (LL) of
this problem, loss functions f(x, y∗(x);Z) and ℓ(x, y;Z)
are smooth, y∗(x) represents the optimal solution of the LL
problem given x, Dy(x) stands for the LL data distribution
depended on the UL variable x, and similarly Dx(y

∗(x))
for the UL data distribution that is dependent on the LL loss
function through the optimal LL decision variable y∗(x).

Motivation of This Work. One of the most prominent ma-
chine learning models that can be formulated using bilevel
optimization is model-agnostic meta-learning (MAML)
(Finn et al., 2017; Rajeswaran et al., 2019). MAML
has been successful in addressing the challenge of
data distribution shifts between seen and unseen tasks,
particularly in few-shot learning scenarios. In MAML, the
meta-learner at the UL explores invariant features such as
good initializations that can be utilized to handle unseen
tasks, while the individual learners at the LL focus on
fitting personalized data. However, in many real-world
problems that fall under the umbrella of PP, such as election
forecasts, financial markets, online advertising, and traffic
predictions, the decision variables can heavily influence the
data distribution (Perdomo et al., 2020). Hence, it becomes
crucial to incorporate decision-dependent distributions into
the framework of meta-learning, as both levels of the
optimization problem are tightly intertwined through their
mutual interaction. This motivates the inclusion of cross-
level dependence between decision variables and data
distributions in bilevel optimization.

Major Challenges in Bilevel PP. In contrast to single-
level PP problems, solving bilevel optimization problems
involves generating two sequences, each used for mini-
mizing the loss function at its respective level. Due to
the interdependence between decision variables and data
distributions across levels, it is unclear whether changes in
the data-generating distribution occur in a competitive or
collaborative manner during the play of this performative
Stackelberg game. Consequently, demonstrating the
convergence rate of the bilevel stochastic algorithm is
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highly challenging. It necessitates the construction of a
Lyapunov function that accounts for the data distribution’s
dependence and satisfies a descent or contraction property.
In addition, the theoretical analysis requires decoupling the
stochastic error terms between the two levels.

Main Contributions of This Work. In this work, we
provide the formal definitions of performatively optimal
(PO) and performatively stable (PS) points in bilevel
optimization and establish the conditions for the existence
of the bilevel performatively stable (BPS) points using
the bilevel repeated risk minimization (Bi-RRM) method.
Building upon the existence of the BPS points, we propose
an efficient bilevel stochastic gradient descent (Bi-SGD)
method and derive sufficient conditions for Bi-SGD to
obtain the BPS point. Our theoretical analysis reveals
that Bi-SGD achieves comparable iteration and sample
complexities to traditional (bilevel) stochastic gradient
descent (SGD) for finding optimal solutions in non-
performative strongly convex (bilevel) problems. To
validate our theoretical results and demonstrate the stability
of Bi-SGD under data distribution shifts, we conduct
experiments on both synthetic and real data sets. The
results underscore the efficacy of Bi-RRM and Bi-SGD.
The main contributions of this work are highlighted as
follows.

I Bilevel performative prediction. To the best of our
knowledge, our proposed bilevel PP model is the first
to incorporate decision-dependent data distributions
into the learning process. This unique approach
distinguishes our work from existing models in the field.

I Theoretical analysis. Our theoretical results provide
novel insights into the existence of BPS points in
the bilevel PP model. We demonstrate, for the first
time, that when the sensitivity parameters of the data
distribution at both levels fall below a certain threshold,
a unique BPS point exists. Additionally, we prove that
the bilevel SGD algorithm is capable of achieving the
PS point at a rate of O(1/T ), which is on par with
the standard non-performative learning setting. Here, T
represents the total number of iterations.

I Applications to meta strategic learning. We present
the results of applying the bilevel PP model to meta
strategic learning and showcase the importance of
incorporating the decision-dependent distribution in the
algorithm design in terms of improving testing accuracy.

2. Background and Related Work
Performative Prediction (PP). There is a significant body
of research focusing on various aspects of PP, including
model and algorithm design, convergence analysis, and
quantification of generalization performance. The concept
of PP was first introduced in (Perdomo et al., 2020), which

addresses the strategic feedback effect in single-level risk
minimization problems. The work also proposes measures
to capture performative optimality and stability in this
setting, where the data distribution is induced by the
predictive model. It is shown that under certain conditions
on the loss function (such as smoothness and strong
convexity), the PS point can be achieved by utilizing
repeated risk minimization (RRM) or gradient descent
(GD) on the performative risk when the changes in the data
distribution are not significant or controllable in terms of
the Wasserstein-1 distance.
Based on this work, more efficient SGD methods have
been proposed in (Mendler-Dünner et al., 2020) to find
the PS points by considering the trade-off between the
frequency of model deployment and the stochastic update
of the model. In (Drusvyatskiy & Xiao, 2022), several
families of classical stochastic optimization algorithms,
such as clipped gradient and proximal point, have been
studied for PP with rigorous convergence rate analysis.
These works highlight the main challenge in proving
algorithm convergence, which lies in quantifying the bias
introduced by distribution shifts after model deployment.
Also, it is worth noting that the convergence results
in these seminal works rely on the strong convexity
assumption of the loss functions. Recent works have
attempted to relax this assumption to the convex case
(Miller et al., 2021) or the weakly convex case (Zhao,
2022), but they require additional assumptions, such as the
mixture dominance condition or other notions of Lipschitz
distributions (Mofakhami et al., 2022), to ensure the well-
behaved nature of the distribution map.
Given the dynamic nature of online data sequences, PP
naturally extends to model richer classes of online learning
problems, enabling the advancement of existing algorithms
to adapt to changing environments and facilitating the
design of new algorithms to address distribution shifts.
For instance, online projected gradient descent has
been applied to optimize the charging of a fleet of
electric vehicles, where the time-varying costs depend
on random variables with decision-dependent distributions
(Wood et al., 2021). The proximal stochastic gradient
method has been employed to tackle online tracking
problems, where the dynamics are jointly dependent on
both time and decision variables, and its non-asymptotic
convergence behavior under the time drift is analyzed in
(Cutler et al., 2021). Furthermore, performative feedback
has been utilized in algorithm design to construct confi-
dence bounds on the risk of unexplored models and guide
exploration (Jagadeesan et al., 2022). If the exact gradient
of the temporal drift function over time is accessible, the
underlying changes in dynamics can be approximated in an
online fashion. Based on this observation, the predictor-
corrector method is proposed for time-varying stochastic
optimization (Maity et al., 2022).
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Table 1. Comparison of the existing representative works that are related to PP and bilevel optimization, where Opt.: optimization, Cond.:
the existence condition of the PS points, Gap: the maximum distance between the PS and PO points, Deploy: the single-loop/double-loop
structure of deploying the algorithm/method.

Algorithms Opt. Framework Cond. Gap Deploy Rate

RRM and GD (Perdomo et al., 2020) single-level O(ε) O(ε) single O(log(1/T ))
SGD (Mendler-Dünner et al., 2020) single-level O(ε) O(ε) single O(1/T )
Multi-PfD (Li et al., 2022b) single-level+consensus O(εavg) n/a single O(1/T )
BSA (Ghadimi & Wang, 2018) bilevel n/a n/a double O(1/T )
STSA (Shen & Chen, 2022) bilevel n/a n/a single O(1/T )
Bi-RRM (This work) bilevel O(εxεy + εy) O(εx(1+εy)) double O(log(1/T ))
Bi-SGD (This work) bilevel O(εx+εxεy +εy) O(εx(1+εy)) single O(1/T )

In addition to the applications of PP in online learning,
there is another line of research that focuses on PP for
performative reinforcement learning, where the policy
affects both the underlying reward and the transition kernel
of the Markov chain (Mandal et al., 2022). Subsequently,
the convergence analysis of state-dependent PP algorithms
has been investigated under the Markov transition model
(Li & Wai, 2022; Roy et al., 2022; Brown et al., 2022) as
well as general stateful performative dynamics (Izzo et al.,
2022). When prior knowledge about the decision-
dependent distribution is available, more informative PP
algorithms can be designed using performative gradi-
ent descent, which can improve the performance of
classic gradient-based methods under distribution shifts
(Izzo et al., 2021). Apart from the optimization perspective,
recent research has also focused on identifying the
causal effect of predictions (Mendler-Dünner et al., 2022),
exploring the performative power by measuring the
relationship between the decision maker and the population
(Hardt et al., 2022), and analyzing outcome performativity
with an emphasis on the performative effects of decisions
on the conditional distribution rather than the traditional
overall distribution (Kim & Perdomo, 2022).

Two (multiple) Players Game. The decision-making
process and strategic response in PP can be also viewed as
a two-player game, where the data reacts based on the de-
cision variables to maximize a utility function. PP assumes
that this interaction occurs simultaneously. In (Zrnic et al.,
2021), the order of play in strategic classification between
the decision maker and strategic agents is further examined,
revealing that the update frequency determines the roles
of the leader and follower. Furthermore, algorithm design
for PP in zero-sum games has been developed, along with
corresponding convergence analysis (Wood & DallAnese,
2022; Maheshwari et al., 2022). In a multi-agent set-
ting, decision makers can work in either a competitive
or collaborative manner. In (Narang et al., 2022), a
competitive multi-player performative prediction setting is
introduced, where each local player aims to minimize their
performative risk under the joint action space, considering
that the local data distribution is influenced by the decisions

of all players. It is shown that using SGD at each
player can effectively find the Nash equilibrium of this
problem. In (Li et al., 2022b), a consensus-based multi-
agent performative prediction (Multi-PfD) is considered,
where all agents connected through a communication
network seek a global PS solution by interacting with local
strategic data. Additionally, it is demonstrated that the
existence condition regarding the ε-sensitivity parameter
can be relaxed from ε (in the single-agent setting) to εavg,
where εavg represents the average sensitivity parameter
across the entire network.

Bilevel Optimization and Meta-Learning. Model
transferability is a topic of significant interest in decision-
dependent learning systems (Liu et al., 2021b). MAML
has emerged as a powerful tool for enhancing the gener-
alization performance of trained models when faced with
new tasks in both supervised learning and reinforcement
learning settings (Liu et al., 2019; Rajeswaran et al., 2019).
The convergence rate of MAML and regret analysis
have been characterized in previous studies (Balcan et al.,
2019; Fallah et al., 2020), along with investigations into
generalization errors (Chua et al., 2021; Chen et al., 2022).
As mentioned earlier, MAML can be seen as a special
case of bilevel optimization (Franceschi et al., 2018) or
a Stackelberg game (Fiez et al., 2020). Also, bilevel
optimization can be applied to various other machine learn-
ing problems, including multi-task AUC maximization
(Hu et al., 2022), meta causal discovery (Lu & Gao, 2023),
data hyper-cleaning (Franceschi et al., 2018), etc.

Consequently, solving the bilevel optimization problem
becomes crucial. One of the earliest approaches for
deterministic convex bilevel problems is the bilevel
gradient sequential averaging method (Sabach & Shtern,
2017), while for stochastic bilevel problems, the bilevel
stochastic approximation (BSA) method is commonly
adopted (Ghadimi & Wang, 2018). BSA solves the LL
problem by iteratively updating its variables in an inner
loop and then switches to optimize the UL variables.
The theoretical convergence rates of BSA have been
provided in (Ghadimi & Wang, 2018) for strongly convex,
convex, and nonconvex UL loss functions when the LL
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loss function is strongly convex. Building upon this,
subsequent research has focused on improving the iteration
or sample complexity of BSA. Examples include the
development of single-time scale or multi-sequence single-
timescale (STSA) bilevel algorithms (Chen et al., 2021;
Shen & Chen, 2022).

When the LL objective function is strongly convex, it
is possible to derive a closed form of the UL gradient.
However, computing this hyper-gradient requires the
inversion of the LL Hessian matrix. To enhance com-
putation efficiency, multiple efficient bilevel algorithms
and techniques have been proposed, including approximate
implicit differentiation (Ji et al., 2021), adaptive stochastic
algorithms (Huang & Huang, 2021), and an adaptation of
the well-known SAGA algorithm (Dagréou et al., 2022;
Li et al., 2022a). Besides, generalized bilevel optimization
solvers have been developed by relaxing the strong
convexity assumption of the LL loss function (Ye et al.,
2022; Liu et al., 2022). A comprehensive survey paper
(Liu et al., 2021a) provides an overview of these research
areas, and Table 1 presents a summary of the representative
works related to both PP and bilevel optimization.

3. Bilevel Performative Optimality
In this work, we consider the scenario where the data
distribution over the features and outcomes at each level
of the problem depends on the decision variables at the
other level. Consequently, the performance evaluation of
this type of two-player performative model is based on
the expected loss over the distributions induced at both
levels. To be more precise, in contrast to existing single-
level PP models (Perdomo et al., 2020), our study focuses
on a bilevel model that aims to find the following optimal
points through a performative Stackelberg game.
Definition 1. (Bilevel performative optimality and risk).
A point xO is bilevel performatively optimal (BPO) if it
satisfies

xO = argmin
x

F (x) (2)

where F (x) , E
Z∼D(y∗(x))

[f(x, y∗(x);Z)] is defined as

the UL performative risk, y∗(x) is defined in (1b), and
EZ∼Dy(x)ℓ(x, y;Z) is defined as the LL performative risk.
PS is another well-established notion of PP, which refers
to a point that attains the global optimal solution of the
optimization problem considering the data distributions
induced by that point itself. A formal definition of the
bilevel PS point can be expressed as follows.
Definition 2. (Bilevel performative stability and decoupled
risk). A point xS is bilevel performatively stable (BPS) if it
satisfies

xS , argmin
x

E
Z∼D(y∗(x,xS))

[f(x, y∗(x, xS);Z)] (3a)

s.t. y∗(x, xS) = argmin
y

E
Z∼D(xS)

[ℓ(x, y;Z)]. (3b)

Also, let DR(x, x′) , EZ∼D(y∗(x,x′))[f(x, y
∗(x, x′);Z)]

be the decoupled bilevel performative risk.

It is clear that xS = argminx DR(x, xS) and xO =
argminx DR(x, x). The concept of performative stability
revolves around the idea of a fixed point in risk
minimization, wherein the learned model minimizes the
risk on the data distribution that arises from its own
deployment (Perdomo et al., 2020). This property validates
the optimality of the closed-loop training strategy and
serves as motivation for incorporating PP in the meta-
learning setting. In this case, the objective of both levels
of learning is to identify the permutation invariant space
after the model has been deployed.

It is evident that the decision-dependent distribution plays a
crucial role in bridging the gap between model deployment
and model parameter optimization. Similar to the concept
of Lipschitz continuity used in the field of optimization
to quantify function changes, the literature (Perdomo et al.,
2020) has introduced the notion of ε-sensitivity. This
measure is employed to assess the variations in decision-
dependent distributions caused by changes in the decision
variables.
Definition 3. (ε-sensitive) A distribution map D(·) is ε-
sensitive if all x, x′:

W1 (D(x),D(x′)) ≤ ε∥x− x′∥2 (4)

where W1 denotes the Wasserstein-1 distance (aka the
earth mover’s distance) between two distributions.

Given the definitions of BPO, BPS, and ε-sensitivity, it
is still not clear whether the BPO or BPS exists or not.
Note that the decision variables compete to minimize their
objective functions through the UL and LL optimization
processes, along with the decision-dependent distributions.
This coupling can lead to oscillations in the iterates
generated by the optimization algorithms, making the
convergence analysis challenging, as mentioned earlier.
To address this, we first introduce Bi-RRM, which
demonstrates the existence of the BPS point and provides
insights into the iteration complexity of finding this point.

4. Existence of BPS Point
In this section, we will propose the Bi-RRM method for
solving this bilevel PP problem (1).

4.1. Bilevel Repeated Risk Minimization (Bi-RRM)
The main idea of RRM involves a retraining procedure
outlined as follows. It begins by solving the bilevel
optimization problem using the data distribution induced
by the decision variable xr. Next, it updates the state
to xr+1 using the obtained solution, and this process
is repeated iteratively, with r denoting the index of
the iterations. Mathematically, Bi-RRM performs the
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following recursive update:

xr+1 = R(xr)

, argmin
φ

E
Z∼Dx(y∗(φ,xr))

[f(φ, y∗(φ, xr);Z)], (5a)

s.t. y∗(φ, xr) = argmin
y

E
Z∼Dy(xr)

[ℓ(φ, y;Z)] (5b)

where R(·) represents the one-step update of the RRM
algorithm. The Bi-RRM assumes the existence of an oracle
algorithm that can obtain the global optimal solution of the
bilevel optimization problem with respect to the variable φ.
This optimization problem takes into account both the UL
and LL data distributions induced by the decision variable
x at iteration r.

4.2. Theoretical Assumptions
Before showing the theoretical convergence result of Bi-
RRM, we make the following blanket assumption for
problem (1).
Without loss of generality, we assume that decision-
dependent distributions at both UL and LL are ε-sensitive
but with different constants.
Assumption 1. Assume that the distribution
maps are εx- and εy-sensitive at each level,
namely, W1 (Dx(x),Dx(x

′)) ≤ εx∥x − x′∥2 and
W1 (Dy(y),Dy(y

′)) ≤ εy∥y − y′∥2.
Next, we assume the strong convexity and smoothness of
the loss functions as follows.
Assumption 2. (Strong convexity) Assume that loss
functions F (x) and ℓ(x, y) are respectively γx- and γy-
strongly convex, namely,

F (x) ≥ F (x′) +∇xF (x′)T (x− x′) +
γx
2
∥x− x′∥2,

ℓ(x, y) ≥ℓ(x, y′)+∇yℓ(x, y
′)T (y − y′)+

γy
2
∥y − y′∥2.

Assumption 3. (Smoothness of the UL loss function and
distribution) Assume that the loss function f(x, y;Z) w.r.t.
x, y is smooth and the gradients of f(x, y;Z) w.r.t. Z are
jointly Lz

f -Lipschitz continuous ∀x, y, namely,
∥∇xf(x, y;Z)−∇xf(x, y;Z

′)∥ ≤ Lz
f∥Z − Z ′∥, (6a)

∥∇yf(x, y;Z)−∇yf(x, y;Z
′)∥ ≤ Lz

f∥Z − Z ′∥. (6b)

(Smoothness of the LL loss function and distribution)
Similarly, we assume that loss function ℓ(x, y;Z) is smooth
and the gradient of ℓ(x, y;Z) is Lz

ℓ -Lipschitz continuous
∀x, y, namely,

∥∇yℓ(x, y;Z)−∇yℓ(x, y;Z
′)∥ ≤ Lz

ℓ∥Z − Z ′∥. (7)

(Second-order smoothness of the LL loss function and
distribution) Assume that loss function ℓ(x, y) is con-
tinuously twice differentiable and its the Jacobian and
Hessian matrices are respectively Lz

ℓxy- and Lz
ℓyy-Lipschitz

continuous ∀x, y, namely,

∥∇2
xyℓ(x, y;Z)−∇2

xyℓ(x, y;Z
′)∥ ≤ Lz

ℓxy∥Z − Z ′∥, (8a)

∥∇2
yyℓ(x, y;Z)−∇2

yyℓ(x, y;Z
′)∥ ≤ Lz

ℓyy∥Z − Z ′∥. (8b)

Assumption 4. (Boundedness of the gradient and Ja-
cobian) We assume that ∥∇yf(x, y)∥ ≤ Cy

f and
∥∇2

xyℓ(x, y)∥ ≤ Cℓxy ∀x, y.

The assumptions of the Lipschitz continuity on data
distributions are commonly used in the existing the-
oretical works of quantifying the convergence of the
single-level PP algorithms (Mendler-Dünner et al., 2020;
Drusvyatskiy & Xiao, 2022).
Remark 1. Under the strong convexity assumption
of the LL objective function, we have the closed
form of computing the UL gradient through the
chain rule, which is ∇xF (x) = ∇xf(x, y

∗(x)) −
∇2

xyℓ(x, y
∗(x))

[
∇2

yyℓ(x, y
∗(x))

]−1 ∇yf(x, y
∗(x))

(Ghadimi & Wang, 2018; Shen & Chen, 2022). It can
be seen that the UL gradient involves the second-order
derivatives of the LL loss function. Therefore, we assume
the second-order continuity and boundedness of the loss
function, which will be used for measuring the distribution
changes with respect to the UL and LL variables. In
the following, we will present the theoretical results and
relegate the detailed proofs in the appendix.

4.3. Convergence of Bi-RRM
Theorem 1. Suppose that A.1–A.4 hold and iterates
{xr, ∀r ≥ 1} are generated by the Bi-RRM method. Then,

∥R(x)−R(x′)∥ ≤ (Cxyεxεy+Cyεy)∥x−x′∥, ∀x, x′ (9)

where

Cxy , Cℓxy

γxγy

(
Lz
f +

CℓxyL
z
f

γy

)
, (10a)

Cy , 1

γxγy

(
Cy

f

(
Lz
ℓxy +

Lz
ℓyyCℓxy

γy

)
+Lz

ℓ

(
L̄x
f+

Cy
fL

y
ℓxy

γy
+
Cℓxy

γy

(
Ly
f+

Cy
fL

y
ℓyy

γy

)))
. (10b)

If εx and εy satisfy

Cxyεxεy + Cyεy ≤ 1, (11)

then the sequence generated by Bi-RRM converges to a
unique BPS point xS at a linear rate, namely,

∥xr − xS∥2 ≤ (Cxyεxεy + Cyεy)
r∥x1 − xS∥.

This result claims that under A.1–A.4 when (11) is satisfied,
there exists a global optimal BPS solution of problem (1).
Remark 2. If we set εx = εy , ε, it becomes
evident that the condition (11) ensuring the linear
convergence rate of Bi-RRM to the BPS solution is ε <

(2Cxy)
−1(
√
C2

y + 4Cxy − Cy).
Remark 3. Another important observation is that εx and εy
are coupled in a bilinear manner in the existence condition
(11) of the BPS point. This means that if both values
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are large, the coupling term will be amplified, making
it impossible for Cxyεxεy + Cyεy to be less than 1.
Additionally, it is worth noting that the asymmetry between
Cxy and Cy is dependent on Cℓxy, L

y
ℓxy, L

z
ℓxy . This

observation aligns with intuition, as the Jacobian matrix
reflects the coupling relationship between x and y.

5. Bilevel Performative Prediction Algorithms
However, the Bi-RRM method is computationally ineffi-
cient as it requires solving a bilevel optimization problem
completely at each iteration, including assessing the full
gradient. In order to address this issue, we propose a simple
gradient-based stochastic bilevel algorithm to find the BPS
point.

5.1. Bilevel Stochastic Gradient Descent (Bi-SGD)
To simplify our notation, we define ℓ(x, y) =
EZ∼D(x)[ℓ(x, y;Z)] and f(x, y∗(x)) =
EZ∼D(y∗(x))[f(x, y

∗(x);Z)]. Furthermore, we use
ℓ(xr, yr;Zy) to denote ℓ(xr, yr;Z), where Z ∼ Dy(xr),
and f(xr, yr;Zx) to denote f(xr, yr;Z), where
Z ∼ Dx(yr). Then, the proposed bilevel SGD algorithm
for minimizing both the UL and LL performative risks can
be written concisely as follows.

yr+1 = yr − βr∇̂yℓ(xr, yr;Zy), (12a)

xr+1 = xr − αr∇̂xf(xr, yr;Zx), (12b)

where αr, βr respectively denote the step sizes
of the UL and LL learning processes, and
∇̂yℓ(xr, yr;Zy), ∇̂xf(xr, yr;Zx) respectively represent
the gradient estimates of ∇yℓ(xr, yr) and ∇xf(xr, yr)
with only utilizing a minibatch of i.i.d. data samples. Here,
∇xf(x, y) denotes the surrogate of ∇xF (x), which simply
replaces y∗(x) in ∇xF (x) by y.

Remark 4. If the full gradients of both the UL and LL loss
functions can be obtained at each iteration, the Bi-SGD
algorithm reduces to bilevel gradient descent (Bi-GD).

5.2. Theoretical Assumptions
To quantify the descent achieved by Bi-SGD after each
round of updates, we need the following assumptions.

Assumption 5. Assume that the gradient of loss function
f(x, y) w.r.t. x is Lipschitz continuous with constant Lx

f

for x and L̄x
f for y. Similarly, we assume that the gradient

of f(x, y) w.r.t. y is Lipschitz continuous with constant Ly
f

for y and L̄y
f for x, and loss function ℓ(x, y) is Lℓ-smooth.

Also, we assume that the Jacobian and Hessian matrices
of loss function ℓ(x, y) are Lipschitz continuous with
constants Lx

ℓxy and Lx
ℓyy for x and constants Ly

ℓxy and Ly
ℓyy

for y.

Let Fr = σ{y1, x1, . . . , yr, xr} denote the filtration of the
random variables up to iteration r, where σ{·} is the σ-

algebra generated by the random variables.
Assumption 6. (Quality of both the LL and UL gradient
estimates) Assume that the LL gradient estimate is
unbiased and with bounded variance, namely,

E[∇̂yℓ(xr, yr;Z)|Fr] = ∇yℓ(xr, yr), (13a)

E[∥∇̂yℓ(xr, yr;Z)−∇yℓ(xr, yr)∥2|Fr] ≤ σ2
ℓ (13b)

Assume that the UL gradient estimate is biased and with
bounded variance, namely,

E[∇̂xf(xr, yr;Z)|Fr] , ∇xf(xr, yr) + br, (14)

E[∥∇̂xf(xr, yr;Z)−∇xf(xr, yr)− br∥2|Fr] ≤ σ2
f ,

where br denotes the bias term and ∥br∥ ≤ δr, ∀r.

Remark 5. The bias term br primarily arises from
the estimation of the inverse Hessian matrix during
the stochastic approximation of the UL gradient. In
(Ghadimi & Wang, 2018), it has been demonstrated that
by utilizing the Hessian inverse approximation sampling
method, ∇̂xf(xr, yr;Zx) can be accurately obtained.
Additionally, it has been shown that the size of the resulting
bias term exponentially decreases as the number of samples
increases.

All the aforementioned assumptions regarding Lipschitz
continuity and the quality of gradient estimates are
standard in the convergence analysis for stochastic bilevel
algorithms (Ghadimi & Wang, 2018; Dagréou et al., 2022;
Chen et al., 2021; Shen & Chen, 2022). In the following
section, we will present the theoretical results and provide
detailed proofs in the appendix.

5.3. Convergence Rates of Bi-SGD and Bi-GD
Based on these mild assumptions, we can show the main
theorem regarding the convergence rate of Bi-SGD as
follows.
Theorem 2. (Convergence Rate of Bi-SGD) Suppose that
A.1-A.6 hold and iterates {xr, yr,∀r ≥ 1} are generated
by Bi-SGD. When the step sizes are chosen as αr =
Θ(1/r), βr = Θ(1/r) and εx and εy satisfy

Cxεx + Cxyεxεy + Cyεy ≤
L
εx,εy
F

4(L
εx,εy
F + γx)

(15)

where
Cx ,

(
Lz
f +

CℓxyL
z
f

γy

)
Cℓxy

γxγy
, (16)

then, it holds for any r that

E∥xr − xS∥2 + E∥yr − y∗(xS)∥2 = O
(
1

r

)
(17)

where L
εx,εy
F is linear in terms of εx and εy (the detailed

expression of Lεx,εy
F is shown in Lemma 3 in the appendix.)

Moreover, we have

lim
r→∞

∥xr −xS∥2 → 0, lim
r→∞

∥yr − y∗(xS)∥2 → 0 (18)

almost surely.
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Remark 6. By comparing the conditions (11) and (15), it is
evident that Bi-SGD imposes more stringent requirements,
necessitating smaller values of εx and εy in order to find
the BPS point.
Corollary 1. (Convergence Rate of Bi-GD) Suppose that
A.1-A.5 hold and iterates {xr, yr,∀r ≥ 1} are generated
by Bi-GD. When the step sizes are chosen as αr = Θ(1),
βr = Θ(1) and εx and εy satisfy (15), it holds for any r
that

Vr+1 ≤
(
1−min

(
L
εx,εy
F γxαr

2(L
εx,εy
F + γx)

,
γyβr

2

))
Vr (19)

where Vr , ∥xr − xS∥2 + ∥yr − y∗(xS)∥2.

Remark 7. Corollary 1 claims that Bi-GD can achieve a
linear convergence rate in converging to the BPS solution
of problem (1), which is the same as Bi-RRM.

6. Relation between BPS and BPO Points
The aforementioned results demonstrate that Bi-SGD or
Bi-GD (or Bi-RRM) can achieve the BPS point at a
linear or sublinear rate. However, directly minimizing the
performative risk to find the BPO points is a challenging
task, even in the single-level case (Perdomo et al., 2020).
Instead, we can estimate the distance between xO and
xS by assuming that the loss function satisfies Lipschitz
continuity with respect to the data distribution, namely,
|f(x, y∗(x);Z) − f(x, y∗(x);Z ′)| ≤ Lz|Z − Z ′|, where
Lz is a constant.
Theorem 3. Suppose that A.1-A.4 hold and function
f(x, y∗(x);Z) is Lz-Lipschitz in Z. Then, for every BPS
point and BPO point, the following relation holds.

∥xO − xS∥ ≤ 2εxLz

γxγy
(Cℓxy + Lz

ℓεy) . (20)

Remark 8. Theorem 3 shows that the distance between xO

and xS can be bounded by the values of εx and εy . This
bound indicates that when εx and εy are small, xS is very
close to xO. Furthermore, it suggests that xS can serve as
an approximation of xO, with εx playing a more dominant
role in the error bound compared to εy .

7. Numerical Experiments
In this section, we conduct experiments to evaluate the
performance of Bi-RRM and Bi-SGD on the bilevel
strategic classification problem and the meta strategic
learning problem using both the synthetic and real data
sets. In all the experiments, we adopt a linear utility
function to model the reactions of the decision variables to
the data, following the approach in (Perdomo et al., 2020).
Specifically, for Bi-RRM, the feature vectors are shifted by
εxy

∗(xr) for Bi-RRM at UL (εxyr for Bi-SGD) and εyxr

at LL. Additionally, we compare the convergence behavior
of these algorithms under different choices of εx and εy .

7.1. Toy Example

Firstly, we consider a simple strategic bilevel problem as
follows,

min
x∈Rd

E
{(ai,bi)}∼Dx(y∗(x))

∥bi − aT

i x∥+
λx

2
∥x− y∗(x)∥2

s.t. y∗(x)=arg min
y∈Rd

E
{(ci,di)}∼Dy(x)

∥di − cTi y∥+
λy

2
∥y−x∥2,

where both UL and LL objective functions are regression
mismatch loss plus a quadratic regularization term. Here,
bi and di are generated respectively through the linear
regression models, i.e., bi = aT

i x
† + nx and di =

cTi y
† + ny, ∀i, where x†, y† and noise terms nx, ny are

i.i.d. Gaussian random variables with zero mean and unit
variance. The features ai and ci are i.i.d. Gaussian random
variables with zero mean and variance 1 and 2 respectively.
The regularization terms penalize the dissimilarity between
the UL and LL variables, which appears commonly in the
federated learning (T Dinh et al., 2020) and meta-learning
(Rajeswaran et al., 2019) settings.

In our numerical experiments, we set the problem
dimension as 5 and the total number of data samples as
50. The parameter ε represents both εx and εy . We choose
λx = λy = 1 × 10−3, the minibatch size as 5, and use
the same step size 1/

√
r for both αr and βr in Bi-SGD.

In this example, we measure the optimality of the solutions
based on the size of the UL gradient. Note that this problem
is strongly convex and unconstrained, so a zero stationary
gap indicates the global optimality of the iterate generated
by either Bi-RRM or Bi-SGD. For Bi-RRM, we can employ
the existing bilevel optimization solver as an oracle at each
step given Dx(y

∗(xr)) and Dy(xr).

Results on the Synthetic Data Set. The results are
shown in Figure 1 based on 10 independent runs. From
Figure 1(a), it can be observed that as the value of ε
increases from 1 × 10−3 to 0.1, the convergence rate of
the Bi-RRM algorithm slows down, which aligns with
our theoretical analysis. According to our theory, once ε
surpasses a certain threshold, Bi-RRM fails to converge.
The numerical results confirm this, as it is evident that
when ε = 1 or ε = 10, Bi-RRM fails to find any stationary
solution and may exhibit oscillatory behavior.

Another noteworthy characteristic of the bilevel problem
is the asymmetry between the leader and the follower.
As observed in Figure 1(b), the convergence rate of the
Bi-RRM algorithm is more sensitive to the UL problem
compared to the LL problem in terms of εx-sensitivity
and εy-sensitivity. A notable comparison is the case of
εx = 100, εy = 0.1 versus εx = 0.1, εy = 100. It is
evident that the Bi-RRM algorithm converges to the global
optimal solution of the problem when εx = 0.1, εy = 100,
but fails to do so when εx = 100, εy = 0.1. This implies
that the contribution of the LL optimization process (or the
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Figure 1. Performance of Bi-RRM and Bi-SGD on the least-squares over different levels of the ε-sensitivity parameters.

follower) to the convergence of the entire sequence is not
as sensitive as the UL optimization process (or the leader),
which is again consistent with our theoretical result shown
in Theorem 1.

7.2. Meta Strategic Classification
We also test the Bi-RRM and Bi-SGD on the problem of
meta strategic classification, which can be simply written
as follows.

min
x∈Rd

1

m

m∑
i=1

E
Zi∼Di(y∗

i (x))
fi(y

∗
i (x);Zi) +

λx

2
∥x∥2

s.t. y∗i (x) = arg min
yi∈Rd

E
Zi∼Di(x)

ℓi(x, yi;Zi), i ∈ [m]

where ℓi(x, yi;Zi) , ⟨yi,∇fi(x;Zi)⟩ + λy/2∥yi − x∥2,
λx, λy > 0, and m denotes the total number of tasks.
It is obvious that when Di(y

∗
i (x)) = Di(x) = Di, ∀i,

this problem reduces to the classic formulation of MAML
(Fallah et al., 2020; Finn et al., 2017). Here, the logistic
regression loss is chosen as the objective function fi(; ).
Results on the Spambase Data Set. In the numerical
experiments, we employ the UCI machine learning
repository spambase data set (Hopkins et al., 1999) for
binary classification. This data set consists of 57 attributes
with both continuous and discrete values, comprising a
total of 4601 instances. Each instance is associated with
a class label, denoted by 1 or 0, indicating whether
it is categorized as spam or not. To demonstrate the
effectiveness of meta-learning on this data set, we partition
it into multiple subsets and treat each subset as an
individual task. For each task, we create different data
distributions as follows: initially, we randomly shuffle the
entire data set and select 5 data samples for each task,
resulting in a total of 5 tasks. Subsequently, we remove
certain features from each task to create the training data
set. More specifically, we set the ith and the i + 3th
columns of the data set to 0 for these 5 tasks, where i
ranges from 1 to 5. Finally, we utilize 800 data samples
that are not included in the training data set, with 5 samples
used for meta-training and the remaining samples used
for meta-testing. Overall, each task only has a subset of

the spambase data set features, and the learned model is
evaluated on the meta-testing data set that partially overlaps
with the training data. This setup ensures that the features
in the latent space are transferable, enabling us to assess the
generalization performance of the learned model.
We conduct the numerical experiments to compare the
performance of both Bi-SGD and traditional SGD (without
PP training). We set the values of λx, λy to 1 × 10−3 and
1 respectively, and the step size is chosen as 0.5/

√
10 + r

for both Bi-SGD and SGD. The results, averaged over 10
independent trials, are presented in Figure 2. Figure 2(a)
illustrates that when ε is large, Bi-SGD may not converge
to a stationary point, as observed in the case when ε =
1. We further analyze the meta-training and meta-testing
performance of both algorithms under different levels of
sensitivity parameters. Figure 2(b) demonstrates that Bi-
SGD, trained on the strategic data generating process, can
perform well in the few-shot learning setting, yielding high
meta-training accuracy.
It is important to note that SGD is only trained on non-
strategic features. In this case, the use of SGD may
lead to reduced training accuracy and increased sensitivity
to the ε-sensitivity parameters. The meta-testing results
provide clearer insights into these characteristics. Firstly,
when ε is small, the testing accuracy achieved by Bi-
SGD is close to the maximum one, aligning with our
theoretical analysis presented in Theorem 3. Secondly, the
convergence rate and behavior of both Bi-SGD and SGD
strongly depend on the levels of ε-sensitivity, emphasizing
the significance of quantifying the maximum budget for the
sensitivity parameters. Lastly, the meta-learning approach
yields significantly higher testing accuracy compared to the
single-level learning strategy.
Results on the Amazon Review Data Set. We
also perform the numerical experiments using the UCI
sentiment labeled sentences data set (Kotzias et al., 2015),
specifically the Amazon reviews subset, which is a
prominent area of research in natural language processing.
To vectorize the sentences, we utilize the CountVectorizer
from the scikit-learn library, generating word count vectors
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Figure 2. Performance comparison of Bi-SGD and SGD for meta strategic learning over different levels of the ε-sensitivity parameters
on the spambase data set, where ε , εx = εy .
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Figure 3. Performance comparison of Bi-SGD, Bi-SGD without PP training, Lazy-SGD (aka Lazy deploy), and SGD without PP training
for meta strategic learning over different levels of the ε-sensitivity parameters on the Amazon review data set, where ε , εx = εy .

for each sentence. Each data sample is represented by
a vector of size 1546. For our experiments, we select
10 data samples for each of the 5 tasks, resulting in a
total of 50 data samples. As the vectors are sparse, we
partition each of them as 5 parts and set the entries of the
ith part as zero for the ith task, creating heterogeneously
distributed and partially observed data vectors for these
tasks. Additionally, we use another set of 10 and 250
data samples as the meta-training and meta-testing data
sets, respectively. We compare the performance of our
proposed Bi-SGD algorithm with Lazy-SGD (aka Lazy
deploy) (Mendler-Dünner et al., 2020), traditional SGD
and bilevel SGD without PP training. The step sizes for
the tested algorithms are chosen as 10/

√
10 + r.

The results, depicted in Figure 3, reveal that Bi-SGD
achieves higher meta-training and meta-testing accuracies
compared to the other two benchmark algorithms. This
can be attributed to the bilevel structure, which excels
at learning the invariant latent feature space. As a
result, it leads to improved generalization during the meta-
testing phase. Furthermore, we observe that increasing
the value of ε corresponds to a decrease in accuracy,
indicating that a larger deviation can result in a slower

convergence rate, aligning with our theoretical findings.
Additional numerical results can be found in Section E of
the appendix.

8. Concluding Remarks
In this work, our focus is on stochastic bilevel optimization
with applications to meta strategic learning. We begin by
verifying the existence of the BPS point based on the ε-
sensitivity parameters when strategic learners participate
in the bilevel PP process. We then revisit the commonly
used bilevel SGD method to solve this class of bilevel
optimization problems in an iterative way. Moreover, we
establish the convergence rate of Bi-SGD, which matches
the standard rate of SGD for solving non-performative
prediction problems. This convergence rate is achieved
under the satisfaction of the newly provided existence
conditions for the BPS point. Besides, we quantify an
upper bound on the mismatch between the BPS and BPO
points, demonstrating that a smaller ε-sensitivity parameter
leads to closer proximity between these two points. The
numerical experiments support and validate our theoretical
results, providing empirical evidence for the effectiveness
of our proposed approaches.
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A. Preliminaries
Before showing the detailed derivations of the lemmas and theorems, we give the following inequalities and equalities
which are often used in the proofs.

A.1. Inequalities

1. (Corollary 3.1 (Drusvyatskiy & Xiao, 2022)) Suppose that f(y;Z) is C1 smooth and the map Z 7→ ∇f(y;Z) is
L-Lipschitz continuous. Also, assume that there exists a ε > 0 satisfying W1(D(x),D(x′)) ≤ ε∥x− x′∥. Then,

sup
y

∥∥∥∥ E
Z∼D(x)

∇f(y;Z)− E
Z∼D(x′)

∇f(y;Z)

∥∥∥∥ ≤ εL ∥x− x′∥ . (23)

2. (Lemma 3.11 (Bubeck et al., 2015)). Let f : Rd → R be L-smooth and γ-strongly convex, then for all x, y ∈ Rd

⟨∇f(x)−∇f(y), x− y⟩ ≥ γL

γ + L
∥x− y∥2 + 1

γ + L
∥∇f(x)−∇f(y)∥2. (24)

3. Young’s inequality with parameter θ > 0 is

⟨x, y⟩ ≤ 1

2θ
∥x∥2 + θ

2
∥y∥2, ∀x, y. (25)

From the optimality condition of the LL problem, we have

∇2
xyℓ(x, y

∗(x)) +∇xy
∗(x)T∇2

yyℓ(x, y
∗(x)) = 0, (26)

which gives the gradient of the UL objective function as

∇xF (x) = ∇f(x, y∗(x)) , ∇f(x, y∗(x))

= ∇xf(x, y
∗(x))−∇2

xyℓ(x, y
∗(x))

[
∇2

yyℓ(x, y
∗(x))

]−1 ∇yf(x, y
∗(x)) (27)

by applying the chain rule. By following this notation, the expression of ∇f(x, y) is defined as follows (Ghadimi & Wang,
2018; Shen & Chen, 2022)

∇f(x, y) = ∇xf(x, y)−∇2
xyℓ(x, y)

[
∇2

yyℓ(x, y)
]−1 ∇yf(x, y). (28)

Based on the definitions of y∗(φ, x) shown in (5b) and y∗(x) shown in (1b), we have

y∗(x, x) = y∗(x). (29)

A.2. Lipschitz Constants

In this section, we present the Lipschitz constants used to quantify the changes in gradients. First, the detailed definitions
of the Lipschitz continuous constants in Assumption 5 are further given as follows.

(Smoothness of the UL loss function) Assume that the gradient of loss function f(x, y;Z) w.r.t. x is Lipschitz continuous
∀x, x′, y, y′, namely,

∥∥∥∥ E
Z∼D(·)

∇xf(x, y;Z)−∇xf(x
′, y;Z)

∥∥∥∥ ≤ Lx
f ∥x− x′∥ , (30a)∥∥∥∥ E

Z∼D(·)
∇xf(x, y;Z)−∇xf(x, y

′;Z)

∥∥∥∥ ≤ L̄x
f ∥y − y′∥ . (30b)
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Also, we assume that the gradient of f(x, y;Z) w.r.t. y is Lipschitz continuous ∀x, x′, y, y′, namely,∥∥∥∥ E
Z∼D(·)

∇yf(x, y;Z)−∇yf(x, y
′;Z)

∥∥∥∥ ≤ Ly
f∥y − y′∥, (31a)∥∥∥∥ E

Z∼D(·)
∇yf(x, y;Z)−∇yf(x, y

′;Z)

∥∥∥∥ ≤ L̄y
f∥x− x′∥. (31b)

(Smoothness of the LL loss function) Similarly, we also assume that loss function ℓ(x, y;Z) is Ly
ℓ -smooth, ∀x, y, y′ namely,

∥∥∥∥ E
Z∼D(·)

∇yℓ(x, y;Z)−∇yℓ(x, y
′;Z)

∥∥∥∥ ≤ Ly
ℓ∥y − y′∥. (32)

Assume that the Jacobian and Hessian matrices of loss function ℓ(x, y) are Lipschitz continuous ∀x, x′, y, y′, namely,∥∥∥∥ E
Z∼D(·)

∇2
xyℓ(x, y;Z)−∇2

xyℓ(x
′, y;Z)

∥∥∥∥ ≤ Lx
ℓxy ∥x− x′∥ , (33a)∥∥∥∥ E

Z∼D(·)
∇2

xyℓ(x, y;Z)−∇2
xyℓ(x, y

′;Z)

∥∥∥∥ ≤ Ly
ℓxy ∥y − y′∥ , (33b)∥∥∥∥ E

Z∼D(·)
∇2

yyℓ(x, y;Z)−∇2
yyℓ(x

′, y;Z)

∥∥∥∥ ≤ Lx
ℓyy ∥x− x′∥ , (33c)∥∥∥∥ E

Z∼D(·)
∇2

yyℓ(x, y;Z)−∇2
yyℓ(x, y

′;Z)

∥∥∥∥ ≤ Ly
ℓyy ∥y − y′∥ . (33d)

Next, we will introduce the technical lemmas that quantify the changes in gradients with respect to shifts in the data
distribution. These lemmas are used in the convergence proofs of both Bi-RRM and Bi-SGD. The following table provides
a summary of the gradient Lipschitz continuity with respect to the decision-dependent distributions.

Table 2. Notations for Constants

Constant (abbrv.) Definition Details

Lεx
f ∥∇f(x, y)−∇f(x, y∗(x))∥ ≤ Lεx

f ∥y − y∗(x)∥ Lemma 1

L
εy
y ∥y∗(x)− y∗(x′)∥2 ≤ L

εy
y ∥x− x′∥ Lemma 2

L
εx,εy
F (LF ) ∥∇f(x, y∗(x))−∇f(x′, y∗(x′))∥ ≤ L

εx,εy
F ∥x− x′∥ Lemma 3

L
εx,εy
Z (LZ)

∥∥ E
Z∼Dx(y∗(φ,x))

∇f(x, y∗(φ, x);Z)− E
Z∼Dx(y∗(φ,x′))

∇f(x, y∗(φ, x′);Z)
∥∥ ≤ L

εx,εy
Z ∥x−x′∥ Lemma 4

L
′εx,εy
Z (L′

Z) ∥ E
Z∼Dx(y∗(x))

∇f(x, y∗(x);Z)− E
Z∼D(y∗(x′))

∇f(x, y∗(x, x′);Z)∥ ≤ L
′εx,εy
Z ∥x−x′∥ Lemma 4

Lemma 1. The gradient of the UL objective function is Lipschitz continuous with constant Lεx
f , namely,∥∥∥∥ E

Z∼Dx(y)
∇f(x, y;Z)− E

Z∼Dx(y∗(x))
∇f(x, y∗(x);Z)

∥∥∥∥ ≤ Lεx
f ∥y − y∗(x)∥ (34)

where constant

Lεx
f , Lz

fεx + Lx
f +

Cy
fL

y
ℓxy

γy
+

Cy
fCℓxyL

y
ℓyy

γ2
y

+
Cℓxy

γy

(
Lz
fεx + Ly

f

)
. (35)

14
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Proof. From (27) and (28), we can have∥∥∇f(x, y)−∇f(x, y∗(x))
∥∥

≤
∥∥∇xf(x, y)−∇2

xyℓ(x, y)
[
∇2

yyℓ(x, y)
]−1 ∇yf(x, y)

− (∇xf(x, y
∗(x))−∇2

xyℓ(x, y
∗(x))

[
∇2

yyℓ(x, y
∗(x))

]−1 ∇yf(x, y
∗(x)))

∥∥ (36)

≤
∥∥∥∥ E
Z∼Dx(y)

∇xf(x, y;Z)− E
Z∼Dx(y∗(x))

∇xf(x, y
∗(x);Z)

∥∥∥∥
+

∥∥∥∥ E
Z∼Dy(x)

∇2
xyℓ(x, y;Z)

[
E

Z∼Dy(x)
∇2

yyℓ(x, y;Z)

]−1

E
Z∼Dx(y)

∇yf(x, y;Z)

− E
Z∼Dy(x)

∇2
xyℓ(x, y

∗(x);Z)

[
E

Z∼Dy(x)
∇2

yyℓ(x, y
∗(x);Z)

]−1

E
Z∼Dx(y∗(x))

∇yf(x, y
∗(x);Z)

∥∥∥∥ (37)

≤
∥∥∥∥ E
Z∼Dx(y)

∇xf(x, y;Z)− E
Z∼Dx(y∗(x))

∇xf(x, y;Z)

∥∥∥∥+ ∥∥∥∥ E
Z∼Dx(y∗(x))

∇xf(x, y;Z)− E
Z∼Dx(y∗(x))

∇xf(x, y
∗(x);Z)

∥∥∥∥
+ ∥∆1∥+ ∥∆2∥+ ∥∆3∥ (38)

(23)
≤ (Lz

fεx + L̄x
f )∥y − y∗(x)∥+ ∥∆1∥+ ∥∆2∥+ ∥∆3∥ (39)

where

∆1 ,
(

E
Z∼Dy(x)

∇2
xyℓ(x, y;Z)− E

Z∼Dy(x)
∇2

xyℓ(x, y
∗(x);Z)

)[
∇2

yyℓ(x, y)
]−1 ∇yf(x, y), (40a)

∆2 , ∇2
xyℓ(x, y

∗(x))

([
E

Z∼Dy(x)
∇2

yyℓ(x, y;Z)

]−1

−
[

E
Z∼Dy(x)

∇2
yyℓ(x, y

∗(x);Z)

]−1
)
∇yf(x, y), (40b)

∆3 , ∇2
xyℓ(x, y

∗(x))
[
∇2

yyℓ(x, y
∗(x))

]−1
(

E
Z∼Dx(y)

∇yf(x, y;Z)− E
Z∼Dx(y∗(x))

∇yf(x, y
∗(x);Z)

)
. (40c)

Note that

∥∆1∥ ≤
∥∥∥∥( E

Z∼Dy(x)
∇2

xyℓ(x, y;Z)− E
Z∼Dy(x)

∇2
xyℓ(x, y

∗(x);Z)

)[
∇2

yyℓ(x, y)
]−1 ∇yf(x, y)

∥∥∥∥ ≤
Cy

fL
y
ℓxy

γy
∥y − y∗(x)∥,

and similarly we can also obtain

∥∆2∥ ≤

∥∥∥∥∥∇2
xyℓ(x, y

∗(x))

([
E

Z∼Dy(x)
∇2

yyℓ(x, y;Z)

]−1

−
[

E
Z∼Dy(x)

∇2
yyℓ(x, y

∗(x);Z)

]−1
)
∇yf(x, y)

∥∥∥∥∥
≤

CℓxyC
y
fL

y
ℓyy

γ2
y

∥y − y∗(x)∥ (41)

where we use the fact ∥H−1
2 −H−1

1 ∥ = ∥H−1
1 (H1 −H2)H

−1
2 ∥ ≤ ∥H−1

1 ∥∥H−1
2 ∥∥H1 −H2∥, and

∥∆3∥ ≤
∥∥∥∥∇2

xyℓ(x, y
∗(x))

[
∇2

yyℓ(x, y
∗(x))

]−1
(

E
Z∼Dx(y)

∇yf(x, y;Z)− E
Z∼Dx(y∗(x))

∇yf(x, y;Z)

)∥∥∥∥
+

∥∥∥∥∇2
xyℓ(x, y

∗(x))
[
∇2

yyℓ(x, y
∗(x))

]−1
(

E
Z∼Dx(y∗(x))

∇yf(x, y;Z)− E
Z∼Dx(y∗(x))

∇yf(x, y
∗(x);Z)

)∥∥∥∥
(23)
≤ Cℓxy

γy

(
Lz
fεx + Ly

f

)
∥y − y∗(x)∥. (42)
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Therefore, we have ∥∥∇f(x, y)−∇f(x, y∗(x))
∥∥

≤Lz
fεx + L̄x

f +
Cy

fL
y
ℓxy

γy
+

Cy
fCℓxyL

y
ℓyy

γ2
y

+
Cℓxy

γy

(
Lz
fεx + Ly

f

)
︸ ︷︷ ︸

,Lεx
f

∥y − y∗(x)∥. (43)

Lemma 2. Function y∗(φ, x) is Lipschitz continuous (w.r.t. x) with constant Lz
ℓεyγ

−1
y , namely,

∥y∗(φ, x)− y∗(φ, x′)∥ ≤ Lz
ℓεy
γy

∥x− x′∥, ∀φ. (44)

Also, function y∗(x) is Lipschitz continuous (w.r.t. x) with constant Lεy
y , namely,

∥y∗(x)− y∗(x′)∥2 ≤ Lεy
y ∥x− x′∥ (45)

where constant
Lεy
y , Cℓxy + Lz

ℓεy
γy

. (46)

Proof. First, define the following auxiliary variables:

y∗(φ, x) = argmin
y

E
Z∼Dy(x)

ℓ(φ, y;Z), (47a)

y∗(φ, x′) = argmin
y

E
Z∼Dy(x′)

ℓ(φ, y;Z). (47b)

As ℓ(x, y;Z) is strongly convex, we can have⟨
E

Z∼Dy(x)
∇ℓ(φ, y∗(φ, x);Z)− E

Z∼Dy(x)
∇ℓ(φ, y∗(φ, x′);Z), y∗(φ, x)− y∗(φ, x′)

⟩
≥ γy∥y∗(φ, x)−y∗(φ, x′)∥2. (48)

From the optimality conditions of (47a) and (47b), we have E
Z∼Dy(x′)

∇yℓ(φ, y
∗(φ, x′);Z) = 0 and

E
Z∼Dy(x)

∇yℓ(φ, y
∗(φ, x);Z) = 0. Therefore, we can replace E

Z∼Dy(x)
∇ℓ(φ, y∗(φ, x);Z) by E

Z∼Dy(x′)
∇ℓ(φ, y∗(φ, x′);Z)

in (48). As a result, we obtain

γy∥y∗(φ, x)− y∗(φ, x′)∥2

≤
⟨

E
Z∼Dy(x′)

∇ℓ(φ, y∗(φ, x′);Z)− E
Z∼Dy(x)

∇ℓ(φ, y∗(φ, x′);Z), y∗(φ, x)− y∗(φ, x′)

⟩
(49)

(23)
≤ Lz

ℓεy∥x− x′∥∥y∗(φ, x)− y∗(φ, x′)∥, (50)

which is equivalent to
∥y∗(φ, x)− y∗(φ, x′)∥ ≤ Lz

ℓεy
γy

∥x− x′∥. (51)

Recall
y∗(x) = argmin

y
E

Z∼Dy(x)
ℓ(x, y;Z), (52)

so we know that
y∗(x′) = argmin

y
E

Z∼Dy(x′)
ℓ(x′, y;Z). (53)
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From (26), we have

∥∇y∗(x)∥ ≤
∥∥∇2

xyℓ(x, y
∗(x))

∥∥ ∥∥∥[∇2
yyℓ(x, y

∗(x))
]−1
∥∥∥ ≤ Cℓxy

γy
, (54)

which gives
∥y∗(x)− y∗(x′, x)∥ ≤ Cℓxy

γy
∥x− x′∥, (55)

as both y∗(x) and y∗(x′, x) are obtained based on data sample Z ∼ Dy(x).

Combining (55) and (51) yields
∥y∗(x)− y∗(x′)∥ ≤ ∥y∗(x)− y∗(x′, x)∥+ ∥y∗(x′, x)− y∗(x′)∥ (56)

(a)

≤
(
Cℓxy

γy
+

Lz
ℓεy
γy

)
∥x− x′∥ (57)

≤ Cℓxy + Lz
ℓεy

γy︸ ︷︷ ︸
,L

εy
y

∥x− x′∥. (58)

where in (a) we substitute φ into (51) with x′.

Lemma 3. The gradient of the UL objective function is Lipschitz continuous (w.r.t. x) with constant L
εx,εy
F

(abbreviated as LF ), namely,

∥∇xF (x)−∇xF (x′)∥ = ∥∇f(x, y∗(x))−∇f(x′, y∗(x′))∥ ≤ L
εx,εy
F ∥x− x′∥ (59)

where constant

L
εx,εy
F , Lεy

y

(
Lz
fεx + L̄x

f

)
+ Lx

f +

(
Lz
ℓxyεy + Lx

ℓxy + Ly
ℓxyL

εy
y

)
Cy

f

γy

+
CℓxyC

y
f

(
Lz
ℓyyεy + Lx

ℓyy + L
εy
y Ly

ℓyy

)
γ2
y

+
Cℓxy

(
L
εy
y Lz

fεx + L̄y
f + L

εy
y Ly

f

)
γy

. (60)

Proof. According to the definition of ∇f(x, y∗(x)), we can have

∥∇F (x)−∇F (x′)∥

≤
∥∥∥∥∇xf(x, y

∗(x))−∇2
xyℓ(x, y

∗(x))
[
∇2

yyℓ(x, y
∗(x))

]−1 ∇yf(x, y
∗(x))

− (∇xf(x
′, y∗(x′))−∇2

xyℓ(x
′, y∗(x′))

[
∇2

yyℓ(x
′, y∗(x′))

]−1 ∇yf(x
′, y∗(x′)))

∥∥∥∥ (61)

(a)

≤ ∥∇xf(x, y
∗(x))−∇xf(x

′, y∗(x′))∥

+

∥∥∥∥∇2
xyℓ(x, y

∗(x))
[
∇2

yyℓ(x, y
∗(x))

]−1 ∇yf(x, y
∗(x))−∇2

xyℓ(x
′, y∗(x′))

[
∇2

yyℓ(x
′, y∗(x′))

]−1 ∇yf(x
′, y∗(x′)))

∥∥∥∥
where (a) is true due to the triangle inequality.

Next, let us define the following quantities:

∆1 ,
(

E
Z∼Dy(x)

∇2
xyℓ(x, y

∗(x);Z)− E
Z∼Dy(x′)

∇2
xyℓ(x

′, y∗(x′);Z)

)[
∇2

yyℓ(x, y
∗(x))

]−1 ∇yf(x, y
∗(x)), (62a)

∆2 , ∇2
xyℓ(x

′, y∗(x′))

([
E

Z∼Dy(x)
∇2

yyℓ(x, y
∗(x);Z)

]−1

−
[

E
Z∼Dy(x′)

∇2
yyℓ(x

′, y∗(x′);Z)

]−1
)
∇yf(x, y

∗(x)), (62b)

∆3 , ∇2
xyℓ(x

′, y∗(x′))
[
∇2

yyℓ(x
′, y∗(x′))

]−1
(

E
Z∼D(y∗(x))

∇yf(x, y
∗(x);Z)− E

Z∼D(y∗(x′))
∇yf(x

′, y∗(x′);Z)

)
. (62c)
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Then, we can have

∥∇F (x)−∇F (x′)∥
≤ ∥∇xf(x, y

∗(x))−∇xf(x
′, y∗(x′))∥+ ∥∆1∥+ ∥∆2∥+ ∥∆3∥ (63)

≤
(
Lεy
y

(
Lz
fεx + L̄x

f

)
+ Lx

f +

(
Lz
ℓxyεy + Lx

ℓxy + Ly
ℓxyL

εy
y

)
Cy

f

γy

+
CℓxyC

y
f

(
Lz
ℓyyεy + Lx

ℓyy + L
εy
y Ly

ℓyy

)
γ2
y

+
Cℓxy

(
L
εy
y Lz

fεx + L̄y
f + L

εy
y Ly

f

)
γy

)
∥x− x′∥, (64)

where we use the following facts: first we have

∥∇xf(x, y
∗(x))−∇xf(x

′, y∗(x′))∥

≤
∥∥∥∥ E
Z∼Dx(y∗(x))

∇xf(x, y
∗(x))− E

Z∼Dx(y∗(x′))
∇xf(x

′, y∗(x′))

∥∥∥∥ (65)

≤
∥∥∥∥ E
Z∼Dx(y∗(x))

∇xf(x, y
∗(x))− E

Z∼Dx(y∗(x′))
∇xf(x, y

∗(x))

∥∥∥∥
+

∥∥∥∥ E
Z∼Dx(y∗(x′))

∇xf(x, y
∗(x))− E

Z∼Dx(y∗(x′))
∇xf(x

′, y∗(x′))

∥∥∥∥ (66)

(23)
≤
(
Lz
fεx + L̄x

f

)
∥y∗(x)− y∗(x′)∥+ Lx

f∥x− x′∥ (67)
(45)
≤
(
Lεy
y

(
Lz
fεx + L̄x

f

)
+ Lx

f

)
∥x− x′∥, (68)

and similarly we can have ∥∥∥∥ E
Z∼Dy(x)

∇2
xyℓ(x, y

∗(x);Z)− E
Z∼Dy(x′)

∇2
xyℓ(x

′, y∗(x′);Z)

∥∥∥∥
(23)
≤
(
Lz
ℓxyεy + Lx

ℓxy

)
∥x− x′∥+ Ly

ℓxy∥y
∗(x)− y∗(x′)∥ (69)

(45)
≤
(
Lz
ℓxyεy + Lx

ℓxy + Ly
ℓxyL

εy
y

)
∥x− x′∥, (70)

and ∥∥∥∥ E
Z∼Dy(x)

∇2
yyℓ(x, y

∗(x);Z)− E
Z∼Dy(x′)

∇2
yyℓ(x

′, y∗(x′);Z)

∥∥∥∥ (23),(45)
≤

(
Lz
ℓyyεy + Lx

ℓyy + Lεy
y Ly

ℓyy

)
∥x− x′∥, (71)

and∥∥∥∥ E
Z∼D(y∗(x))

∇yf(x, y
∗(x);Z)− E

Z∼D(y∗(x′))
∇yf(x

′, y∗(x′);Z)

∥∥∥∥ (23),(45)
≤

(
Lεy
y Lz

fεx + L̄y
f + Lεy

y Ly
f

)
∥x− x′∥. (72)

Lemma 4. The gradient of the UL objective function is Lipschitz continuous (w.r.t. x) with constant
L
εx,εy
Z (LZ),∀φ, x, x′, namely,∥∥∥∥ E

Z∼Dx(y∗(φ,x))
∇f(φ, y∗(φ, x);Z)− E

Z∼Dx(y∗(φ,x′))
∇f(φ, y∗(φ, x′);Z)

∥∥∥∥ ≤ L
εx,εy
Z ∥x− x′∥ (73)

where constant

L
εx,εy
Z ,

((
Lz
f +

CℓxyL
z
f

γy

)
εx + L̄x

f +
Cy

fL
y
ℓxy

γy
+

Cℓxy

γy

(
Ly
f +

Cy
fL

y
ℓyy

γy

))
Lz
ℓεy
γy

+
Cy

f

γy

(
Lz
ℓxy +

CℓxyL
z
ℓyy

γy

)
εy.

(74)
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Also, the gradient of the UL objective function is Lipschitz continuous (w.r.t. x) with constant L′εx,εy
Z (L′

Z), ∀x, x′,
namely, ∥∥∥∥ E

Z∼Dx(y∗(x))
∇f(x, y∗(x);Z)− E

Z∼D(y∗(x′))
∇f(x, y∗(x, x′);Z)

∥∥∥∥ ≤ L
′εx,εy
Z ∥x− x′∥

where constant

L
′εx,εy
Z , L

εx,εy
Z +

(
Lz
f +

CℓxyL
z
f

γy

)
Cℓxyεx
γy

. (75)

Proof. Based on the closed form of ∇f(x, y∗(φ, x)), we have∥∥∥∥ E
Z∼Dx(y∗(φ,x))

∇f(x, y∗(φ, x);Z)− E
Z∼D(y∗(φ,x′))

∇f(x, y∗(φ, x′);Z)

∥∥∥∥
≤
∥∥∥∥ E
Z∼Dx(y∗(φ,x))

∇xf(x, y
∗(φ, x);Z)− E

Z∼Dx(y∗(φ,x′))
∇xf(x, y

∗(φ, x′);Z)

+∇2
xyℓ(x, y

∗(φ, x))
[
∇2

yyℓ(x, y
∗(φ, x))

]−1 ∇yf(x, y
∗(φ, x))

−
(
∇2

xyℓ(x, y
∗(φ, x′))

[
∇2

yyℓ(x, y
∗(φ, x′))

]−1 ∇yf(x, y
∗(φ, x′))

)∥∥∥∥ (76)

(23)
≤
(
L̄x
f + Lz

fεx
)
∥y∗(φ, x)− y∗(φ, x′)∥+ ∥∆1∥+ ∥∆2∥+ ∥∆3∥

(a)

≤

L̄x
f + Lz

fεx +
Cy

fL
y
ℓxy

γy
+

CℓxyC
y
fL

y
ℓyy

γ2
y

+
Cℓxy

(
Lz
fεx + Ly

f

)
γy

 ∥y∗(φ, x)− y∗(φ, x′)∥

+
Cy

f

γy

(
Lz
ℓxy +

CℓxyL
z
ℓyy

γy

)
εy∥x− x′∥ (77)

where in (a) we use the following facts

∆1 ,
(

E
Z∼Dy(x)

∇2
xyℓ(x, y

∗(φ, x);Z)− E
Z∼Dy(x′)

∇2
xyℓ(x, y

∗(φ, x);Z)

)[
∇2

yyℓ(x, y
∗(φ, x))

]−1∇yf(x, y
∗(φ, x)), (78a)

∆2 , ∇2
xyℓ(x, y

∗(φ, x′))

([
E

Z∼Dy(x)
∇2

yyℓ(x, y
∗(φ, x);Z)

]−1

−
[

E
Z∼Dy(x′)

∇2
yyℓ(x, y

∗(φ, x′);Z)

]−1
)
∇yf(x, y

∗(x)),

(78b)

∆3 , ∇2
xyℓ(x, y

∗(φ, x′))
[
∇2

yyℓ(x, y
∗(φ, x′))

]−1
(

E
Z∼Dx(y∗(φ,x))

∇yf(x, y
∗(φ, x);Z)− E

Z∼Dx(y∗(φ,x′))
∇yf(x, y

∗(φ, x′);Z)

)
(78c)

with

∥∆1∥
(23)
≤

Cy
fL

z
ℓxyεy

γy
∥x− x′∥+

Cy
fL

y
ℓxy

γy
∥y∗(φ, x)− y∗(φ, x′)∥, (79a)

∥∆2∥
(23)
≤

CℓxyC
y
fL

z
ℓyyεy

γ2
y

∥x− x′∥+
CℓxyC

y
fL

y
ℓyy

γ2
y

∥y∗(φ, x)− y∗(φ, x′)∥, (79b)

∥∆3∥
(23)
≤

Cℓxy

(
Lz
fεx + Ly

f

)
γy

∥y∗(φ, x)− y∗(φ, x′)∥. (79c)

Plugging (51) into (77) gives (73) and (74) immediately.
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Similarly, we also have∥∥∥∥ E
Z∼Dx(y∗(x))

∇f(x, y∗(x);Z)− E
Z∼Dx(y∗(x′))

∇f(x, y∗(x, x′);Z)

∥∥∥∥
≤
∥∥∥∥ E
Z∼Dx(y∗(x))

∇xf(x, y
∗(x);Z)− E

Z∼Dx(y∗(x′))
∇xf(x, y

∗(x, x′);Z)

+∇2
xyℓ(x, y

∗(x))
[
∇2

yyℓ(x, y
∗(x))

]−1 ∇yf(x, y
∗(x))

−

(
E

Z∼Dy(x′)
∇2

xyℓ(x, y
∗(x, x′);Z)

[
E

Z∼Dy(x′)
∇2

yyℓ(x, y
∗(x, x′);Z)

]−1

E
Z∼Dx(y∗(x′))

∇yf(x, y
∗(x, x′);Z)

)∥∥∥∥ (80)

(23)
≤ L̄x

f∥y∗(x)− y∗(x, x′)∥+ Lz
fεx∥y∗(x)− y∗(x′)∥+ ∥∆′

1∥+ ∥∆′
2∥+ ∥∆′

3∥

≤

(
L̄x
f +

Cy
fL

y
ℓxy

γy
+

CℓxyC
y
fL

y
ℓyy

γ2
y

+
CℓxyL

y
f

γy

)
∥y∗(x)− y∗(x, x′)∥

+
Cy

f

γy

(
Lz
ℓxy +

CℓxyL
z
ℓyy

γy

)
εy∥x− x′∥+

(
Lz
f +

CℓxyL
z
f

γy

)
εx∥y∗(x)− y∗(x′)∥ (81)

where

∆′
1 ,

(
E

Z∼Dy(x)
∇2

xyℓ(x, y
∗(x);Z)− E

Z∼Dy(x′)
∇2

xyℓ(x, y
∗(x, x′);Z)

)[
∇2

yyℓ(x, y
∗(x))

]−1∇yf(x, y
∗(x)), (82a)

∆′
2 , E

Z∼Dy(x′)
∇2

xyℓ(x, y
∗(x, x′);Z)

×

([
E

Z∼Dy(x)
∇2

yyℓ(x, y
∗(x);Z)

]−1

−
[

E
Z∼Dy(x′)

∇2
yyℓ(x, y

∗(x, x′);Z)

]−1
)
∇yf(x, y

∗(x)), (82b)

∆′
3 , E

Z∼Dy(x′)
∇2

xyℓ(x, y
∗(x, x′);Z)

[
E

Z∼Dy(x′)
∇2

yyℓ(x, y
∗(x, x′);Z)

]−1

×
(

E
Z∼Dx(y∗(x))

∇yf(x, y
∗(x);Z)− E

Z∼Dx(y∗(x′))
∇yf(x, y

∗(x, x′);Z)

)
(82c)

with

∥∆′
1∥

(23)
≤

Cy
fL

z
ℓxyεy

γy
∥x− x′∥+

Cy
fL

y
ℓxy

γy
∥y∗(x)− y∗(x, x′)∥, (83a)

∥∆′
2∥

(23)
≤

CℓxyC
y
fL

z
ℓyyεy

γ2
y

∥x− x′∥+
CℓxyC

y
fL

y
ℓyy

γ2
y

∥y∗(x)− y∗(x, x′)∥, (83b)

∥∆′
3∥

(23)
≤

CℓxyL
z
fεx

γy
∥y∗(x)− y∗(x′)∥+

CℓxyL
y
f

γy
∥y∗(x)− y∗(x, x′)∥. (83c)

Plugging (51) and (45) into (81) gives∥∥∥∥ E
Z∼Dx(y∗(x))

∇f(x, y∗(x);Z)− E
Z∼Dx(y∗(x′))

∇f(x, y∗(x, x′);Z)

∥∥∥∥
≤

(
L̄x
f +

Cy
fL

y
ℓxy

γy
+

CℓxyC
y
fL

y
ℓyy

γ2
y

+
CℓxyL

y
f

γy

)
Lz
ℓεy
γy

∥x− x′∥

+
Cy

f

γy

(
Lz
ℓxy +

CℓxyL
z
ℓyy

γy

)
εy∥x− x′∥+

(
Lz
fεx +

CℓxyL
z
fεx

γy

)
Cℓxy + Lz

ℓεy
γy

∥x− x′∥ (84)

≤
(
L
εx,εy
Z +

(
Lz
f +

CℓxyL
z
f

γy

)
Cℓxyεx
γy

)
∥x− x′∥, (85)

which completes the proof.
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B. Repeated Risk Minimization (Proof of Theorem 1)
Proof. First, let

g(φ) , E
Z∼Dx(y∗(φ,x))

[f(φ, y∗(φ, x);Z)], s.t. y∗(φ, x) = argmin
y

E
Z∼Dy(x)

[ℓ(φ, y;Z)], (86a)

g′(φ) , E
Z∼Dx(y∗(φ,x′))

[f(φ, y∗(φ, x′);Z)], s.t. y∗(φ, x′) = argmin
y

E
Z∼Dy(x′)

[ℓ(φ, y;Z)]. (86b)

Note that g(φ) is γx-strongly convex and

xr+1 = R(xr) , argmin
φ

E
Z∼Dx(y∗(φ,xr))

[f(φ, y∗(φ, xr);Z)], s.t. y∗(φ, xr) = argmin
y

E
Z∼Dy(xr)

[ℓ(φ, y;Z)]. (87)

Based on the strong convexity of function g(φ), we have

g(R(x))− g(R(x′)) ≥ ⟨R(x)−R(x′),∇g(R(x′))⟩+ γx
2
∥R(x)−R(x′)∥2, (88a)

g(R(x′))− g(R(x)) ≥ γx
2
∥R(x)−R(x′)∥2, (88b)

which together give
−γx∥R(x)−R(x′)∥2 ≥ ⟨R(x)−R(x′),∇g(R(x′))⟩. (89)

Note that

∥∇g(R(x′))−∇g′(R(x′))∥

≤
∥∥∥∥ E
Z∼Dx(y∗(R(x′),x))

∇xf(R(x′), y∗(R(x′), x);Z)− E
Z∼Dx(y∗(R(x′),x′))

∇xf(R(x′), y∗(R(x′), x′);Z)

∥∥∥∥
+

∥∥∥∥ E
Z∼Dy(R(x′),x)

∇2
xyℓ(R(x′), y∗(R(x′), x);Z)

[
E

Z∼Dy(R(x′),x)
∇2

yyℓ(R(x′), y∗(R(x′), x);Z)

]−1

× E
Z∼Dx(y∗(R(x′),x))

∇yf(R(x′), y∗(R(x′), x);Z)

− E
Z∼Dy(R(x′),x′)

∇2
xyℓ(R(x′), y∗(R(x′), x′);Z)

[
E

Z∼Dy(R(x′),x′)
∇2

yyℓ(R(x′), y∗(R(x′), x′);Z)

]−1

× E
Z∼Dx(y∗(R(x′),x′))

∇yf(R(x′), y∗(R(x′), x′);Z)

∥∥∥∥ (90)

(73)
≤L

εx,εy
Z ∥x− x′∥. (91)

Using the dual formulation of the optimal transport distance and εx-sensitivity of Dx yields

⟨R(x)−R(x′),∇g(R(x′))⟩ − ⟨R(x)−R(x′),∇g′(R(x′))⟩ ≥ −L
εx,εy
Z ∥x− x′∥∥R(x)−R(x′)∥. (92)

Note that ⟨R(x) − R(x′),∇g′(R(x′))⟩ ≥ 0 due to the optimality condition of the UL problem. Combining (89) and (92)
yields

∥R(x)−R(x′)∥ ≤
L
εx,εy
Z

γx
∥x− x′∥ (74)

= (Cxyεxεy + Cyεy) ∥x− x′∥ (93)

where

Cxy , Lz
ℓ

γxγy

(
Lz
f +

CℓxyL
z
f

γy

)
, (94a)

Cy , 1

γxγy

(
Cy

f

(
Lz
ℓxy +

Lz
ℓyyCℓxy

γy

)
+ Lz

ℓ

(
L̄x
f +

Cy
fL

y
ℓxy

γy
+

Cℓxy

γy

(
Ly
f +

Cy
fL

y
ℓyy

γy

)))
. (94b)

By using the definition of the PS solution (3) (i.e., R(xS) = xS) and Bi-RRM (5) (i.e., xr+1 = R(xr)), we can conclude
that

∥xr − xS∥2 ≤ (Cxyεxεy + Cyεy) ∥xr−1 − xS∥ ≤ (Cxyεxεy + Cyεy)
r ∥x0 − xS∥2. (95)
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C. Convergence Rate of Bi-SGD (Proof of Theorem 2)
In this section, we will provide detailed proofs of the convergence rate of PP based Bi-SGD.

First, we can have the following descent lemma that quantifies the decrease of the objective value after performing one step
update of solving the LL problem.

C.1. Descent Lemma of the LL Problem

Lemma 5. (Convergence of the LL Variables) Suppose that Assumption 1–Assumption 6 hold. If the iterates
{xr, yr, ∀r} are generated by Bi-SGD and the step size βr satisfies

βr ≤ γy
2(Ly

ℓ )
2

(96)

then, we have
E∥yr+1 − y∗(xr)∥2 ≤ (1− βrγy)E∥yr − y∗(xr)∥2 + 2β2

rσ
2
ℓ , (97)

and

E∥yr+1 − y∗(xr+1)∥2

≤
(
1 + Y1αr + Lεy

y (σ′
f + 1)σ′

fα
2
r

)
E∥yr+1 − y∗(xr)∥2 +

(
CℓxyL

εx
f αr

γy
+ Y2α

2
r

)
E∥yr − y∗(xr)∥2

+

(
Fα2

r +
αr

2(LF + γx)

)∥∥∥∥ E
Z∼Dx(y∗(x∗))

∇f(xr, y
∗(xr, x

∗);Z)− E
Z∼Dx(y∗(x∗))

∇f(x∗, y∗(x∗);Z)

∥∥∥∥2
+

(
LF γxαr

2(LF + γx)
+Xα2

r

)
E∥xr − x∗∥2 + 4

(
Lεy
y

)2
α2
rσ

2
f + Lεy

y α2
rσ

2
f + 4

(
Lεy
y

)2
α2
rδ

2
r +

3

2
Lεy
y αrδ

2
r (98)

where constants Y1, Y2, X , F , σ′
f are as follows

Y1 ,
CℓxyL

εx
f

γy
+

2C2
ℓxy

(
L
εx,εy
Z

)2
(LF + γx)

γ2
yLF γx

+
2C2

ℓxy(LF + γx)

γ2
y

+ Lεy
y , (99a)

Y2 , 6
(
Lεy
y

)2
(Lεx

f )2 + 3(Lεx
f )2Lεy

y σ′
f , (99b)

X , 6
(
Lεy
y

)2 (
L
εx,εy
Z

)2
+ 3Lεy

y

(
L
εx,εy
Z

)2
σ′
f , (99c)

F , 6
(
Lεy
y

)2
+ 3Lεy

y σ′
f , and σ′

f , σf + δr. (99d)

Proof. The distance between yr+1 and y∗(xr) can be quantified as follows.

E∥yr+1 − y∗(xr)∥2

= E∥yr+1 − yr + yr − y∗(xr)∥2 (100)
(12a)
≤ E∥yr − y∗(xr)∥2 − 2βr⟨yr − y∗(xr), E

Z∼Dy(xr)
∇̂yℓ(xr, yr;Z)⟩+ E∥yr+1 − yr∥2 (101)

(a)

≤ (1− 2βrγy)E∥yr − y∗(xr)∥2 + E∥yr+1 − yr∥2 (102)
(12a)
≤ (1− 2βrγy)E∥yr − y∗(xr)∥2 + β2

rE
∥∥∥∇̂ℓ(xr, yr;Zy)

∥∥∥2 (103)

(b)

≤(1− 2βrγy + 2β2
r (L

y
ℓ )

2)E∥yr − y∗(xr)∥2 + 2β2
rσ

2
ℓ (104)

(c)

≤(1− βrγy)E∥yr − y∗(xr)∥2 + 2β2
rσ

2
ℓ (105)

where (a) is true because ∇yℓ(xr, y
∗(xr)) = 0, unbiasedness of the LL gradient estimator, and the strong convexity, i.e.,

⟨yr − y∗(xr),∇yℓ(xr, yr)−∇yℓ(xr, y
∗(xr))⟩ ≥ γy∥yr − y∗(xr)∥2, (106)
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and in (b) we use the bounded variance of the LL gradient estimate (i.e., Assumption 6), optimality condition of the LL
problem (i.e., E

Z∼Dy(xr)
∇yℓ(xr, y

∗(xr);Z) = 0 ), and Lipschitz continuity, i.e.,

∥∥∥∥ E
Z∼Dy(xr)

∇yℓ(xr, yr;Z)−∇yℓ(xr, y
∗(xr);Z)

∥∥∥∥2 ≤ (Ly
ℓ )

2∥yr − y∗(xr)∥2, (107)

and (c) holds when βr ≤ γy/(2(L
y
ℓ )

2).

Then, we can decompose ∥yr+1 − y∗(xr+1)∥2 into the following three parts.

E∥yr+1 − y∗(xr+1)∥2

= ∥yr+1 − y∗(xr) + y∗(xr)− y∗(xr+1)∥2 (108)

= E∥yr+1 − y∗(xr)∥2 + E∥y∗(xr)− y∗(xr+1)∥2︸ ︷︷ ︸
,T1

+2E⟨yr+1 − y∗(xr), y
∗(xr)− y∗(xr+1)⟩︸ ︷︷ ︸

,T2

. (109)

Next, we will respectively give the upper bounds of terms T1 and T2. Firstly, we have that

T1 = E∥y∗(xr)− y∗(xr+1)∥2 (110)
(a)

≤
(
Lεy
y

)2 E∥xr+1 − xr∥2 (111)
(12b)
≤
(
Lεy
y

)2
α2
rE∥∇̂f(xr, yr;Zx)∥2 (112)

(b)

≤ 2
(
Lεy
y

)2
α2
r∥∇f(xr, yr)∥2 + 4

(
Lεy
y

)2
α2
rσ

2
f + 4

(
Lεy
y

)2
α2
rδ

2
r (113)

where in (a) we apply the Lipschitz continuity of y∗(x), and (b) follows due to the bounded variance of the UL gradient
estimate from Assumption 6.

Let x∗ denote xS. Based on the closed form and Lipschitz continuity of ∇f(xr, yr), we can obtain

∥∇f(xr, yr)∥ = ∥∇f(xr, yr)−∇f(xr, y
∗(xr)) +∇f(xr, y

∗(xr))−∇f(x∗, y∗(x∗))∥ (114)

≤
∥∥∥∥ E
Z∼Dx(yr)

∇f(xr, yr;Z)− E
Z∼Dx(y∗(xr))

∇f(xr, y
∗(xr);Z)

∥∥∥∥
+

∥∥∥∥ E
Z∼Dx(y∗(xr))

∇f(xr, y
∗(xr);Z)− E

Z∼Dx(y∗(x∗))
∇f(xr, y

∗(xr, x
∗);Z)

∥∥∥∥
+

∥∥∥∥ E
Z∼Dx(y∗(x∗))

∇f(xr, y
∗(xr, x

∗);Z)− E
Z∼Dx(y∗(x∗))

∇f(x∗, y∗(x∗);Z)

∥∥∥∥ (115)

≤ Lεx
f ∥yr − y∗(xr)∥+ L

′εx,εy
Z ∥xr − x∗∥

+

∥∥∥∥ E
Z∼Dx(y∗(x∗))

∇f(xr, y
∗(xr, x

∗);Z)− E
Z∼Dx(y∗(x∗))

∇f(x∗, y∗(x∗);Z)

∥∥∥∥ (116)

where we use (34) and (73) in the last inequality.

Consequently, we can obtain

T1

(116)
≤ 2

(
Lεy
y

)2
α2
r

(
3(Lεx

f )2E∥yr − y∗(xr)∥2 + 3L′2
ZE∥xr − x∗∥2

)
+ 2

(
Lεy
y

)2
α2
r3

∥∥∥∥ E
Z∼Dx(y∗(x∗))

∇f(xr, y
∗(xr, x

∗))− E
Z∼Dx(y∗(x∗))

∇f(x∗, y∗(x∗))

∥∥∥∥2
+ 4

(
Lεy
y

)2
α2
rσ

2
f + 4

(
Lεy
y

)2
α2
rδ

2
r . (117)

Secondly, we will establish an upper bound for T2 as follows. Let x̂r+1 , ϑxr+(1−ϑ)xr+1, ϑ ∈ [0, 1]. By the mean-value
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theorem, we can obtain

T2 = E⟨y∗(xr)− yr+1, y
∗(xr+1)− y∗(xr)⟩ (118)

= E⟨y∗(xr)− yr+1,∇y∗(x̂r+1)
T (xr+1 − xr)⟩ (119)

= E⟨y∗(xr)− yr+1, αr∇y∗(x̂r+1)
T ∇̂f(xr, yr;Zx)⟩ (120)

= T21 + T22

where

T21 , E⟨y∗(xr)− yr+1, αr∇y∗(x̂r+1)
T∇f(xr, yr;Zx)⟩, (121a)

T22 , E
⟨
y∗(xr)− yr+1, αr∇y∗(x̂r+1)

T

(
∇̂f(xr, yr;Zx)−∇f(xr, yr;Zx)

)⟩
. (121b)

Next, we will provide the upper bounds of T11 and T22.

T21

(54)
≤ Cℓxy

γy
αrE∥y∗(xr)− yr+1∥∥∇f(xr, yr)∥ (122)

(116)
≤ Cℓxy

γy
αrE∥y∗(xr)− yr+1∥

(
Lεx
f ∥yr − y∗(xr)∥+ L

′εx,εy
Z ∥xr − x∗∥

+

∥∥∥∥ E
Z∼Dx(y∗(x∗))

∇f(xr, y
∗(xr, x

∗);Z)− E
Z∼Dx(y∗(x∗))

∇f(x∗, y∗(x∗);Z)

∥∥∥∥) (123)

≤ Cℓxy

γy
Lεx
f αrE∥y∗(xr)− yr+1∥∥yr − y∗(xr)∥+

Cℓxy

γy
L
′εx,εy
Z αrE∥y∗(xr)− yr+1∥∥xr − x∗∥

+
Cℓxy

γy
αrE∥y∗(xr)− yr+1∥

∥∥∥∥ E
Z∼Dx(y∗(x∗))

∇f(xr, y
∗(xr, x

∗);Z)− E
Z∼Dx(y∗(x∗))

∇f(x∗, y∗(x∗);Z)

∥∥∥∥ (124)

(a)

≤
CℓxyL

εx
f αr

2γy
E∥yr+1 − y∗(xr)∥2 +

CℓxyL
εx
f αr

2γy
E∥yr − y∗(xr)∥2

+
C2

ℓxy(L
′εx,εy
Z )2(LF + γx)αr

γxγ2
yLF

E∥yr+1 − y∗(xr)∥2 +
LF γxαr

4(LF + γx)
E∥xr − x∗∥2

+
C2

ℓxy(LF + γx)αr

γ2
y

E∥yr+1 − y∗(xr)∥2

+
αr

4(LF + γx)

∥∥∥∥ E
Z∼Dx(y∗(x∗))

∇f(xr, y
∗(xr, x

∗);Z)− E
Z∼Dx(y∗(x∗))

∇f(x∗, y∗(x∗);Z)

∥∥∥∥2 (125)

where in (a) we apply Young’s inequality.

Regarding term T22, it can be upper bounded by

T22 = E
⟨
y∗(xr)− yr+1, αr (∇y∗(x̂r+1)−∇y∗(xr))

T
(
∇̂f(xr, yr;Zx)−∇f(xr, yr)

)⟩
+ E

⟨
y∗(xr)− yr+1, αr∇y∗(xr)

T

(
∇̂f(xr, yr;Zx)−∇f(xr, yr)

)⟩
(126)

(a)

≤ Lεy
y αrE∥y∗(xr)− yr+1∥ ∥x̂r+1 − xr∥

∥∥∥∇̂f(xr, yr;Zx)−∇f(xr, yr)
∥∥∥

+ Lεy
y αrE∥y∗(xr)− yr+1∥

∥∥∥E∇̂f(xr, yr;Zx)−∇f(xr, yr)
∥∥∥ (127)

(b)

≤ Lεy
y αrE∥y∗(xr)− yr+1∥∥xr+1 − xr∥

∥∥∥∇̂f(xr, yr;Zx)−∇f(xr, yr)
∥∥∥

+
L
εy
y αr

2
E∥y∗(xr)− yr+1∥2 +

L
εy
y αrδ

2
r

2
(128)

where (a) holds because of (45) and conditional independence of data sampling of Zx, in (b) we use (14).
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Using the update rule of sequence xr (12b) in (128) further gives

T22

(12b)
≤ Lεy

y α2
rE∥y∗(xr)− yr+1∥

∥∥∥∇̂f(xr, yr;Zx)
∥∥∥ ∥∥∥∇̂f(xr, yr;Zx)−∇f(xr, yr)

∥∥∥
+

L
εy
y αr

2
E∥y∗(xr)− yr+1∥2 +

L
εy
y αrδ

2
r

2
(129)

(a)

≤ Lεy
y α2

rE∥y∗(xr)− yr+1∥
∥∥∇f(xr, yr)

∥∥ ∥∥∥∇̂f(xr, yr;Zx)−∇f(xr, yr)
∥∥∥

+ Lεy
y α2

rE∥y∗(xr)− yr+1∥
∥∥∥∇̂f(xr, yr;Zx)−∇f(xr, yr)

∥∥∥2
+

L
εy
y αr

2
E∥y∗(xr)− yr+1∥2 +

L
εy
y αrδ

2
r

2
(130)

(b)

≤
(
L
εy
y α2

r(σf + δr)

2
+

L
εy
y α2

r(σf + δr)
2

2
+

L
εy
y αr

2

)
E∥y∗(xr)− yr+1∥2

+
L
εy
y α2

r(σf + δr)

2
∥∇f(xr, yr)∥2 + Lεy

y α2
rσ

2
f +

3L
εy
y αrδ

2
r

2
(131)

(116)
≤ 3L′2

ZL
εy
y α2

r(σf + δr)

2
E∥xr − x∗∥2

+
3(Lεx

f )2L
εy
y α2

r(σf + δr)

2
E∥yr − y∗(xr)∥2

+
3L

εy
y α2

r(σf + δr)

2

∥∥∥∥ E
Z∼Dx(y∗(x∗))

∇f(xr, y
∗(xr, x

∗);Z)− E
Z∼Dx(y∗(x∗))

∇f(x∗, y∗(x∗);Z)

∥∥∥∥2
+

(
L
εy
y α2

r(σf + δr)

2
+

L
εy
y α2

r(σf + δr)
2

2
+

L
εy
y αr

2

)
E∥y∗(xr)− yr+1∥2

+ Lεy
y α2

rσ
2
f +

3L
εy
y αrδ

2
r

2
. (132)

where (a) is true due to the fact that ∥∇̂f(xr, yr;Zx)∥ ≤ ∥∇f(xr, yr)∥+ ∥∇̂f(xr, yr;Zx)−∇f(xr, yr)∥, and in (b) we
use Young’s inequality and Assumption 6 (i.e., E∥∇̂f(xr, yr;Zx)−∇f(xr, yr)∥ ≤ σf + δr).

Combining (125) and (132) yields

T2 ≤

((
CℓxyL

εx
f

2γy
+

C2
ℓxyL

′2
Z (LF + γx)

γ2
yLF γx

+
C2

ℓxy(LF + γx)

γ2
y

)
αr

+
L
εy
y α2

r(σf + δr)

2
+

L
εy
y α2

r(σf + δr)
2

2
+

L
εy
y αr

2

)
E∥yr+1 − y∗(xr)∥2

+

(
CℓxyL

εx
f αr

2γy
+

3(Lεx
f )2L

εy
y α2

r(σf + δr)

2

)
E∥yr − y∗(xr)∥2

+

(
αrLF γx

4(LF + γx)
+

3L′2
ZL

εy
y α2

r(σf + δr)

2

)
E∥xr − x∗∥2

+

(
3L

εy
y α2

r(σf + δr)

2
+

αr

4(LF + γx)

)∥∥∥∥ E
Z∼Dx(y∗(x∗))

∇f(xr, y
∗(xr, x

∗);Z)− E
Z∼Dx(y∗(x∗))

∇f(x∗, y∗(x∗);Z)

∥∥∥∥2
+ Lεy

y α2
rσ

2
f +

3L
εy
y αrδ

2
r

2
. (133)
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To simplify the notation, let σ′
f , σf + δr. Substituting (117) and (133) back into (109) gives

E∥yr+1 − y∗(xr+1)∥2

≤

(
1 +

(
CℓxyL

εx
f

γy
+

2C2
ℓxyL

′2
Z (LF + γx)

γ2
yLF γx

+
2C2

ℓxy(LF + γx)

γ2
y

)
αr

+ Lεy
y α2

rσ
′
f + Lεy

y α2
rσ

′2
f + Lεy

y αr

)
E∥yr+1 − y∗(xr)∥2

+

(
6
(
Lεy
y

)2
(Lεx

f )2α2
r +

CℓxyL
εx
f αr

γy
+ 3(Lεx

f )2Lεy
y α2

rσ
′
f

)
E∥yr − y∗(xr)∥2

+

(
6
(
Lεy
y

)2 (
L
′εx,εy
Z

)2
α2
r +

αrLF γx
2(LF + γx)

+ 3
(
L
′εx,εy
Z

)2
Lεy
y α2

rσ
′
f

)
E∥xr − x∗∥2

+

(
6
(
Lεy
y

)2
α2
r + 3Lεy

y α2
rσ

′
f +

αr

2(LF + γx)

)∥∥∥∥ E
Z∼Dx(y∗(x∗))

∇f(xr, y
∗(xr, x

∗);Z)− E
Z∼Dx(y∗(x∗))

∇f(x∗, y∗(x∗);Z)

∥∥∥∥2
+ 4

(
Lεy
y

)2
α2
rσ

2
f + Lεy

y α2
rσ

2
f + 4

(
Lεy
y

)2
α2
rδ

2
r +

3

2
Lεy
y αrδ

2
r , (134)

which gives (98) directly.
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C.2. Descent Lemma of the UL Problem

Lemma 6. Suppose that Assumption 1–Assumption 6 hold. If the iterates {xr, yr, ∀r} are generated by Bi-SGD and
the εx and εy satisfy

Cxεx + Cxyεxεy + Cyεy ≤
L
εx,εy
F

4(L
εx,εy
F + γx)

(135)

where

Cx ,
(
Lz
f +

CℓxyL
z
f

γy

)
Cℓxy

γxγy
, (136)

then, we have

E∥xr+1 − x∗∥2

≤

(
1− αrLF γx

LF + γx
+

1

8

(
LF γx

LF + γx
αr

)2
)
E∥xr − x∗∥2

+

(
4(Lεx

f )2(LF + γx)αr

LF γx
+ 2(Lεx

f )2α2
r

)
E∥yr − y∗(xr)∥2

−
(

αr

LF + γx
− 2α2

r

)∥∥∥∥ E
Z∼Dx(y∗(x∗))

∇f(xr, y
∗(xr, x

∗);Z)−∇f(x∗, y∗(x∗);Z)

∥∥∥∥2
+ 4α2

rσ
2
f + 4α2

rδ
2
r +

4(LF + γx)

LF γx
αrδ

2
r . (137)

Proof. Let x∗ denote the xS of this problem. First, we can obtain

E∥xr+1 − x∗∥2

= E∥xr+1 − xr + xr − x∗∥2 (138)

= E∥xr − x∗∥2 + 2 ⟨xr+1 − xr, xr − x∗⟩+ E∥xr+1 − xr∥2 (139)

(12b)
= E∥xr − x∗∥2 − 2αr

⟨
E

Z∼Dx(yr)
∇̂f(xr, yr;Z), xr − x∗

⟩
+ E∥xr+1 − xr∥2 (140)

= E∥xr − x∗∥2 − 2αr

⟨
E

Z∼Dx(yr)
∇̂f(xr, yr;Z)− E

Z∼Dx(y∗(xr))
∇f(xr, y

∗(xr);Z), xr − x∗
⟩

− 2αr

⟨
E

Z∼Dx(y∗(xr))
∇f(xr, y

∗(xr);Z), xr − x∗
⟩
+ E∥xr+1 − xr∥2. (141)

Using the fact that E
Z∼Dx(y∗(x∗))

∇f(x∗, y∗(x∗);Z) = 0, we can have

⟨
E

Z∼Dx(y∗(xr))
∇f(xr, y

∗(xr);Z)− E
Z∼Dx(y∗(x∗))

∇f(xr, y
∗(xr, x

∗);Z), xr − x∗
⟩

+

⟨
E

Z∼Dx(y∗(x∗))
∇f(xr, y

∗(xr, x
∗);Z)− E

Z∼Dx(y∗(x∗))
∇f(x∗, y∗(x∗);Z), xr − x∗

⟩
(a)

≥ − L
′εx,εy
Z ∥xr − x∗∥2 +

⟨
E

Z∼Dx(y∗(x∗))
∇f(xr, y

∗(xr, x
∗);Z)− E

Z∼Dx(y∗(x∗))
∇f(x∗, y∗(x∗);Z), xr − x∗

⟩
(b)

≥ − L
′εx,εy
Z E∥xr − x∗∥2 + LF γx

LF + γx
∥xr − x∗∥2

+
1

LF + γx

∥∥∥∥ E
Z∼Dx(y∗(x∗))

∇f(xr, y
∗(xr, x

∗);Z)− E
Z∼Dx(y∗(x∗))

∇f(x∗, y∗(x∗);Z)

∥∥∥∥2 , (142)
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where (a) holds by applying Young’s inequality and (73), in (b) we use the LF -smooth and γx-strongly convexity of
f(x, y∗(x)) by applying Lemma 3.11 in (Bubeck et al., 2015).

By substituting (142) into (141), we obtain

E∥xr+1 − x∗∥2

≤
(
1− 2αrLF γx

LF + γx
+ 2αrL

′εx,εy
Z

)
E∥xr − x∗∥2

− 2αr

⟨
E

Z∼Dx(yr)
∇̂f(xr, yr;Z)− E

Z∼Dx(y∗(xr))
∇f(xr, y

∗(xr);Z), xr − x∗
⟩

+ E∥xr+1 − xr∥2 −
αr

LF + γx

∥∥∥∥ E
Z∼Dx(y∗(x∗))

∇f(xr, y
∗(xr, x

∗);Z)−∇f(x∗, y∗(x∗);Z)

∥∥∥∥2 (143)

(a)

≤
(
1− 3αrLF γx

2(LF + γx)
+ 2αrL

′εx,εy
Z

)
E∥xr − x∗∥2 +

4(Lεx
f )2(LF + γx)αr

LF γx
E∥yr − y∗(xr)∥2

+ E∥xr+1 − xr∥2 −
αr

LF + γx

∥∥∥∥ E
Z∼Dx(y∗(x∗))

∇f(xr, y
∗(xr, x

∗);Z)−∇f(x∗, y∗(x∗);Z)

∥∥∥∥2 + 4(LF + γx)

LF γx
αrδ

2
r

(144)
(b)

≤
(
1− 3αrLF γx

2(LF + γx)
+ 2αrL

′εx,εy
Z

)
E∥xr − x∗∥2 +

4(Lεx
f )2(LF + γx)αr

LF γx
E∥yr − y∗(xr)∥2

+ 2α2
rE∥∇f(xr, yr)∥2 −

αr

LF + γx

∥∥∥∥ E
Z∼Dx(y∗(x∗))

∇f(xr, y
∗(xr, x

∗))−∇f(x∗, y∗(x∗))

∥∥∥∥2
+ 4α2

rσ
2
f + 4α2

rδ
2
r +

4(LF + γx)

LF γx
αrδ

2
r (145)

(c)

≤
(
1− 3αrLF γx

2(LF + γx)
+ 2αrL

′εx,εy
Z + 2(L

′εx,εy
Z αr)

2

)
E∥xr − x∗∥2

+

(
4(Lεx

f )2(LF + γx)αr

LF γx
+ 2(Lεx

f )2α2
r

)
E∥yr − y∗(xr)∥2

−
(

αr

LF + γx
− 2α2

r

)∥∥∥∥ E
Z∼Dx(y∗(x∗))

∇f(xr, y
∗(xr, x

∗);Z)−∇f(x∗, y∗(x∗);Z)

∥∥∥∥2
+ 4α2

rσ
2
f + 4α2

rδ
2
r +

4(LF + γx)

LF γx
αrδ

2
r (146)

where in (a) we use⟨
E

Z∼Dx(yr)
∇f(xr, yr;Z)− E

Z∼Dx(y∗(xr))
∇f(xr, y

∗(xr);Z), xr − x∗
⟩

+

⟨
E

Z∼Dx(yr)
∇̂f(xr, yr;Z)− E

Z∼Dx(yr)
∇f(xr, yr;Z), xr − x∗

⟩
≤ LF γx

8(LF + γx)
E∥xr − x∗∥2 +

2(Lεx
f )2(LF + γx)

LF γx
E∥yr − y∗(xr)∥2

+
LF γx

8(LF + γx)
E∥xr − x∗∥2 + 2(LF + γx)

LF γx
δ2r (147)

≤ LF γx
4(LF + γx)

E∥xr − x∗∥2 +
2(Lεx

f )2(LF + γx)

LF γx
E∥yr − y∗(xr)∥2 +

2(LF + γx)

LF γx
δ2r , (148)

(b) is true due to (12b) and the fact that E∥∇̂f(xr, yr, Zx)∥ ≤ E∥∇̂f(xr, yr, Zx) − ∇f(xr, yr)∥ + ∥∇f(xr, yr)∥ ≤
σf + δr + ∥∇f(xr, yr)∥, and (c) holds by applying (116).
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When
LF γx

LF + γx
≥ 4L

′εx,εy
Z , (149)

we have

−αr
LF γx

LF + γx
+ 2αrL

′εx,εy
Z + 2(L

′εx,εy
Z αr)

2 ≤ − αrLF γx
2(LF + γx)

+
1

8

(
LF γx

LF + γx
αr

)2

. (150)

Note that the expression of L′εx,εy
Z is given in (74). So, the condition

4(LF + γx)

LF γx
L
′εx,εy
Z ≤ 1 (151)

is equivalent to

1 ≥ 4(LF + γx)

LF γx

(
L
εx,εy
Z +

(
Lz
f +

CℓxyL
z
f

γy

)
Cℓxyεx
γy

)
(152)

=
4(LF + γx)

LF

(
L
εx,εy
Z

γx
+

(
Lz
f +

CℓxyL
z
f

γy

)
Cℓxyεx
γxγy

)
(153)

(94)
=

4(LF + γx)

LF
(Cxεx + Cxyεxεy + Cyεy) (154)

where

Cx ,
(
Lz
f +

CℓxyL
z
f

γy

)
Cℓxy

γxγy
. (155)

Combining (150) and (154) gives the desired result.

C.3. Convergence of the Whole Sequence

Proof. Combining (97), (98) and (137), we can get

E∥xr+1 − x∗∥2 + E∥yr+1 − y∗(xr+1)∥2 −

E∥xr − x∗∥2 + E∥yr − y∗(xr)∥2︸ ︷︷ ︸
,Pr


≤

(
−αrLF γx
LF + γx

+
1

8

(
LF γx

LF + γx
αr

)2

+Xα2
r

)
E∥xr − x∗∥2

+

((
1 + Y1αr + Lεy

y (σ′
f + 1)σ′

fα
2
r

)
(1− βrγy)− 1

+

(
CℓxyL

εx
f αr

γy
+ Y2α

2
r +

4(Lεx
f )2(LF + γx)αr

LF γx
+ 2(Lεx

f )2α2
r

))
E∥yr − y∗(xr)∥2

−
(

αr

2(LF + γx)
− (2 + F )α2

r

)∥∥∥∥ E
Z∼Dx(y∗(x∗))

∇f(xr, y
∗(xr, x

∗))−∇f(x∗, y∗(x∗))

∥∥∥∥2
+ 4

(
Lεy
y

)2
α2
rσ

2
f + Lεy

y α2
rσ

2
f + 4

(
Lεy
y

)2
α2
rδ

2
r +

3

2
Lεy
y αrδ

2
r + 4α2

rσ
2
f + 4α2

rδ
2
r +

4(LF + γx)

LF γx
αrδ

2
r

+ 2
(
1 + Y1αr + Lεy

y (σ′
f + 1)σ′

fα
2
r

)
(1− βrγy)β

2
rσ

2
ℓ (156)

where Pr is the Lyapunov function.

In order to the contraction property of Pr, we need the terms in front of E∥xr − x∗∥2, E∥yr − y∗(xr)∥2,∥∥∥∥ E
Z∼Dx(y∗(x∗))

∇f(xr, y
∗(xr, x

∗);Z)−∇f(x∗, y∗(x∗);Z)

∥∥∥∥2 to be negative. To be more specific, we have the following

requirements.
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1) to make the term −αrLF γx

LF+γx
+ 1

8

(
LF γx

LF+γx
αr

)2
+Xα2

r be negative, we can choose a small enough step size, i.e.,

− LF γx
2(LF + γx)

+
1

8

(
LF γx

LF + γx

)2

αr +Xαr ≤ 0

=⇒ αr ≤ LF γx

2(LF + γx)

(
1
8

(
LF γx

LF+γx

)2
+X

) ≤ 4LF γx

(LF + γx)
(

LF γx

LF+γx

)2 =
4(LF + γx)

LF γx
(157)

so that this term is less than − LF γx

2(LF+γx)
.

2) to make the term (1+Y1αr+L
εy
y (σ′

f +1)σ′
fα

2
r)(1−βrγy)−1+(

CℓxyL
εx
f αr

γy
+Y2α

2
r+

4(Lεx
f )2(LF+γx)αr

LF γx
+2(Lεx

f )2α2
r)

be less than −βrγy

2 , we can require

Y1αr + Lεy
y (σ′

f + 1)σ′
fα

2
r +

(
CℓxyL

εx
f αr

γy
+ Y2α

2
r +

4(Lεx
f )2(LF + γx)αr

LF γx
+ 2(Lεx

f )2α2
r

)

≤
(
1

2
+ Y1αr + Lεy

y (σ′
f + 1)σ′

fα
2
r

)
βrγy (158)

=⇒ βr ≥
(
1

2
+ Y1αr + Lεy

y (σ′
f + 1)σ′

fα
2
r

)−1

× 1

γy

((
Y1 +

CℓxyL
εx
f

γy
+

4(Lεx
f )2(LF + γx)

LF γx

)
αr +

(
Lεy
y (σ′

f + 1)σ′
f + Y2 + 2(Lεx

f )2
)
α2
r

)
(159)

≥ 1

γy

(
1 +

CℓxyL
εx
f

γyY1
+

4(Lεx
f )2(LF + γx)

LF γxY1

)
+ Y −1

1

(
Lεy
y (σ′

f + 1)σ′
f + Y2 + 2(Lεx

f )2
)
αr = Θ(αr). (160)

where the last equality is true because from Lemma 3.2 in (Ghadimi & Wang, 2018) we know that only Ω(log(α−1
r ))

number of data samples can make δ2r < O(αr), so it holds that σ′
f ≤ σf +O(1) when we choose αr ∼ O(1/r).

3) to make the term αr

2(LF+γx)
− (2 + F )α2

r be positive, we can require
1

4(LF + γx)
− (2 + F )αr ≥ 0

=⇒ αr ≤ 1

4(LF + γx)(2 + F )
. (161)

Therefore, we can get

E[Pr+1] ≤
(
1−min

(
LF γxαr

2(LF + γx)
,
βrγy
2

))
Pr +O

(
α2
rσ

2
f

)
+O

(
β2
rσ

2
ℓ

)
+O

(
((αr + α2

r)δ
2
r

)
(162)

If we choose αr ∼ βr, then

E[Pr+1] ≤ (1− Ω(αr))Pr +O
(
α2
r

)
+O

(
(αr + α2

r)δ
2
r

)
. (163)

Considering that only a number of data samples on the order of Ω(log(α−1
r )) can result in δ2r < αr, as stated in Lemma

3.2 of (Ghadimi & Wang, 2018), we can conclude that

E[Pr+1] ≤ (1− Ω(αr))Pr +O
(
α2
r

)
. (164)

If we choose αr ∼ βr ∼ O(1/r), applying the Robbins-Siegmund theorem (Robbins & Siegmund, 1971) gives

lim
r→∞

∥xr − xS∥ → 0, lim
r→∞

∥yr − y∗(xS)∥ → 0 almost surely, (165)

since
∑∞

r=1 αr = ∞. Also, note that in this choice of the step size Πr
r′=1(1− αr′) = O(1/r), so we can have

E[Pr] = O
(
1

r

)
, (166)

which completes the proof.
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C.4. Proof of Corollary 1

Proof. If the full gradient estimate is used, we can immediately from (162) have that

Pr+1 ≤
(
1−min

(
LF γxαr

2(LF + γx)
,
βrγy
2

))
Pr, (167)

giving a linear convergence of Bi-GD to the BPS solution.

D. Revisiting BPO and BPS (Proof of Theorem 3)
Proof. Based on the definitions of the BPO solution (2) and BPS solution (3), we know

DR(xS, xS) , E
Z∼D(y∗(xS))

f(xS, y
∗(xS);Z), s.t. y∗(xS) = argmin

y
E

Z∼D(xS)
[ℓ(xS, y;Z)] , (168)

and
DR(xO, xO) , E

Z∼D(y∗(xO))
f(xO, y

∗(xO);Z), s.t. y∗(xO) = argmin
y

E
Z∼D(xO)

[ℓ(xO, y;Z)] . (169)

and
DR(xO, xO) ≤ DR(xS, xS) ≤ DR(xS, xO). (170)

Then, we define an auxiliary variable as follows

y∗(xO, xS) = argmin
y

E
Z∼D(xS)

[ℓ(xO, y;Z)] . (171)

From the strong convexity of ℓ(x, y), we know that⟨
E

Z∼D(xS)
∇ℓ(xO, y

∗(xO))−∇ℓ(xO, y
∗(xO, xS)), y

∗(xO)− y∗(xO, xS)

⟩
≥ γy

2
∥y∗(xO)− y∗(xO, xS)∥2.

Similar as the derivations in (49) and (50), according the optimality conditions that both E
Z∼D(xS)

∇ℓ(xO, y
∗(xO, xS);Z)

and E
Z∼D(xO)

∇ℓ(xO, y
∗(xO);Z) are zero, we can obtain

γy
2
∥y∗(xO)− y∗(xO, xS)∥2

≤
⟨

E
Z∼D(xS)

∇ℓ(xO, y
∗(xO))− E

Z∼D(xO)
∇ℓ(xO, y

∗(xO)), y
∗(xO)− y∗(xO, xS)

⟩
(172)

≤ Lz
ℓεy∥xS − xO∥∥y∗(xO)− y∗(xO, xS)∥, (173)

which directly gives

∥y∗(xO)− y∗(xO, xS)∥ ≤ Lz
ℓεy
γy

∥xS − xO∥. (174)

Due to the strong convexity of the UL function, we have

E
Z∼D(y∗(xS))

f(xO, y
∗(xO);Z) ≥ E

Z∼D(y∗(xS))
f(xS, y

∗(xS);Z)

+

⟨
E

Z∼D(y∗(xS))
∇f(xS, y

∗(xS);Z), xO − xS

⟩
+

γx
2
∥xO − xS∥2. (175)

Moverover, by using the optimality condition of the UL variable xS, we can get

E
Z∼D(y∗(xS))

[f(xO, y
∗(xO);Z)− f(xS, y

∗(xS);Z)] ≥ γx
2
∥xO − xS∥2. (176)
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Also, note that ∣∣∣∣ E
Z∼D(y∗(xS))

f(xO, y
∗(xO);Z)− E

Z∼D(y∗(xO))
f(xO, y

∗(xO);Z)

∣∣∣∣
≤ εxLz ∥y∗(xS)− y∗(xO, xS) + y∗(xO, xS)− y∗(xO)∥ (177)

(55),(174)
≤ εxLz

(
Cℓxy

γy
∥xS − xO∥+

Lz
ℓεy
γy

∥xS − xO∥
)
. (178)

By the definition of the PO solution xO shown in (2), we have

E
Z∼D(y∗(xO))

f(xO, y
∗(xO);Z) ≤ E

Z∼D(y∗(xS))
f(xO, y

∗(xS);Z), (179)

which gives

E
Z∼D(y∗(xS))

[f(xO, y
∗(xO);Z)− f(xO, y

∗(xS);Z)]

≤ E
Z∼D(y∗(xS))

f(xO, y
∗(xO);Z)− E

Z∼D(y∗(xO))
f(xO, y

∗(xO);Z). (180)

Substituting (176) and (178) into (180) yields

γx
2
∥xO − xS∥2 ≤ εxLz

γy
(Cℓxy + Lz

ℓεy) ∥xS − xO∥ (181)

i.e.,

∥xO − xS∥ ≤ 2εxLz

γxγy
(Cℓxy + Lz

ℓεy) . (182)

E. Additional Numerical Experiments
We also evaluate the performance of Bi-SGD for the meta performative prediction learning problem by varying the values
of εx and εy on the spambase data set. As shown in Figure 4, it can be observed that when either the sensitivity parameter
εx or εx is large, Bi-SGD yields lower meta-training and meta-testing accuracies, which aligns with our intuition. Another
interesting finding is that the meta-test accuracy with εx = 0, εy = 0.1 is significantly higher than the case with εx =
0.1, εy = 0, indicating that the meta-testing accuracy is more affected by εx compared to εy in this example.
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Figure 4. Comparison of Bi-SGD for meta strategic learning over different combinations of the sensitivity parameters at each level.
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