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ABSTRACT

End-to-end autonomous driving has received extensive attention due to its sim-
plicity and scalability. However, they are usually trained by imitation learn-
ing and thus may suffer from limited behavioral diversity and distribution mis-
match. To address this, we introduce a Reinforcement-learning-based end-to-end
Autonomous Driving (ReAD) framework that enhances existing driving models
through structured policy refinement. We first observe that models trained with
imitation learning tend to plan trajectories by repeating previous training data
rather than inferring the optimal. We propose to recalibrate them using lightweight
reinforcement learning updates to avoid catastrophic forgetting while promoting
high-reward behaviors. To resolve the inefficient training by composite rewards,
we propose to decompose the reward into semantically aligned components. Each
component provides a well-defined optimization objective to enable the policy
to independently learn and balance distinct objectives. This leads to more ef-
ficient exploration, better credit assignment, and significantly improved conver-
gence compared to using a single comprehensive reward. Experiments on both
the open-loop nuScenes and closed-loop NavSim benchmarks demonstrate the ef-
fectiveness of ReAD to improve the planning performance of autonomous driving
models. ReAD provides an efficient and effective pathway for reinforcement-
learning-based optimization in safety-critical autonomous driving systems.

1 INTRODUCTION

Recent years have witnessed significant advances in autonomous driving (Wang et al., 2024c; Jiang
et al., 2023; Liao et al., 2025a; Sun et al., 2025; Huang et al., 2024a; Li et al., 2024c; Huang et al.,
2023; Shi et al., 2016). Data-driven deep networks have dramatically improved the accuracy of driv-
ing perception, including object detection (Zhang et al., 2022; Li et al., 2024c; Wang et al., 2025;
Liang et al., 2022), segmentation (Strudel et al., 2021; Huang et al., 2024b; Zuo et al., 2025), and
motion forecasting (Ettinger et al., 2021; Zheng et al., 2024). Still, the planning performance deter-
mines the quality of the driving policy and thus serves as a critical evaluation metric for autonomous
agents. The planning module responsible for generating safe and comfortable trajectories remains a
core and challenging component (Huang et al., 2021; Liao et al., 2025a).

While conventional autonomous driving systems are divided into different components (Yadav et al.,
2024; Wu et al., 2024; Bai et al., 2022; Yin et al., 2021), the recent end-to-end models receive in-
creasing attention due to their better scalability to more training data. They map raw sensor in-
puts directly to planning trajectories or control commands, demonstrating impressive performance
through large-scale dataset training. However, most existing end-to-end driving models are trained
with imitation learning from human demonstrations. This inherently limits the exploration of diverse
driving strategies and is constrained by the performance of human experts. Although recent works
like (Chen et al., 2024b; Liao et al., 2025a) have adopted multimodal paradigms for diverse trajec-
tory generation, their action distributions remain skewed towards imitation rather than optimization
due to their training methodologies. This leads to poor robustness to out-of-distribution scenarios
and additionally suffers from error accumulation.

To address these, we propose a Reinforcement-learning-based end-to-end Autonomous Driving
(ReAD) framework to enable driving models to effectively learn from reward feedback. We con-
struct a coherent system for end-to-end autonomous driving based on reinforcement learning. It
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(a) (b)

Figure 1. Demonstration of confidence distribution over IL (Imitation-Learning) and RL
(Reinforcement-Learning) trained agent. Line-width of the trajectories represents the confidence
score of the model towards them, while colors of the trajectories represent their quality evaluated
by comprehensive reward metrics. (a) Models trained via imitation learning has a suboptimal con-
fidence distribution over its action space, over-prioritizing trajectories that mimic expert demon-
strations. (b) In reinforcement-learning based training, the distribution is recalibrated, encouraging
deviation from expert-trajectories to explore high-reward patterns.

introduces a surrogate probability measure to resolve the computational challenge of probability
density in continuous trajectory spaces. We also propose a decomposition strategy tailored for the
GRPO (Group Relative Policy Optimization) reinforcement learning algorithm. We find that using
a complex monolithic reward signal to construct a single GRPO policy gradient objective, which
is the normal paradigm (Shao et al., 2024), tends to confuse the autonomous driving agent during
RL training, as it obscures the specific causes of high rewards and makes it difficult for the agent
to discern the underlying patterns. Instead, we decompose the complex reward signal into several
semantically clear components, computing separate policy gradient losses for each of them and op-
timize a weighted sum of these losses. By doing so, the strategy provides the agent with a set of
explicit targets, effectively guiding the policy to align them and achieve a harmonious optimization
process.

Our method ReAD demonstrates favorable performance. When applied to the DiffusionDrive model
on the NavSim benchmark, 2 epochs of reinforcement-based fine-tuning lead to an increase in the
PDMScore (Dauner et al., 2024) from 87.7 to 88.8. This improvement is achieved with minimal
additional tuning and without any modifications to the model architecture, suggesting the efficiency
and effectiveness of ReAD. We further evaluate our method using open-loop metrics on the nuScenes
dataset, with the DiffusionDrive-nusc branch as the baseline. The same brief training for 1 epoch
significantly improves key planning metrics.The L2 error remains comparable (0.57 v.s., 0.57), and
most notably, the collision rate is reduced by over 60%, achieving a new state-of-the-art result
of 0.03% (from 0.08%). Extensive ablation studies verify that our reward decomposition strategy
is pivotal to these gains, whereas using a single comprehensive reward alone leads to negligible
improvement. Our method enhances end-to-end driving models by leveraging RL for efficient and
targeted policy optimization, contributing to safer and more robust autonomous driving agents.

2 RELATED WORKS

End-to-end Autonomous Driving. End-to-end autonomous driving model directly maps raw sen-
sor inputs to control commands or planned trajectories, seeking to replace conventional modular
systems with a unified learning-based framework (Sun et al., 2025; Gao et al., 2024; Wang et al.,
2024d; Liao et al., 2025b). UniAD (Shi et al., 2016) represents a key advance in this direction, intro-
ducing a query-based architecture that integrates multiple perception tasks under a single planning-
aware objective. Subsequently, VAD (Jiang et al., 2023) proposed a vectorized scene representation
with efficient query-based interactions, reducing computational overhead while retaining competi-
tive planning performance. Despite these innovations, both models regress only a single trajectory.
Many works adopt the same paradigm. (Chen et al., 2024c; Chitta et al., 2022; Li et al., 2024a;d)
Such design overlooks the inherent multimodality and uncertainty in real-world driving scenarios.
Addressing this limitation, VADv2 (Chen et al., 2024b) marks a paradigm change by incorporat-
ing a large vocabulary of 8192 anchor trajectories, which enable multi-mode motion predictions
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and significantly improve the performance of the model. Hydra-mdp (Li et al., 2024b) further ad-
vances this direction. Diffusion-Drive (Liao et al., 2025a) applies powerful generative diffusion
models to trajectory planning. By performing truncated denoising over a much smaller set of an-
chor trajectories, it generates highly diverse and rich trajectory proposals, substantially expanding
the agent’s action space and enabling more potential behavioral modes. Despite achieving a certain
level of multimodality, however, Diffusion-Drive’s planning process remains rooted in imitating ex-
pert trajectories during training. As a result, although the model possesses a rich action space, the
probability distribution over this space tends to mimic expert behaviors rather than being explicitly
optimized for driving performance. To this end, we propose READ,a reinforcement learning-based
framework designed to fully unlock the multimodal capacity in end-to-end driving models.

Reinforcement Learning for Autonomous Driving. The integration of reinforcement learning into
autonomous driving planning has been explored largely within the framework of Vision-Language-
Action (VLA) models (Xu et al., 2024a; Chen et al., 2024a; Xu et al., 2024b; Wang et al., 2024a),
where reinforcement learning is applied to refine decision-making based on semantic reasoning.
AlphaDrive (Jiang et al., 2025) introduced a two-stage training strategy combining supervised
fine-tuning with Group Relative Policy Optimization (GRPO), using multiple reward components
tailored to driving objectives. Drive-R1 (Li et al., 2025) jointly optimized textual reasoning and
trajectory prediction through a carefully designed reward function to reduce inconsistency. VLM-
RL (Huang et al., 2025) automated reward shaping using VLMs, improving safety metrics, while
OmniDrive (Wang et al., 2024b) integrated 3D spatial understanding and counterfactual reasoning
to enhance robustness. However, few works have explored integrating reinforcement learning into
end-to-end autonomous driving. This gap is noteworthy, as an end-to-end RL paradigm holds the
potential to directly address key limitations of the prevailing multistage RL+VLA approaches. (For
example, the reward misalignment and suboptimal policy updates arising from discrete reasoning
stages) By mapping raw sensor inputs directly to control signals, end-to-end reinforcement learning
is promising to achieve superior policy coherence, enhanced training efficiency, and more robust
generalization in complex driving environments.

3 PROPOSED APPROACH

3.1 PRELIMINARIES

Reinforcement Learning (RL) is a machine learning paradigm where an agent learns to make deci-
sions through trial and error by interacting with an environment. The goal is to maximize cumulative
reward over time. At each time step, the agent observes a state st and selects an action at accord-
ing to a policy π. In standard policy gradient algorithms, such as PPO (Schulman et al., 2017) and
A2C (Mnih et al., 2016), a value network (critic) is typically employed to evaluate the quality of ac-
tions taken by the policy and compute the reward function, which guides the policy updates. While
effective, training this value network can result in significant computational overhead, as it often
doubles the number of parameters that need to be optimized. Group Relative Policy Optimization
(GRPO) (Shao et al., 2024) is an RL algorithm designed to significantly reduce training costs by
eliminating the need for a separate critic model.

The GRPO objective is defined as follows: For a given prompt q (e.g., a state in a driving scenario),
a group of G outputs o1, o2, · · · , oG is sampled from the old policy πθold . The new policy πθ is then
optimized by maximizing the objective:

JGRPO(θ) = Eq∼P (Q),{oi}G
i=1∼πθold (O|q)[

1

G

G∑
i=1

min

(
πθ(oi|q)
πθold(oi|q)

Ai, clip

(
πθ(oi|q)
πθold(oi|q)

, 1− ε, 1 + ε

)
Ai

)]
− βDKL(πθ||πref),

(1)

where ϵ and β are hyper-parameters. In the objective,the DKL(πθ||πref) is the Kullback-Leibler
divergence defined as:

DKL(πθ||πref) =

(
πθ(oi|q)
πref(oi|q)

− log
πθ(oi|q)
πref(oi|q)

− 1

)
, (2)

which acts as a regularizer that constrains the policy πθ from deviating too far away from the refer-
ence model and consequently learns irrational or degenerate behaviors.
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Ai is the relative advantage given by:

Ai =
ri − µG

σG
, where µG =

1

G

G∑
j=1

rj , σG =

√√√√ 1

G

G∑
j=1

(rj − µG)2. (3)

Since the reward signal r(·) and the resulting advantage Ai are required to be non-differentiable,
GRPO does not rely on direct gradient-based optimization. Instead, the advantage scores provide
a relative ranking of output quality within the group. By maximizing the objective, the probability
distribution of the policy is adjusted to favor actions with higher advantages, thereby progressively
improving performance.

3.2 REINFORCEMENT-LEARNING-BASED END-TO-END AUTONOMOUS DRIVING

Integrating reinforcement learning into end-to-end autonomous driving models poses unique chal-
lenges, primarily in relation to the continuity of the action space and the computation of the action
probability πθ(o|q) ,both central to policy gradient algorithms such as GRPO.

The application of policy gradient algorithms requires knowing the probability of generating each
specific output oi. In text-based domains (e.g, LLMs or VLM-based planners), the action space is
naturally discrete, making probability computation straightforward. However, in end-to-end driv-
ing, the action space of the agent comprises high-dimensional continuous trajectories, rendering the
probability density over this complex space computationally intractable. One common approach to
overcome this is to discretize the continuous action space using a fixed set of trajectories, follow-
ing the paradigm of VADv2 (Chen et al., 2024b). However, such discretization severely constrains
behavioral expressivity, imposes considerable computational overhead, and compromises the gener-
ative continuity essential for nuanced trajectory planning.

We argue that policy optimization does not require the exact accurate probability density distribution
over the continuous and complex trajectory space. The primary focus for πθ lies not in precisely
modeling the true action-space distribution, but rather in its ability to faithfully represent the pref-
erences of the model and adapt effectively through training. Thus, a surrogate probability measure
suffices if it is an optimizable confidence proxy and a differentiable output of the model.

Optimizable Confidence Proxy. The surrogate measure should be derived by carefully tracing
the trajectory generation process of the agent, incorporating all stochastic stages while omitting
deterministic components. Crucially, the probability distributions of these stochastic variables must
be learnable and context-dependent—not based on fixed priors. This allows the measure to faithfully
represent the model’s confidence or preference for a specific trajectory output.

Differentiable Variable. The probability computation must be a differentiable output of the model
and most crucially, must engage a substantial portion of the model’s parameters. This facilitates
extensive propagation of gradients throughout the network, enabling a comprehensive and effective
policy re-calibration.

Formally, let the generation of a specific trajectory o in an end-to-end model involve M stochastic
stages, each yielding a confidence logit li for i = 1, . . . ,M . The overall surrogate log-probability is
defined as:

log πθ(o | q) =
M∑
i=1

log σ(li), (4)

where σ denotes the softmax function (or an appropriate transformation to a probability value, as
required per stage).

This surrogate probability measure provides the foundation for applying GRPO to end-to-end driv-
ing models. Nevertheless, the existence of optimizable probability distributions does not alone
suffice for effective RL fine-tuning. It is equally critical that the base-model inherently supports
multimodality, rather than merely producing minor variations of similar outputs.

Without meaningful diversity and multimodality, the trajectories sampled from the model would
be nearly identical, rendering relative advantage comparisons in GRPO ineffective and failing to
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Figure 2. Comparative demonstration of reward decomposition. Comparison between normal
paradigm of group-relative-policy optimization algorithm and our reward decomposition strategy
provide a useful learning signal. On the other hand, for models already endowed with with a di-
verse action space, reinforcement learning can induce substantial performance gains through subtle
adjustments in probability distribution.

3.3 REWARD DECOMPOSITION STRATEGY

The selection of reward signals is also a significant step in reinforcement learning.Since the action
space of end-to-end autonomous driving agents is composed of trajectories, we need to comprehen-
sively evaluate the quality of each sampled trajectory. A representative and widely-used metric for
such evaluation is the PDMScore from the NavSim(Dauner et al., 2024) benchmark, which combines
safety (NC: no-at-fault-collision, DAC: drivable-area-compliance),efficiency (EP:ego-progress),and
comfort (Comf) metrics.

Our initial approach utilized the unified PDMScore as the sole reward signal ri = PDMScore(oi)
for each trajectory oi. We computed a single advantage Ai and policy gradient loss LGRPO according
to Equation (1). However, this strategy resulted in negligible improvement. We attribute this failure
to the composite nature of the PDMScore: although it comprehensively reflects overall driving
quality, its complex formulation obscures the underlying patterns that lead to high rewards, making
it difficult for the policy to discern clear optimization directions during training.

In contrast, each component of the PDMScore provides semantically explicit and interpretable op-
timization guidance. To validate this insight, we conducted an experiment using only the EP score
as the reward signal. The results (detailed in Section 4) demonstrated a remarkable improvement in
ego progress. However, this single-objective optimization caused the agent to adopt overly aggres-
sive behaviors, significantly degrading other metrics—particularly No-at-fault Collision (NC). This
trade-off highlights a fundamental challenge: how to maintain clear and actionable optimization
signals while holistically improving safety and efficiency.

Crucially, we observe that the various components of the PDMScore—though measuring distinct
aspects—are not inherently competing or incompatible. Improvement in one metric (e.g., collision
avoidance) need not come at the expense of another (e.g., progress). We therefore propose a reward
decomposition strategy that preserves semantic clarity while enabling multi-objective optimization.
We decompose the PDMScore into independent reward components:

rNC = NC(oi), rDAC = DAC(oi), rTTC = TTC(oi), rEP = EP(oi), rComf = Comf(oi), (5)
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Figure 3. Overall pipeline of ReAD. For each prompt, the agent generates a group of G multimodal
trajectories. ReAD then evaluates each of them using decomposed, semantically clear reward signals
and computes multiple gradient policy losses with the surrogate probability measure. The agent then
optimizes and balances the distinct objectives.

For each reward component m ∈ {NC,DAC,TTC,EP,Comf}, we compute a separate advantage
Am

i using group-relative normalization:

Am
i =

rmi − µm
G

σm
G

, where µm
G =

1

G

G∑
j=1

rmj , σm
G =

√√√√ 1

G

G∑
j=1

(rmj − µm
G )2, (6)

We then derive a corresponding GRPO policy gradient loss for each component:

Lm
GRPO = − 1

G

G∑
i=1

[
min

(
πθ(oi|q)
πθold(oi|q)

Am
i , clip

(
πθ(oi|q)
πθold(oi|q)

, 1− ϵ, 1 + ϵ

)
Am

i

)]
+β·DKL(πθ||πref),

(7)

The total optimization objective becomes a weighted sum of these individual losses:

Ltotal =
∑
m

wm · Lm
GRPO. (8)

where wm > 0 are weighting coefficients that balance the emphasis among different objectives.

This approach provides the agent with multiple distinct and interpretable learning signals, each
guiding the policy toward a specific aspect of driving behavior. By adjusting wm, we can explic-
itly control the optimization direction—emphasizing safety (wNC, wDAC, wTTC), efficiency (wEP),
or comfort (wC). As demonstrated in Section 4, this decomposition enables rapid and significant
improvement in overall driving performance with minimal fine-tuning, achieving a better balance
between all metrics compared to using a monolithic reward.

4 EXPERIMENTS

4.1 DATASETS

NavSim. NavSim is a high-fidelity simulation platform designed for benchmarking autonomous
driving planning systems. It supports comprehensive closed-loop non-reactive evaluation with di-
verse urban scenarios and dynamic agent behaviors. We employ its PDMScore (as introduced in
Section 3.3) for holistic assessment of driving performance across safety, progress, and comfort.

nuScenes. The nuScenes dataset is previously widely adopted for open-loop evaluation of end-to-
end autonomous driving models. Although methods such as Ego-MLP(Li et al., 2024d) achieve
strong performance on nuScenes using only ego-state information—suggesting limitations in the
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Table 1: Loss weights configuration for ReAD training on NavSim.

Loss Category Loss Component Weight

Policy Losses

Collision (LNC) 5.0
Drivable Area (LDAC) 4.0

Time-to-Collision (LTTC) 7.0
Ego Progress (LEP ) 1.6
Comfort (LComf ) 0.8

Trajectory Losses
Total Trajectory 4.0

Trajectory Classification 2.0
Trajectory Regression 1.6

Perception Losses

Diffusion (Ldiff ) 0.20
Agent Classification (Lcls) 0.10

Agent Bounding Box (Lbox) 0.01
BEV Semantic (Lbev) 0.14

Other KL Divergence (β) 0.02

Table 2: Comparison on planning-oriented NAVSIM navtest split.

Method NC↑ DAC↑ EP↑ TTC↑ Comf.↑ PDMS↑
UniAD 97.8 91.9 92.9 100.0 78.8 83.4
Transfuser 97.7 92.8 92.8 100.0 79.2 84.0
VADv2-V8192 97.2 89.1 76.0 91.6 100.0 80.9
Hydra-MDP-V8192 97.9 91.7 77.6 92.9 100.0 83.0
Hydra-MDP-V8192-W-EP 98.3 96.0 78.7 94.6 100.0 86.5

DiffusionDrive 98.1 96.2 81.8 94.5 100.0 87.7
ReAD 98.3 96.9 83.4 94.5 99.8 88.8

open-loop evaluation setup—they predominantly reduce L2 error by learning simplistic behaviors
like straight-line driving or stopping, while still exhibiting high collision rates. Thus, within this
framework, the collision rate remains a meaningful indicator of planning reliability.

4.2 IMPLEMENTATION DETAILS

NavSim. We fine-tuned the DiffusionDrive baseline using the ReAD framework with the GRPO
algorithm. The entire model serves as the current policy model πθ, while the initial frozen model
acts as the reference policy model πref. The total loss combines our decomposed-reward GRPO-
policy-gradient losses with the original losses utilized in DiffusionDrive. Specifically,we retain the
trajectory loss but reduce the weight of the perception losses to 10% to prioritize planning-related
learning. The specific loss weights are detailed in Table 1.

The model was trained for 2 epochs (approximately 640 steps) on the navtrain split using a
learning rate of 4.5× 10−6 and a batch size of 256. All experiments were conducted on 4 NVIDIA
RTX 4090 GPUs with a random seed of 0. Model checkpoints were saved at 120-step intervals,
and the results reported in the main paper correspond to the checkpoint at step 480, which achieved
optimal performance on the validation set.

nuScenes. We also evaluated our ReAD framework on the DiffusionDrive-nusc branch. In this
setting, we froze the perception layers and trained only the planning head of the current policy πθ,
using the frozen initial model as the reference. We construct GRPO policy gradient loss for both the
L2 loss and the collision rate metrics. The regression and collision-rate policy gradient loss weights
are set respectively at 2.0 and 1.0,and the KL-divergence β is set at 0.05. Training was conducted for
1 epoch (approximately 500 steps) using a learning rate of 2×10−5 on 8 NVIDIA RTX 4090 GPUs.
During training, checkpoints were saved at 100-step intervals. The results reported in this paper are

7
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Table 3: Open-loop evaluation results on the nuScenes dataset.

Method L2 (m) ↓ Collision Rate (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

VAD 0.41 0.70 1.05 0.72 0.07 0.17 0.41 0.22
UniAD 0.45 0.70 1.04 0.73 0.62 0.58 0.63 0.61
SparseDrive 0.29 0.58 0.96 0.61 0.01 0.05 0.18 0.08

DiffusionDrive 0.27 0.54 0.90 0.57 0.03 0.05 0.16 0.08
ReAD 0.27 0.55 0.90 0.57 0.00 0.01 0.08 0.03

Table 4: Ablation study on loss weights.

Experiments GRPO Loss Weights Performance Metrics (NavSim)

wNC wDAC wEP wTTC wCOM wPDMS NC ↑ DAC ↑ EP ↑ TTC↑ Comf↑ PDMS ↑
DiffusionDrive – – – – – – 98.1 96.2 81.8 94.5 100.0 87.7
ReAD 5.0 4.0 1.6 7.0 1.0 0.0 98.3 96.9 83.4 94.5 99.8 88.8

Experiment 1 0.0 0.0 0.0 0.0 0.0 10.0 98.1 96.2 82.0 94.4 99.9 87.7
Experiment 2 0.0 0.0 10.0 0.0 0.0 0.0 94.3 95.5 82.7 84.0 93.5 81.8
Experiment 3 5.0 4.0 1.6 8.0 1.0 0.0 98.3 96.8 83.1 94.8 99.7 88.7
Experiment 4 5.0 4.0 2.0 7.0 1.0 0.0 98.2 96.8 83.4 94.4 99.7 88.7

achieved by the fourth or fifth saved checkpoint, both of which yield comparable performance on
the evaluation metrics.

4.3 MAIN RESULTS

NavSim. On the NavSim benchmark, ReAD demonstrates a substantial improvement in holistic
driving performance over the strong DiffusionDrive baseline. As shown in Table 2, after only 2
epochs of fine-tuning, ReAD elevates the overall PDMScore from 87.7 to 88.8. Notably, READ
achieves significant gains in Ego Progress (EP), improving from 81.8 to 83.4, while also enhanc-
ing safety-related metrics such as No-Collision (NC) and Drivable Area Compliance (DAC). These
results validate that the lightweight reinforcement learning fine-tuning of ReAD effectively recal-
ibrates the trajectory distribution toward higher-reward behaviors without compromising other as-
pects of driving quality.

nuScenes. Our open-loop evaluation on the nuScenes dataset highlights a dramatic improvement
in safety. As summarized in Table 3, ReAD reduces the average collision rate by over 60% (from
0.08% to 0.03%) after just 1 epoch of training, achieving a new state-of-the-art result in collision
avoidance. This significant safety enhancement is achieved while maintaining a comparable L2
error, underscoring the ability of ReAD to learn substantially safer policies without compromising
trajectory accuracy.

4.4 ABLATION STUDY

GRPO-Gradient-Policy-Loss Weight. We conduct a detailed ablation study to evaluate the impact
of different reward decomposition strategies and their corresponding loss weights on driving perfor-
mance. The results, summarized in Table 4, demonstrate the critical role of our proposed reward
decomposition.

In Experiment 1, we replace the decomposed reward with a single monolithic PDMScore signal
(wPDMS = 10.0). The results show negligible improvement over the baseline, confirming that a
composite reward obscures the underlying patterns that lead to high rewards, thereby hindering
effective policy exploration.

In Experiment 2, we use only the Ego Progress (EP) reward (wEP = 10.0) to construct the policy
gradient loss. While this leads to increased progress (EP rises from 81.8 to 82.7), it causes severe
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Table 5: Ablation study on anchor trajectory configurations. Configuration notation: X/Y indi-
cates training with X anchors and evaluation with Y anchors. The baseline uses 20 anchors for both
training and evaluation (Liao et al., 2025a).

Configuration NC↑ DAC↑ EP↑ TTC↑ Comf.↑ PDMS↑

20/20 (Baseline) 98.1 96.2 81.8 94.5 100.0 87.7
20/20 (RL fine-tuned) 98.3 96.5 82.5 94.8 99.9 88.4
20/40 (RL fine-tuned) 98.3 96.6 82.6 94.8 99.8 88.4
40/20 (RL fine-tuned) 98.4 96.6 83.1 94.7 99.8 88.6
40/40 (RL fine-tuned) 98.3 96.9 83.4 94.5 99.8 88.8

(a) (b)

Figure 4. Visualization of anchor trajectories. Forty anchor trajectories cover a more diverse
action space and better facilitate multimodal exploration in reinforcement-learning based training.

degradation in safety metrics (NC drops to 94.3 and TTC to 84.0), indicating that single-objective
optimization induces overly aggressive behavior.

Experiments 3 and 4 utilize multiple semantically clear reward signals to construct policy gradient
loss. Both of the experiments show substantial overall improvement, validating that our decomposi-
tion strategy provides clear and complementary learning signals. Small adjustments in weights (e.g.,
wTTC or wEP) lead to nuanced changes in agent behavior, balancing safety and efficiency without de-
structive trade-offs. Our final weight configuration achieves the best overall performance.

Number of Anchor-Trajectories. The structure of DiffusionDrive allows flexible use of anchor
trajectories during training and inference. We ablate this flexibility to analyze its interaction with
RL fine-tuning. As shown in Table 5, increasing the number of anchors enhances performance.

Using 20 anchors for both training and inference (20/20) already brings improvement over the base-
line after RL fine-tuning (PDMS: 87.7 → 88.4). Using 40 anchors during training further boosts
performance (PDMS: 88.8).Even infer with only 20 trajectories, the model still achieves the PDMS
of 88.6, indicating that training with more diverse behavioral modes enables better policy recalibra-
tion. The best result is achieved with 40 anchors during both training and inference (40/40, PDMS:
88.8), confirming that a richer action space facilitates more effective exploration and probability
redistribution during RL training.

5 CONCLUSION

In conclusion, this work introduces the ReAD framework, which explores the integration of rein-
forcement learning into end-to-end autonomous driving by addressing main challenges of policy
optimization in a continuous trajectory space. The proposed method, featuring a surrogate probabil-
ity measure to enable gradient-based updates and a reward decomposition strategy to provide bal-
anced learning signals, offers an efficient fine-tuning pathway for pre-trained driving models. This
work helps bridge the gap in applying RL to end-to-end driving systems, demonstrating a feasible
direction for enhancing planning performance and safety with minimal computational overhead.
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A APPENDIX

A.1 DETAILS IN COMPUTATION OF SURROGATE PROBABILITY MEASURE

The integration of DiffusionDrive into ReAD framework requires the computation of a surrogate
probability measure πθ(o|q) for any generated trajectory o given context q. We derive this by for-
malizing the trajectory generation pipeline of DiffusionDrive and analyzing its stochastic compo-
nents.

DiffusionDrive generates multimodal trajectory proposals through a truncated diffusion process op-
erating on a set of K anchor trajectories A = {ak}Kk=1, where ak ∈ RT×3 (T is the number of future
timesteps). The complete trajectory generation procedure for a given scene context q (aggregating
BEV features, agent queries, and ego status) can be formalized as:

For each anchor k = 1, . . . ,K, t ∼ U(1, T ), ϵk ∼ N (0, I) :

ã
(t)
k =

√
ᾱtak +

√
1− ᾱtϵk; o

reg
k , lk = fθ(ã

(t)
k ,q);P (k|q) = exp(lk)∑

j exp(lj)
.

(9)

where ᾱt is the noise schedule coefficient at timestep t, U denotes uniform distribution, and fθ
represents the decoder network that simultaneously predicts the denoised trajectory oreg

k and the
mode selection logit lk from the noise-trajectory feature.

We systematically examine the generation pipeline to identify optimizable stochastic elements:

• Initial Noise Sampling: The noise vectors ϵk are sampled from a fixed isotropic Gaus-
sian distribution N (0, I). While this introduces stochasticity, the probability density p(ϵk) =
(2π)−d/2 exp(− 1

2∥ϵk∥
2) is a fixed prior that cannot be optimized through gradient-based learning.

• Timestep Sampling: The diffusion timestep t is sampled from a uniform distribution. This discrete
sampling process is non-differentiable and not suitable for policy gradient optimization.

• Mode Selection: The logits l = [l1, l2, . . . , lK ]⊤ are produced by the learnable decoder fθ and
represent the context-dependent confidence scores of the model for each anchor. The resulting
categorical distribution:

P (mode = k|q) = σ(l)k =
exp(lk)∑K
j=1 exp(lj)

(10)

is both differentiable and optimizable, as the logits l are functions of the model parameters θ.

Based on this analysis, we define the surrogate probability for trajectory ok (generated from the
k-th anchor) simply as follows,intentionally excluding the fixed prior distribution as they cannot be
optimized through reward signals:

πθ(ok|q) = P (mode = k|q) = σ(l)k (11)

With the surrogate probability πθ properly defined, the GRPO integration becomes straightforward.
For each input scenario q, DiffusionDrive naturally produces a group of G = Nanchor trajectory
proposals oi, i = 1, ..., G, each generated from a distinct anchor trajectory. We directly use this
set of trajectories as the group of ”responses” required by GRPO. The probability πθ(oi|q) for each
trajectory is given by the surrogate probability distribution defined in Eq. (4).
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