
Under review as a conference paper at ICLR 2024

A LINEARLY CONVERGENT GAN INVERSION-BASED
ALGORITHM FOR REVERSE ENGINEERING OF DECEP-
TIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

An important aspect of developing reliable deep learning systems is devising
strategies that make these systems robust to adversarial attacks. There is a long
line of work that focuses on developing defenses against these attacks, but recently,
researchers have begun to study ways to reverse engineer the attack process. This
allows us to not only defend against several attack models, but also classify the
threat model. However, there is still a lack of theoretical guarantees for the reverse
engineering process. Current approaches that give any guarantees are based on the
assumption that the data lies in a union of linear subspaces, which is not a valid
assumption for more complex datasets. In this paper, we propose a novel framework
for reverse engineering of deceptions which supposes that the clean data lies in the
range of a GAN. To classify the signal and attack, we jointly solve a GAN inversion
problem and a block-sparse recovery problem. The core contribution of this paper
is to provide for the first time deterministic linear convergence guarantees for this
problem. We also empirically demonstrate the merits of the proposed approach on
several nonlinear datasets as compared to state-of-the-art methods.

1 INTRODUCTION

Modern deep neural network classifiers have been shown to be vulnerable to imperceptible perturba-
tions to the input that can drastically affect the prediction of the classifier. These adversarially attacked
inputs can pose problems in safety-critical applications where correct classification is paramount.
Adversarial attacks can be either fixed universal perturbations, which can deceive a pretrained network
on different images of the same dataset (Moosavi-Dezfooli et al., 2017), or image-dependent pertur-
bations (Poursaeed et al., 2018). For the latter approach, attack generation for a given classification
network entails maximizing a classification loss function subject to various constraints (Madry et al.,
2018). For instance, we can assume that the additive perturbation δ for a clean signal x lies in an ℓp
ball for some p ≥ 1, i.e., δ ∈ Sp, where Sp = {δ : ∥δ∥p ≤ 1} (Maini et al., 2020).

Over the last few years, there has been significant interest in the topic of devising defenses to enhance
the adversarial robustness of deep learning systems. This constant endeavor has led to a growing
interest in methods that adopt a more holistic approach towards adversarial robustness, known as the
Reverse Engineering of Deceptions (RED) problem. The objective of RED is to go beyond mere
defenses by simultaneously defending against the attack and inferring the deception strategy followed
to corrupt the input, e.g., which ℓp norm was used to generate the attack (Gong et al., 2022). There
are various practical methods to reverse engineer adversarial attacks that rely on deep representations
of corrupted signals or complicated ad-hoc architectures Moayeri & Feizi (2021); Gong et al. (2022);
Goebel et al. (2021) , but their effectiveness is only empirically verified, and there is a noticeable lack
of theoretical guarantees for the RED problem.

This inspired the work of Thaker et al. (2022), in which the authors propose the first principled
approach for the RED problem. Specifically, for additive ℓp attacks, they assume that both the signal
x and the attack δ live in unions of linear subspaces spanned by the blocks of dictionaries Ds and
Da that correspond to the signal and the attack respectively i.e. x = Dscs and δ = Daca. These
dictionaries are divided into blocks according to the classes of interest for x and δ (i.e., the signal
classification labels for x and the type of ℓp threat model used for generating δ). The specific form of

1



Under review as a conference paper at ICLR 2024

Ds and Da gives rise to block-sparse representations for the signal x and the attack δ with respect
to these dictionaries. This motivates their formulation of RED as an inverse optimization problem
where the representation vectors cs and ca of the clean signal x and attack δ are estimated under a
block-sparse promoting regularizer, i.e.,

min
cs,ca
∥x′ −Dscs︸ ︷︷ ︸

x

−Daca︸ ︷︷ ︸
δ

∥2 + λs∥cs∥1,2 + λa∥ca∥1,2. (1)

Above, ∥ · ∥1,2 is a block-sparsity promoting ℓ1/ℓ2 norm (Stojnic et al., 2009; Eldar & Mishali, 2009;
Elhamifar & Vidal, 2012). To solve this problem, Thaker et al. (2022) use an alternating minimization
algorithm for estimating cs and ca and accordingly provide theoretical recovery guarantees for the
correctness of their approach.

While these recent works undoubtedly demonstrate the importance of the problem of reverse engi-
neering of deceptions (RED), there still exist several challenges.

Challenges. While the approach in Thaker et al. (2022) is theoretically sound, the main drawback
of the method is that it is comes with strong assumptions on the data generative model, i.e. that
the data live in a union of linear subspaces. It is apparent that this assumption is unrealistic for
complex and high-dimensional datasets. A natural step towards relaxing this simplistic assumption is
to leverage the power of deep generative models, thus building on adversarial purification approaches
and suitably adjusting their formulation to the RED problem. However, we are then left with an
inverse problem that is highly non-convex. Namely, the signal reconstruction involves a projection
step onto the manifold parameterized by a pretrained deep generative model, and this problem is
yet to be theoretically understood. Further, RED involves finding latent representations for both
the signal and the attack. An efficient way to deal with this is to use an alternating minimization
algorithm, as in Thaker et al. (2022). This leads to the following challenge for developing both
practical and theoretically grounded algorithms:

Can we provide theoretical guarantees for an alternating minimization algorithm that mini-
mizes a non-convex and non-smooth RED objective?

Contributions. In this work, we propose a novel reverse engineering of deceptions approach that
offers theoretical guarantees and can be applied to complex datasets. We address the weakness of the
work in Thaker et al. (2022) by leveraging the power of nonlinear deep generative models. Specifically,
we replace the signal model x = Dscs in equation 1 with x = G(z), where G : Rd → Rn, d≪ n is
the generator of a Generative Adversarial Network (GAN). By using a pre-trained GAN generator,
we can reconstruct the clean signal by projecting onto the signal manifold learned by the GAN, i.e.
by estimating a z such that G(z) ≈ x. Further, adversarial perturbations are modeled as in Thaker
et al. (2022), i.e. as block-sparse vectors with respect to a predefined dictionary. The inverse problem
we solve in this model is then:

min
z,ca
∥x′ −G(z)︸ ︷︷ ︸

x

−Daca︸ ︷︷ ︸
δ

∥2 + λ∥ca∥1,2. (2)

Our main contributions are the following:

• A GAN inversion-based RED algorithm with linear convergence guarantees. We address the main
challenge above and provide recovery guarantees for the RED problem. We divide our analysis
into two regimes.

1. The first setting is the clean signal reconstruction problem. For this problem, known as GAN
inversion, we demonstrate linear convergence of a subgradient descent algorithm to the global
minimizer of the objective function. Note that we only require smoothness of the activation
function and a local error-bound condition. To the best of our knowledge, this is the first
result that analyzes the GAN inversion problem departing from the standard assumption of
networks with randomized weights (Hand & Voroninski, 2017; Joshi et al., 2021).

2. We then add adversarial noise and solve Equation 2 to give linear convergence guarantees of
an alternating descent algorithm that alternates between updating z and ca. This allows us to
significantly extend the work of Thaker et al. (2022) while maintaining theoretical guarantees.

2



Under review as a conference paper at ICLR 2024

• Empirical Results for the RED problem. We also empirically verify our theoretical results on
simulated data and demonstrate strong performance on the RED problem using our alternating
algorithm on the MNIST, Fashion-MNIST and CIFAR-10 datasets.

2 RELATED WORK

Adversarial Defenses. We restrict our discussion of adversarial attacks (Carlini & Wagner, 2017;
Biggio et al., 2013), to the white-box attack scenario where adversaries have access to the network
parameters and solve a loss maximization problem. Adversarial training, a min-max optimization ap-
proach, has been the most popular defense strategy Tramer & Boneh (2019). Adversarial purification
methods rely on pretrained deep generative models as a prior for denoising corrupted images (Nie
et al., 2022; Samangouei et al., 2018). This is formulated as an inverse optimization problem (Xia
et al., 2022), whose theoretical properties are still not fully understood (Joshi et al., 2021; Hand &
Voroninski, 2017). In contrast to the wide defenses literature , our work focuses on the theoretical
aspects of the RED problem and the corresponding inverse problems.

Theoretical Analysis of GAN inversion algorithms. We employ a GAN inversion strategy for
the RED problem. There is a rich history of deep generative models for inverse problems, such as
compressed sensing (Ongie et al., 2020; Jalal et al., 2020) super-resolution (Menon et al., 2020),
image inpainting (Xia et al., 2022). However, theoretical understanding of the GAN inversion
optimization landscape has studied settings where the GAN has random or close-to-random weights
(Shah & Hegde, 2018; Hand & Voroninski, 2017; Joshi et al., 2021; Lei et al., 2019; Song et al.,
2019). For the first time in the literature, we depart from these assumptions to provide a more holistic
analysis of the GAN inversion problem, instead leveraging error-bound conditions and proximal
Polyak-Łojasiewicz conditions (Karimi et al., 2016; Frei & Gu, 2021; Drusvyatskiy & Lewis, 2018).

Reverse Engineering of Deceptions (RED). RED is a recent framework to not only defend against
attacks, but also reverse engineer and infer the type of attack. In Goebel et al. (2021), the authors train
a multi-class network to detect a corrupted image and predict attack attributes. In Gong et al. (2022),
a denoiser learns by aligning the predictions of the denoised input and the clean signal. Moayeri &
Feizi (2021) use pretrained self-supervised embeddings e.g. SimCLR (Chen et al., 2020) to classify
the attacks in the low-data regime. In contrast, our work is focused on the theoretical aspects of the
RED problem; as such, we focus on improving upon the work of Thaker et al. (2022), in which the
authors show a provably correct block-sparse optimization approach for RED. The main drawback
of Thaker et al. (2022) is that their modelling assumption for the clean signal is often violated in
practice, which motivates our modelling assumptions.

3 PROBLEM FORMULATION

We build on Thaker et al. (2022) to develop a model for an adversarial example x′ = x+ δ, with x
being the clean signal and δ the adversarial perturbation. We replace the model of equation 1 with a
pretrained generator G of a GAN. Thus, the generative model we assume for x is given by

x′ ≈ G(z) +Daca. (3)

We use generators G : Rd → RnL , d≫ nL which are L-layer networks of the form

G(z) = σ(WLσ(WL−1 · · ·W2σ(W1z))) (4)

where Wi ∈ Rni×ni−1 are the known GAN parameters with n0 = d, σ is a nonlinear activation
function, and Da ∈ RnL×ka is an attack dictionary (typically with ka > nL).

As in Thaker et al. (2022), the attack dictionary Da contains blocks corresponding to different ℓp
attacks (for varying p) computed on training samples of each class. Thaker et al. (2022) verify this
modelling assumption by showing that for networks that use piecewise linear activations, ℓp attacks
evaluated on test examples can be expressed as linear combinations of ℓp attacks evaluated on training
examples. Using the model in equation 3, we then formulate an inverse problem to learn z and ca:

min
z,ca
L(z, ca) ≜ f(z, ca) + λh(ca), (5)

3



Under review as a conference paper at ICLR 2024

where f(z, ca) = ∥x′ −G(z)−Daca∥22 denotes a reconstruction loss and h(ca) denotes a (nons-
mooth) convex regularizer on the coefficients ca. For example, in Thaker et al. (2022), the regularizer
h(ca) is ∥ca∥1,2 which promotes block-sparsity on ca according to the structure of Da. We note that
our theoretical results do not assume this form for Da, but rather that its spectrum is bounded.

A natural algorithm to learn both z and ca is to alternate between updating z via subgradient descent
and ca via proximal gradient descent, as shown in Algorithm 1.

Algorithm 1 Proposed RED Algorithm
Given: x′ ∈ RnL , G : Rd → RnL , Da ∈ RnL×ka

Initialize: z0, c0a
Set: Step size η and regularization parameter λ

for k = 0, 1, 2, . . . do
Ri ← diag(σ′(Wiz

k)) for i ∈ {1, . . . , L}
zk+1 ← zk − η(W1R1)

T (W2R2)
T · · · (WLRL)

T (G(zk) +Dac
k
a − x′)

ck+1
a ← proxλh

{
cka − ηDT

a (G(z
k) +Dac

k
a − x′)

}
end for
return zk+1, ck+1

a

4 MAIN RESULTS: THEORETICAL GUARANTEES FOR RED

In this section, we provide our main theoretical results for the RED problem by demonstrating the
convergence of the iterates of Algorithm 1 to global optima. A priori, this is difficult due to the
non-convexity of equation 5 introduced by the GAN generator G(z) (Hand & Voroninski, 2017). To
get around this issue, works such as Hand & Voroninski (2017) and Huang et al. (2021) make certain
assumptions to avoid spurious stationary points. However, these conditions essentially reduce to the
GAN having weights that behave as a random network (see Definition 12 in Appendix). In practice,
especially for the RED problem, modelling real data often requires GANs with far-from-random
weights, so there is a strong need for theoretical results in this setting.

We draw inspiration from the theory of deep learning and optimization literature, where several
works have analyzed non-convex problems through the lens of Polyak-Łojasiewicz (PL) conditions or
assumptions that lead to benign optimization landscapes (Karimi et al., 2016; Richards & Kuzborskij,
2021; Liu et al., 2022). Our goal is to depart from the randomized analysis of previous GAN
inversion works to address the non-convexity of the problem. The main assumption we employ is a
local error bound condition. We conjecture this assumption holds true in practice for two reasons.
First, we show that the random network conditions assumed in existing works (Hand & Voroninski,
2017; Huang et al., 2021) already imply a local error bound condition (see Corollary 4). Moreover,
in Section 5.1, we give examples of non-random networks that also empirically satisfy the local
error-bound condition, showing the generality of our assumption. Secondly, the empirical success
of GAN inversion in various applications suggests that the optimization landscape is benign (Xia
et al., 2022). However, for the GAN inversion problem, traditional landscape properties such as a
PL condition do not hold globally 1. Nevertheless, we can use local properties of benign regions of
the landscape to analyze convergence2. Our work serves as an initial step to analyze convergence of
far-from-random networks, and an important avenue of future work is verifying the local error bound
condition theoretically for certain classes of networks.

We divide our analysis into three settings, eventually arriving at our main goal which is to provide
convergence results for the RED problem. First, we study the problem with no adversarial noise i.e.
x′ = x + δ where δ = 0. This is known as the GAN inversion problem, and Section 4.1 provides
linear convergence guarantees for GAN inversion, along with comparison to existing theoretical
results in Section 4.1.1. Next, in Section 4.2, we add adversarial noise and provide convergence
guarantees when using alternating gradient descent to optimize Equation 5 in the unregularized case
i.e. λ = 0. Finally, in Section 4.3, we study the regularized case of Equation 5.

1We refer the reader to Section 3 of (Liu et al., 2022) for a simple explanation of this phenomenon.
2Note that similar local conditions to analyze convergence have been used in works analyzing the theory of

deep learning, such as (Liu et al., 2022).

4



Under review as a conference paper at ICLR 2024

4.1 CONVERGENCE ANALYSIS OF THE GAN INVERSION PROBLEM

To begin with the most simplified version of the problem, we begin with the GAN inversion problem,
which is the case when there is no adversarial noise added to the signal. This simply corresponds
to finding the latent code z for an input x and fixed GAN G such that G(z) = x. We let f(z) ≜
∥x−G(z)∥22. Suppose there exists a z∗ such that x′ = G(z∗), so z∗ is a global minimizer of
f(z). Our first set of results will ensure convergence of the iterates zk to z∗. We will denote∥∥∆zk+1

∥∥
2
≜
∥∥zk+1 − z∗

∥∥
2
. Since the GAN inversion problem is highly non-convex, in order to

prove our convergence results, we need to posit some assumptions on G and the algorithm iterates.

Assumption 1. (Activation Function) We assume that σ is twice differentiable and smooth.

Note that standard activation functions such as the sigmoid or tanh or smooth ReLU variants (softplus,
GeLU, Swish etc.) satisfy Assumption 1.

Assumption 2. (Local Error Bound Condition) For all zk on the optimization trajectory, suppose
that there exists a µ > 0 such that

∥∥∇zf(z
k)
∥∥2
2
≥ µ2

∥∥∆zk∥∥2
2

(6)

Under these assumptions, our first main result demonstrates linear convergence of the iterates zk to
the global minimizer z∗ of the GAN inversion problem.

Theorem 3. Suppose that Assumption 1 holds for the nonlinear activation function and Assumption
2 holds with local error bound parameter µ. Let ρ and −ϵ be the maximum and minimum eigenvalues
of the Hessian of the loss. Further, assume that the step size satisfies η ≤ min

{
1
4ϵ ,

3
2ρ

}
and

η ∈
(

3µ2−
√

9µ4−32µ2ρϵ

4µ2ρ ,
3µ2+
√

9µ4−32µ2ρϵ

4µ2ρ

)
. Lastly, assume that µ ≳

√
ρϵ. Then, we have that the

iterates converge linearly to the global optimum with the following rate in (0, 1):

∥∥∆zk+1
∥∥2
2
≤
(
1− 4η2µ2

(
3

4
− ηρ

2

)
+ 4ηϵ

)∥∥∆zk∥∥2
2

(7)

The proof is deferred to the Appendix. Inspired by the proof strategy of Richards & Kuzborskij
(2021), we show an almost co-coercivity of the gradient (Lemma 9 in Appendix) that depends on
bounding ρ and ϵ for smooth and twice differentiable activation functions.

Along with the step size η, there are three problem-specific parameters that affect the convergence
rate: the largest and the smallest eigenvalues of the Hessian of the loss, i.e., ρ and −ϵ respectively,
and the local error bound parameter µ. Note that because the problem is non-convex, the Hessian
will have at least one negative eigenvalue. The rate becomes closer to 1 and convergence slows as
ϵ gets larger because ϵ controls the slack in co-coercivity of the gradient in our proof. Similarly, if
the operator norm of the weights is controlled, then the convergence rate is faster as a function of
ρ. Finally, the convergence rate speeds up as µ increases since each gradient descent iterate takes a
larger step towards the minimizer. The condition µ ≳

√
ρϵ ensures that the gradient norm is roughly

larger than the negative curvature of the Hessian, so that progress towards the global minimizer can
still be maintained. The quantity

√
ρϵ is the geometric mean of the largest and smallest eigenvalue of

the Hessian and can be thought of as a quantity capturing the range of the spectrum of the Hessian.

Due to the almost co-coercivity property of the gradient operator (see Lemma 9, Appendix), the
step size of gradient descent must be bounded away from zero. However, for practical purposes, the
regime that is useful for ensuring fast convergence is when the step size is indeed sufficiently large.

4.1.1 COMPARISON TO EXISTING GAN INVERSION APPROACHES

Hand & Voroninski (2017) and Huang et al. (2021) derive a condition on the GAN weights, known as
Weight Distribution Condition (WDC), under which they characterize the optimization landscape of
the GAN inversion problem. The WDC ensures the weights of the network behave close to random
networks (see Definition 12 in Appendix). Hand & Voroninski (2017) show that under the WDC,

5



Under review as a conference paper at ICLR 2024

there is only one spurious stationary point with a small basin of attraction. We provide a different
viewpoint by demonstrating that the WDC implies a local error bound condition with parameter µ.

Corollary 4. (GAN Inversion for Networks that satisfy WDC) Let ϵ be fixed such that K1L
8ϵ1/4 ≤ 1,

where L is the number of the layers of the GAN generator and K1 an absolute constant. Suppose
that for all i ∈ [L], Wi satisfies the WDC with parameter ϵ. Suppose we initialize the iterates z0 of
Algorithm 1 that satisfy

z0 /∈ B(z∗,K2L
3ϵ1/4 ∥z∗∥2) ∪ B(−κz

∗,K2L
13ϵ1/4 ∥z∗∥2) ∪ {0} (8)

where B(c, r) denotes an ℓ2 ball with center c and radius r, K2 denotes an absolute constant and
κ ∈ (0, 1). Then, there exists µ > 0 such that the local error bound condition holds along the
optimization trajectory of subgradient descent applied to iterate z0.

To illustrate the generality of the local error bound condition, we show in Section 5.1 that the local
error bound condition can also hold for certain classes of non-random networks.

4.2 REVERSE ENGINEERING OF DECEPTIONS OPTIMIZATION PROBLEM WITHOUT
REGULARIZATION

Next, we generalize the results of the previous section to the unregularized RED setting where in
Algorithm 1, we only minimize f(z, ca), i.e. λ = 0 and proxλh(·) is the identity function. Suppose
there exists a z∗ and c∗a such that x′ = G(z∗) +Dac

∗
a, so (z∗, c∗a) are global minimizers of f(z, ca).

Our first set of results will ensure convergence of the iterates (zk, cka) to (z∗, c∗a). We will denote∥∥∆zk+1
∥∥
2
≜
∥∥zk+1 − z∗

∥∥
2

and
∥∥∆ck+1

a

∥∥
2
≜
∥∥ck+1

a − c∗a
∥∥
2
. In order to capture the behaviour of

cka on the optimization landscape, we refine Assumption 2 to a different local error bound condition.
Assumption 5. (Local Error Bound Condition) For all zk and cka on the optimization trajectory,
suppose that there exists a µ > 0 such that

∥∥∇zf(z
k, cka)

∥∥2
2
+
∥∥∇caf(z

k, cka)
∥∥2
2
≥ µ2(

∥∥∆zk∥∥2
2
+
∥∥∆cka∥∥22) (9)

Under these assumptions, our main theorem for the RED problem demonstrates linear convergence
of the iterates zk and cka to the global minimizers z∗ and c∗a.
Theorem 6. Suppose that Assumption 1 holds for the nonlinear activation function and Assumption
5 holds with local error bound parameter µ. Let ρ and −ϵ be the maximum and minimum eigenvalues
of the Hessian of the loss. Under the same assumption on the step size η and the local error bound
parameter µ as in Theorem 3, we have that the iterates converge linearly to the global optimum with
the following rate in (0, 1):

∥∥∆zk+1
∥∥2
2
+
∥∥∆ck+1

a

∥∥2
2
≤
(
1− 4η2µ2

(
3

4
− ηρ

2

)
+ 4ηϵ

)
(
∥∥∆zk∥∥2

2
+
∥∥∆cka∥∥22) (10)

The proof is also deferred to the Appendix.

4.3 REGULARIZED REVERSE ENGINEERING OF DECEPTIONS OPTIMIZATION PROBLEM

We now consider the regularized problem, with λ ̸= 0. The analysis presented in Section 4.2
does not immediately extend to this setting because (z∗, c∗a) now denote minimizers of L(z, ca) =
f(z, ca) + λh(ca), which is not necessarily the pair (z∗, c∗a) such that x′ = G(z∗) +Dac

∗
a. In order

to demonstrate convergence, we appeal to well-known results that use the Polyak-Łojasiewicz (PL)
condition. We assume a local proximal PL condition on the iterates cka, which can be thought of as a
version of Assumption 5 but on the function values instead of the iterates (Karimi et al., 2016). This
assumption also takes into account the proximal update step for ca 3.
Assumption 7. Let ρ denote the Lipschitz constant of the gradient of f with respect to both z and ca.
For all zk and cka on the optimization trajectory, suppose that there exists a µ > 0 such that

2ρD(cka, ρ) +
∥∥∇zf(z

k, cka)
∥∥2
2
≥ µ(L(zk, cka)− L(z∗, c∗a)) (11)

3We refer the reader to Karimi et al. (2016) for intuition on the global proximal PL inequality

6



Under review as a conference paper at ICLR 2024

where D(cka, ρ) = −miny

[
⟨∇caf(z

k, cka), y − cka⟩+
ρ
2

∥∥y − cka∥∥22 + h(y)− h(cka)
]

Theorem 8. Suppose Assumption 7 holds with constant µ > 0. Let ρ be the maximum eigenvalue of
the Hessian of the loss. If h is convex and η = 1

ρ , then the function values converge linearly:

L(zk+1, ck+1
a )− L(z∗, c∗a) ≤

(
1− µ

2ρ

)
(L(zk, cka)− L(z∗, c∗a)) (12)

The proof is in the Appendix, but we note similarities to Karimi et al. (2016), Theorem 5.

5 EXPERIMENTS

In this section, we provide experiments to verify the local error bound condition, as well as demon-
strate the success of our approach on the MNIST, Fashion-MNIST, and CIFAR-10 datasets.

5.1 VERIFICATION OF THE LOCAL ERROR BOUND CONDITION

Figure 1: We show the output di-
mension m vs the computed µ av-
eraged over the optimization path
of 10 test examples for a GAN with
random weights and latent space di-
mension d = 10.

By studying a realizable RED problem instance, we will demon-
strate that the local error bound condition holds for a variety
of random and non-random GANs. First, we set up a binary
classification task on data x generated from a one-layer GAN
G(z) = σ(Wz) with W ∈ Rm×d. For a fixed classification
network ψ(x), we generate adversarial attacks. Since our prob-
lem is realizable, we can compute the error bound parameter µ
exactly. The full experimental setup is given in the Appendix.

Random GAN. We first verify Corollary 4 whenW is a random
matrix. In accordance with our theory, we run our alternating
optimization algorithm for 10 test examples and observe that
the iterates always converge to the global optimizer.

Moreover, Figure 1 shows how expansiveness of the GAN af-
fects the local error bound parameter µ. Many existing results
on random GAN inversion assume expansiveness of the GAN
(m≫ d) to prove a benign optimization landscape. By exam-
ining µ instead, our results offer a different viewpoint. Recall that our convergence theory (Theorem
6) shows that as µ increases, we expect faster convergence. Thus, Figure 1 gives further evidence that
expansiveness helps optimization.

Figure 2: Optimization landscape
for 2-D GAN inversion problem
with weights spanned by orthonor-
mal vectors. See text for details.

Non-Random GAN. To illustrate an example of a non-random
network that can still satisfy the local error bound condition,
consider a GAN with latent space dimension d = 2 and out-
put dimension m = 100. Suppose that the rows of W are
spanned by two orthonormal vectors

[
−
√
2/2

√
2/2
]

and[√
2/2

√
2/2
]
. The distribution of these rows is far from the

uniform distribution on the unit sphere, and also does not satisfy
the Weight Distribution Condition (WDC) from Corollary 4 for
small values of ϵ 4. The optimization landscape is still benign,
and we can reliably converge to the global optimum. Further, it
satisfies the local error bound condition empirically (details in
Appendix). Since d = 2, we plot the landscape for the GAN in-
version problem when we set c∗a = cka = 0 - Figure 2 confirms
the benign landscape. Examples of more non-random networks
and corresponding values of µ can be found in the Appendix.

4in Huang et al. (2021), ϵ must be less than 1
d90

which is a very small number even for d = 2

7



Under review as a conference paper at ICLR 2024

5.2 REVERSE ENGINEERING OF DECEPTIONS ON REAL DATA

Experimental Setup. We consider the family of {ℓ1, ℓ2, ℓ∞} PGD attacks - the full experimental
details of the attacks and network architectures can be found in the Appendix. We use a pretrained
DCGAN, Wasserstein-GAN, and StyleGAN-XL for the MNIST, Fashion-MNIST and CIFAR-10
datasets respectively (Radford et al., 2015; Arjovsky et al., 2017; Sauer et al., 2022; LeCun, 1998; Xiao
et al., 2017; Krizhevsky et al., 2009). The attack dictionary Da contains ℓp attacks for p ∈ {1, 2,∞}
evaluated on 200 training examples per class. It is divided into blocks where each block corresponds
to a signal class and attack type pair, i.e., block (i, j) of Da denotes signal class i and ℓp attack type j.

Signal Classification Baselines. We emphasize that the RED problem tries to jointly classify signal
and threat model in a principled manner. However, we can still compare the signal classification
approach to adversarial training designed to defend against a union of threat models. The first
baselines are M1,M2 and M∞, which are adversarial training algorithms for ℓ1, ℓ2 and ℓ∞ attacks
respectively. We then compare to the SOTA specialized adversarial training algorithm MSD (Maini
et al., 2020; Tramer & Boneh, 2019). Lastly, we compare to the structured block-sparse classifier
(SBSC) from Thaker et al. (2022), which relies on the linear subspaces assumption on the data.

Attack Classification Baselines. Our main comparison is to Thaker et al. (2022), which is another
principled attack detector, denoted as the structured block-sparse attack detector (SBSAD). While
there are other works that study the RED problem, there is no standardized evaluation protocol for
the RED problem yet, and other works focus on different problems such as classifying attacks in the
low-data regime or recovering exact parameters of PGD attacks.

Algorithm. To classify the signal and attack for an adversarial example x′ computed on classification
network ψ, we run Algorithm 1. We initialize z∗ to the solution of the Defense-GAN method applied
to x′, which runs GAN inversion on x′ directly (Samangouei et al., 2018). Our methods are:

1. BSD-GAN (Block-Sparse Defense GAN): The signal classifier that runs Algorithm 1 and then
uses G(zk) as input to the classification network ψ to generate a label.

2. BSD-GAN-AD (Block-Sparse Defense GAN Attack Detector): This method returns the block ĵ
of the attack dictionary Da that minimizes reconstruction loss

∥∥∥x′ −G(zk)−Da[i][ĵ]ca[i][ĵ]
∥∥∥
2

for all i.

Further experimental details such as step sizes and initialization details can be found in the Appendix.
We emphasize that the key strength of our model is that any generative model can be used to model
the clean data as long as it has favorable inversion properties. Given the wide successes of inverting
generative models in various applications, we believe our approach generalizes to the rich set of
applications where GAN inversion is used. Our goal in this section is to show that our algorithm
improves upon existing approaches for the RED problem while still providing theoretical guarantees.

Remark about assumptions. Recall that our theoretical analysis requires two assumptions, Assump-
tion 1 on the smoothness of the activation function of the GAN, and Assumption 5, a local error
bound condition. In the previous section, we showed that Assumption 5 holds for many networks. In
this section, we relax Assumption 1 to consider a variety of practical pretrained GANs. In Appendix,
we show the approach empirically works in the setting of our theoretical results as well.

Table 1: Adversarial image and attack classification accuracy on digit classification of MNIST dataset.
Refer to main text for acronym descriptions.

MNIST CNN M∞ M2 M1 MSD SBSC BSD-GAN SBSAD BSD-GAN-AD

Clean accuracy 98.99% 99.1% 99.2% 99.0% 98.3% 92% 94% - -
ℓ∞ PGD (ϵ = 0.3) 0.03% 90.3% 0.4% 0.0% 62.7% 77.27% 75.3% 73.2% 92.3%
ℓ2 PGD (ϵ = 2.0) 44.13% 68.8% 69.2% 38.7% 70.2% 85.34% 89.6% 46% 63%
ℓ1 PGD (ϵ = 10.0) 41.98% 61.8% 51.1% 74.6% 70.4% 85.97% 87.8% 36.6% 95.8%

Average 28.71% 73.63% 40.23% 37.77% 67.76% 82.82% 84.23% 51.93% 83.7%

8



Under review as a conference paper at ICLR 2024

5.2.1 MNIST AND FASHION-MNIST

For the MNIST and Fashion-MNIST datasets, we expect that the method from Thaker et al. (2022)
will not work since the data does not lie in a union of linear subspaces. For the MNIST dataset, Table
1 illustrates first that surprisingly, even the baselines from Thaker et al. (2022) are better than the
adversarial training baselines at signal classification. However, our approach improves upon this
method since the GAN is a better model of the clean data distribution. The improved data model
results in not only higher signal classification accuracy on average, but also significantly higher attack
classification accuracy since the signal error is lower. We also observe that discerning between ℓ2 and
ℓ1 attacks is difficult, a phenomenon consistent with other works on the RED problem (Moayeri &
Feizi, 2021; Thaker et al., 2022). We defer the experiments on the Fashion-MNIST dataset to the
Appendix, where we observe similar conclusions to performance on the MNIST dataset.

5.2.2 CIFAR-10

We use a class-conditional StyleGAN-XL to model the clean CIFAR-10 data and a WideResnet as
the classification network, which achieves 96% clean test accuracy. Inspired by other StyleGAN
inversion works (Abdal et al., 2019), we invert in the W+ space (the space generated after the
mapping network). We initialize the iterates of the GAN inversion problem to a vector inW+ that is
generated by the mapping network applied to a random z and a random class. Interestingly, the GAN
inversion problem usually converges to an image of the correct class regardless of the class of the
initialization, suggesting a benign landscape of the class-conditional StyleGAN.

Our results in Table 6 show a ≈ 60% improvement in signal classification accuracy on CIFAR-10
using the GAN model as opposed to the model from Thaker et al. (2022). The attack classification
accuracy also improves on average from 37% to 56% compared to the model that uses the linear
subspace assumption for the data. However, for ℓ∞ and ℓ1 attacks, we do not observe very high
attack classification accuracy. We conjecture that this is due to the complexity of the underlying
WideResnet (Zagoruyko & Komodakis, 2016). Namely, the results of Thaker et al. (2022) show that
the attack dictionary model is valid only for fully connected locally linear networks. Extending the
attack model to handle a wider class of networks is an important future direction.

Table 2: Adversarial image and attack classification accuracy on CIFAR-10 dataset for 100 test
examples. See Table 1 for column descriptions.

CIFAR-10 CNN SBSC BSD-GAN SBSAD BSD-GAN-AD

Clean accuracy 99% 52% 72% - -
ℓ∞ PGD (ϵ = 0.03) 0% 15% 76% 14% 48%
ℓ2 PGD (ϵ = 0.5) 0% 18% 87% 36% 77%
ℓ1 PGD (ϵ = 12.0) 0% 18% 71% 63% 44%

Average 0% 17% 78% 37.66% 56%

6 CONCLUSION

In this paper, we proposed a GAN inversion-based approach to reverse engineering adversarial attacks
with provable guarantees. In particular, we relax assumptions in prior work that clean data lies in
a union of linear subspaces to instead leverage the power of nonlinear deep generative models to
model the data distribution. For the corresponding nonconvex inverse problem, under local error
bound conditions, we demonstrated linear convergence to global optima. Finally, we empirically
demonstrated the strength of our model on the MNIST, Fashion-MNIST, and CIFAR-10 datasets.
We believe our work has many promising future directions such as verifying the local error bound
conditions theoretically as well as relaxing them further to understand the benign optimization
landscape of inverting deep generative models.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan: How to embed images into the
stylegan latent space? In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 4432–4441, 2019.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. arXiv preprint
arXiv:1701.07875, 2017.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim vSrndić, Pavel Laskov,
Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In Joint
European conference on machine learning and knowledge discovery in databases, pp. 387–402.
Springer, 2013.

Sébastien Bubeck, Yeshwanth Cherapanamjeri, Gauthier Gidel, and Remi Tachet des Combes. A
single gradient step finds adversarial examples on random two-layers neural networks. Advances
in Neural Information Processing Systems, 34:10081–10091, 2021.

Nicholas Carlini and David Wagner. Towards Evaluating the Robustness of Neural Networks. In
2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE, 2017.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020.

Gavin Weiguang Ding, Luyu Wang, and Xiaomeng Jin. AdverTorch v0.1: An adversarial robustness
toolbox based on pytorch. arXiv preprint arXiv:1902.07623, 2019.

Dmitriy Drusvyatskiy and Adrian S Lewis. Error bounds, quadratic growth, and linear convergence
of proximal methods. Mathematics of Operations Research, 43(3):919–948, 2018.

Y. C. Eldar and M. Mishali. Robust recovery of signals from a structured union of subspaces. IEEE
Trans. Inform. Theory, 55(11):5302–5316, 2009.

E. Elhamifar and R. Vidal. Block-sparse recovery via convex optimization. IEEE Transactions on
Signal Processing, 60(8):4094–4107, 2012.

Spencer Frei and Quanquan Gu. Proxy convexity: A unified framework for the analysis of neural
networks trained by gradient descent. Advances in Neural Information Processing Systems, 34:
7937–7949, 2021.

Michael Goebel, Jason Bunk, Srinjoy Chattopadhyay, Lakshmanan Nataraj, Shivkumar Chan-
drasekaran, and BS Manjunath. Attribution of gradient based adversarial attacks for reverse
engineering of deceptions. arXiv preprint arXiv:2103.11002, 2021.

Yifan Gong, Yuguang Yao, Yize Li, Yimeng Zhang, Xiaoming Liu, Xue Lin, and Sijia Liu. Reverse
engineering of imperceptible adversarial image perturbations. arXiv preprint arXiv:2203.14145,
2022.

Paul Hand and Vladislav Voroninski. Global guarantees for enforcing deep generative priors by
empirical risk. arXiv preprint arXiv:1705.07576, 2017.

Wen Huang, Paul Hand, Reinhard Heckel, and Vladislav Voroninski. A provably convergent
scheme for compressive sensing under random generative priors. Journal of Fourier Analysis and
Applications, 27:1–34, 2021.

Ajil Jalal, Liu Liu, Alexandros G Dimakis, and Constantine Caramanis. Robust compressed sensing
using generative models. Advances in Neural Information Processing Systems, 33:713–727, 2020.

Babhru Joshi, Xiaowei Li, Yaniv Plan, and Ozgur Yilmaz. Plugin: A simple algorithm for inverting
generative models with recovery guarantees. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S.
Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems,
volume 34, pp. 24719–24729. Curran Associates, Inc., 2021.

10



Under review as a conference paper at ICLR 2024

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-łojasiewicz condition. In Machine Learning and Knowledge
Discovery in Databases: European Conference, ECML PKDD 2016, Riva del Garda, Italy,
September 19-23, 2016, Proceedings, Part I 16, pp. 795–811. Springer, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Arxiv,
2009.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Qi Lei, Ajil Jalal, Inderjit S Dhillon, and Alexandros G Dimakis. Inverting deep generative models,
one layer at a time. Advances in neural information processing systems, 32, 2019.

Erik Lindernoren. Pytorch-gan. https://github.com/eriklindernoren/
PyTorch-GAN/, 2023.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-parameterized
non-linear systems and neural networks. Applied and Computational Harmonic Analysis, 59:
85–116, 2022.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings, 2018. URL https://openreview.net/forum?id=rJzIBfZAb.

Pratyush Maini, Eric Wong, and Zico Kolter. Adversarial robustness against the union of multiple
perturbation models. In International Conference on Machine Learning, pp. 6640–6650. PMLR,
2020.

Sachit Menon, Alexandru Damian, Shijia Hu, Nikhil Ravi, and Cynthia Rudin. Pulse: Self-supervised
photo upsampling via latent space exploration of generative models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

Mazda Moayeri and Soheil Feizi. Sample efficient detection and classification of adversarial attacks
via self-supervised embeddings. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 7677–7686, 2021.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1765–1773, 2017.

Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, and Anima Anandkumar.
Diffusion models for adversarial purification. arXiv preprint arXiv:2205.07460, 2022.

Gregory Ongie, Ajil Jalal, Christopher A Metzler, Richard G Baraniuk, Alexandros G Dimakis, and
Rebecca Willett. Deep learning techniques for inverse problems in imaging. IEEE Journal on
Selected Areas in Information Theory, 1(1):39–56, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Omid Poursaeed, Isay Katsman, Bicheng Gao, and Serge Belongie. Generative adversarial pertur-
bations. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
4422–4431, 2018.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

11

https://github.com/eriklindernoren/PyTorch-GAN/
https://github.com/eriklindernoren/PyTorch-GAN/
https://openreview.net/forum?id=rJzIBfZAb
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


Under review as a conference paper at ICLR 2024

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017.

Dominic Richards and Ilja Kuzborskij. Stability & generalisation of gradient descent for shallow
neural networks without the neural tangent kernel. Advances in Neural Information Processing
Systems, 34:8609–8621, 2021.

Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-GAN: Protecting classifiers
against adversarial attacks using generative models. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=BkJ3ibb0-.

Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to large diverse
datasets. In ACM SIGGRAPH 2022 conference proceedings, pp. 1–10, 2022.

Viraj Shah and Chinmay Hegde. Solving linear inverse problems using gan priors: An algorithm
with provable guarantees. In 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 4609–4613, 2018. doi: 10.1109/ICASSP.2018.8462233.

Ganlin Song, Zhou Fan, and John Lafferty. Surfing: Iterative optimization over incrementally trained
deep networks. Advances in Neural Information Processing Systems, 32, 2019.

M. Stojnic, F. Parvaresh, and B. Hassibi. On the reconstruction of block-sparse signals with and
optimal number of measurements. IEEE Trans. Signal Processing, 57(8):3075–3085, Aug. 2009.

Darshan Thaker, Paris Giampouras, and René Vidal. Reverse engineering ℓp attacks: A block-
sparse optimization approach with recovery guarantees. In International Conference on Machine
Learning, pp. 21253–21271. PMLR, 2022.

Florian Tramer and Dan Boneh. Adversarial training and robustness for multiple perturbations. arXiv
preprint arXiv:1904.13000, 2019.

Weihao Xia, Yulun Zhang, Yujiu Yang, Jing-Hao Xue, Bolei Zhou, and Ming-Hsuan Yang. Gan
inversion: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

12

https://openreview.net/forum?id=BkJ3ibb0-


Under review as a conference paper at ICLR 2024

APPENDIX

A PROOFS FOR THEORETICAL RESULTS

For pedagogical purposes and to highlight our main results for the challenging nonconvex GAN
inversion problem, the main text is structured in order of increasing complexity of the problem
(first with GAN inversion, then with unregularized RED problem, and finally with regularized
RED problem). However, the proofs for GAN inversion and unregularized RED problem are better
understood when viewing GAN inversion as a special case of the unregularized RED problem with
ca = 0. As such, we begin by proving the more general result of the unregularized RED problem
from Section 4.2. We will then take the main theorem from Section 4.1 as a special case of this
general result.

A.1 PROOFS FOR SECTION 4.2: REVERSE ENGINEERING OF DECEPTIONS OPTIMIZATION
PROBLEM WITHOUT REGULARIZATION

Recall that we formulate an inverse problem to learn z and ca:

min
z,ca
L(z, ca) ≜ f(z, ca) + λh(ca), (13)

where f(z, ca) = ∥x′ −G(z)−Daca∥22 denotes a reconstruction loss and h(ca) denotes a (nons-
mooth) convex regularizer on the coefficients ca.

The proof strategy for our main theorem in Section 4.2 relies mainly on an almost co-coercivity of
the gradient (Lemma 9), which we show next.
Lemma 9. (Almost co-coercivity) We have that the gradient operator of f(z, ca) is almost co-coercive
i.e.

⟨∇caf(z
k, cka)−∇caf(z

∗, c∗a), c
k
a − c∗a⟩+ ⟨∇zf(z

k, cka)−∇zf(z
∗, c∗a), z

k − z∗⟩ ≥ (14)

2η
(
1− ηρ

2

) [∥∥∇zf(z
k, cka)−∇zf(z

∗, c∗a)
∥∥2
2
+
∥∥∇caf(z

k, cka)−∇caf(z
∗, c∗a)

∥∥2
2

]
− ϵ[

∥∥zk − z∗ − η(∇zf(z
k, cka)−∇zf(z

∗, c∗a))
∥∥2
2

+
∥∥cka − c∗a − η(∇caf(z

k, cka)−∇caf(z
∗, c∗a))

∥∥2
2
]

where ρ and−ϵ denote the maximum and minimum eigenvalues of the Hessian of the loss respectively.

Proof. We note that the proof of this result is adapted from Richards & Kuzborskij (2021), Lemma 5.
The key differences are that we do not consider a stability of iterates when changing one datapoint
as in Richards & Kuzborskij (2021), but rather show an almost co-coercivity of the gradient across
iterates of our gradient descent algorithm. Further, our analysis requires extra assumptions such as the
local error bound condition in order to demonstrate convergence of the iterates beyond this lemma.

We wish to lower bound ⟨∇caf(z
k, cka)−∇caf(z

∗, c∗a), c
k
a−c∗a⟩+⟨∇zf(z

k, cka)−∇zf(z
∗, c∗a), z

k−
z∗⟩. We can rewrite this inner product in a different way using the functions:

ψ(z, ca) ≜ f(z, ca)− ⟨∇zf(z
∗, c∗a), z⟩ − ⟨∇caf(z

∗, c∗a), ca⟩ (15)

ψ⋆(z, ca) ≜ f(z, ca)− ⟨∇zf(z
k, cka), z⟩ − ⟨∇caf(z

k, cka), ca⟩ (16)

Then, some simple algebra shows that:

⟨∇caf(z
k, cka)−∇caf(z

∗, c∗a), c
k
a − c∗a⟩+ ⟨∇zf(z

k, cka)−∇zf(z
∗, c∗a), z

k − z∗⟩ (17)

= ψ(zk, cka)− ψ(z∗, c∗a) + ψ⋆(z∗, c∗a)− ψ⋆(zk, cka) (18)

Now, we will bound ψ(zk, cka)− ψ(z∗, c∗a) and ψ⋆(z∗, c∗a)− ψ⋆(zk, cka) separately.

13



Under review as a conference paper at ICLR 2024

We prove it for ψ(zk, cka)− ψ(z∗, c∗a) and the proofs are symmetric replacing ψ with ψ⋆. The proof
strategy will be to upper and lower bound a different term, namely ψ(zk − η∇zψ(z

k, cka), c
k
a −

η∇caψ(z
k, cka)).

We begin with the upper bound, which uses ρ-smoothness of the loss and Taylor’s approximation to
give:

ψ(zk − η∇zψ(z
k, cka), c

k
a − η∇caψ(z

k, cka)) ≤ ψ(zk, cka) (19)

− η
(
1− ηρ

2

)(∥∥∇zψ(z
k, cka)

∥∥2
2
+
∥∥∇caψ(z

k, cka)
∥∥2
2

)
(20)

The lower bound is a bit more tricky (we normally would just use convexity and smoothness to lower
bound by ψ(zk, cka)). We start by defining the following quantities:

z(α) = z∗ + α(zk − z∗ − η(∇zf(z
k, cka)−∇zf(z

∗, c∗a)) (21)

ca(α) = c∗a + α(cka − c∗a − η(∇caf(z
k, cka)−∇caf(z

∗, c∗a) (22)

We then define a function g(α) as:

g(α) = ψ(z(α), ca(α)) +
ϵα2

2
(∥ζz∥22 + ∥ζca∥

2
2) (23)

where ζz = zk − z∗ − η(∇zf(z
k, cka) − ∇zf(z

∗, c∗a)) and ζca = cka − c∗a − η(∇caf(z
k, cka) −

∇caf(z
∗, c∗a)) Now, we have that g′′(α) ≥ 0 since −ϵ is the smallest eigenvalue of the Hessian of

the loss, and using the following expansion of g′′(α):

g′(α) = [ζz ζca ]
T
(∇f(z(α), ca(α))−∇zf(z

∗, c∗a)−∇caf(z
∗, c∗a)) + ϵα(∥ζz∥22 + ∥ζca∥

2
2)
(24)

g′′(α) = [ζz ζca ]
T ∇2f(z(α), ca(α)) [ζz ζca ] + ϵ(∥ζz∥22 + ∥ζca∥

2
2) (25)

This shows that g is convex, so we have that g(1)− g(0) ≥ g′(0) = 0. Plugging in the definition of
g(1) and g(0), we have:

ψ(zk − η∇zψ(z
k, cka), c

k
a − η∇caψ(z

k, cka)) ≥ ψ(z∗, c∗a)−
ϵ

2

(
∥ζz∥22 + ∥ζca∥

2
2

)
(26)

Rearranging the above lower and upper bounds, we are left with a lower bound on ψ(zk, cka) −
ψ(z∗, c∗a) as desired. As mentioned previously, the same arguments hold above to give a lower bound
on ψ⋆(z∗, c∗a)− ψ⋆(zk, cka). This gives us our final bound, which is that:

⟨∇caf(z
k, cka)−∇caf(z

∗, c∗a), c
k
a − c∗a⟩+ ⟨∇zf(z

k, cka)−∇zf(z
∗, c∗a), z

k − z∗⟩ ≥ (27)

2η
(
1− ηρ

2

) [∥∥∇zf(z
k, cka)−∇zf(z

∗, c∗a)
∥∥2
2
+
∥∥∇caf(z

k, cka)−∇caf(z
∗, c∗a)

∥∥2
2

]
− ϵ[

∥∥zk − z∗ − η(∇zf(z
k, cka)−∇zf(z

∗, c∗a))
∥∥2
2

+
∥∥cka − c∗a − η(∇caf(z

k, cka)−∇caf(z
∗, c∗a))

∥∥2
2
]

Another important lemma before proving our main result is the following.

14



Under review as a conference paper at ICLR 2024

Lemma 10. Define the following quantities:

ζz ≜ zk − z∗ − η(∇zf(z
k, cka)−∇zf(z

∗, c∗a)) (28)

ζca ≜ cka − c∗a − η(∇caf(z
k, cka)−∇caf(z

∗, c∗a)) (29)

Then, assuming that η < 1
2ϵ and η < 3

2ρ , we have:

∥ζz∥22 + ∥ζca∥
2
2 ≤

1

1− 2ηϵ
(
∥∥∆zk∥∥2

2
+
∥∥∆cka∥∥22) (30)

Proof. We will expand the definition of ζz and ζca and use co-coercivity (Lemma 9) again. This
gives us that ∥ζz∥22 + ∥ζca∥

2
2 is equal to:

=
∥∥∆zk∥∥2

2
+
∥∥∆cka∥∥22 (31)

+ η2
[∥∥∇zf(z

k, cka)−∇zf(z
∗, c∗a)

∥∥2
2
+
∥∥∇caf(z

k, cka)−∇caf(z
∗, c∗a)

∥∥2
2

]
(32)

− 2η
[
⟨∇caf(z

k, cka)−∇caf(z
∗, c∗a), c

k
a − c∗a⟩+ ⟨∇zf(z

k, cka)−∇zf(z
∗, c∗a), z

k − z∗⟩
]

(33)

≤
∥∥∆zk∥∥2

2
+
∥∥∆cka∥∥22 (34)

+ η2
[∥∥∇zf(z

k, cka)−∇zf(z
∗, c∗a)

∥∥2
2
+
∥∥∇caf(z

k, cka)−∇caf(z
∗, c∗a)

∥∥2
2

]
(35)

− 4η2
(
1− ηρ

2

) [∥∥∇zf(z
k, cka)−∇zf(z

∗, c∗a)
∥∥2
2
+
∥∥∇caf(z

k, cka)−∇caf(z
∗, c∗a)

∥∥2
2

]
(36)

+ 2ηϵ
[
∥ζz∥22 + ∥ζca∥

2
2

]
(37)

≤
(
1 + η2ρ2 − 4η2ρ2

(
1− ηρ

2

)) [∥∥∆zk∥∥2
2
+
∥∥∆cka∥∥22]+ 2ηϵ

[
∥ζz∥22 + ∥ζca∥

2
2

]
(38)

If η < 1
2ϵ , we can rearrange this inequality such that

∥ζz∥22 + ∥ζca∥
2
2 ≤

1

1− 2ηϵ

(
1 + η2ρ2 − 4η2ρ2

(
1− ηρ

2

)) [∥∥∆zk∥∥2
2
+
∥∥∆cka∥∥22] (39)

Lastly, using the assumption that η < 3
2ρ , we have that η2ρ2 − 4η2ρ2

(
1− ηρ

2

)
< 0, so we can drop

it from the equation above and have a simpler upper bound:

∥ζz∥22 + ∥ζca∥
2
2 ≤

1

1− 2ηϵ
(
∥∥∆zk∥∥2

2
+
∥∥∆cka∥∥22) (40)

Now, we can prove our main result, Theorem 6 restated below.
Theorem 11. Suppose that Assumption 1 holds for the nonlinear activation function and Assumption
5 holds with local error bound parameter µ. Let ρ and −ϵ be the maximum and minimum eigenvalues
of the Hessian of the loss. Further, assume that the step size satisfies η ≤ min

{
1
4ϵ ,

3
2ρ

}
and

η ∈
(

3µ2−
√

9µ4−32µ2ρϵ

4µ2ρ ,
3µ2+
√

9µ4−32µ2ρϵ

4µ2ρ

)
. Lastly, assume that µ ≳

√
ρϵ. Then, we have that the

iterates converge linearly to the global optimum with the following rate in (0, 1):∥∥∆zk+1
∥∥2
2
+
∥∥∆ck+1

a

∥∥2
2
≤
(
1− 4η2µ2

(
3

4
− ηρ

2

)
+ 4ηϵ

)
(
∥∥∆zk∥∥2

2
+
∥∥∆cka∥∥22) (41)

15



Under review as a conference paper at ICLR 2024

Proof. We can expand the suboptimality of the iterates
∥∥∆zk+1

∥∥2
2
+
∥∥∆ck+1

a

∥∥2
2

at the k+1 iteration
of gradient descent as follows:

=
∥∥cka − η∇caf(z

k, cka)− c∗a − η∇caf(z
∗, c∗a)

∥∥2
2

(42)

+
∥∥zk − η∇zf(z

k, cka)− z∗ + η∇zf(z
∗, c∗a)

∥∥2
2

(43)

≤
∥∥cka − c∗a∥∥22 − 2η⟨∇caf(z

k, cka)−∇caf(z
∗, c∗a), c

k
a − c∗a⟩ (44)

+ η2
∥∥∇caf(z

k, cka)−∇caf(z
∗, c∗a)

∥∥2
2

(45)

+
∥∥zk − z∗∥∥2

2
− 2η⟨∇zf(z

k, cka)−∇zf(z
∗, c∗a), z

k − z∗⟩ (46)

+ η2
∥∥∇zf(z

k, cka)−∇zf(z
∗, c∗a)

∥∥2
2

(47)
(Lemma 9)
≤

∥∥∆zk∥∥2
2
+
∥∥∆cka∥∥22 (48)

− 4η2
(
3

4
− ηρ

2

)∥∥∇zf(z
k, cka)−∇zf(z

∗, c∗a)
∥∥2
2

(49)

− 4η2
(
3

4
− ηρ

2

)∥∥∇caf(z
k, cka)−∇caf(z

∗, c∗a)
∥∥2
2

(50)

+ 2ηϵ
∥∥zk − z∗ − η(∇zf(z

k, cka)−∇zf(z
∗, c∗a))

∥∥2
2

(51)

+ 2ηϵ
∥∥cka − c∗a − η(∇caf(z

k, cka)−∇caf(z
∗, c∗a))

∥∥2
2

(52)
(Error Bound)
≤

∥∥∆zk∥∥2
2
+
∥∥∆cka∥∥22 (53)

− 4η2µ2

(
3

4
− ηρ

2

)
(
∥∥∆zk∥∥2

2
+
∥∥∆cka∥∥22) (54)

+ 2ηϵ
∥∥zk − z∗ − η(∇zf(z

k, cka)−∇zf(z
∗, c∗a))

∥∥2
2

(55)

+ 2ηϵ
∥∥cka − c∗a − η(∇caf(z

k, cka)−∇caf(z
∗, c∗a))

∥∥2
2

(56)
(Lemma 10)
≤

(
1− 4η2µ2

(
3

4
− ηρ

2

)
+

2ηϵ

1− 2ηϵ

)
(
∥∥∆zk∥∥2

2
+
∥∥∆cka∥∥22) (57)

When η < 1
4ϵ , the last term in the rate 2ηϵ

1−2ηϵ is upper bounded by 4ηϵ. We now examine when this
rate is less than 1. This is equivalent to showing that

−4η2µ2

(
3

4
− ηρ

2

)
+ 4ηϵ < 0 (58)

Factoring out a factor of η, we are left with a quadratic in η. We need the discriminant of this
quadratic to be positive in order to have real roots. This gives us a condition that (dropping constant
factors):

µ ≳
√
ρϵ (59)

The roots of this quadratic in η give us a range where the rate is less than 1. Thus, we require the the
step size to be in this range for convergence:

η ∈

(
3µ2 −

√
9µ4 − 32µ2ρϵ

4µ2ρ
,
3µ2 +

√
9µ4 − 32µ2ρϵ

4µ2ρ

)
(60)

16



Under review as a conference paper at ICLR 2024

A.2 PROOFS FOR SECTION 4.1: GAN INVERSION

The proof of the main result of this section, Theorem 3, is identical to the proof of the main theorem
above by taking cka = c∗a = 0.

Next, we elaborate on the comparison in Section 4.1.1 to existing works on the GAN inversion
problem. First, the following definition restates the WDC condition from Hand & Voroninski (2017)
for completeness.

Definition 12. (Weight Distribution Condition Hand & Voroninski (2017)) A matrix W ∈ Rn×k

satisfies the Weight Distribution Condition (WDC) with constant ϵ if for all nonzero x, y ∈ Rk,

∥∥∥∥∥
n∑

i=1

σ′(wi · x)σ′(wi · y) · wiw
t
i −Qx,y

∥∥∥∥∥
2

≤ ϵ (61)

with Qx,y = E[σ′(wi · x)σ′(wi · y) · wiw
t
i ] for wi ∼ N(0, Ik/n).

A.2.1 PROOF OF COROLLARY 4

Proof. From Theorem 2 in Hand & Voroninski (2017), we have that when the conditions of the
corollary are met, then there exists a direction v such that the directional derivative of f(z0) in
direction v is less than 0 when

z0 /∈ B(z∗,K2L
3ϵ1/4 ∥z∗∥2) ∪ B(−κz

∗,K2L
13ϵ1/4 ∥z∗∥2) ∪ {0} (62)

This implies that z0 is not a stationary point and further that there exists a descent direction at that
point. Thus, there must exist a µ > 0 such that the local error bound condition holds at z0. For
example, when L = 1 and when the activation function has first derivative bounded away from 0, then
this value of µ will simply be the minimum singular value of WT

1 Rz0 where Rz0 = diag(σ′(W1z
0)).

The authors of Huang et al. (2021) demonstrate that for a subgradient descent algorithm, the iterates
stay out of the basin of attraction for the spurious stationary point, and a descent direction still exists.
Thus, along the optimization trajectory, the local error bound condition holds following the same
logic as above.

A.3 PROOF OF THEOREM 8: REGULARIZED CASE

Proof. First, we note that because the function f is ρ-smooth by assumption, we have that for all
(z, ca) and (z̃, c̃a):

f(z, ca) ≤ f(z̃, c̃a) + ⟨∇f(z̃, c̃a), [z − z̃ ca − c̃a]⟩+
ρ

2
∥[z − z̃ ca − c̃a]∥22 (63)

Next, we expand the loss:

17



Under review as a conference paper at ICLR 2024

L(zk+1, ck+1
a ) = f(zk+1, ck+1

a ) + h(ck+1
a ) + h(cka)− h(cka) (64)

= f(zk, cka) + h(cka) + ⟨∇f(zk, cka),
[
zk+1 − zk ck+1

a − cka
]
⟩ (65)

+
ρ

2

∥∥[zk+1 − zk ck+1
a − cka

]∥∥2
2
+ h(ck+1

a )− h(cka)

= L(zk, cka) + min
y

[
⟨∇caf(z

k, cka), y − cka)⟩+
ρ

2

∥∥y − cka∥∥22 + h(y)− h(cka)
]
(66)

+ ⟨∇zf(z
k, cka), z

k+1 − zk⟩+ ρ

2

∥∥zk+1 − zk
∥∥2
2

≤ L(zk, cka) + min
y

[
⟨∇caf(z

k, cka), y − cka)⟩+
ρ

2

∥∥y − cka∥∥22 + h(y)− h(cka)
]
(67)

− η
∥∥∇zf(z

k, cka)
∥∥2
2
+
η2ρ

2

∥∥∇zf(z
k, cka)

∥∥2
2

≤ L(zk, cka)−
µ

ρ
(L(zk, cka)− L(z∗, c∗a)) (68)

This implies our final result:

L(zk+1, ck+1
a )− L(z∗, c∗a) ≤

(
1− µ

ρ

)
(L(zk, cka)− L(z∗, c∗a)) (69)

A.4 INSTANTIATING ρ AND ϵ FOR A SIMPLE NETWORK

When we assume that the network weights and Da have bounded spectrum as well as the inputs
being bounded, we can derive a bound on ρ and ϵ for a network. For simplicity, we consider a
1-layer network although these arguments will generalize to the L-layer case as well. Formally, let
G(z) = σ(Wz). We use the following assumptions to bound ρ and ϵ:

Assumption 13. (Loss Function and Weights) Assume that ∥x′ −G(z)−Daca∥1 ≤ C0 for all zk, cka
for an absolute constant C0 i.e. the ℓ1 loss is bounded uniformly. This is equivalent to assuming
that the inputs z and ca are bounded. Assume that ∥Wi∥2 ≤ CWi

for all i,
∑ni

j=1 ∥Wi[j]∥22 ≤ VWi
5,

∥Da∥2 ≤ CD and σmin(Da) > 0.

Lemma 14. Fix z and ca. Suppose that Assumptions 1 and 13 hold. Then,

λmax(∇2f(z, ca)) ≤ ρ (70)

min
α∈[0,1]

λmin(∇2f(z + α(z∗ − z), ca + α(c∗a − ca))) ≥ −ϵ (71)

with ρ = C2
W (B2

σ′ +Bσ′′
√
C0) + CWBσ′CD + C2

D and ϵ = VWBσ′′C0 + CWBσ′CD − L2
D.

Proof. We begin with noting the Hessian has a block structure due to the two variables:

∇2f(z, ca) =

[
∇z,zf(z, ca) ∇z,caf(z, ca)
∇ca,zf(z, ca) ∇ca,caf(z, ca)

]
(72)

These blocks are equal to:

5Wi[j] denotes the jth row of Wi.

18



Under review as a conference paper at ICLR 2024

∇z,z[f(z, ca)] = ∇zG(z)∇zG(z)
T +∇z,zG(z)(x

′ −G(z)−Daca) (73)

∇z,caf(z, ca) = ∇zG(z)Da =WTσ′(Wz)Da (74)

∇ca,zf(z, ca) = DT
a∇zG(z)

T (75)

∇ca,caf(z, ca) = DT
aDa (76)

Above, ∇z,zG(z) is actually a tensor of dimension d × d ×m since G maps from Rd to Rm. If
we take one slice of this tensor i.e. ∇z,z[G(z)]i, we will be left with σ′′(Wi · z)WiW

T
i , where Wi

denotes the ith row of W . We can write this tensor-vector product as the following:

∇z,zG(z)(x
′ −G(z)−Daca =

m∑
i=1

σ′′(Wi · z)WiW
T
i · [x′ −G(z)−Daca]i (77)

Let Mz,z,Mz,ca ,Mca,z,Mca,ca be four block matrices corresponding to one nonzero block (confor-
mal to the order in the subscript that gradients are taken) and all the other blocks zero. We can bound
the operator norm of the Hessian using triangle inequality:

∥∥∇2f(z, ca)
∥∥
2
= ∥Mz,z +Mz,ca +Mca,z +Mca,ca∥2 (78)

≤ ∥Mz,z∥2 + ∥Mz,ca∥2 + ∥Mca,z∥2 + ∥Mca,ca∥2 (79)

These blocks have operator norm as follows:

∥Mz,z∥2 ≤ C
2
WB2

σ′ + 2VWBσ′′C0 (80)
∥Mz,ca∥2 ≤ CWBσ′CD (81)
∥Mca,z∥2 ≤ CWBσ′CD (82)

∥Mca,ca∥2 ≤ C
2
D (83)

Plugging into equation 79 yields ρ. For the minimum eigenvalue, we have by Weyl’s inequality for
Hermitian matrices that:

λmin(∇2f(z, ca)) ≥ λmin(Mz,z) + λmin

([
0 ∇z,caf(z, ca)

∇ca,zf(z, ca) 0

])
+ λmin(Mca,ca)

(84)

≥ −∥Mz,z∥2 − (∥Mz,ca∥2 + ∥Mca,z∥2) + L2
D (85)

≥ −(C2
W (B2

σ′ + 2Bσ′′

√
C0) + 2CWBσ′CD − L2

D) (86)

Note that because the first term in Mz,z is PSD, we can remove it from the lower bound, which gives
the bound for ϵ in the theorem.

B ADDITIONAL EXPERIMENTS

B.1 SYNTHETIC DATA EXPERIMENTAL DETAILS

To set up a realizable problem where the error bound parameter µ can be computed easily, we use the
following setup for a generation of data, a classification network on this data, and a way to compute
adversarial attacks given this network.

First, we generate data x ∈ Rm from a one-layer GAN x = G(z) with G(z) = σ(Wz) and
W ∈ Rm×d. We use a leaky RELU activation function as σ.

19



Under review as a conference paper at ICLR 2024

Next, we consider a binary classifier on this data of the form sign(ψ(x)) where

ψ(x) =
1√
k

k∑
ℓ=1

aℓσ(wℓ · x). (87)

Here, the wℓ are i.i.d from N
(
0, 1

mIm
)

and aℓ are uniform over {−1, 1}. We will consider single-
step gradient-based attacks η∇ψ(x). With high probability, a single gradient step will flip the sign of
the label, so we can easily find adversarial attacks Bubeck et al. (2021).

To create a realizable instance for the RED problem, we generate a training set Str = {G(zi) :
zi ∼ N(0, Id)}ntrain

i=1 and similarly a testing set Ste. The attack dictionary Da contains single-step
gradient attacks on Str. A realizable RED instance is then x′ = xte + Dac

∗
a for xte ∈ Ste

and some vector c∗a. We run alternating gradient descent as in Section 4.2 to solve for zk and
cka. Since we have knowledge of the true z∗ and c∗a for a given problem instance, we can exactly
compute the local error bound parameter µ for a given zk and cka on the optimization trajectory as

µ2 =
∥∇zf(z

k,cka)∥22+∥∇caf(z
k,cka)∥22

∥∆zk∥2
2+∥∆cka∥

2
2

.

B.2 REAL DATA EXPERIMENTAL DETAILS

Layer Type Size
Convolution + ReLU 3× 3× 32
Convolution + ReLU 3× 3× 32

Max Pooling 2× 2
Convolution + ReLU 3× 3× 64
Convolution + ReLU 3× 3× 64

Max Pooling 2× 2
Fully Connected + ReLU 200
Fully Connected + ReLU 200
Fully Connected + ReLU 10

Table 3: Network Architecture for the MNIST and Fashion-MNIST dataset

Attack Coefficient Algorithm. In Algorithm 1, we run 500 steps of alternating between updating z
and ca. To update ca, we also applied Nesterov acceleration. For the proximal step, we set the step
size to be the inverse of the operator norm of DT

aDa i.e. the Lipschitz constant of the gradient. To
set the regularization parameter, we use the procedure from Thaker et al. (2022) i.e. compute the
value of λ such that the solution for ca is the all-zeros vector using the optimality conditions for the
problem and then multiplying that value of λ by a small constant (e.g. 0.35 for our experiments).

MNIST. Table 3 shows the network architecture for the MNIST dataset. This is trained using SGD
for 50 epochs with learning rate 0.1, momentum 0.5, and batch size 128, identical to the architecture
from Thaker et al. (2022).

All PGD adversaries were generated using the Advertorch library (Ding et al., 2019). We use the
same hyperparameters as the adversarial training baselines and as Thaker et al. (2022). Specifically,
the ℓ∞ PGD adversary (ϵ = 0.3) used a step size α = 0.01 and was run for 100 iterations. The
ℓ2 PGD adversary (ϵ = 2) used a step size α = 0.1 and was run for 200 iterations. The ℓ1 PGD
adversary (ϵ = 10) used a step size α = 0.8 and was run for 100 iterations.

We use a pretrained DCGAN using the architecture from the standard Pytorch implementation
(Paszke et al., 2019). The initialization of z0 for Algorithm 1 is as follows: we first sample 10 random
initializations for z and for each, run 100 epochs of Defense-GAN training on x′ using the MSE loss.
Then, we initialize z0 to the vector that gives best MSE loss over the 10 random restarts.

Fashion-MNIST. Table 3 shows the network architecture for the Fashion-MNIST dataset. The
PGD adversaries have identical hyperparameters as on the MNIST dataset. We use a pretrained
Wasserstein-GAN Lindernoren (2023) and use the same initialization scheme as for the MNIST
dataset.

20



Under review as a conference paper at ICLR 2024

CIFAR-10. The classification network used is the pretrained Wide Resnet from Pytorch. The ℓ∞
PGD adversary (ϵ = 0.03) used a step size α = 0.003 and was run for 100 iterations. The ℓ2 PGD
adversary (ϵ = 0.05) used a step size α = 0.05 and run for 200 iterations. The ℓ1 PGD adversary
(ϵ = 12) used a step size α = 1 and was run for 100 iterations. We used a pretrained StyleGAN-XL
(Sauer et al., 2022). To initialize and invert in the spaceW+, we sampled 10000 initializations of z
and one random class. In batch, we run 3000 iterations of Defense-GAN for each initialization and
learn a vector inW+ as initialization for the latent space before running Algorithm 1.

Computational Resources. All experiments were ran with a single Nvidia GeForce RTX 2080
Ti GPU. For each example, the alternating optimization procedure takes between 1 and 5 minutes
depending on the dataset. Note that the optimization procedure for each datapoint can be run in
parallel.

B.3 LOCAL ERROR BOUND FOR RANDOM DEEP NETWORKS

We have run the same experiment as in Figure 1 using a 3-layer GAN to illustrate similar trends
as the experiment in the main paper. This GAN is set to be expansive (in accordance with the
theoretical results from (Hand & Voroninski, 2017)) e.g. if the input and output dimension are d and
m respectively, the weight matrices are d× (m/10), (m/5)× (m/10), and m× (m/5). In Figure
3. We observe a similar trend as in Figure 1 in the paper, in fact the trend is even more exaggerated.
We conjecture that the results from Hand & Voroninski (2017) can be re-proven using a language of
local error-bound conditions instead, so it is reasonable to expect that it holds for a variety of deep
networks as they have shown.

Figure 3: We show the output dimension m vs the computed µ averaged over the optimization path
of 50 test examples for a 3-layer GAN with random weights and input dimension d = 10. The layers
are expansive with m/10 and m/5 neurons in the first two layers.

B.4 ON THE RESTRICTIVENESS OF ASSUMPTION 1

Our theoretical results assume that the generator network uses a smooth activation functions. In
contrast, in our experimental setting, we are given a pre-trained generator network that is not trained
with a smooth activation function (the DCGAN, WGAN, and Style-GAN XL all use ReLU or
leaky ReLU). In this section, we aim to show that fixing this pretrained network and modifying
the activation function to a smooth version of the function does not harm the performance of the
generative model or the performance of our signal and attack classifier.

To model this, we use the SoftPlus activation instead of the ReLU activation in our DCGAN and
WGAN implementations for the MNIST dataset. The SoftPlus has a temperature parameter β which
controls how closely the function approximates the ReLU. For our experiments, we use a value of
β = 10. Further, we evaluate these set of experiments on 100 test examples for computational reasons.
Our goal is simply to demonstrate that the smoothness assumption on the activation function is a
fairly benign assumption needed only for the theoretical results, but does not affect the practicality
of the method in practice. Let BSD-GAN denote the approach which uses the nonsmooth ReLU
for the generative model. Let BSD-GAN-Smooth denote the approach which uses the Softplus for
the generative model (with the pretrained weights of the network fixed to the same values as in
BSD-GAN). Similarly, let BSD-GAN-AD and BSD-GAN-AD-Smooth denote the non-smooth and
smooth versions of the attack detectors. In Table 4, we demonstrate the gap between the smooth
and non-smooth version of the approach, which we call ∆signal := BSD-GAN− BSD-GAN-Smooth

21



Under review as a conference paper at ICLR 2024

and ∆attack := BSD-GAN-AD− BSD-GAN-AD-Smooth. In all cases, we see a minimal difference
between the smooth and non-smooth versions. In fact, on the MNIST dataset, the smooth version
often has slightly better accuracy than the non-smooth version for both signal and attack classification.
We conjecture one possible reason for this is that for classification, there is strong evidence that
networks with smooth activation functions have their own merit (Ramachandran et al., 2017). An
interesting direction for future work would be to validate whether generative models can also be
similarly trained with smooth activation functions to obtain even better results for the RED problem.

Table 4: Difference between the smooth and non-smooth versions of the method on the MNIST
dataset. See text for definition of ∆signal and ∆attack.

MNIST ∆signal ∆attack
ℓ∞ PGD (ϵ = 0.3) -1% 1%
ℓ2 PGD (ϵ = 2.0) -1% -3%
ℓ1 PGD (ϵ = 10.0) -1% -1%

B.5 NON-RANDOM NETWORKS THAT SATISFY LOCAL ERROR BOUND CONDITION

Recall the problem considered in the main text of the paper as a simple example of a non-random
network that satisfies the local error bound condition. Consider a GAN with latent space dimension
d = 2 and output dimension m = 100. Suppose that the rows of W are spanned by two orthonormal
vectors

[
−
√
2/2

√
2/2
]

and
[√

2/2
√
2/2
]
.For this problem, with a initialization of z as a

standard normal random variable and ca initialized to the all-zeros vector, we observe an average µ
value of 0.013 over different random initializations.

We now aim to provide a more general class of non-random networks that satisfy the local error bound
condition. We begin with the trivial observation that for a realizable GAN inversion problem, when
there is no nonlinearity σ, any non-random network where W has full (column) rank will satisfy the
local error bound condition. This is because the gradient is equal to∇zf(z

k) =WT (x′ −G(zk)) =
WT (Wẑ −Wzk). Since W is a tall matrix, we have that WTW is a full-rank matrix and thus
the local error bound condition can be satisfied with µ as the minimum singular value of WTW .
However, when we have the nonlinearity, this is not necessarily the case. In this section, we provide
several examples of non-random networks that still satisfy the local error bound condition. We
provide examples in the 1-layer GAN inversion setting for simplicity i.e. G(z) = σ(Wz) with
σ as the leaky RELU activation function, although these examples although work with the attack
dictionary from Section B.1 as well. For all examples below, the ground truth x is generated as
x = G(ẑ) where ẑ is drawn from a standard normal.

Example 15. (2-D GAN Inversion) We can slightly modify the example given in Section 5.1 in the
following way. Consider a GAN with latent space dimension d = 2 and output dimension m = 100.
Suppose that the rows of W are spanned by m vectors, which are either

[
−
√
2/2

√
2/2
]
+ ϵi or[√

2/2
√
2/2
]
+ ϵi where ϵi ∼ N(0, 0.2) for i ∈ [1, . . . ,m]. This is roughly the same distribution

as the example in Section 5.1 but with some slight perturbation of W on the 2-d unit sphere. We
observe that in this simple case as well, optimization always succeeds to the global minimizer, the
landscape looks as benign as in Figure 2, and the average value of µ computed in practice over 10
test examples is µ = 2.17. Note that the value of µ is significantly higher than when ϵi = 0. We
conjecture that the randomness in ϵi leads to an improved landscape as x′ −G(zk) is less likely to
fall close to the nullspace of WT

1 R1 (see Algorithm 1 for definition of Ri), which is the case when
the local error bound condition is not met.

Example 16. (GAN Inversion with Hadamard Matrices) We can also extend the previous example
by looking at Hadamard matrices in general, which are square matrices with entries 1 and −1 and
whose rows are mutually orthogonal. Suppose we look at the Hadamard matrix of order 4, which is:

W =

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (88)

22



Under review as a conference paper at ICLR 2024

Suppose that for a GAN inversion problem with d = 4,m = 100, the rows of W are spanned by the
4 rows of this Hadamard matrix. In this case as well, we observe that over 50 runs, GAN inversion
always converges to the global minimizer when z0 is randomly initialized. Further, the average value
of µ we observe is 1.07. This value improves to µ = 2.61 when we add ϵi to each row of W for
ϵi ∼ N(0, 0.2) as in the previous example. The orthogonality property is likely an important property
in ensuring a benign optimization landscape and having the local error bound property hold - note
that by construction, the rows are not all mutually orthogonal, but they are spanned by a mutually
orthogonal set.

Example 17. (GAN Inversion with Vandermonde Matrices) Consider a GAN with latent space
dimension d = 2 and m = 100. Let W be a normalized Vandermonde matrix of dimension m×d, i.e.
each unnormalized row is [1 i] for i ∈ 1, . . . ,m. For this matrix, over 50 runs, we always converge
to the global minimizer with an average µ value of 0.64.

B.6 FASHION-MNIST EXPERIMENTS

Table 5 gives results of our method on the Fashion-MNIST dataset. we significantly improve upon the
work of Thaker et al. (2022) by using a better generative model for the clean data. In particular, it is
evident that the clean signal model of Thaker et al. (2022) is insufficient at modelling the clean data,
resulting in a clean signal classification accuracy of only 23% on average across different attacks, as
compared to our model, which provides 66% test signal classification accuracy.

Table 5: Adversarial image and attack classification accuracy on Fashion-MNIST dataset. See Table
1 for column descriptions.

Fashion-MNIST CNN SBSC BSD-GAN SBSAD BSD-GAN-AD

ℓ∞ PGD (ϵ = 0.3) 2% 16% 63% 30% 42%
ℓ2 PGD (ϵ = 2.0) 10% 20% 68% 55% 59%
ℓ1 PGD (ϵ = 10.0) 12% 35% 68% 15% 48%

Average 8% 23.67% 66.33% 33.33% 49.66%

B.7 QUALITATIVE RESULTS

Figure 4: Qualitative Results for ℓ∞ corrupted images for the MNIST, Fashion-MNIST, and CIFAR-
10 datasets. Each 5× 5 grid shows 25 iterations for G(zk) including the Defense-GAN initialization.

To qualitatively get a sense of whether GAN inversion succeeds at recovering the true image, we plot
G(zk) as a function of k for the different datasets. We focus on ℓ∞ attacks although we note that
the denoised results look qualitatively identical for the different attacks (while the corrupted image
looks different). If the GAN inversion succeeds at denoising and modelling the clean data, then we

23



Under review as a conference paper at ICLR 2024

expect better attack detection accuracy since the Daca term can better capture the structure of the
attack with limited noise. Figure 4 shows the results on the 3 datasets: MNIST, Fashion-MNIST, and
CIFAR-10. Each grid of images shows 25 images corresponding to G(zk) for 25 iterations. Note
that the iteration number includes the number of iterations needed for Defense-GAN initialization.
The Defense-GAN initialization looks qualitatively similar to a clean image, but the iterations after
alternating between updating z and ca allow us to further classify the attack. In all 3 examples, we
see successful inversion of the image despite starting from an incorrect class, further supporting the
benign optimization landscape of the inversion problem.

B.8 USING DIFFUSION MODELS INSTEAD OF GANS

With the development of diffusion models that have been shown to be powerful generative models, a
natural question is whether our approach can be extended to use diffusion models as the underlying
generative model in practice. We emphasize that the main contribution of our work is a theoretically
grounded algorithm for reverse engineering deceptions, and using diffusion models presents a vast
set of challenges in providing recovery guarantees for the underlying signal and attack.

Nie et al. (2022) provide a method for adversarial purification using diffusion models, which they
call DiffPure, with the hope that by passing an adversarially corrupted image to the forward and
backward process of a diffusion model, adversarial noise is removed. On its own, DiffPure does not
provide a way of joint signal and attack classification. However, using our approach, one can alternate
between denoising using diffusion models and classifying the attack using the attack dictionary as
we have done in this work. Specifically, let D(x′) be the denoised version of x′ by passing through
the forward and reverse process of a diffusion model D. Then, our modelling assumption is that
x′ ≈ D(x′) +Daca. Our alternating algorithm then becomes in each step to perform two operations:
a) compute D(x′) b) use proximal gradient descent steps to fit ∥x′ −D(x′)−Daca∥2 + λ2 ∥ca∥1,2
for ca. We call this method BSD-DP and BSD-DP-AD for signal and attack classification respectively
(where DP stands for DiffPure). The below table shows results of this method on the CIFAR-10
dataset.

We observe a few interesting phenomena when using diffusion models. First, the DiffPure signal
classifier removes the adversarial noise well, which hints to the success of the DiffPure approach
as observed by Nie et al. (2022). When, we add the modelling of the attack however, we observe
slightly improved signal classification results with the intuition that part of the adversarial noise is
also captured by the Daca model. However, as evidenced by the BSD-DP-AD column, the attack
model is insufficient at classifying the correct attack type surprisingly predicting that all attacks are of
type ℓ2. We believe the reason for this is that the diffusion model as an underlying generative model
gives very good results but on average, D(x′) is not close to x′ as an exact reconstruction. Indeed,
in our experiments, for ℓ2 attacks we find that on average, ∥D(x′)− x′∥2 ≈ 10 (which is much
higher than the strength of the ℓ2 perturbation) for the 100 test examples shown here. In contrast, the
GAN inversion produces almost exact inversion of the underlying image, which is more beneficial
for our model. If we use fewer forward steps in the diffusion model, we might expect to recover
the underlying signal better, but not remove the adversarial component. We defer a more thorough
evaluation of this tradeoff to future work. Despite this, it is surprising that the signal classification
still improves by modelling the attack structure using the dictionary. These experiments showcase the
benefit of using GANs to model the underlying distribution since provably near-exact inversion helps
the modelling of the clean data and gives on average higher attack classification for only slightly
reduced signal classification accuracy.

Table 6: Adversarial image and attack classification accuracy on CIFAR-10 dataset for 100 test
examples. See text above for column descriptions. DP stands for DiffPure.

CIFAR-10 CNN BSD-GAN DP BSD-DP BSD-GAN-AD BSD-DP-AD

Clean accuracy 99% 72% 84% 84% - -
ℓ∞ PGD (ϵ = 0.03) 0% 76% 82% 87% 48% 0%
ℓ2 PGD (ϵ = 0.5) 0% 87% 83% 87% 77% 100%
ℓ1 PGD (ϵ = 12.0) 0% 71% 82% 87% 44% 0%

Average 0% 78% 82.33% 87% 56% 33.33%

24


	Introduction
	Related Work
	Problem Formulation
	Main Results: Theoretical Guarantees for RED
	Convergence Analysis of the GAN Inversion Problem
	Comparison to Existing GAN Inversion Approaches

	Reverse Engineering of Deceptions Optimization Problem without Regularization
	Regularized Reverse Engineering of Deceptions Optimization Problem

	Experiments
	Verification of the Local Error Bound Condition
	Reverse Engineering of Deceptions on Real Data
	MNIST and Fashion-MNIST
	CIFAR-10


	Conclusion
	Proofs for Theoretical Results
	Proofs for Section 4.2: Reverse Engineering of Deceptions Optimization Problem without Regularization
	Proofs for Section 4.1: GAN Inversion
	Proof of Corollary 4

	Proof of Theorem 8: Regularized Case
	Instantiating rho and epsilon for a Simple Network

	Additional Experiments
	Synthetic Data Experimental Details
	Real Data Experimental Details
	Local Error Bound for Random Deep Networks
	On the Restrictiveness of Assumption 1
	Non-Random Networks that satisfy Local Error Bound Condition
	Fashion-MNIST Experiments
	Qualitative Results
	Using Diffusion Models Instead of GANs


