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Abstract
TD-learning is a foundation reinforcement learn-
ing (RL) algorithm for value prediction. Critical
to the accuracy of value predictions is the quality
of state representations. In this work, we consider
the question: how does end-to-end TD-learning
impact the representation over time? Complemen-
tary to prior work, we provide a set of analysis
that sheds further light on the representation dy-
namics under TD-learning. We first show that
when the environments are reversible, end-to-end
TD-learning strictly decreases the value approx-
imation error over time. Under further assump-
tions on the environments, we can connect the
representation dynamics with spectral decomposi-
tion over the transition matrix. This latter finding
establishes fitting multiple value functions from
randomly generated rewards as a useful auxiliary
task for representation learning, as we empirically
validate on both tabular and Atari game suites.

1. Introduction
Temporal difference (TD) learning is a foundational algo-
rithm for predicting value functions in reinforcement learn-
ing (RL) (Sutton, 1988). In practice, computations of the
value predictions depend on how the state is represented, a
quantity formally known as state representation. In classic
settings such as linear TD, the representations are often hu-
man designed and fixed throughout learning. In this case,
the quality of the best possible value predictions depends
critically on the quality of the fixed representations. Good
representations should share useful information across states
that entail accurate value predictions (see, e.g., (Tsitsiklis
and Van Roy, 1996; Munos, 2003; Behzadian et al., 2019)
for some example characterizations).

Any fixed representation is potentially sub-optimal, as it
does not adapt to the underlying learning algorithm. To
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alleviate such issues, in practice, it is now common to per-
form gradient-based updates on the representations also
with TD-learning. Recently, such an end-to-end approach
to representation learning has led to much empirical suc-
cess and is the core of many high-performing agents such as
DQN (Mnih et al., 2013). A natural question ensues: can we
characterize the representation learned by such end-to-end
updates?

The answer to this question has been attempted by a number
of prior work, including the study of the convergence of end-
to-end TD-learning under the over-parameterized regimes,
i.e., when the value functions are learned by very wide neu-
ral networks (Cai et al., 2019; Zhang et al., 2020; Agazzi and
Lu, 2022; Sirignano and Spiliopoulos, 2022); the study of
TD-learning dynamics under smooth homogeneous function
approximation, e.g., with ReLU networks (Brandfonbrener
and Bruna, 2019); the study of representation dynamics un-
der TD-learning with restrictive assumptions on the weight
parameter (Lyle et al., 2021). See Section 6 for an in-depth
discussion about this paper’s relation to prior work.

In this work, we provide a set of analysis complementary
to prior work, which hopefully sheds light on how TD-
learning impacts the evolution of representation over time.
We consider the natural extension of the linear TD case
(Sutton, 1988; Tsitsiklis and Van Roy, 1996), where the
value function is parameterized in a bi-linear way

V = Φw.

Here, Φ is the representation, which is kept fixed in linear
TD. We study the evolution of the representation under the
general TD-learning updates. Our contributions consist in
providing characterizations of the representation dynamics,
through a few angles.

Improving value prediction accuracy over time. When
assuming the Markov chain is reversible, we show that
the value prediction error, as measured by the difference
Φw − V π, strictly decreases over time (Section 4). This
solidifies the intuition that allowing updating representa-
tions during TD-learning should improve upon classic TD-
learning where representations are fixed.

Spectral decomposition of the transition matrix . We
show that when the transition matrix is symmetric and under
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certain conditions of reward functions, TD-learning learns
provably useful representations (Section 5). Formally, the
representation dynamics executes gradient-based spectral
decomposition on the transition matrix.

Random value predictions learn useful representations.
As a corollary of the previous results, we show that pre-
dicting multiple value functions generated via randomly
sampled rewards is an auxiliary task that helps learn useful
representations. We validate this theoretical insight with
tabular and deep RL experiments over Atari game suites.

2. Background
Consider a Markov decision process (MDP) represented as
the tuple (X ,A, p, pR, γ) where X is a finite state space, A
the finite action space, p : X ×A → P(X ) the transition
kernel, pR : X ×A → Rh the reward kernel, and γ ∈ [0, 1)
the discount factor. In the traditional setting, the reward is
scalar such that h = 1, though in general it can be extended
to multiple dimensions h ≥ 1 (Sutton et al., 2011). Let
π : X → P(A) be a fixed policy. For convenience, let
Pπ : X → P(X ) be the state transition kernel induced by
the policy π such that Pπ(x, y) =

∑
a π(a|x)p(y|x, a). De-

note the state-dependent reward function as Rπ ∈ R|X |×h

such that Rπ(x) =
∑

a r(x, a)π(a|x) ∈ Rh. Throughout,
we will focus on the Markov reward process under Pπ and
Rπ as this simplifies discussions.

When the context is clear, we overload the notation and let
x be an one-hot encoding of the state too. A state repre-
sentation ϕx ∈ Rk is defined by a mapping from the state
space X to the k-dimensional Euclidean space. To charac-
terize representations, we consider a matrix Φ ∈ R|X |×k

from which the representation for state x can be calculated
as ϕx := ΦTx ∈ Rk. Throughout, we assume k ≤ |X |
where |X | is the cardinal of X , as this tends to be the case
in practice. Good representations should entail sharing in-
formation between states, and facilitate downstream tasks
such as policy evaluation or control. In classic TD-learning
settings, representations are fixed, whereas in practice, rep-
resentations are also shaped by incremental updates, as we
detail below.

2.1. TD-learning with linear function approximations

Given the representation ϕx ∈ Rk at state x, TD-learning
with linear function approximation parameterizes a linear
function with weight w ∈ Rk×h, such that the predic-
tion ϕT

xw approximates the value function V π := (I −
γPπ)−1Rπ ∈ R|X |×h. In most applications, there is a
single reward h = 1; here, we consider the most general
case h ≥ 1 as this helps facilitate ensuing discussions. For
any 1 ≤ i ≤ h, we can understand the i-th column of
the weight vector wi as approximating the value function

V π
i ∈ R|X | derived from the i-th column of the reward

matrix Rπ
i ∈ R|X |. The aim of TD-learning is to adjust the

weight parameter w such that the approximation is accurate.
We start with the classic linear TD-learning setting where
the representation Φ is fixed.

Given a state xt and its sampled next state xt+1 ∼ Pπ(·|xt),
TD-learning constructs the bootstrapped back-up target
Rπ(xt) + γϕT

xt+1
w and seeks to minimize the squared pre-

diction error∥∥∥Rπ(xt) + γϕT
xt+1

w − ϕT
xt
w
∥∥∥2
2
.

TD-learning is defined through the semi-gradient update,
which can be understood as gradient descent on the modified
squared prediction error with a stop gradient operation on
the back-up target,

L(Φ, w) :=
∥∥∥sg

(
Rπ(xt) + γϕT

xt+1
w
)
− ϕT

xt
w
∥∥∥2
2
. (1)

Here we omit the loss function’s dependency on the sampled
transition for simplicity. Then, the weight is updated as

wt+1 = wt − ηw∂wt
L(Φ, wt), (2)

with learning rate ηw ≥ 0. Throughout, we assume the state
xt are drawn from the stationary distribution dπ ∈ R|X | of
the Markov matrix Pπ. We let Dπ ∈ R|X |×|X| denote the
diagonal matrix constructed from dπ . Assuming Φ is of rank
k and dπ > 0, it has been proved that under mild conditions
on the learning rate and the representation matrix, linear
TD-learning converges to the unique fixed point (Tsitsiklis
and Van Roy, 1996)

w∗
Φ :=

(
ΦTDπ(I − γPπ)Φ

)−1
ΦTDπRπ. (3)

The primary approach taken by the seminal work of (Tsitsik-
lis and Van Roy, 1996) is to understand linear TD-learning
through the continuous time behavior of the expected lin-
ear TD updates, characterized by an ordinary differential
equation (ODE). Now, we overload the notation and let wt

be the weight parameter indexed by continuous time t ≥ 0.
The continuous time behavior of linear TD is characterized
by the following ODE

dwt

dt
= ηw · ΦTDπ (Rπ − (I − γPπ) Φwt) . (4)

Here, ηw > 0 is the learning rate. We can verify that w∗
Φ is

the unique fixed point to Equation (4).

3. End-to-end linear TD-learning: jointly
updating weight and representation

We now provide further background on a natural extension
of linear TD-learning to the case where the representations
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are updated as well, a case we call deep TD-learning (Lyle
et al., 2021). In end-to-end linear TD, both representation Φ
and weight w are updated by semi-gradient descent on the
squared prediction error in Equation (1). The joint update
on Φt and wt is

wt+1 = wt − ηw∂wt
L(Φt, wt),

Φt+1 = Φt − ηΦ∂Φt
L(Φt, wt)

(5)

with learning rates ηw, ηΦ ≥ 0. If we interpret the combina-
tion of representation and weight parameter θ = (Φ, w) as
a whole, the end-to-end linear TD update in Equation (5),
combined with the original linear TD update in Equation (2)
can be understood as semi-gradient descent on the loss func-
tion L(Φ, w) with respect to θ. Though end-to-end linear
TD-learning brings us closer to practical implementations
(e.g., DQN (Mnih et al., 2013)), there is no general guaran-
tee on the behavior of the joint system (Φt, wt).

We aim to understand the behavior of end-to-end linear
TD by characterizing the behavior of its continous time
system. The continuous time ODE of the end-to-end linear
TD updates in Equation (5) can be formally stated as follows.

Lemma 1. The ODE to the end-to-end linear TD update in
Equation (5) is

dwt

dt
= ηw · ΦT

t D
π (Rπ − (I − γPπ) Φtwt) ,

dΦt

dt
= ηΦ ·Dπ (Rπ − (I − γPπ) Φtwt)w

T
t .

(6)

A critical difference between the linear TD and end-to-end
linear TD is demonstrated through the ODE systems in
Equation (4) and Equation (6): the linear TD induces a
linear ODE in the variable wt, whereas the end-to-end lin-
ear TD is a coupled non-linear ODE in the joint variable
(Φt, wt). This hints at the difficulty in characterizing the
learning dynamics of the end-to-end linear TD as alluded to
earlier.

Remarks on the learning rates. The linear TD can be
understood as a special case when ηΦ = 0. In practical
implementations, it is more common to update both set
of parameters with the same learning rate ηw = ηΦ >
0. An interesting case for theoretical analysis is when the
representation is updated at a much slower pace than the
weight vector, i.e., ηΦ ≪ ηw. We study such a limiting case
in Section 5. Below, we consider the general case where
both learning rates assume positive finite values.

4. Value function approximation error of
end-to-end linear TD

A primary quantity of interest for TD-learning is the value
approximation error Φw−V π . In linear TD-learning, given

the fixed Φ, the approximation error is in general finite even
if w converges to the fixed point w∗

Φ. In end-to-end linear
TD-learning, where the representation matrix Φt is adapted
over time based on the semi-gradient, intuitively we should
expect the approximation error to decrease over time. Below,
we make a formal characterization of such an intuition.

As a measure of the approximation accuracy, we define the
following weighted value approximation error E(Φ, w),

E :=
1

2
Tr
(
(Φw − V π)

T
Dπ(I − γPπ) (Φw − V π)

)
,

where the function Tr(M) =
∑

i Mii returns the trace of
a squared matrix M . The error is effectively the sum of
weighted norms for the columns of Φw − V π ∈ R|X |×h

under the key matrix

Dπ(I − γPπ) ∈ R|X |×|X|.

The key matrix is positive definite (PD), see, e.g., (Sutton
et al., 2016) for a detailed proof. As a result, the weighted
error enjoys a few useful properties.

Lemma 2. The weighted error E(Φ, w) is always non-
negative and evaluates to zero if and only if Φw = V π .

As a first important conclusion of this work, we show that
when the MDP is reversible, the error function strictly de-
creases over time, as long as (Φt, wt) has not converged to
a critical point of the ODE dynamics. Intriguingly, this is
because under the reversibility assumption, the end-to-end
linear TD dynamics turns out to be gradient descent on the
error function.

Theorem 3. Assume the Markov chain is reversible, i..e,
DπPπ = (Pπ)TDπ , then the end-to-end linear TD dynam-
ics in Equation (6) is effectively gradient descent on the
error function E(Φt, wt), i.e.,

dwt

dt
= −ηw · ∂wt

E(Φt, wt),
dΦt

dt
= −ηΦ · ∂Φt

E(Φt, wt).

As a result, the weighted value approximation error is non-
increasing dE(Φt, wt)/dt ≤ 0. If (Φt, wt) is not at a crit-
ical point of the learning dynamics, i.e. when dΦt

dt ̸= 0 or
dwt

dt ̸= 0, then dE(Φt, wt)/dt is strictly negative.

Proof. We provide a proof sketch here. The reversibility
assumption establishes that the key matrix Dπ(I − γPπ)
is symmetric. Under this symmetric condition, with a few
lines of algebraic manipulations, we can show that indeed
the updates to wt and Φt follow negative gradient on the
weighted error E(Φt, wt). As a result

d

dt
E(Φt, wt) = −

(
1

ηΦ

∥∥∥∥dΦt

dt

∥∥∥∥2
2

+
1

ηw

∥∥∥∥dwt

dt

∥∥∥∥2
2

)
,

where ∥·∥2 is the L2 norm. This concludes the proof.
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Figure 1. The evolution of the weighted value approximation error
E(Φt, wt) under the end-to-end linear TD dynamics. The solid
curves show the median result over 100 randomly generated MDPs.
We compare three cases: (1) vanilla end-to-end linear TD with
ηΦ = ηw = 1 (Equation (6)); (2) vanilla end-to-end linear TD
with ηΦ = 1, ηw = 10; (3) two time-scale end-to-end linear TD
(Equation (9)). Across all dynamics, the weighted error takes a
decaying trend though such decay is not necessarily monotonic for
randomly sampled MDPs. Fixing the number of iterations, the two
time-scale dynamics achieves the fastest rate of decay compared
to vanilla end-to-end linear TD.

We expand on the result a bit more. The second term in
the time derivative

∥∥dwt

dt

∥∥2
2

can be attributed to the classic

linear TD update, whereas the first term
∥∥dΦt

dt

∥∥2
2

is derived
from the updates on the representation matrix. Such a local
improvement property is indicative of the usefulness of end-
to-end linear TD in practice, similar to how policy gradient
updates provide local value improvements in policy opti-
mization. The rate of the improvement in E(Φt, wt) is also
proportional to the magnitude of the semi-gradient updates
to Φt and wt.

Critical points of end-to-end linear TD. Theorem 3 im-
plies the end-to-end linear TD dynamics should converge
to a critical point, i.e., points at which Φ̇t = 0 and dwt

dt = 0,
which we discuss below. Solving for dwt

dt = 0, we see that
given any Φ, the weight parameter must be at the TD fixed
point w = w∗

Φ. Then when solving for Φ̇ = 0, we obtain
the following characterization for the critical points.

Lemma 4. Assume the matrix ΦT
t D

π(I − γPπ)Φt is in-
vertible for all time, then the set of critical points C of the
end-to-end linear TD dynamics (Equation (6)) are pairs of
(Φ, w) ∈ C such that w = w∗

Φ, and Φ satisfies the following

condition,

DπRπ(DπRπ)TΦ ∈ span (Dπ(I − γPπ)Φ) . (7)

Here, span(A) denotes the vector subspace spanned by the
columns of A. The notation A ∈ span(B) means that each
column of matrix A is in the subspace span(B).

We note that in general, it is challenging to deliver a more
concise and intuitive description of the critical points be-
yond Equation (7), however, with further assumptions we
can provide more meaningful characterizations on the rep-
resentations at critical points. See Section 5 for further
discussions.

Reversibility assumption. The reversibility assumption
on the Markov chain is a sufficient condition in showing
that the weighed error E(Φt, wt) strictly decays over time
(Theorem 3), similar to the linear TD case (Ollivier, 2018).
Lately, Brandfonbrener and Bruna (2019) also showed the
convergence of non-linear TD dynamics when the MDP
is reversible enough. All such prior results allude to the
important impact of such an assumption. Nevertheless, it is
a very strong assumption in general. We complement the
theoretical results here with numerical simulations of the
weighted error E(Φt, wt) along the end-to-end linear TD
dynamics, over general MDPs that can violate the reversibil-
ity assumption.

In Fig. 1, we show the evolution of E(Φt, wt) over time
under three different dynamics: (1) vanilla end-to-end linear
TD with ηΦ = ηw = 1 (Equation (6)); (2) vanilla end-
to-end linear TD with ηΦ = 1, ηw = 10; (3) two time-
scale end-to-end linear TD (Equation (9), see Section 5 for
details). For each dynamics, we generate 100 random MDPs
that very likely violate the reversibility assumption. In all
cases, the error takes a decaying trend though the decrease
is not necessarily monotonic in general. This empirically
shows that to certain degree, the general trend of decreasing
value error is robust to the violation of the assumption.
Furthermore, we see that when the weight parameter is
updated at a higher learning rate than the representation
matrix, the error decays at a faster rate. The fastest rate
seems to be obtained at the extreme when at each iteration,
the weight parameter is set at the TD fixed point wt = w∗

Φt

under the limiting two time-scale dynamics (see Section 5).
See Appendix D for further experimental details.

Convergence of the error and representation. Since the
error function E(Φt, wt) is strictly monotonic over time, it
converges to an asymptotic value as t → ∞. An important
question is whether the error converges to the lowest possi-
ble value over the set of critical points limt→∞ E(Φt, wt) =
inf(Φ,w)∈C E(Φ, w). Answering such questions requires a
refined analysis of the dynamics, which we leave to future
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work. A related question is what does the representation
Φt converge to, if it converges at all. We provide some
discussions on this question in the next section.

5. Characterizing representations of
end-to-end linear TD

Thus far we have characterized the behavior of the end-
to-end linear TD dynamics (in Equation (6)) via the value
approximation error E(Φ, w). Such an error characterizes
the information that the aggregate prediction Φw contains.
In applications such as policy evaluation, where value pre-
diction is the ultimate objective, such a characterization
seems to suffice.

In practice, it is also of interest to understand the informa-
tion that the representation Φ contains by itself. Consider
a motivating example (taken from (Bellemare et al., 2019))
where k = h = 1, if we take the representation to be the
value function Φ = V π and w = 1, the prediction error is
zero. However, such a representation is specialized to re-
ward function Rπ and does not capture general information
about the transition matrix Pπ .

5.1. Warming up: two time-scale end-to-end linear TD

To facilitate the discussion, we consider a specialized case
of the end-to-end linear TD dynamics, where the weight
parameter wt is updated at a much faster time pace than Φt.
Numerically, this can be emulated by the end-to-end linear
TD updates in Equation (5) with ηΦ ≪ ηw as mentioned ear-
lier. Here, we consider the extreme case, the two time-scale
dynamics where at at any iteration t, the weight parameter
wt = w∗

Φt
is the optimal weight adapted to representation

Φt.

wt = w∗
Φt
, Φt+1 = Φt − ηΦ∂ΦtL(Φt, wt) (8)

We call the above dynamics the end-to-end linear TD-
learning with two time-scales. The continuous time ODE
system is as follows.
Lemma 5. The ODE to the two time-scale dynamics in
Equation (9) is

dΦt

dt
= ηΦ ·Dπ

(
Rπ − (I − γPπ)Φtw

∗
Φt

)
(w∗

Φt
)T , (9)

where recall that w∗
Φt

is the linear TD fixed point to repre-
sentation Φt specified in Equation (3).

Importantly, note that the two time-scale ODE dynamics
cannot be recovered exactly from the ODE to the vanilla
end-to-end linear TD Equation (6) with finite values of ηw
and ηΦ. Nevertheless, as a corollary to Theorem 3, we
can still show that under the reversibility assumption, the
two time-scale dynamics also decreases the weighted value
approximation error.

Corollary 6. Assume the Markov chain is reversible, then
under the two time-scale learning dynamics in Equation (9),
the weighted value approximation error is non-increasing
d
dtE(Φt, wt) ≤ 0. If Φt is not at a critical point of the
learning dynamics, then d

dtE(Φt, wt) is strictly negative.

5.2. Non-collapse representation dynamics

One primary motivation to consider the two time-scale dy-
namics is that the representation matrix Φt enjoys the fol-
lowing important property: throughout the dynamics, the
covariance matrix ΦT

t Φt is a constant matrix over time.

Lemma 7. Under the two time-scale dynamics in Equa-
tion (9), the covariance matrix ΦT

t Φt ∈ Rk×k is a constant
matrix over time.

Lemma 7 implies that the representation matrix Φt main-
tains its representational capacity over time. Denoting the
i-th column of Φt as Φt,i for 1 ≤ i ≤ k, we can visualize
the evolution of Φt as rotations in the representation space:
the relative angle between Φt,i and Φt,j , as well as their
respective lengths, are preserved over time. For example,
if the k columns of Φt are initialized to be orthornormal
ΦT

0 Φ0 = Ik×k, then they stay orthonormal throughout the
dynamics. This excludes situations where all k columns
converge to the same direction (see, e.g., dynamics in (Lyle
et al., 2021) for examples), in which case the learned repre-
sentation is not ideal.

5.3. When does end-to-end linear TD learn useful
representations

In classic linear TD, the representations are fixed throughout
the weight update. Examples of good fixed representations
include top eigen or singular vector decompositions of the
transition matrix Pπ (Mahadevan, 2005; Machado et al.,
2018; Behzadian et al., 2019; Ren et al., 2022), some of
which can lead to provably low value approximation errors
(Behzadian et al., 2019).

Now, we seek to identify cases where end-to-end linear TD
entails learning such useful representations. To measure the
information contained in Φt about the transition matrix Pπ ,
we define the trace objective

f(Φt) := Tr
(
ΦT

t (I − γPπ)−1Φt

)
. (10)

The resolvant matrix (I−γPπ)−1 =
∑∞

t=0(γP
π)t reflects

the long term discounted transition under Pπ. To see why
the above trace objective provides a helpful measure, note
that when Pπ is symmetric, we can relate it to the data co-
variance matrix in PCA (Abdi and Williams, 2010). Indeed,
if we constrain inputs to f to be the matrix U concatenating
any of k distinct eigenvectors (ui)

k
i=1 of (I−γPπ)−1, then

f(U) =
∑k

i=1 λi where λi is the eigenvalue of ui. As a
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result, solving the constrained optimization problem

max
Φ

f(Φ), s.t. ΦTΦ = Ik×k (11)

amounts to finding the top k eigenvectors of (I − γPπ)−1.

Can we show that the end-to-end linear TD dynamics makes
progress towards maximizing f(Φ)? Unfortunately, even
under the restrictive setting that Pπ is symmetric, there is no
guarantee that f(Φt) is maximized following the end-to-end
linear TD dynamics. An probably intuitive explanation is
that since Rπ comes into play in the TD updates, it may
prevent Φt from learning just about the transition matrix (see
numerical examples in Section 5.4). However, by imposing
further conditions on the reward function, we show below
that Φt learns to capture the spectral information of Pπ .
Theorem 8. Assume the outer product of the reward func-
tion is an identity matrix Rπ(Rπ)T = I|X |×|X| and assume
Pπ is symmetric. Then under the two time-scale dynam-
ics in Equation (9), the trace objective is non-increasing
df/dt ≥ 0 over time. If dΦt

dt ̸= 0, then df/dt > 0.

We will discuss the implication of Rπ(Rπ)T = I in Sec-
tion 5.4. Before, that, we note a critical observation: by
Lemma 7 and Theorem 8, we see that the two time-scale
end-to-end linear TD dynamics carries out gradient-based
optimization to solve the constrained k-PCA problem (Equa-
tion (11)). A key requirement is to satisfy the orthonormal
constraints. Fortunately, as Lemma 7 suggests, if we ini-
tialize Φ0 to be orthonormal, the constraints ΦT

t Φt = I is
implicitly satisfied throughout the dynamics.

Critical points span eigenspaces of Pπ. When assump-
tions in Theorem 8 are imposed, we can strengthen our
characterizations of the critical points of the end-to-end lin-
ear TD dynamics, by relating them to eigen subspaces of Pπ .
Here, we limit our attention to non-trivial critical points that
satisfy the constraints ΦTΦ = ΦT

0 Φ0 as other critical points
cannot be arrived at from the learning dynamics (Lemma 7).
Corollary 9. When assumptions in Theorem 8 are satisfied,
and further, assume ΦT

0 D
π(I − γPπ)Φ0 is invertible. A

representation Φ is a non-trivial critical point of the two
time-scale dynamics (Equation (9)) if and only if it spans
an invariant subspace of Pπ , i.e., PπΦ ∈ span (Φ).

5.4. Fitting values with randomly sampled rewards

Recall that Rπ ∈ R|X |×h can be understood as the concate-
nation of h different reward functions, and we let Rπ

i ∈ R|X |

denote its i-th column for 1 ≤ i ≤ h. An especially inter-
esting case is when entries of each one of the h such reward
columns are sampled i.i.d.

Lemma 10. (Randomly sampled rewards) When the each
entry of Rπ

i is sampled i.i.d. from any zero-mean distribu-
tion with finite variance σ2/

√
h for some constant σ > 0,
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Figure 2. The normalized trace objective f(Φt) under the end-to-
end linear TD dynamics. We generate 100 random MDPs and
solid curves show the median results. We consider three scenarios:
(1) multiple reward functions h = 5 with general Pπ; (2) single
reward h = 1 with symmetric Pπ; (3) single reward with general
Pπ . The trace objective takes an upward trend though the improve-
ment is not necessarily monotonic for randomly sampled MDPs.
When predicting multiple random rewards, the representations
seem to capture more spectral information about Pπ as measured
by the trace objective.

for 1 ≤ i ≤ h. Then as the number of reward columns
h → ∞, we have Rπ(Rπ)T → σ2I|X |×|X| almost surely.

Now, it is useful to recall Theorem 3 which showed that the
weighted value errors decay over time under the end-to-end
linear TD dynamics. In light of this previous result, we
can interpret Theorem 8 and its connections to randomly
sampled rewards as follows: if starting from a representation
Φt, one can accurately fit value functions V π

i generated by
multiple random rewards Rπ

i simultaneously, then Φt must
capture spectral information about the transition matrix Pπ .

Numerical experiments on randomly sampled MDPs.
In practice, the symmetry assumption in Theorem 8 is likely
to be violated. In Fig. 2 we evaluate the trace objective
f(Φt) under the two time-scale dynamics with randomly
generated MDPs. We compare a few cases: (1) multiple
reward functions h = 5 with general Pπ; (2) single reward
h = 1 with symmetric Pπ; (3) single reward with gen-
eral Pπ. The results suggest that the upward trend of the
trace objective is fairly persistent even in asymmetric MDPs,
implying that the dynamics entails Φt to capture useful in-
formation about Pπ in general. However, the improvement
in f is not monotonic in general.
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Figure 3. The normalized trace objective f(Φt) under the end-to-
end linear TD dynamics. We generate 100 random MDPs with
general Pπ and solid curves show the median results. We study the
effect of the number of random rewards h, with h ∈ {1, 2, 4, 8}.
As h increases, the median trace objective f(Φt) improves both at
higher rates and achieves higher asymptotic values, indicating that
the representations converge to the top k eigensubspace of Pπ . In
this case, the state space |X | = 30 and h = 4 seems to suffice for
learning very good representations.

Another critical observation is that by fitting more random
reward functions at the same time (red h = 5 vs. green
h = 1), the dynamics seemingly captures more spectral
information about the transition. The result also implies that
in practice, we probably do not need a very large number h
of rewards, see Section 7 for an ablation experiment.

How many reward functions are enough? The above ar-
guments imply that we might need a large number of reward
functions for the condition Rπ(Rπ)T = I to hold. In prac-
tice, a key empirical question is how many random reward
functions suffice for the end-to-end linear TD dynamics to
learn good representations. We carry out an ablation study
in Fig. 3 where we consider h ∈ {1, 2, 4, 8}. As h increases,
the trace objective f(Φt) both improves at a higher average
rate, and achieves higher asymptotic values. In our tabular
experiments, we consider k = 2 dimensions for the repre-
sentations. Intriguingly, h = 8 seems to suffice to learning
good representations (when the normalized trace objective
≥ 0.8; note that if Pπ is symmetric, the maximum normal-
ized trace objective is 1), which is noticeably smaller than
the number of states |X | = 30. Though the conclusion
certainly depends on the specific MDPs, the result suggests
in practice, potentially a relatively small number of random
rewards is enough to induce good representations.

Connections to auxiliary tasks in prior work. The idea
of fitting value functions of randomly generated rewards
bears close connections to a number of prior approach
for building auxiliary tasks in deep RL, such as random
cumulant predictions (Dabney et al., 2021; Zheng et al.,
2021). Random cumulant predictions consist in learn-
ing h value functions starting from a single representation
Φt, with different value heads. In our terminology, such
value heads can be understood as separate weight parameter
wi ∈ Rk, 1 ≤ i ≤ h, each dedicated to learning value func-
tion V π

i ∈ R|X | with randomly generated reward Rπ
i . This

is mathematically equivalent to our matrix notation with
w ∈ Rk×h throughout the paper.

6. Discussion on related work
A more comprehensive discussion is in Appendix C.

From linear TD to end-to-end linear TD. Much of the
prior work has focused on the linear TD setup (Sutton and
Barto, 1998; Tsitsiklis and Van Roy, 1996), where the rep-
resentations are assumed fixed throughout learning. Closely
related to our work is (Lyle et al., 2021) where they proposed
to understand the learning dynamics of end-to-end linear
TD through its corresponding ODE system. Since such an
ODE system is highly non-linear, it is more challenging to
provide generic characterizations without restrictive assump-
tions. Lyle et al. (2021) bypasses the non-linearity issue by
essentially assuming a fixed weight parameter wt ≡ w. In
light of Equation (6), they study the following dynamics

dΦt

dt
= ηΦ ·Dπ (Rπ − (I − γPπ)Φtw)w

T

which effectively reduces to a linear system in Φt and is
more amenable to analysis.

Our work differs in a few important aspects. Firstly, our
analysis adheres strictly to the vanilla end-to-end linear TD
(Equation (6)) or two-time scale end-to-end linear TD (Equa-
tion (9)), without imposing the constant weight assumption
as in (Lyle et al., 2019). Our analysis is also slightly more
general, as it consists in constructing a few scalar functions
that characterize the dynamics. This is more applicable
to general ODEs where obtaining exact solutions is not
tractable.

TD with non-linear function approximations. Along the
line of research on TD-dynamics with non-linear function
approximation, a closely related work is (Brandfonbrener
and Bruna, 2019) where they established the convergence
behavior of TD-learning with smooth homogeneous func-
tions. A key requirement underlying their result is that the
MDP is sufficiently reversible, which echos the assumption
we make in Theorem 3. However, under their framework

7
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Figure 4. Comparison of training curves of median human nor-
malized scores across 15 Atari games. We compare the baseline
DQN, DQN with tuned learning rate and DQN with random value
predictions as auxiliary tasks. The shaded areas show the 95%
bootstrapped confidence intervals averaged over 3 seeds. The ran-
dom value prediction tasks seem to provide marginal benefits over
the tuned DQN. See Appendix D for further details.

there is no clear notion of representation as defined in the
bi-linear case.

Self-predictive learning. Motivated by value-based TD-
learning, self-predictive learning directly employs the notion
of bootstrapping to the representation space, which has pro-
duced a number of empirically successful implementations
(Guo et al., 2020; Schwarzer et al., 2021; Guo et al., 2020).
Recently, Tang et al. (2022) proposes to understand the be-
havior of self-predictive learning through its corresponding
ODE. From their discussion, we note that two time-scale
dynamics is a generic way to enforcing optimization con-
straints. Our results in Section 5 build on this and show a
similar characterization for the end-to-end linear TD.

Two time-scale learning. Levine et al. (2017) proposed
a combination of LSTD updates for the linear weights on
top of DQN representations, which are shaped by gradi-
ent descents. In continuous time, this is effectively the two
time-scale dynamics (Eqn (9)). While their discussion is em-
pirically motivated, we focus on the representation learning
aspect of such a learning dynamics.

Auxiliary tasks. In deep RL literature, it has been empir-
ically observed that certain extra training objectives, nor-
mally referred to as auxiliary tasks (see, e.g., (Beattie et al.,
2016; Jaderberg et al., 2016; Bellemare et al., 2019; Fe-

dus et al., 2019; Dabney et al., 2021; Zheng et al., 2021)).
Though the conventional wisdom is that such auxiliary tasks
are useful in shaping representations, it is generally difficult
to characterize exactly what representations are induced, de-
spite some recent theoretical efforts (Lyle et al., 2021). Our
results formally demonstrate the potential benefits of ran-
dom reward predictions when combined with TD-learning.

7. Experiments
We validate the potential usefulness of fitting randomly
generated value functions as an auxiliary task in deep RL
settings. We use DQN (Mnih et al., 2013) as a baseline,
and generate random reward functions Rπ

i (x, a) via outputs
of randomly initialized networks, following the practice of
(Dabney et al., 2021). The common deep RL equivalent
of the representation ϕx is the output of the torso network
(usually a convnet). For the auxiliary task, we fit multiple
value function by applying different head network (usually
MLPs) on top of the common output ϕx. Throughout, we
update all network parameters with the same learning rate.
We have ablated on increasing the learning rate for head
networks, so that the algorithm is more in line with the two
time-scale dynamics; however, we found that in practice,
this tends to provide the torso network with less learning
signal (as much is taken care of by the head network) and
usually impedes performance. Understanding the theory-
practice gap here would be an important future direction.

Fig. 5 shows the result for DQN, DQN with tuned learning
rate, and DQN with random value function auxiliary task.
Overall, we see that the auxiliary task provides marginal
improvement on the tuned DQN baseline, hinting at the
potential usefulness of the auxiliary objective for represen-
tation learning. See Appendix D for further experimental
details.

8. Conclusion
We have provided a number of theoretical analysis on the
representation dynamics under end-to-end end-to-end lin-
ear TD dynamics. Under the reversibility assumption, we
have showed that the representation evolves such that the
value approximation error decreases over time. With further
assumptions on the reward function, we establish that the
representation dynamics carries out spectral decomposition
on the transition matrix, leading to provably useful repre-
sentations. This further implies that fitting random value
functions is a principled auxiliary task for representation
learning.

Our work opens up a few interesting directions for further
investigation, such as how to relax the reversibility assump-
tions, how to combine the end-to-end linear TD framework
with nonlinear functions and extensions to the control case.
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APPENDICES: Towards a Better Understanding of Representation Dynamics under TD-learning

A. Derivation of continuous time ODEs for end-to-end linear TD
Recall the squared prediction error in Equation (1),

L(Φ, w) :=
∥∥∥sg

(
Rπ(xt) + γϕt

xt+1
w
)
− ϕT

xt
w
∥∥∥2
2
.

We take an expectation over the state distribution xt ∼ dπ, xt+1 ∼ Pπ(·|xt), the expected loss function can be expressed as
follows

E[L] =
∑
x

dπ(x) (sg (Rπ(x) + γ (PπΦw) (x))− (Φw) (x))
2
,

where (Φw) (x) and (PπΦw) (x) denote the x-th coordinate of the corresponding vector Φw ∈ R|X | and PπΦw ∈ R|X |.
The expected semi-gradient for Φ and w can be computed as

∂wE[L] = −ΦTDπ (Rπ − (I − γPπ) Φw) , ∂ΦE[L] = −Dπ (Rπ − (I − γPπ) Φw)wT . (12)

Recall that end-to-end linear TD is defined as follows

dwt

dt
= −ηw · ∂wE[L],

dΦt

dt
= −ηΦ · ∂wE[L].

Plugging into the formula in Equation (12), we arrive at the ODE system in Lemma 1.

Now, to derive the two time-scale ODE dynamics, we just need to replace the generic weight vector wt in the update to Φt

above by the fixed point w∗
Φt

. This gives rise to the ODE in Equation (9).

B. Proof
Lemma 2. The weighted error E(Φ, w) is always non-negative and evaluates to zero if and only if Φw = V π .

Proof. Let vt,i denote the i-th column of Φw − V π for 1 ≤ i ≤ h. We have

E(Φ, w) = Tr
(
(Φw − V π)

T
Dπ(I − γPπ) (Φw − V π)

)
=

h∑
i=1

vTt,iD
π(I − γPπ)vt,i.

Since Dπ(I − γPπ) is PD (Sutton et al., 2016), we have each of the i-th term above is non-negative and is only zero when
vt,i = 0. This concludes the result.

Theorem 3. Assume the Markov chain is reversible, i..e, DπPπ = (Pπ)TDπ , then the end-to-end linear TD dynamics in
Equation (6) is effectively gradient descent on the error function E(Φt, wt), i.e.,

dwt

dt
= −ηw · ∂wt

E(Φt, wt),
dΦt

dt
= −ηΦ · ∂Φt

E(Φt, wt).

As a result, the weighted value approximation error is non-increasing dE(Φt, wt)/dt ≤ 0. If (Φt, wt) is not at a critical
point of the learning dynamics, i.e. when dΦt

dt ̸= 0 or dwt

dt ̸= 0, then dE(Φt, wt)/dt is strictly negative.

Proof. For notational simplicity, let A = Dπ(I − γPπ). Under the reversibility assumption, A is symmetric AT = A. We
also define vt := Φtwt − V π and denote vt,i as its i-th column. Define the matrix M = (Φw − V π)

T
A (Φw − V π), then

note that its (i, j)-thn component is vTt,iAvt,j . As a result, the weighted error rewrites as

E(Φt, wt) =

h∑
i=1

Mii =

h∑
i=1

1

2
vTt,iAvt,i︸ ︷︷ ︸
=:Mii

.
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Let wt,i be the i-th column of matrix wt. Recall by definition of the end-to-end linear TD dynamics, we have

dΦt

dt
= −ηΦ ·A (Φtwt − V π)wT

t = −ηw ·A
h∑

i=1

vt,iw
T
t,i

dwt,i

dt
= −ΦT

t Avt,i.

In order to derive ∂Φt
E(Φt, wt) and ∂wt

E(Φt, wt), note a few useful facts as follows,

∂Φt
Mii =

1

2
(A+AT )vt,iw

T
t,i = Avt,iw

T
t,i,

∂wtMii =
1

2
ΦT (A+AT )vt,i = ΦTAvt,i.

As a result, we can verify

dΦt

dt
= −ηΦ

h∑
i=1

∂Φt
Mii = −ηΦ∂Φt

E(Φt, wt)

dwt

dt
= −ηw

h∑
i=1

∂wt
Mii = −ηw∂wt

E(Φt, wt),

where (a) comes from the fact that A = AT . Now with chain rule, we have

dE(Φt, wt)

dt
= Tr

(
(∂Φt

E(Φt, wt))
T dΦt

dt

)
+ Tr

(
(∂wt

E(Φt, wt))
T dwt

dt

)
= −

(
1

ηΦ

∥∥∥∥dΦt

dt

∥∥∥∥2
2

+
1

ηw

∥∥∥∥dwt

dt

∥∥∥∥2
2

)
≤ 0,

which is strictly negative if (Φt, wt) is not at a critical point. The proof is hence concluded.

Lemma 4. Assume the matrix ΦT
t D

π(I−γPπ)Φt is invertible for all time, then the set of critical points C of the end-to-end
linear TD dynamics (Equation (6)) are pairs of (Φ, w) ∈ C such that w = w∗

Φ, and Φ satisfies the following condition,

DπRπ(DπRπ)TΦ ∈ span (Dπ(I − γPπ)Φ) . (7)

Here, span(A) denotes the vector subspace spanned by the columns of A. The notation A ∈ span(B) means that each
column of matrix A is in the subspace span(B).

Proof. For convenience, define A := Dπ(I − γPπ). We set dwt

dt = 0 and dΦt

dt = 0. It is straightforward to see that dwt

dt = 0
effectively allows us to derive the TD fixed point

wt =
(
ΦT

t AΦt

)−1
ΦT

t AV π =: w∗
Φt
.

Note that for the above expression, we have used the assumption that ΦT
t AΦt is invertible. Then, solving for dΦt

dt = 0 and
noting that wt = w∗

Φt
, we have

AΦt

(
ΦT

t AΦt

)−1
ΦT

t AV π(V π)TATΦ(ΦT
t A

TΦt)
−1 = AV π(V π)TATΦ(ΦT

t A
TΦt)

−1.

Cancelling out the invertible matrix at the end, we have

AΦt

(
ΦT

t AΦt

)−1
ΦT

t︸ ︷︷ ︸
M

AV π(V π)TATΦ = AV π(V π)TATΦ. (13)
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Now, consider the projection matrix M , which satisfies M2 = M . We exploit the following useful property of the projection
matrix

Mx = arg min
y∈span(AΦ)

∥x− y∥2(AT )−1 ,

where ∥x− y∥2(A−1)T := (x− y)(AT )−1(x− y) is the squared weighted norm of x− y under the PD matrix (AT )−1 (we
show that this matrix is indeed PD towards the end of the proof). Applying the result of Lemma 11 to each column of the
vector AV π(V π)TATΦ, we have Equation (13) is equivalent to below

AV π(V π)TATΦ ∈ span (AΦ) . (14)

From Equation (14), we derive a set of equivalent conditions.

AV π(V π)TATΦ ∈ span (AΦ) ⇐⇒(a) ∃B ∈ Rk×k, AV π(V π)TATΦ = AΦB

⇐⇒(b) (I − γPπ)−1Rπ(Rπ)T (Dπ)TΦ = ΦB

⇐⇒(c) D
πRπ(Rπ)T (Dπ)TΦ = AΦB

⇐⇒(d) D
πRπ(Rπ)T (Dπ)TΦ ∈ span(AΦ).

Here, (a) follows from the definition of span(AΦ); (b) follows by canceling A on both sides of the equation; (c) follows
from some straightforward algebraic manipulations; (d) follows from the definition of span(AΦ). This concludes the proof.

PD of matrix (AT )−1. Recall that A is PD, and by definition this means xTAx ≥ 0 and is only zero for x = 0. Given
any x, we want to show

xT (AT )−1x ≥ 0

and is only zero for x = 0. To see this, for any fixed vector x we define y = A−1x. Since A is PD, A−1 is invertible and
x = 0 if and only if y = 0. Now, we have

xT (AT )−1x = yTAy,

which is non-negative for all y ̸= 0 and is only zero when y = 0, in which case x = 0. This shows the matrix (AT )−1,
though asymmetric in general, is also PD.

Lemma 11. For any PD matrix D and matrix A with compatible shapes, define the projection matrix M :=
A(ATDA)−1ATD. Let v be a vector. The following two results are equivalent: (1) Mv = v; (2) v ∈ span(A).

Proof. By definition of the projection matrix M , we can write

Mv = arg min
y∈span(A)

∥v − y∥2D .

Starting with condition (1), we know that v is a feasible solution to the optimization problem above. This means v ∈ span(A),
which is condition (2). Starting with condition (2), we know that v is a feasible solution to the optimization problem that
defines the projection. It is straightforward to verify that v is also the unique optimal solution (unique because D is PD).
Hence, we have Mv = v.

Corollary 6. Assume the Markov chain is reversible, then under the two time-scale learning dynamics in Equation (9),
the weighted value approximation error is non-increasing d

dtE(Φt, wt) ≤ 0. If Φt is not at a critical point of the learning
dynamics, then d

dtE(Φt, wt) is strictly negative.

Proof. Using chain rule as in the proof of Theorem 3, for any generic argument (Φt, wt) to the weighted loss function, we
have

dE(Φt, wt)

dt
= Tr

(
(∂Φt

E(Φt, wt))
T dΦt

dt

)
+ Tr

(
(∂wt

E(Φt, wt))
T dwt

dt

)
.

13



Towards a Better Understanding of Representation Dynamics under TD-learning

Recall that by definition the TD fixed point w∗
Φt

satisfies the equation

ΦT
t D

π(I − γPπ)(Φtw
∗
Φt

− V π) = 0.

Meanwhile, the proof in Theorem 3 has showed

∂wt
E(Φt, wt) = −ΦT

t D
π(I − γPπ)(Φtwt − V π).

Combining the above two results, we have ∂w∗
Φt
E(Φt, w

∗
Φt
) = 0. Further, using the result from Theorem 3 we have

dΦt

dt = −ηΦ · ∂ΦtE(Φt, w
∗
Φ). This implies the following

dE(Φt, w
∗
Φt
)

dt
= − 1

ηΦ

∥∥∥∥dΦt

dt

∥∥∥∥2
2

,

which concludes the proof.

Lemma 7. Under the two time-scale dynamics in Equation (9), the covariance matrix ΦT
t Φt ∈ Rk×k is a constant matrix

over time.

Proof. Our result follows closely the proof technique in (Tang et al., 2022). Under the two time-scale TD dynamics, the
weight wt = w∗

Φt
is the fixed point solution given the representation Φt. Let At = Φtwt ∈ R|X |×h be the matrix product.

The chain rule combined with the first-order optimality condition on wt (which defines the fixed point) implies

∂wt
E [L(Φt, wt)] = ΦT

t ∂At
E [L(Φt, wt)] = 0. (15)

On the other hand, the semi-gradient update for Φt can be written as

Φ̇t = −∂At
E [L(Φt, wt)] (wt)

T .

Thanks to Equation (15), we have

ΦT
t Φ̇t = −ΦT

t ∂At
E [L(Φt, Pt)] (Pt)

T = 0.

Then, taking time derivative on the covariance matrix

d

dt

(
ΦT

t Φt

)
= Φ̇T

t Φt +ΦT
t Φ̇t =

(
ΦT

t Φ̇t

)T
+ΦT

t Φ̇t = 0,

which implies that the covariance matrix is constant along the ODE dynamics.

Theorem 8. Assume the outer product of the reward function is an identity matrix Rπ(Rπ)T = I|X |×|X| and assume Pπ is
symmetric. Then under the two time-scale dynamics in Equation (9), the trace objective is non-increasing df/dt ≥ 0 over
time. If dΦt

dt ̸= 0, then df/dt > 0.

Proof. Under the assumption Pπ is symmetric, we can verify the uniform distribution Dπ = |X |−1I is the stationary
distribution. As before, for notational simplicity we let A = Dπ(I − γPπ). Under the reversibility assumption, we have
AT = A. Rewriting the TD fixed point with A, we have

w∗
Φ =

(
ΦTAΦ

)−1
ΦTAV π.

Plugging w∗
Φ into Equation (9), the aggregate dynamics to Φt is

dΦt

dt
= ηΦ ·

(
I −AΦt

(
ΦT

t AΦt

)−1
ΦT

t

)
AV π(V π)TATΦt

(
ΦT

t A
TΦt

)−1
.

When Rπ(Rπ)−1 = I , we have

V π(V π)T = (I − γPπ)−1
(
(I − γPπ)−1

)T
= |X |−2A−1(A−1)T .

14
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Plugging this back into the dynamics for Φt, we have

dΦt

dt
= ηΦ|X |−2 ·

(
I −AΦt

(
ΦT

t AΦt

)−1
ΦT

t

)
AA−1(A−1)TAΦt

(
ΦT

t A
TΦt

)−1
.

Now, consider the trace objective f(Φt) = Tr
(
ΦT

t (I − γPπ)−1Φt

)
= |X |−1Tr

(
ΦT

t A
−1Φt

)
. Note that since

(ΦT
t A

TΦt)
−1 is symmetric and PD, we can write (ΦT

t A
TΦt)

−1 = LLT . Then we consider its time derivative

df

dt
= Tr

(
ΦT

t A
−1 dΦt

dt

)
= 2|X |−1 · Tr

(
ΦT

t A
−1 dΦt

dt

)
= 2ηΦ|X |−3 · Tr

(
ΦT

t A
−1
(
I −AΦt

(
ΦT

t AΦt

)−1
ΦT

t

)
AA−1(A−1)TAΦt

(
ΦT

t A
TΦt

)−1
)

= 2ηΦ|X |−3 · Tr
(
ΦT

t (
√
A)−1

(
I −

√
AΦt

(
ΦT

t AΦt

)−1
ΦT

t

√
A
)
(
√
A)−1ΦtLL

T
)

= 2ηΦ|X |−3 · Tr

ΦT
t (

√
A)−1

(
I −

√
AΦt

(
ΦT

t AΦt

)−1
ΦT

t

√
A
)
(
√
A)−1ΦtL︸ ︷︷ ︸

=:v

LT


= 2ηΦ|X |−3 · Tr

vT

I −
√
AΦt

(
ΦT

t AΦt

)−1
ΦT

t

√
A︸ ︷︷ ︸

=:M

 v



Note the matrix M is a projection matrix which satisfies MT = M,MT = M . This means Tr
(
vT (I −M)v

)
≥ 0 for any

matrix v. With the above definitions, we can rewrite the update

dΦt

dt
=

√
A(I −M)vLT .

Now, if dΦt

dt ̸= 0, this implies (I −M)v ̸= 0 since both LLT and A are PD. This further implies df
dt is strictly positive.

Meanwhile, if dΦt

dt = 0, this means (I −M)v = 0, which further implies df
dt = 0.

Corollary 9. When assumptions in Theorem 8 are satisfied, and further, assume ΦT
0 D

π(I − γPπ)Φ0 is invertible. A
representation Φ is a non-trivial critical point of the two time-scale dynamics (Equation (9)) if and only if it spans an
invariant subspace of Pπ , i.e., PπΦ ∈ span (Φ).

Proof. Define A = Dπ(I − γPπ). When ΦT
0 AΦ0 is assumed invertible, and since A is PD, Φ must be of rank k. By

Lemma 7, the rank of Φ is preserved over time and hence ΦT
t AΦt is always invertible along the ODE dynamics. This means

the conditions for Lemma 4 is are all satisfied and hence,

DπRπ(DπRπ)TΦ ∈ span (AΦ) .

When Pπ is symmetric and Rπ(Rπ)T = I , we deduce Dπ = |X |−1I and the following specialized condition holds,

Φ ∈ span (AΦ) .

Since Φ is rank k, the above condition implies there exists an invertible matrix B ∈ Rk×k,

Φ = AΦB.

This in turn implies AΦ = ΦB−1 and equivalently, AΦ ∈ span(Φ). When Pπ is symmetric, Dπ = |X |−1I and we have
from before, Φ− γPπΦ ∈ span(Φ). This implies PπΦ = γ−1Φ(I −B) and hence PπΦ ∈ span(Φ).
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Now, assume PπΦ ∈ span(Φ), we seek to show that Φ is a critical point of the dynamics. The assumption directly implies
that there exists matrix B ∈ Rk×k such that PπΦ = ΦB.. This implies

(I − γPπ)Φ = Φ(I − γB).

Now, since ΦTΦ = ΦT
0 Φ0 and because Φ0 is initialized of rank k, Φ is of rank k too. Because the matrix (I − γPπ) is full

rank, it must be that (I − γB) is of rank k as well, and hence invertible. This gives

Φ = (I − γPπ)Φ(I − γB)−1 ∈ span(AΦ).

Lemma 10. (Randomly sampled rewards) When the each entry of Rπ
i is sampled i.i.d. from any zero-mean distribution

with finite variance σ2/
√
h for some constant σ > 0, for 1 ≤ i ≤ h. Then as the number of reward columns h → ∞, we

have Rπ(Rπ)T → σ2I|X |×|X| almost surely.

Proof. Recall Rπ
n to be the n-th column of the reward function matrix Rπ . We have

Rπ(Rπ)T =

h∑
n=1

Rπ
n(R

π
n)

T

Consider the (i, j)-th component of the matrix

[
Rπ(Rπ)T

]
(i, j) =

h∑
n=1

[
Rπ

n(R
π
n)

T
]
(i, j) =

h∑
n=1

Rπ
niR

π
nj ,

where Rπ
ni denotes the i-th component of the column vector Rπ

n for 1 ≤ i ≤ |X |. When i = j, the summation is over a set
of h i.i.d. random variables each with mean σ2/h. When i ̸= j, the summation is over a set of h i.i.d. random variables
each with mean zero. The law of large number concludes the proof.

C. Discussion on related work
Here, we provide a more comprehensive discussion on prior work.

From linear TD to end-to-end linear TD. Since the introduction of TD-learning (Sutton, 1988), there have been numerous
efforts at understanding the algorithm. The seminal work of (Tsitsiklis and Van Roy, 1996) proposes to understand linear
TD through its expected continuous time behavior, characterized by a linear ODE system. A number of follow-up work has
applied similar techniques to understanding the stability of, e.g., Q-learning (Melo et al., 2008), off-policy TD (Sutton et al.,
2016), among others problems.

Much of the prior work has focused on the classic linear TD setup, where the representations are assumed fixed throughout
learning. Closely related to our work is (Lyle et al., 2021) where they proposed to understand the learning dynamics of
end-to-end linear TD through its corresponding ODE system. Since such an ODE system is highly non-linear, it is more
challenging to provide generic characterizations without restrictive assumptions. Lyle et al. (2021) bypasses the non-linearity
issue by essentially assuming a fixed weight parameter wt ≡ w. In light of Equation (6), they study the following dynamics

dΦt

dt
= ηΦ ·Dπ (Rπ − (I − γPπ)Φtw)w

T

which effectively reduces to a linear system in Φt and is more amenable to analysis.

Our work differs in a few important aspects. Firstly, our analysis adheres strictly to the vanilla end-to-end linear TD
(Equation (6)) or two-time scale end-to-end linear TD (Equation (9)), without imposing the constant weight assumption as
in (Lyle et al., 2019). Our analysis is also slightly more general, as it consists in constructing a few scalar functions that
characterize the dynamics. This is more applicable to general ODEs where obtaining exact solutions is not tractable.
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TD with non-linear function approximations. Going beyond the linear parameterization, a number of prior work
considered the problem of non-linear TD where the value function is represented as some generic smooth non-linear
functions. For example, Maei et al. (2009) established the first convergence result of smooth function classes with two
time-scale updates. A number of concurrent work Agazzi and Lu (2022); Cai et al. (2019); Sirignano and Spiliopoulos
(2022), each with subtly different theoretical setups in place, showed convergence of TD-learning in the over-parameterized
regimes, e.g., when the value functions are approximated by very wide neural networks. In this case, representations
are confined to be near the initialized values and cannot evolve much over time. To address the limitation, Zhang et al.
(2020) generalized the result from (Cai et al., 2019) and showed that in the over-parameterized regimes, the representations
converge to the near optimal ones with the lowest projected value prediction error. Note that Theorem 3 echoes this result
and provides a complementary result under the end-to-end linear TD setup.

Another closely related work is (Brandfonbrener and Bruna, 2019), where they established the convergence behavior of
TD-learning with smooth homogeneous functions. A key requirement underlying their result is that the MDP is sufficiently
reversible, which echos the assumption we make in Theorem 3. However, under their framework there is no clear notion of
representation as defined in the bi-linear case. An interesting future direction would be to study representation dynamics
with non-linear function approximations.

Representations learning via self-predictive learning. Motivated by value-based TD-learning, self-predictive learning
directly employs the notion of bootstrapping to the representation space, which has produced a number of empirically
successful implementations (Guo et al., 2020; Schwarzer et al., 2021; Guo et al., 2020). The high level idea is to minimize
the prediction error ∥∥P (ϕxt)− sg

(
ϕxt+1

)∥∥2
2
,

where P : Rk → Rk is the learned transition dynamics in the representation space. Recently, Tang et al. (Tang et al., 2022)
proposes to understand the behavior of self-predictive learning through its corresponding ODE. From their discussion, we
note that two time-scale dynamics is a generic way to enforcing optimization constraints. Our results in Section 5 build on
this and show a similar characterization for the end-to-end linear TD dynamics.

Two time-scale learning dynamics. The idea of two time-scale learning dynamics is not new in TD-learning. Levine et al.
(2017) proposed a combination of LSTD updates for the linear weights on top of DQN representations, which are shaped by
gradient descents. In continuous time, this is effectively the two time-scale dynamics (Eqn (9)). While their discussion is
empirically motivated, we focus on the representation learning aspect of such a learning dynamics.

Auxiliary tasks. In deep RL literature, it has been empirically observed that certain extra training objectives, normally
referred to as auxiliary tasks, are useful for improving the agent performance on the objective of interest such as optimizing
the cumulative returns (Jaderberg et al., 2016; Bellemare et al., 2019; Dabney et al., 2021). Though the conventional
wisdom is that such auxiliary tasks are useful in shaping representations, it is generally difficult to characterize exactly what
representations are induced, despite some recent theoretical efforts (Lyle et al., 2021). Our results demonstrate the potential
benefits of random reward predictions when combined with TD-learning (Dabney et al., 2021), by connecting the learning
dynamics to gradient-based spectral decomposition of the transition matrix.

D. Experiment details
We provide further experimen details on the tabular and deep RL experiments in the main paper.

D.1. Tabular experiments

All tabular experiments are conducted on random MDPs with |X | = 30 states. The general transition matrix Pπ is generated
as follows,

Pπ = αPperm + (1− α)Pds,

where Pds is a randomly sampled doubly-stochastic matrix and Pperm is a randomly generated permutation matrix. We
set α = 0.95 so that Pπ is likely to violate the reversibility assumption. In the symmetric case, the transition matrix is
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computed as

Pπ = (Pds + PT
ds )/2.

The doubly-stochastic matrix is randomly generated based on the procedure in (Tang et al., 2022). Each entry of the reward
function Rπ is randomly sampled from N (0, 1)

Normalized trace objective. For any matrix Pπ, the trace objective is computed as f(Φt) = tr
(
ΦT

t AΦt

)
for A =

(I − γPπ)−1. To calculate the normalized objective, we compute the baseline value f̄ as the sum of the top k eigenvalues of
the symmetrized matrix (A+AT )/2. The normalized trace objective is f̄(Φt) := f(Φt)/f̄ . When Pπ is symmetric, f̄(Φt)
is upper bounded by 1.

Unrolling the ODE dynamics. All results are based on the solving the exact ODE dynamics, using the Scipy ODE solver
(Virtanen et al., 2020). Throughout, we initialzie the representation Φt matrix as orthonormal. We start by generating
k column vectors of size R|X |, with each entry randomly generated from N (0, 1). Then we apply the Gram-Schmidt
orthogonalization procedure to the columns to compute the initialized representation.

D.2. Deep RL experiments

We use DQN (Mnih et al., 2013) as a baseline and evaluate all algorithmic variants over 15 games in the Atari game suite
(Bellemare et al., 2013). Our testbed is a subset of 15 Atari games (Bellemare et al., 2013) on which it has been shown
that DQN can achieve reasonable performance, see e.g., (Schaul et al., 2015) for how they select the subset of the games:
asterix, boxing, breakout, freeway, gopher, gravitar, hero, ms pacman, pong, qbert, riverraid,
seaquest, skiing, space invaders and venture.

Random reward functions. To generate random reward functions Rπ
i (x, a), 1 ≤ i ≤ h, we initialize h networks randomly

and directly use the outputs This is similar to the practice of (Dabney et al., 2021) except that we do not apply additional
activations (such as sigmoid or tanh as done in (Dabney et al., 2021)) on top. Throughout, we use the Adam optimizer
(Kingma and Ba, 2015) with a fixed learning rate η, see (Mnih et al., 2013) for details of other hyper-parameters.

Hyper-parameters. We tune the learning rate η ∈ {0.00025, 0.0001, 0.00005} as suggested in (Dabney et al., 2021).
The default DQN uses η = 0.00025. We find that at η = 0.0001 the tuned DQN performs the best. For the auxiliary
task, we tune the number of random rewards h ∈ {4, 16, 64, 256}. We find that h = 16 performs slightly better than other
alternatives.
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Figure 5. Comparison of training curves of IQM human normalized scores across 15 Atari games. We compare the baseline DQN, DQN
with tuned learning rate and DQN with random value predictions as auxiliary tasks. The shaded areas show the 95% bootstrapped
confidence intervals averaged over 3 seeds. The random value prediction tasks seem to provide marginal benefits over the tuned DQN. The
IQM score is computed by truncating the top and bottom 25% of scores, averaged across all games and all seeds (Agarwal et al., 2021).
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