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ABSTRACT

Typical large vision-language models (LVLMs) apply autoregressive supervision
solely to textual sequences, without fully incorporating the visual modality into
the learning process. This results in three key limitations: (1) an inability to utilize
images without accompanying captions, (2) the risk that captions omit critical
visual details, and (3) the challenge that certain vision-centric content cannot
be adequately conveyed through text. As a result, these models often prioritize
vision-to-language alignment while potentially overlooking fine-grained visual
information. While some prior works have explored autoregressive image gener-
ation, effectively leveraging autoregressive visual supervision to enhance image
understanding remains an open challenge. In this paper, we introduce Autore-
gressive Semantic Visual Reconstruction (ASVR), which enables joint learning
of visual and textual modalities within a unified autoregressive framework. We
show that autoregressively reconstructing the raw visual appearance of images does
not enhance and may even impair multimodal understanding. In contrast, autore-
gressively reconstructing the semantic content of images consistently improves
comprehension. Notably, we find that even when models are given continuous
image features as input, they can effectively reconstruct discrete semantic tokens,
resulting in stable and consistent improvements across a wide range of multimodal
understanding benchmarks. Our approach delivers significant performance gains
and scalability across varying data scales, visual input, visual supervision and
model architectures. Specifically, ASVR efficiently improves LLaVA-1.5 by over
3% in average scores across 14 multimodal benchmarks.

1 INTRODUCTION

The success of large language models (LLMs) has demonstrated the tremendous potential and scala-
bility of the autoregressive (AR) paradigm. In recent years, extending LLMs’ powerful capabilities
to multimodal understanding through bridge-style architectures, exemplified by LLaVA (Liu et al.,
2023b; 2024a;c), have achieved remarkable performance across vision-language tasks (Liu et al.,
2023c; Yue et al., 2023; Fu et al., 2024a; Goyal et al., 2017; Li et al., 2023b; Hudson & Manning,
2019a; Kembhavi et al., 2016). These models (Bai et al., 2023b; Wang et al., 2024c; Yao et al., 2024;
Chen et al., 2024; Lu et al., 2024; Wu et al., 2024c), typically adopt a simple yet effective learnable
projector to align features from a CLIP-based visual encoder into the text embedding space of LLMs.

However, most of the current large vision-language models (LVLMs) (Wang et al., 2024d; Dong
et al., 2024; Liu et al., 2024b; Li et al., 2024) supervise only the textual outputs, overlooking the rich
visual modality. Specifically, these models are trained to predict the next token in a text response
given both the preceding text and associated images. For example, LLaVA-1.5 Liu et al. (2023a)
represents a single 336×336 image with 576 visual tokens, yet applies no explicit supervision to the
visual content. As a result, while these models are multimodal in form, they remain predominantly
language-centric in nature, with insufficient attention paid to the visual modality.

To overcome the lack of explicit visual supervision, traditional LVLMs rely on image-caption pairs to
associate visual content with language. However, this approach suffers from three critical limitations,
as shown in Figure 1: (1) Although there is a vast amount of image data available online, most images
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Image caption

the chevrolet 
camaro zl1

?

a cat lying on the floor 
next to a blue litter bowl

a cat lying on the floor 
next to a blue litter bowl ?Background

State of the car
Color
Angle
Scene
……

(blip_laion_cc_sbu_558k)

?
A vivid watercolor painting of a woman with 
an ethereal expression, her hair exploding 
into a storm of swirling reds, blues, and 

whites—evoking a powerful blend of 
emotion, chaos, and transcendence.

(a) Inevitable information loss caused by insufficiently detailed captions

(b) vision-centric content cannot be adequately conveyed through text

How to describe these abstract lines 
and their differences in language?

OCR-based

General Multi-modal QA

Knowledge

Visual
Centric

Hallusion

0.2
0.4

0.6
0.8

1.0

LLaVA
ASVR

Figure 1: (Left) A simple illustration that reflects the information loss faced by language-centric
approaches. (Right) Our proposed Autoregressive Semantic Visual Reconstruction (ASVR)
brings significant improvements across various aspects, including General VQA, Visual-centric,
Hallucination, and OCR. All the scores are normalized by xnorm = (x−xmin+10)/(xmax−xmin+10).

are not accompanied by detailed captions; (2) Even when captions are generated, either manually
or by LVLMs, the process is costly, and there remains a risk of omitting critical visual details. The
descriptive richness of these captions ultimately constrains the granularity of the model’s visual
understanding; (3) Some vision-centric content simply cannot be adequately conveyed through text.
As the saying goes, “a picture is worth a thousand words”, the visual modality serves as an independent
and expressive channel that captures spatial relationships, textures, complex compositions, and subtle
stylistic cues that text alone struggles to express. In summary, the full spectrum of visual detail in an
image is difficult to articulate comprehensively through text, and acquiring large-scale, high-quality,
fine-grained captions remains both labor-intensive and expensive.

Recently, several pioneering works have explored unifying visual understanding and generation
within the autoregressive paradigm of LLMs (Team, 2024; Wang et al., 2024e; Wu et al., 2024b;
Tong et al., 2024b), where visual tokens are supervised through image generation tasks. However,
these studies primarily focus on leveraging visual understanding to enhance generation, rather than
investigating the reverse direction. Effectively utilizing autoregressive visual supervision to improve
visual understanding remains an open challenge. Most recently, Wang et al. (2024b) proposed
supervising visual outputs via a denoising approach. However, their method relies on external
Diffusion Transformer (DiT) modules for visual supervision and lacks a unified framework that aligns
visual and textual modalities under a unified supervision scheme.

In this paper, we introduce Autoregressive Semantic Visual Reconstruction (ASVR), a method that
enables joint learning of visual and textual modalities within the unified autoregressive framework of
LLMs, without relying on any external modules. Specifically, ASVR allows LVLMs to supervise
visual outputs by autoregressively predict the next discrete semantic token of input images, which
is prepared by a pretrained semantic visual tokenizer (Song et al., 2025; Wu et al., 2024b; Qu
et al., 2024; Xie et al., 2024). Interestingly, we show that autoregressively reconstructing the raw
visual appearance of images does not improve and may even degrade multimodal understanding. In
contrast, reconstructing semantic visual representation autoregressively consistently enhances the
visual understanding capabilities of LVLMs. Notably, we find that even when models are provided
with continuous image features as input, they can effectively reconstruct discrete semantic tokens.
This setting even outperforms approaches where both input and output use shared discrete semantic
visual tokens, resulting in considerable gains, and we also found the unified autoregressive modeling
paradigm consistently outperforms its denoising-based counterpart (Wang et al., 2024a).Our approach
delivers significant and consistent performance gains across varying data scale settings( LLaVA-1.5-
665K (Liu et al., 2023a), LLaVA-Next-779K (Liu et al., 2024b), Bunny-v1_1-data-2M (He et al.,
2024)),LLaVA-OV-3.5M (Li et al., 2024) and model architectures such as Vicuna family (Zheng
et al., 2023) as well as Mistral (Jiang et al., 2023). Specifically, ASVR improves LLaVA-1.5 by 3%
in average scores across 14 multimodal benchmarks and the effectiveness is robust across different
visual feature types, LLM backbone capacities, data scales, and high-resolution scenarios. These
results underscore the importance of explicit semantic visual supervision in training LVLMs. ASVR
not only improves visual understanding but also introduces a scalable, unified training strategy,
offering a new perspective on autoregressive modeling for multimodal systems.
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2 RELATED WORK

Large Vision Language Models The rapid progress in large language models (LLMs)(Bai et al.,
2023a; AI@Meta, 2024; Touvron et al., 2023; Bi et al., 2024; OpenAI, 2023b;a) has showcased their
strong generalization and remarkable instruction-following capabilities. To further expand these
strengths for interpreting and interacting with the world through both visual and linguistic channels.
There has been growing interest in Large Vision-Language Models (LVLMs)(Liu et al., 2023b;a;
2024b), typically trained using a straightforward two-stage visual instruction tuning paradigm (Liu
et al., 2023b), and align visual features extracted by visual encoder with the knowledge and reasoning
capabilities of LLMs through the lightweight projector. This process involves jointly training the
projector and the LLM on visual instruction datasets, with optional fine-tuning of the visual encoder.
However, supervision is limited to text outputs. ASVR introduces a novel autoregressive visual
semantic supervision mechanism that encourages the LVLM to reconstruct semantic visual tokens,
enhancing its multimodal understanding capabilities.

Visual Autoregression for LVLMs Some recent approaches (Team, 2024; Qu et al., 2024; Wang
et al., 2024e; Wu et al., 2024b;a), introduce autoregressive visual supervision via visual tokenizers,
such as VQGAN (Esser et al., 2021) and VQ-VAE (van den Oord et al., 2018), enabling LVLMs to
support both multimodal understanding and image generation by predict relevant next visual tokens,
which are then decoded into images. In contrast, ASVR focuses specifically on enhancing the
multimodal understanding capability of LVLMs. Rather than generating images, ASVR employs
autoregressive visual supervision to reconstruct semantic visual tokens within the given continuous
image features as input. While prior methods are generative, ASVR adopts the reconstructive
approach aimed at promoting perception of visual information.

Reconstructive Objectives for LVLMs ROSSWang et al. (2024a) introduced visual supervision
for LVLMs by applying denoising objective to reconstruct reconstructs continuous, appearance-level
visual features (VAE features). In contrast, ASVR proposes a unified approach by employing
autoregressive objective—analogous to that used for text—to reconstruct semantic visual tokens.
This design enables seamless integration of visual and textual information under a unified next-token
prediction paradigm.

3 PRELIMINARIES

Large Vision Language Models Modeling To process and represent input sequences from
different modalities in a unified manner, Large Vision-Language Models (LVLMs) typically comprise
three components: a pre-trained Large Language Model (LLM), a projector commonly implemented
as two-layer MLP and a pre-trained visual encoder with semantic aligned.

Given a input RGB image I ∈ RH×W×3, where H and W denote the image height and width, a
pre-trained visual encoder Vξ is first used to extract image features zI = Vξ(I). These features
are then mapped into LLM embedding space via a projector Pϕ, producing a sequence of visual
features: HI = Pϕ(z

I) ∈ Rm×d, where m = h× w denotes the length of visual features, and d is
the embedding dimension of LLM. ξ and ϕ are the parameters of the visual encoder and projector,
respectively. For a textual input T ∈ ZL, the LLM’s tokenizer is used to produce a sequence of token
indices xT = Tokenizer(T ) ∈ Rn. These indices are then transformed into textual embeddings via
the LLM’s embedding layer HT = Embedding(xT ) ∈ Rn×d where n denotes the sequence length.

The final multimodal inputs are formed by concatenating the visual features and textual embed-
dings, resulting in [HI ,HT ] ∈ R(m+n)×d, which is then fed into a causal LLM backbone Lθ with
parameters θ for unified autoregressive modeling:

Lθ([H
I ,HT ]) =

n∏
i=1

Lθ(x
T
i | xT

<i,H
I) (1)

Training Framework for LVLMs LVLM training generally involves two stages (Liu et al., 2023b):
pre-training and instruction tuning. Pre-training aligns different modalities, enabling the model to
jointly understand visual and textual inputs. Instruction tuning further enhances generalization across
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(a)  Typical LVLMs (b)  ASVR 

AR textual supervision
AR visual supervision

AR textual supervision
AR visual supervision❌ √

√√

Figure 2: Left: the typical LVLM framework exemplified by LLaVA (Liu et al., 2023b). Right:
overview of ASVR’s model architecture and training procedure. The input image and its correspond-
ing text are tokenized into sequences of discrete token indices for unified autoregressive supervision
over both visual and textual outputs. For each module, the icon before the slash indicates whether
it is frozen or tunable during pre-training, while the icon after the slash indicates its configuration
during instruction tuning. "s" and "e" denote the start and end of the text tokens, respectively.

diverse downstream tasks such as Visual Question Answering (VQA).The training objective is to
maximize the the probability of the target textual responses in autoregressive manner, where only
textual responses following the s-th token position are supervised.

Ltext
AR(Θ = {θ, ξ, ϕ}, T, I) = −1

n− s

n∑
i=s+1

logLθ(x
T
i | xT

<i,H
I), (2)

Here, Θ denotes the parameters of the entire LVLM. During pre-training, only the parameters of
the projector ϕ are typically updated, while in instruction tuning, the LLM parameters θ are also
finetuned. The visual encoder vξ may either remain frozen (Liu et al., 2023b; Tong et al., 2024a) or
be jointly optimized (Li et al., 2024; Dong et al., 2024; Wang et al., 2024d; Liu et al., 2024b).

4 METHOD

In this section, we introduce ASVR. An overview of the method is provided in Section 4.1, followed
by detailed analyses of the visual tokenizer and visual encoder in Sections 4.2 and 4.3, respectively.
The training procedure is detailed in Section 4.4. A detailed comparison between the typical LVLMs
(LLaVA) and our ASVR is illustrated in Figure 2, highlighting the key innovation of incorporating
autoregressive visual supervision to enhance the model’s multimodal understanding capabilities.

4.1 OVERVIEW

We incorporate autoregressive visual supervision into the typical LVLM’s framework described in Sec-
tion 3 by extending the next-token prediction paradigm to reconstruct and perceive visual inputs. This
unified formulation enables the model to seamlessly integrate visual and textual information—first
perceiving, then reasoning—thereby establishing a perceptual foundation for image understanding, al-
leviating the information loss caused by text-only supervision, and ultimately enhancing the LVLM’s
multimodal understanding capabilities.

4
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As illustrated in Figure 2 (b), we employ the visual tokenizer to convert the input image into discrete
sequence of visual token indices, serving as visual supervision signals xI = Tokenizer_img(I) ∈ Rm

where m matches the length of the visual features sequence HI extracted from pre-trained visual
encoder and fed into the LLM backbone. The visual head tailored to the visual tokenizer is then
trained to predict the next visual token in autoregressive manner, analogous to textual supervision:

Lvision
AR (Θ = {θ, ξ, ϕ}, I) = −1

m

m∑
i=1

logLθ(x
I
i | xI

<i), (3)

Then our final training objective is combined with Lvision
AR and Ltext

AR, formulated as

LAR(Θ = {θ, ξ, ϕ}, I, T ) = Lvision
AR + Ltext

AR (4)

This design unifies the learning paradigm across modalities, enabling joint optimization of both
vision and language under shared autoregressive objective. Importantly, it also compels the model to
first develop coherent visual sensor, which subsequently serves as foundation for more accurate and
contextually grounded multimoda understanding.

4.2 VISUAL TOKENIZER

Visual tokenizer convert input images into one-dimensional sequences of discrete visual codes through
vector quantization(VQ) by learning a fixed-size visual codebook, then look up the corresponding
features by codes into the codebook as inputs to the LMM. Additionally, the visual tokenizer defines
visual supervision targets by determining the granularity and representations of the discrete visual
token indices, which play a critical role in the visual reconstruction and perception. There are two
type of visual tokenizer.

Visual Appearance Tokenizer A visual appearance tokenizer (Esser et al., 2021; Team, 2024)
is optimized with the objective of reconstructing the input image, where utilize reconstruction
loss typically combining pixel-wise L2 loss (Dosovitskiy & Brox, 2016), LPIPS lossZhang et al.
(2018) and adversarial loss Isola et al. (2017) for reconstruction ability. The resulting sequence of
token indices represents a quantized mapping of the image’s pixel-level features. Using Pixel-based
tokenizer to provide visual pixel supervision targets will guide the LVLM to focus on low-level pixel
feature reconstruction and perception.

Visual Semantic Tokenizer A visual semantic tokenizer (Qu et al., 2024; Wu et al., 2024b; Xie
et al., 2024; Song et al., 2025) is is trained to align image features with textual semantics, typically
using a contrastive loss (Radford et al., 2021) to enhance cross-modal alignment. The resulting
sequence of token indices represents a quantized mapping of the image’s high-level semantic features.
Using Semantic-based tokenizer to provide semantic visual supervision targets will guide the LVLM
to focus on semantically meaningful aspects reconstruction and perception of the image, thereby
promoting more effective multimodal understanding.

4.3 VISUAL ENCODER

The visual encoder provides continuous visual features as inputs to the LMM, directly influencing
the effectiveness of visual information modeling. To enhance multimodal understanding, it is crucial
to employ a visual encoder that is semantically aligned with textual representations (Wu et al.,
2024b; Qu et al., 2024; Wu et al., 2024a), thus enabling the extraction of high-level, semantically
meaningful image features. Typically, such visual encoders adopt transformer-based (Dosovitskiy
et al., 2021) architecture, trained using contrastive loss (Radford et al., 2021) to align closely with
textual semantics and directly convert input images into one-dimensional sequences of continuous
feature vectors.

4.4 TRAINING RECIPE

As shown in Figure 2, we visualize our training recipe, which extends the standard LVLM training
framework by incorporating visual supervision to enable unified autoregressive modeling over both
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visual inputs and textual responses. Specifically, during the pre-training stage, we focus solely on
optimizing the projector and the visual head. This stage aligns visual representations sequence with
the LVLM’s semantic space, allowing the model to develop an initial perception of image features
by learning the mapping between continuous visual features and discrete visual token indices. In
the instruction tuning stage, we further fine-tune the parameters of the LLM backbone. Leveraging
diverse vision-language instruction data, the model is guided to perform deeper semantic sensing of
visual content, thereby enhancing its ability to understand and reason across modalities in a more
comprehensive manner.

5 EXPERIMENTS

In this section, we present a comprehensive set of controlled experiments to evaluate the effectiveness
of our method (ASVR) within typical LVLM’s frameworks (Liu et al., 2023b) across a diverse range
of multimoda understanding tasks.We begin by detailing our experimental setup. Then, we analyze
the impact of different visual encoders and visual tokenizers on the model’s performance. Finally, we
further validate the generalization and adaptability of our method across various LLM backbones
with different parameter scales and under varying amounts of training data.

5.1 EXPERIMENTAL SETUP

Implementation Details. We implement our experiments baseline on the LLaVA-1.5 (Liu et al.,
2023a) settings only with textual supervision detaily discussed in sec 3. We utilize Vicuna-1.5-
7B (Zheng et al., 2023) as the LLM backbone and initialize visual encoder with the pretrained
weights from SigLIP-SO400M-patch14-384 (Alabdulmohsin et al., 2023) to support continuous
visual features for LMM. For visual tokenizer, we employ both visual appearance tokenizer and visual
semantic tokenizer proposed in DualToken (Song et al., 2025) to construct visual supervision targets,
which convert input images into 27× 27× 8 visual semantic or appearance token sequences, with a
residual depth of D = 8. The visual head also derived from DualToken, is integrated and aligned
with the chosen visual tokenizer to ensure architectural compatibility. Additional training details and
architecture of visual head are provided in Appendix. The training data is LLaVA-558K (Liu et al.,
2023b) and LLaVA-1.5-665K (Liu et al., 2023b) for the pre-training stage and the instruction tuning
stage, respectively.

Evaluation Details We conduct a comprehensive evaluation of model’s capabilities on 14 widely
used vision-language understanding benchmarks. Specifically, the general multimodal benchmarks
include MMBench (Liu et al., 2024d) English dev split(MMB), GQA (Hudson & Manning, 2019b),
SEED-Image(SEED) (Li et al., 2023a) and MME sum (Fu et al., 2024b). For OCR-based question an-
swering, we assessed performance on TextVQA(TVQA) (Singh et al., 2019), ChartQA(CQA) (Masry
et al., 2022), DocVQA(DVQA) (Mathew et al., 2021) and OCRBench(OCRB) (Liu et al., 2024e)
. For knowledge-based question answering, we utilize MMMU validation split (Yue et al., 2024),
AI2D (Kembhavi et al., 2016). Additionally, we evaluated hallucination robustness on POPE (Li
et al., 2023c), Hallusionbench(Hbench) (Guan et al., 2024) and visual-centric tasks on MMVP (Tong
et al., 2024c) and RealworldQA(RQA) (xAI, 2024). Evaluation prompts can be found in Appendix.

5.2 MAIN RESULTS

The Effectiveness of ASVR As shown in Table 1, with the configuration of the continuous-based
visual encoder (SigLIP), we observe ASVR consistent and significant performance improvements
across all 14 benchmarks, increasing the average score from 46.8 to 49.8, with 3%. Notably, the gains
are evident even on knowledge-based QA such as MMMU (Yue et al., 2024) and AI2D (Kembhavi
et al., 2016), suggesting that reconstructing and and perceiving visual inputs can enhance the model’s
cognitive reasoning abilities. Furthermore, substantial improvements are also observed on fine-grained
tasks such as OCRBench (Liu et al., 2024e), MMVP (Tong et al., 2024c), and HallusionBench (Guan
et al., 2024). In particular, HallusionBench sees an increase of nearly 10 points, further validating the
effectiveness of our method. Moreover, under the configuration with a discrete-based visual encoder
(DualToken), semantic visual supervision also yields notable performance gains over the baseline.
This further demonstrates the generalizability and robustness of our method.
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Table 1: The impact of ASVR under different combinations of visual tokenizers and visual en-
coders across multimoda understanding benchmarks. "✗" indicates the use of textual supervision
only, while "✓" denotes the inclusion of visual supervision by computing additional Lvision

AR . "Sem."
refers to using visual semantic tokenizer to construct visual supervision targets; "App." denotes visual
appearance tokenizer; "App.+Sem." represents dual supervision, where both visual semantic and
visual appearance tokenizers are used independently to compute their respective Lvision

AR , which are
then summed. ASVR utilize Semantic Supervision

OCR General Knowledge Visual-Centric Hallusion
Lvision
AR

Visual

Tokenizer TVQA DVQA OCRB CQA MMB MME SEED GQA MMMU AI2D RQA MMVP Hbench POPE
AVG

Dualtoken (Discrete Visual Features)

LLaVA ✗ - 49.3 20.0 29.5 12.4 60.4 56.9 63.1 56.2 31.2 50.4 50.2 24.7 21.8 80.7 43.3

ASVR ✓ Sem. 55.5(+6.2) 21.4(+1.4) 32.4(+2.9) 14.7(+2.3) 62.3(+1.9) 57.7(+0.8) 65.4(+2.3) 57.1(+0.9) 32.0(+0.8) 53.5(+3.1) 52.3(+2.1) 26.0(+1.3) 27.7(+5.9) 76.8(-3.9) 45.3

SigLIP-ViT-SO400M/14@384 (Continuous Visual Features)

LLaVA ✗ - 56.0 21.1 31.3 14.6 64.0 67.2 63.8 60.5 32.7 53.5 52.0 28.7 23.9 85.9 46.8

Appearance Supervise ✓ App. 53.7(-2.3) 17.8(-3.3) 30.2(-1.1) 14.4(-0.2) 61.6(-2.4) 68.7(-1.5) 59.5(-4.3) 57.8(-2.7) 33.1(+0.4) 53.7(+0.2) 49.3(-2.7) 22.0(-6.7) 24.0(+0.1) 84.1(-1.8) 45.0

Dual Supervise ✓ App.+Sem. 59.4(+3.4) 23.7(+2.6) 33.5(+2.2) 16.1(+1.5) 65.6(+1.6) 70.2(+3.0) 66.1(+2.3) 61.5(+1.0) 34.0(+1.3) 56.3(+2.8) 53.5(+1.5) 22.0(-6.7) 30.7(+6.8) 86.3(+0.4) 48.5

ASVR ✓ Sem. 59.5(+3.5) 24.3(+3.2) 35.4(+4.1) 16.4(+1.8) 66.1(+2.1) 72.8(+5.6) 66.4(+2.6) 61.5(+1.0) 33.9(+1.2) 57.0(+3.5) 54.1(+2.1) 30.0(+1.3) 33.7(+9.8) 86.3(+0.4) 49.8

Semantic v.s. Appearance Specifically, ASVR incorporating semantic supervision alone yields
the highest average performance across benchmarks, outperforming even the dual supervision setting
that combines both appearance and semantic visual indices. In contrast, applying appearance-
only supervision degrades model performance compared to the baseline. These results highlight
that guiding the LVLM to reconstruct and perceive high-level semantic visual information of the
input image, rather than low-level appearance details, more effectively enhances its multimoda
understanding capabilities.

Continuous vs. Discrete We adopt SigLIP-ViT-SO400M/14@384 (Zhai et al., 2023) to provide
continuous visual features, while employing visual semantic tokenizer from Dualtoken (Song et al.,
2025) to generate discrete visual features; both approaches aligned with textual semantics. Our
experimental results indicate that, regardless of whether autoregressive semantic visual supervision is
applied, the configuration of using continuous visual features consistently outperforms its discrete
features counterpart arcoss all benchmarks. This performance gap may be attributed to image
feature degradation introduced by vector quantization in discrete encoding, which can lead to loss of
fine-grained visual information crucial for downstream multimoda understanding.

Discussion The combination of visual encoder for provide visual features and visual semantic
tokenizer for constructing semantic visual supervision targets proves to the most effective model
configuration. The visual encoder avoids the visual information loss typically introduced by vector
quantization, thereby providing better visual inputs for the LMM. Meanwhile, semantic supervision
guides the LVLM reconstruct high-level, semantically meaningful aspects of the image, which
are benefit for multimoda understanding.Notably, our findings demonstrate that continuous visual
inputs with discrete semantic visual supervision targets can be seamlessly integrated into the unified
autoregressive next-token prediction paradigm in the same manner as language. This formulation
enables the LVLM to reconstruct and perceive visual semantic information, enhancing LVLM’s
capacity for comprehensive multimoda understanding. We further demonstrate that the unified
autoregressive modeling paradigm consistently surpasses its denoising-based counterpart (Wang et al.,
2024a), with results provided in the Appendix A.6.

5.3 METHOD GENERALITY

We validate the generalization and robustness of ASVR in enhancing multimodal understanding
under different data scales and diverse LLM backbone configurations, as summarized in Table 2.

The Impact of Data Scaling To investigate the effect of training data scale, we also evaluate ASVR
under larger training data. we adopt Bunny-pretrain-LAION-2M(He et al., 2024) for pre-training
and Bunny-v1_1-data-2M(He et al., 2024) for instruction tuning. We compare the performance of
ASVR against the baseline across different data scales to assess its robustness and effectiveness. As
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Table 2: The Generality of ASVR under different training data scale and LLM backbone across
multimoda understanding benchmarks. "✗" indicates the use of textual supervision only, while
"✓" denotes the inclusion of semantic visual supervision by computing additional Lvision

AR . Visual
encoder(SigLIP-ViT-SO400M/14@384) are both utilized for ASVR and baseline. "/" separates the
data scale used for pre-training (left) and instruction tuning (right).

OCR General Knowledge Visual-centric Hallusion
Lvision
AR

LLM

backbone

Data

Scale TVQA DVQA OCRB CQA MMB MME SEED GQA MMMU AI2D RQA MMVP Hbench POPE
AVG

With Different Data Scale

LLaVA ✗ Vicuna-1.5-7B 2M/2M 61.6 43.8 35.4 38.7 68.4 74.9 67.9 61.7 40.6 64.6 56.1 34.8 36.9 85.6 55.1

ASVR ✓ Vicuna-1.5-7B 2M/2M 60.6(-1.0) 43.1(-0.7) 36.2(+0.8) 38.9(+0.2) 68.6(+0.2) 76.2(+1.3) 68.7(+0.8) 62.0(+0.3) 41.4(+0.8) 64.8(+0.2) 55.9(-0.2) 35.9(+1.1) 42.2(+5.3) 85.7(+0.1) 55.7

With Different LLM Backbone

LLaVA ✗ Mistral-7B 558K/665K 50.8 15.7 34.6 15.2 65.9 66.9 67.9 62.4 32.0 53.0 55.0 35.3 32.7 86.6 48.1

ASVR ✓ Mistral-7B 558K/665k 54.9(+4.1) 17.9(+2.2) 34.1(-0.5) 15.6(+0.4) 67.1(+1.2) 71.5(+4.6) 68.3(+0.4) 62.5(+0.1) 32.6(+0.6) 54.5(+1.5) 55.4(+0.4) 35.7(+0.4) 35.0(+2.3) 86.8(+0.2) 49.4

shown in Table 1 and Table 2, ASVR consistently yields substantial improvements over the baseline
across different training data scales. Furthermore, as the amount of training data increases, overall
model performance improves. However, ASVR maintains a consistent performance margin over the
baseline, demonstrating its ability to more effectively leverage additional data through autoregressive
semantic visual reconstruction, we also show results on larger and more comprehensive datasets, such
as LLaVA-OV-3.5M (Li et al., 2024) in Appendix A.4.

The Impact of LLM Backbone Capacities We further evaluate the generalization capability of
ASVR across different LLM backbones to examine its robustness to variations in backbone capacities
and architectures. Specifically, we extend our experiments to Mistral-7B(Jiang et al., 2023), which
differs from the LLaMA family (Zheng et al., 2023). This evaluation allows us to rigorously test
the flexibility and adaptability of ASVR, assessing its performance when integrated into different
LLMs.As shown in Table 2, ASVR consistently surpasses the baseline across a variety of multimodal
benchmarks, maintaining strong performance advantages regardless of backbone variations. These
results demonstrating both its robustness and adaptability in diverse LLM configurations. The
backbone scaling experiment and clear scaling law table will provide in Appendix A.4.

5.4 HIGH RESOLUTION ADAPTATION

ASVR is also compatible with existing high-resolution strategies and can further enhance the mul-
timodal understanding capabilities of LMMs. To evaluate the effectiveness of ASVR under high-
resolution configurations, we upscale the input resolution of both ASVR and the baseline models to
1152 × 1152, while keeping the training conditions identical. We use LLaVA-558K(Liu et al., 2023b)
for the pre-training stage and LLaVA-Next-779K(Liu et al., 2024b) for instruction tuning following
LLaVA-Next settings (Liu et al., 2024b).

Table 3: The High Resolution Adaptation of ASVR across multimoda understanding bench-
marks. "✗" indicates the use of textual supervision only, while "✓" denotes the inclusion of semantic
visual supervision by computing additional Lvision

AR . Visual encoder(SigLIP-ViT-SO400M/14@384)
and 1152 × 1152 input resolution are both utilized for ASVR and baseline."/" separates the data scale
used for pre-training (left) and instruction tuning (right).

Lvision
AR LLM backbone Data Scale

OCR General Knowledge Visual-centric Hallusion
AVG

TVQA DVQA OCRB CQA MMB MME SEED GQA MMMU AI2D RQA MMVP Hbench POPE

LLaVA ✗ Vicuna-v1.5-7B 558K/779k 58.1 44.1 39.5 47.5 66.6 74.1 66.8 62.0 35.8 62.8 57.8 30.0 40.6 84.5 55.0

ASVR ✓ Vicuna-v1.5-7B 558k/779K 58.9(+0.8) 48.9(+4.8) 45.6(+6.1) 49.3(+1.8) 68.0(+1.4) 76.7(+2.6) 67.2(+0.4) 62.4(+0.4) 36.9(+1.1) 65.4(+2.6) 57.6(-0.2) 31.9(+1.9) 43.7(+3.1) 86.5(+2.0) 57.1

As shown in Table 3, under high-resolution configurations, ASVR consistently outperforms the
baseline by 2% in average scores across 14 multimodal benchmarks, further demonstrating its
flexibility and robustness across different input resolutions.
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Table 4: Ablation study for various ASVR configurations. This table presents a comparison of
various ASVR settings, including semantic tokenizer, varied the degree of alignment with text (e.g.,
DualToken-12M vs. DualToken-3M (Song et al., 2025)), and the training strategy, where "PT/IT"
denotes that semantic visual supervision is applied during both the pre-training and instruction tuning
stages, while "IT" indicates that semantic visual supervision is applied only during instruction tuning.

OCR General Knowledge Visual-centric Hallusion
Ablated Aspects Original Ablated Setting

TVQA DVQA OCRB CQA MMB MME SEED GQA MMMU AI2D RQA MMVP HBench POPE
AVG

Semantic Tokenizer DualToken-12M DualToken-3M 57.8(-1.7) 25.4(+1.1) 33.1(-2.3) 16.2(-0.2) 67.2(+1.1) 70.3(-2.5) 64.8(-1.6) 60.0(-1.5) 31.8(-2.1) 55.9(-1.1) 54.3(+0.2) 24.7(-5.3) 33.0(-0.7) 86.1(-0.2) 48.6

Training Strategy PT/IT IT 55.3(-4.2) 18.9(-5.4) 29.5(-5.9) 14.0(-2.4) 61.2(-4.9) 67.8(-5.0) 60.5(-5.9) 58.3(-3.2) 33.4(-0.5) 52.6(-4.4) 52.3(-1.8) 20.8(-9.2) 30.0(-3.7) 84.9(-1.4) 45.7

ASVR - - 59.5 24.3 35.4 16.4 66.1 72.8 66.4 61.5 33.9 57.0 54.1 30.0 33.7 86.3 49.8

5.5 ABLATION STUDY

The Impact of Semantic Tokenizer Increasing the degree of alignment with text for semantic
tokenizer leads to performance of ASVR. we use different semantic tokenizers to construct semantic
visual supervision targets: DualToken-3M, which achieves zero-shot ImageNet classification accuracy
of 78.6% (Deng et al., 2009), and DualToken-12M, which achieves 81.6% and thus exhibits stronger
semantic alignment. As shown in Table 4, ASVR equipped with the better-aligned DualToken-
12M consistently outperforms the variant using DualToken-3M across the majority of multimodal
benchmarks, with the average performance improving by more than 2%. These results demonstrate
that employing better semantically aligned visual tokenizer provides semantic visual supervision
targets with more meaningful aspects of the image, and further support our claim that Semantic Visual
Reconstruction plays a key role in enhancing the multimodal understanding capabilities of LVLMs.
Moreover, when the supervised visual tokenizer provides richer semantic information, ASVR achieves
stronger performance. We present the results obtained using discrete SigLIP2 (Tschannen et al.,
2025) as visual tokenizer which contain richer semantic visual information in the Appendix A.5.

The Impact of Training Strategy We explore different training strategies for ASVR, comparing
whether to apply semantic visual supervision in both the pre-training and instruction tuning stages, or
to apply it only during instruction tuning, while keeping the pre-training stage purely with text-based
autoregressive training. As shown in Table 4, incorporating semantic visual supervision to support
visual autoregressive training in both the pre-training and instruction tuning stages consistently
outperforms the single-stage variant across all benchmarks, achieving an average performance gain
of nearly 6%. This further underscores the importance of Semantic Visual Reconstruction during
the pre-training phase, as it enables the model to develop a more complete perception of visual
information. By doing so, it enhances vision-language alignment and mitigates the information loss
associated with relying solely on textual supervision.

6 CONCLUSION

In summary, we introduced Autoregressive Semantic Visual Reconstruction (ASVR), enabling joint
learning of visual and textual modalities within a unified autoregressive framework and effectively
improving multimodal understanding capability of LVLMs. Unlike conventional LVLMs framework,
which predominantly rely on textual autoregressive supervision and frequently neglect crucial visual
details, ASVR explicitly integrates semantic visual supervision to foster deep perception of visual
inputs. Our findings indicate that reconstructing raw visual appearance autoregressively does not
benefit, and can even impair multimodal understanding. Conversely, autoregressively reconstructing
semantic visual representations of images consistently enhances performance across diverse multi-
modal tasks and also outperform its denoising-based counterpart. Remarkably, even with continuous
visual features as input, ASVR effectively reconstructs discrete semantic tokens, yielding stable and
substantial improvements on various multimodal benchmarks. This effectiveness is robust across
different visual feature types, LLM backbone capacities, data scales, and high-resolution scenarios,
underscoring ASVR’s adaptability, scalability and versatility. Future work aims to incorporate image
generation capabilities into ASVR, leveraging unified visual autoregressive supervision to seamlessly
integrate understanding and generation, thus broadening applicability across diverse downstream
tasks.
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A APPENDIX

A.1 USE OF LLMS IN IN PAPER WRITING

In preparing this paper, Large Language Models (LLMs) were employed to support the refinement of
writing. Their role was limited to enhancing the linguistic presentation of the paper by improving
readability, clarity, and stylistic consistency. Specifically, the models were used for tasks such as
rephrasing sentences, checking grammar, and streamlining the flow of the text. We emphasize that
the LLMs were not involved in generating research ideas, designing methodologies, or conducting
experiments. All conceptual development, methodological design, and analytical work were carried
out solely by the authors. The contribution of the LLMs was restricted to language-level improvements
and did not extend to the scientific substance of the work. The authors retain complete responsibility
for the content of this paper, including passages revised with LLM assistance. Care has been taken to
ensure that the use of LLMs complies with ethical standards and does not give rise to plagiarism or
any form of scientific misconduct.

A.2 QUALITATIVE COMPARISON

We visualize attention-score maps from several cases, illustrating the attention distribution of the last
token with respect to all visual tokens, as shown in Figure 3. Compared to the baseline (LLaVA), our
ASVR method consistently demonstrates more precise focus on image regions relevant to the given
textual query. This highlights that incorporating semantic visual supervision via the autoregressive
semantic visual reconstruction objective Lvision

AR effectively enhance its ability to accurately associate
textual descriptions with corresponding visual elements.

Figure 3: Qualitative comparison on attention maps, where we keep the same LLM and training
data. With extra vision-centric supervision signals, ROSS urges the model to focus on specific image
contents corresponding to the question with higher attention values.

A.3 EVALUATION PROMPTS

All prompts used for evaluation benchmarks are released and summarized in Table5 following
Cambrian-1 (Tong et al., 2024a).

A.4 THE SCALABILITY OF ASVR

we show the clear scaling study along two axes in Table 6 and Table 7:

Data scaling We train on four datasets—LLaVA-1.5-556K (Liu et al., 2023b), LLaVA-Next-
779K (Liu et al., 2024c), Bunny-2M (He et al., 2024), and LLaVA-SI-3.5M (Li et al., 2024) to
isolate the effect of data volume.

Backbone scaling Using the same Vicuna family, we vary only the parameter count and scale up to a
13B model (the maximum allowed by our computational budget).
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Table 5: Listing the prompts used in the evaluation of each benchmark.

Benchmark Prompt

TextVQA (Singh et al., 2019) Answer the question using a single word or phrase.
DocVQA (Mathew et al., 2021) Answer the question using a single word or phrase.
OCRBench (Liu et al., 2024e) Give the short answer directly.
ChartQA (Masry et al., 2022) Answer the question using a single number or phrase.
MMBench (Liu et al., 2024d) Answer with the option’s letter from the given choices directly.

MME (Fu et al., 2024b) Answer the question using a single word or phrase.
SEED-Image (Li et al., 2023a) Answer with the option’s letter from the given choices directly.

GQA (Hudson & Manning, 2019b) Answer the question using a single word or phrase.
MMMU (Yue et al., 2024) Answer with the option’s letter from the given choices directly.

AI2D (Kembhavi et al., 2016) Answer with the option’s letter from the given choices directly.
RealworldQA (xAI, 2024) Please answer directly with only the letter of the correct option and nothing else.

MMVP (Tong et al., 2024c) Answer with the option’s letter from the given choices directly.
Hallusionbench (Guan et al., 2024) Answer the question using a single word or phrase.

POPE (Li et al., 2023c) Answer the question using a single word or phrase.

Table 6: The scaling relationship between computational cost (FLOPs) and average performance
score across different scale dataasets with the same LLM backbone-vicuna-1.5-7B.

Data FLOPs (×1e19) Avg Score
LLaVA-1.5-556K (Liu et al., 2023b) 1.53 49.8

LLaVA-Next-779K (Liu et al., 2024c) 2.49 55.1

Bunny-2M (He et al., 2024) 4.52 55.7

LLaVA-SI-3.5M (Li et al., 2024) 7.51 57.9

Table 7: The scaling relationship between computational cost (FLOPs) and average performance
score across different scale backbone parameters with the same training dataset-LLaVA-1.5-
556k.

LLM Backbone FLOPs (×1e19) Avg Score
vicuna-1.5-7B 1.53 49.8

vicuna-1.5-13B 2.58 52.4

A.4.1 THE IMPACT OF BACKBONE SCALING

We further evaluate the generalization capability of ASVR under the larger-scale LLM backbone.
Specifically, we extend our experiments to Vicuna-v1.5-13B(Zheng et al., 2023), The training data is
LLaVA-558K (Liu et al., 2023b) and LLaVA-1.5-665K (Liu et al., 2023b) for the pre-training stage
and the instruction tuning stage respectively, keeping the training conditions identical. As shown in
Table8, ASVR consistently outperforms the baseline across a wide range of multimodal benchmarks,
demonstrating its effectiveness in scaling with larger LLM backbones.

Table 8: The Generality of ASVR with LLM backbone scaling across multimodal under-
standing benchmarks. "✗" indicates the use of textual supervision only, while "✓" denotes the
inclusion of semantic visual supervision by computing additional Lvision

AR . Visual encoder(SigLIP-ViT-
SO400M/14@384) are both utilized for ASVR and baseline. "/" separates the data scale used for
pre-training (left) and instruction tuning (right).

Lvision
AR LLM backbone Data Scale

OCR General Knowledge Visual-centric Hallusion
AVG

TVQA DVQA OCRB CQA MMB MME SEED GQA MMMU AI2D RQA MMVP Hbench POPE

LLaVA ✗ Vicuna-v1.5-13B 558K/665k 57.2 22.1 32.4 15.1 67.1 68.9 65.6 60.4 35.6 54.9 54.8 34.0 32.9 86.8 49.1

ASVR ✓ Vicuna-v1.5-13B 558k/665K 61.6(+4.4) 27.3(+5.2) 37.1(+4.7) 18.4(+3.3) 70.8(+3.7) 74.9(+6.0) 68.7(+3.1) 62.8(+2.4) 36.4(+0.8) 60.0(+5.1) 56.0(+1.2) 35.3(+1.3) 36.8(+3.9) 87.5(+0.7) 52.4
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A.4.2 THE SCALING ON LARGER DATA

We further evaluate the generalization capability of ASVR under larger and more comprehensive
datasets, LLaVA-OV-3.5M (Li et al., 2024). As shown in Table 9, ASVR consistently outperforms
the baseline across a wide range of multimodal benchmarks, demonstrating its effectiveness in scaling
with larger and more comprehensive datasets.

Table 9: The Generality of ASVR with larger and more comprehensive datasets LLaVA-OV-
3.5M across multimodal understanding benchmarks. "✗" indicates the use of textual supervision
only, while "✓" denotes the inclusion of semantic visual supervision by computing additional Lvision

AR .
Visual encoder(SigLIP-ViT-SO400M/14@384) are both utilized for ASVR and baseline.

Lvision
AR LLM backbone Data

OCR General Knowledge Visual-centric Hallusion
AVG

TVQA DVQA OCRB CQA MMB MME SEED GQA MMMU AI2D RQA MMVP Hbench POPE

LLaVA ✗ Vicuna-v1.5-7B LLaVA-OV 57.2 44.1 49.6 39.2 71.7 71.7 68.7 58.2 37.9 70.7 56.7 40.0 36.1 85.5 56.2

ASVR ✓ Vicuna-v1.5-7B LLaVA-OV 60.0(+2.8) 46.5(+2.4) 51.3(+1.7) 41.7(+2.5) 72.2(+0.5) 73.2(+1.5) 69.9(+1.2) 59.8(+1.6) 39.7(+1.8) 71.8(+1.1) 57.5(+0.8) 42.0(+2.0) 37.9(+1.8) 86.9(+1.4) 57.9

A.5 THE IMPACT OF VISUAL SUPERVISION

We further extend our experiments by employing discrete SigLIP2 (Tschannen et al., 2025) as visual
supervision, which provides richer and stronger semantic information, to verify that enhanced visual-
semantic supervision can better scale the effectiveness of ASVR. To ensure fair comparison, we use
LLaVA-Next (Liu et al., 2024b) as the training dataset under identical conditions, evaluating ASVR
against the baseline with SigLIP (Zhai et al., 2023) as both visual input and supervision, as well as
with SigLIP2 (Tschannen et al., 2025) serving the same roles.

The results shown in Table 10 clearly demonstrate that stronger visual semantic encoders lead to better
performance when used for supervision. Specifically, ASVR with SigLIP-2 outperforms the baseline
(LLaVA) with SigLIP-2 by an average of +2.2 points across 14 benchmarks. In comparison, ASVR
with SigLIP improves over its baseline by +1.3 points. These results indicate that ASVR benefits
more from stronger semantic supervision, and that pairing ASVR with more powerful semantic vision
supervision further enhances its ability to improve visual understanding.

Table 10: Extend experiments on LLaVA-Next dataset, LLaVA indicates the baseline (typically
LVLM framework), ASVR builds upon the baseline by introducing autoregressive semantic
visual supervision. "✗" indicates the use of textual supervision only. Visual encoder(SigLIP-ViT-
SO400M/14@384 and SigLIP2-ViT-SO400M/14@384) are both utilized for ASVR and baseline to
get different visual input and visual supervision.

Visual Encoder Visual Supervision LLM Backbone Data TVQA DVQA OCRB CQA MMB MME SEED GQA MMMU AI2D RQA MMVP Hbench POPE AVG

LLaVA Siglip-so400m-384 ✗ Vicuna-v1.5–7B LLaVA–Next 57.7 40.7 37.9 42.6 67.4 71.5 67.2 61.8 34.3 65.3 54.6 32.8 33.1 86.4 53.8

ASVR Siglip-so400m-384 Semantic Siglip Vicuna-v1.5–7B LLaVA–Next 58.6 40.6 39.7 43.4 67.9 73.0 67.5 62.9 34.2 65.8 55.4 36.8 39.2 85.9 55.1

LLaVA Siglip2-so400m-384 ✗ Vicuna-v1.5–7B LLaVA–Next 59.2 41.8 40.5 46.3 66.9 74.0 68.3 62.7 34.7 66.4 56.9 33.3 35.1 86.1 55.2

ASVR Siglip2-so400m-384 Semantic Siglip-2 Vicuna-v1.5–7B LLaVA–Next 61.0 43.7 44.8 49.9 70.2 76.8 69.5 63.4 36.3 67.3 56.7 42.0 35.8 86.8 57.4

A.6 COMPARISON WITH ROSS

Specifically, ROSS (Wang et al., 2024b) reconstructs continuous, appearance-level visual features
(VAE features) through denoising, whereas our ASVR reconstructs discrete, semantic-level visual
indices (such as discretized SigLIP features) via autoregression. we conducted experiments using
the LLaVA-Next dataset (Liu et al., 2024b) under identical training settings, clearly demonstrating
that the ASVR-trained model consistently outperforms the ROSS ablation variants across multiple
multimodal evaluation metrics, we also implemented an additional variant of ROSS that reconstructs
continuous semantic-level features (SigLIP features) through denoising. The result is shown in the
table below shown in Table 11.

Our ASVR-trained model still achieved the best performance, indicating that autoregressive se-
mantic visual reconstruction (ASVR) is superior to both denoising semantic visual reconstruction
ablation variants and even denoising appearance visual reconstruction (ROSS) ablation variants.
Reconstructing semantic-level visual information markedly surpasses reconstructing appearance-level
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details, and the unified autoregressive modeling paradigm consistently outperforms its denoising-
based counterpart. In conclusion, our ASVR approach delivers superior visual reconstruction and
modeling compared with the ROSS method, achieving better performance under identical training
conditions. We attribute this performance gap to a fundamental alignment principle: large language
models (LLMs) are inherently trained to model high-level semantic information. Therefore, when
the visual supervision is semantically aligned with textual inputs—as in ASVR—it naturally leads
to better integration and understanding. In contrast, reconstructing low-level visual features (as in
appearance-based ROSS) lacks semantic alignment and can even hinder comprehension. Since tasks
such as VQA rely heavily on semantic reasoning, reconstructing semantic visual information is more
effective for enhancing multimodal understanding.

Table 11: The detailed comparision between ASVR and ROSS ablation variant, ASVR achieve
the best performance under identical training conditions. ROSS models visual information
through a denoising approach, whereas ASVR adopts unified autoregressive paradigm. The SigLIP-
ViT-SO400M/14@384 is utilized for semantic visual supervision and VAE features is appearance
visual supervision.

Method Visual Supervision LLM backbone Visual Modeling Data TVQA DVQA OCRB CQA MMB MME SEED GQA MMMU AI2D RQA MMVP Hbench POPE AVG

ROSS Apperance VAE Vicuna-v1.5–7B Denoising LLaVA–Next 56.3 39.6 35.9 41.0 65.6 71.7 65.9 61.6 34.4 65.5 55.0 33.3 28.9 85.9 52.9

ROSS Semantic Siglip Vicuna-v1.5–7B Denoising LLaVA–Next 57.5 40.2 37.4 42.5 67.0 70.5 66.2 62.1 34.9 64.6 55.7 30.1 31.2 85.8 53.3

ASVR Semantic Siglip Vicuna-v1.5–7B Autoregressive LLaVA–Next 58.6 40.6 39.7 43.4 67.9 73.0 67.5 62.9 34.2 65.8 55.4 36.8 39.2 85.9 55.1
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