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Abstract. Many deep learning image registration tasks, such as volume-
to-volume registration, frame-to-volume registration, and frame-to-volume
reconstruction, rely on six transformation parameters or quaternions to
supervise the learning-based methods. However, these parameters can be
very abstract for neural networks to comprehend. During the optimiza-
tion process, ill-considered representations of rotation may even trap the
objective function at local minima. This paper aims to expose these is-
sues and propose the Transformed Grid Distance loss as a solution. The
proposed method not only solves the problem of rotation representation
but unites the gap between translation and rotation. We test our meth-
ods both with synthetic and clinically relevant medical image datasets.
We demonstrate superior performance in comparison with conventional
losses while requiring no alteration to the network input, output, or net-
work structure at all.

1 Introduction

Existing deep learning-based image registration methods have explored many
types of supervision. Unsupervised methods such as [1, 4, 11] relies on image
intensity-based similarity metrics to supervise the network. These methods, how-
ever, are limited to single-modality registration tasks, or multi-modal images
with very similar content and texture. Weakly supervised registration [2, 7] in-
corporated weak labels such as organ segmentation to guide the training process.

In contrast, supervised methods require the ground truth annotations of reg-
istration for training [3, 5]. For deformable image registration, providing such
annotations can be unrealistically difficult. However, for tasks in which no sig-
nificant differences were found between rigid and deformable registrations [10],
using rigid registration reduces the annotation cost significantly. For example, in
image-fusion guided prostate cancer biopsies, the manual registration between
the MR and ultrasound images has been a routine for the clinical procedure. Re-
questing these manual registration labels for training come at no additional cost
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Fig. 1. Illustration of the transformed grid distance (TGD) loss.

to the clinicians. In other scenarios where deformable registration is preferred, a
rigid transformation is also often required to pre-align the images before any de-
formable registration can be performed. For the above reasons, supervised deep
learning based rigid image registration has been intensively studied, and will be
the focus of this work.

Labels and loss function are critical components of supervised image regis-
tration. Since 3D rigid transformation is commonly represented by six transfor-
mation parameters, including three rotation angles and a 3D translation vector,
a straightforward option is to use the distance between the ground truth and
estimated transformation parameters as the loss to train the image registration
network. However, numerous works [6, 8, 12] pointed out that the Euler angle
representation is problematic for loss computation. In some cases, quaternion
angles are used instead. In this paper, we argue that neither of them is the op-
timal choice for being used directly in a loss function. Instead, these abstract
mathematical expressions should be first converted into more physically intuitive
values. We propose a new loss – the Transformed Grid Distance (TGD) loss for
network training.

2 Transformed Grid Distance

In supervised rigid registration, transformation parameters are often used as
the label for network supervision. Compact transformation parameters, either in
Euler or quaternion representation, can be difficult for neural networks to learn
through conventional loss functions (e.g. L1 and MSE loss).

Instead of directly supervising the transformation parameters themselves, we
apply the estimated transformation on the moving image grid, and supervise the
distance between the transformed points and their corresponding points in the
ground truth grid as illustrated in Fig. 1. Let G ∈ Rm×n×l denote a 3D moving
image grid. TGD loss is computed as

LTGD = ∥Tθ(G)− Tgt(G)∥2 , (1)
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Fig. 2. We generated the rotations in this figure by randomly selecting 27 unit vectors
and ranging the rotation amplitude from 0 to 360 degrees. The Target Registration
Error serves as the evaluation metric, as in many registration tasks.

where T denotes a 3D transformation matrix converted from θ. The key differ-
ence here is to convert the abstract representation θ into a dense and intuitive
representation, which guides the network optimization process through circum-
venting any non-linear transformation conversions that the network would oth-
erwise have to figure out.

The proposed TGD loss elegantly unifies both rotation and transformation
into point-wise distance, which results in a smooth loss landscape that guides
the network learning process. Had more meaningful points been acquired (i.e.
anatomical landmarks), the loss can be simply adapted into Target Registration
Error (TRE) by replacing the grid with those clinically relevant points. One
major weakness of the Euler angles is that they must be applied in a fixed order,
which is not reflected at all with L1 or MSE loss. During training, each line from
Fig. 2 can be regarded as a training sample. The loss curves for either L1 or MSE
loss on Euler angles vary wildly from sample to sample, while the proposed TGD
loss stays consistent with the Target Registration Error (TRE).

The quaternion system seems to be a better solution than the Euler angles.
However, due to the fact that the quaternion expression is divided into two
intertwined parts, it is hard to guarantee that the direction of optimization is at
all correct. For example, slight error in the rotation axis would result in a large
TRE regardless of the rotation angle.

3 Experiments

In this section, we present both a synthetic and a clinically relevant experiment.
Our dataset consists of 528 manually labeled cases of MR-transrectal ultrasound
(TRUS) volume pair for training, 66 cases for validation, and 68 cases for testing.

In the first experiment, we use an MR volume as the fixed image, and its
own perturbed result as the moving image. We have also included the result of
TRE-TGD loss, which is another version of the proposed method that replaces
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Table 1. Performance of different loss functions in MR-MR registration.

Method Mean TRE (mm) Percentiles [25th, 50th, 75th, 95th]
Initial 12.66±7.30 [6.39, 12.83, 18.79, 23.88]
Quaternion loss 12.95±7.36 [6.64, 12.93, 19.00, 24.67]
MSE Euler angle loss 2.68±2.31 [1.19, 2.04, 3.43, 6.82]
L1 Euler angle loss 2.80±2.68 [1.04, 2.09, 3.72, 7.48]
TGD loss 1.51±1.45 [0.62, 1.15, 1.93, 3.85]
TRE-TGD loss 1.50±1.53 [0.65, 1.14, 1.87, 3.83]

Table 2. Performance of different loss functions in MR-TRUS registration.

Method Mean TRE (mm) Percentiles [25th, 50th, 75th, 90th]
Initial 9.93±5.87 [4.89, 9.82, 14.89, 19.10]
MSE Euler angle loss 5.57±2.86 [3.47, 5.06, 7.07, 10.98]
SRE-TGD loss 4.40±2.49 [2.57, 3.97, 5.77, 8.88]

the regular grid points in TGD loss with the target prostate surface points. The
quaternion loss, on the other hand, failed to converge in this experiment where
large rotation errors are concerned. Results in Table 1 show that simply through
’rephrasing’ the transformation parameters into physical distance between grid
points, the network was guided to converge at a lower minimum.

The second experiment treats the TRUS volume as the moving image, and
the corresponding MR volume as the fixed image. This is a use case, where an
accurate alignment between the transrectal ultrasound (TRUS) and MR volume
greatly benefits the ultrasound-guided prostate cancer biopsy [9]. For each pair
of MR and TRUS volume, we are provided with the manual label for rigid
registration from TRUS to MR, as well as the prostate surface points in MR.
Similar to the TRE-TGD loss in the first experiment, the SRE-TRD loss also
calculates the distance between corresponding points, thereby a subset to the
proposed TGD loss. Table 2 compares the result of multi-modal registration
between the conventional MSE loss and SRE-TGD loss. With the same network
architecture and other settings, the proposed loss function results in a significant
(p <0.001 under paired t-test) improvement over the conventional MSE loss.

4 Discussions and Conclusion

In this paper, we revealed the limitation of directly using abstract transformation
parameters for loss computation in supervised training of image registration
networks. With such insight, we introduced a simple yet effective tool to boost
the performance of supervised rigid volume registration. Although the analysis
and experiments are mainly conducted in a rigid setting, this idea can be easily
adapted for a non-rigid affine registration task.
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