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Abstract
RWKV is a modern RNN architecture with com-
parable performance to Transformer, but still
faces challenges when deployed to resource-
constrained devices. Post Training Quantization
(PTQ), which is a an essential technique to reduce
model size and inference latency, has been widely
used in Transformer models. However, it suf-
fers significant degradation of performance when
applied to RWKV. This paper investigates and
identifies two key constraints inherent in the prop-
erties of RWKV: (1) Non-linear operators hinder
the parameter-fusion of both smooth- and rotation-
based quantization, introducing extra computation
overhead. (2) The larger amount of uniformly
distributed weights poses challenges for cluster-
based quantization, leading to reduced accuracy.
To this end, we propose RWKVQuant, a PTQ
framework tailored for RWKV models, consist-
ing of two novel techniques: (1) a coarse-to-fine
proxy capable of adaptively selecting different
quantization approaches by assessing the unifor-
mity and identifying outliers in the weights, and
(2) a codebook optimization algorithm that en-
hances the performance of cluster-based quantiza-
tion methods for element-wise multiplication in
RWKV. Experiments show that RWKVQuant can
quantize RWKV-6-14B into about 3-bit with less
than 1% accuracy loss and 2.14× speed up.

1. Introduction
RWKV (Peng et al., 2023) is a modern sequence model that
integrates the strengths of both Recurrent Neural Networks
(RNNs) (Elman, 1990) and Transformer (Vaswani, 2017).
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Figure 1: Accuracy-model size curve. Results of zero-shot
accuracy are evaluated on the LAMBADA dataset (Radford
et al., 2019). Our proposed RWKVQuant outperforms the
individual utilization of SQ and VQ methods for all sizes of
models.

It has a comparable capacity to Transformer-based Large
Language Models (T-LLMs) while retaining the efficient
inference feature of RNNs, positioning it a promising foun-
dational architecture for both language (Peng et al., 2024)
and vision (Zhou & Chen, 2024) tasks.

Despite the advantages, its vast size of parameters have
posed a significant barrier to the deployment on resource-
constrained devices. For instance, the compute-to-memory
access ratio (FLOPs/Bytes) of RWKV-6-7B (Peng et al.,
2024) is 0.97, while that for the decoding phase of LLaMA-
2-7B (Touvron et al., 2023) is 4.88 (detailed in A.3). Sec-
ondly, large RWKV models demand substantial memory
resources. For instance, RWKV-6-14B requires approx-
imately 30GB of memory to be loaded, which typically
exceeds the capacity of edge devices.

Post Training Quantization (PTQ), including Scaler Quanz-
ization (SQ) and Vector Quantization (VQ), is a widely
adopted approach to reduce model size and inference la-
tency for T-LLMs (Shao et al., 2023; Ashkboos et al., 2024;
ost, 2024; Yuan et al., 2024). However, directly applying
the most advanced quantization frameworks to RWKV mod-
els leads to severe performance degradation. For instance,

1



RWKVQuant: Proxy-Guided Hybrid Scalar-Vector Quantization for RWKV Models

Table 1: The average relative cluster loss of weights for the
RWKV and LLaMA family, computed by KMeans (Lloyd,
1982).

Family Model 8 Clusters 16 Clusters

RWKV 6-7B 2.01 0.78
6-14B 1.98 0.78

LLaMA 2-7B 0.96 0.65
2-14B 0.89 0.64

applying QuaRot (Ashkboos et al., 2024) (belongs to SQ)
to RWKV-7 series models increases the overall FLOP by
more than 99%, and applying VPTQ (Liu et al., 2024a) (be-
longs to VQ) to RWKV-6-7B model leads to more than 16%
accuracy decline.

In depth, we investigate and identify two primary limitations
inherent in the properties of RWKV. ❶ Non-linear opera-
tors hinder the parameter-fusion of both smooth- and
rotation-based methods. Typically, these SQ approaches
fuse the introduced parameters, i.e., smoothing vectors and
orthogonal matrices, into neighbored normalization layers
and linear layers of T-LLMs. However, the RWKV structure
employs several non-linear operators along the fusion path,
including token-shift, Sigmoid function, and exponential
function. These modules can block the linear fusion process,
inevitably leading to additional runtime overhead. ❷ The
larger amount of uniformly distributed weights poses
challenges for cluster-based quantization. While such
VQ methods benefit from distinctly categorized distribution,
RWKV tends to have more uniform weights compared to
T-LLMs (detailed in Section 4.4), which complicates the
clustering process as shown in Table 1.

To this end, we propose RWKVQuant, an effective and effi-
cient post-training quantization (PTQ) framework tailored
for RWKV models. Our core insight is to enhance VQ
by partially applying the classic compensation-based SQ
methods like GPTQ (Frantar et al., 2022), which are more
suitable for uniformly distributed weights. Specifically, we
propose a coarse-to-fine proxy to optimize the hybrid strat-
egy. (1) The coarse-grained proxy is established on the
basis of Information Entropy (IE) (Shannon, 1948), which
evaluate the overall uniformity. For non-uniform weights,
VQ is directly applied. (2) For uniform weights, we fur-
ther introduce a fine-grained proxy, computed by weighted
high-order central moments, to detect local outliers. VQ
is applied when outliers emerge; otherwise, SQ is applied.
In addition to the hybrid, we further optimize VQ for the
unique element-wise multiplication operator of RWKV.

Experiments show that RWKVQuant outperforms existing
methods across various tasks on different RWKV model

families, including RWKV-6 (Peng et al., 2024) and RWKV-
7 (Bo, 2021) for RWKV-based language tasks, as well as
VRWKV (Duan et al., 2024) for RWKV-based vision tasks.
As shown in Figure 1, RWKVQuant quantizes weights
into about 3-bit and achieves superior accuracy compared
to the individual utilization of SQ and VQ. Additionally,
RWKVQuant demonstrates remarkable efficiency. For in-
stance, it can quantize RWKV-6-14B with less than 1%
accuracy loss, 2.83× memory saving, and 2.14× speed up.
Lastly, our contributions can be concluded as follows.

• We reveal that both smooth- and rotation-based PTQ
methods are not well-suitable for RWKV, primarily due
to the unavoidable runtime overhead. Further, cluster-
based PTQ methods suffer severe accuracy drop, owing
to the larger amount of uniformly distributed weights.

• We propose RWKVQuant, which enhances VQ by par-
tially adopting compensation-based SQ methods. It
introduces a coarse-to-fine proxy to guide the hybrid
strategy. It further enhances the VQ for the unique
element-wise multiplication modules in RWKV.

• RWKVQuant can effectively and efficiently quantize
weights into about 3-bit and outperforms both SQ and
VQ methods as shown in Figure 1.

• To the best of our knowledge, RWKVQuant is the first
comprehensive PTQ framework for the RWKV family.
As a pioneering study, we will publish the code in
the hope of promoting further research and facilitating
advancements in this field.

2. Preliminaries
2.1. RWKV Structure and Models

Referring to Figure 2, RWKV structure contains two key
modules, including Time Mixing and Channel Mixing (de-
tailed in A.1). With the previous word xt−1, the current
word xt can be derived by a token-shift operator:

xt = concat(xt−1[1 :, ],0), (1)

where 0 denotes an all-zero vector. RWKV models make use
of Time Mixing for seizing the relationship among tokens
and utilize Channel Mixing to probe the dimensions within
the hidden layer that are relevant to individual tokens.

Compared to T-LLMs, these modifications enables RWKV
to decrease substantially the computational overhead and
memory demands while effectively retaining the capacity
to model long-term dependencies. Thereby, the RWKV
family has already manifested its potential in a diverse
array of real-world applications (Li et al., 2024), includ-
ing QQ (Cryscan, 2023), WeChat (MrTom34, 2023; Le-
oLin4258, 2024), and Telegram (spion, 2023). For natural
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Figure 2: Model Structure of RWKV-7. It contains several
blocks and each block has two key modules: Time Mixing
and Channel Mixing.

language understanding tasks, RWKV-v6 (Peng et al., 2024)
has achieved remarkable advancements in accuracy, attain-
ing comparable performance to those of larger models like
SomlLM and Qwen (Chen et al., 2024). For vision tasks,
BSBP-RWKV (Zhou & Chen, 2024) excels in the domain
of image segmentation.

2.2. Post Training Quantization (PTQ)

PTQ serves as a potent strategy for model compression. By
converting the high-precision variables of pre-trained mod-
els into low-bit integers, it achieves a reduction in memory
usage and an acceleration of inference speed. Typically,
PTQ can be divided into two main approaches: SQ and VQ.

Scalar Quantization (SQ) SQ maps the original data to
the quantized range by a scaling factor, and subsequently
rounds floating points to the uniform-distributed integers.
For a tensor x to be quantized, it can be uniformly quantized
to b-bits as follows (Jacob et al., 2018):

Q(x) = clamp(⌊x
s
⌉+ z, 0, 2b − 1), (2)

where Q(·) represents the quantization function, s =
(max(x) − min(x))/2b − 1 is the scale factor, z =
−min(x)/s is the zero point, ⌊·⌉ denotes the rounding-
to-nearest operator, and clamp is the clipping function.

SQ is widely-adopted by most of the PTQ frameworks
(Yang et al., 2024). For instance, the classic compensation-
based GPTQ (Frantar et al., 2022) can quantize weights
to 3-4 bit with slight accuracy drop based on approximate
second-order information. To address outliers, AWQ (Lin
et al., 2023), SmoothQuant (Xiao et al., 2022), and Omni-
Quant (Shao et al., 2023) explore the scheme of smoothing
by detecting the importance of different activation channels.
Recent works (e.g., Quarot (Ashkboos et al., 2024), Spin-
Quant (Liu et al., 2024b), and OSTQuant (ost, 2024)) further
suppress outliers by rotating the variables to be quantized
with orthogonal matrices.

Vector Quantization (VQ) VQ quantizes several vectors
into a finite subset, which is commonly referred to as a
codebook C (Gersho, 1979). Typically it has shape (2k, d),
where k is the bits of the index and d is the vector dimension.
Given a tensor x with shape (m,n) to be quantized, VQ
first transforms it into x′ with dimensions (m ∗ n//d, d).
Second, for each d-dimensional vector in x′, VQ replaces it
with the k-bit index of the nearest vector from the codebook.
For instance, if we use the Euclidean distance (calculated by
the Frobenius normalization || · ||F ) to measure similarities,
the quantization process can be expressed as:

Q(x′) = {argmin
j∈2k

||x′
i −Cj ||F | i = 1, ...,m∗n//d}. (3)

Compared to SQ, this scheme takes the advantage of main-
taining the shape of the source distribution, especially under
lower bit-width. For example, VPTQ (Liu et al., 2024a) and
GPTVQ (van Baalen et al., 2024) combine VQ with GPTQ,
achieving advanced performances under 2∼3 bits. To obtain
the codebook, they cluster the source vectors by K-Means
Algorithm (Lloyd, 1982) and Expectation-Maximization
Algorithm (Moon, 1996), respectively. AQLM (Egiazar-
ian et al., 2024) further utilizes layer-wise training for the
codebook to obtain optimal accuracy.

3. Method
3.1. Coarse-to-fine Proxy for Hybrid Quantization

Hybrid of SQ and VQ Given inputs x, weights θ, number
of weights M , and the model f(·), the optimization goal is
to minimize the expectation E[·] of the Mean Square Error
(MSE) of the model output:

argmin
ϕ

E[ ||fθ(x)− fθ′(x)||2F ]

s.t.ϕ = {ϕm ∈ {0, 1} |m = 1, 2, ...,M}
θ′ = {ϕmSQ(θm) + (1− ϕm)VQ(θm)

|θm ∈ θ,m = 1, 2, ...,M}.

(4)

Here, ϕ represents the collection of options for SQ and VQ.
Although the optimal solution of Equation 4 can be found by
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the exhaustive algorithm, its complexity increases exponen-
tially with the number of weights, i.e., O(2M ). Considering
the computational cost, we construct an effective proxy by
evaluating the uniformity and outliers of each weight from
both coarse- and fine-grained perspectives, whose complex-
ity decreases to O(M).

Coarse-grained Proxy Information Entropy (IE) (Shan-
non, 1948) is one of the most common approaches to eval-
uate uniformity. However, it measures the probability dis-
tribution, rather than the original data that concerned by
quantization. To take advantage of its effectiveness, we
perform a series of transformations on the model weights.

Given a weight W ∈ Roc×ic, it is first flattened, then sorted
in ascending order to formulate W ′ ∈ Roc·ic. Subsequently,
the intervals G ∈ R(oc·ic)−1 of all adjacent positions in W ′

can be calculated by:

G = W ′[1 :]−W ′[: −1]. (5)

For the clarity of expression, the term (oc · ic)−1 is denoted
by the symbol n in the following contents. Next, G is
transformed to G′ by:

G′ = {G′
i =

Gi∑n
i=1 Gi

| i = 1, 2, ..., n}. (6)

Considering that G′ satisfies that
∑n

i=1 G
′
i = 1, it can be

treated as a discrete probability distribution. Consequently,
its IE (denoted by H) can be obtained by:

H(G′) = −
n∑

i=1

G′
i logG

′
i. (7)

According to the property of IE, Equation 7 measures the
concentration of G′. Since G′ are the intervals, its concen-
tration can equivalently reflect the uniformity of the original
weight W .

Assuming an absolutely uniform weight Ŵ with fixed in-
tervals, it can be transformed to Ĝ′ following the above
process, which finally should be:

Ĝ′ = {Ĝ′
i =

1

n
| i = 1, 2, ..., n}. (8)

Owing to the property of IE, only if W = Ŵ does Equa-
tion 7 take the maximum value. Finally, the coarse-grained
proxy Pc can be obtained by computing the gap between
the IE of G′ and Ĝ′:

Pc(G
′) = H(Ĝ′)−H(G′). (9)

By introducing a threshold τc, non-uniform weights can
have larger values of Pc, indicating the usage of VQ as
shown in Figure 3(a). Since IE is a measure of the entire

system, a small amount of local outliers does not signifi-
cantly effect Pc. However, in case of SQ, the accuracy is
highly dependent to the data scale. Such outliers can cause
more minimal values to be mapped to the same integer, thus
increasing the rounding error. For instance, Figure 3(b) and
Figure 3(c) have close Pc values, while the former contains
obvious outliers and is more accurate under VQ.

Fine-grained Proxy To mitigate the issue that Pc is not
sensitive enough to local outliers of a relatively uniform data,
we further introduce a fine-grained proxy. Specifically, we
perform the Taylor expansion (Taylor, 1717) to Equation 9
to evaluate the minor disturbances δ around Ĝ′.

Step 1 The gap δ between G′ and Ĝ′ can be written as:

δ = G′ − Ĝ′ = {δi = G′
i −

1

n
| i = 1, 2, ..., n}. (10)

According to Equation 6, it should be satisfied that:

n∑
i=1

δi =

n∑
i=1

(G′
i −

1

n
) = 0. (11)

Step 2 The Taylor expansion can be formulated as:

Pc(G
′) = Pc(Ĝ′) +

K∑
k=1

(k!)−1P k
c (Ĝ

′)δk + o(δK)

=

K∑
k=1

(k!)−1
n∑

i=1

∂kPc

∂G′k
i

∣∣∣∣
G′

i=
1
n

δki + o(δK).

(12)

Taking the Euler’s number e as the base of the log function
in Equation 9, the k-th order partial derivative of Pc with
respect to G′

i can be expressed as:

∂kPc

∂G′k
i

=

{
lnG′

i + 1 k = 1

(−1)k(k − 2)!G
′(1−k)
i k ≥ 2

. (13)

Step 3 Taking Equation 11 and 13 into consideration, Equa-
tion 12 can be transformed into:

Pc(G
′) =

K∑
k=2

(−1)knk−1

k(k − 1)

n∑
i=1

δki + o(δK). (14)

Step 4 Omitting the term o(δK), Equation 14 can be refor-
mulated as:

Pc(G
′) ≈ [s2, ..., sK ]⊙ [v2, ..., vK ]⊙ [M2, ...,MK ],

where sk = (−1)k, vk =
nk

k(k − 1)
, Mk =

∑n
i=1 δ

k
i

n
.

(15)
Here, ‘⊙’represents element-wise multiplication. Mk is the
k-th order central moment of G′, which is defined as:

Mk(G
′) = E[ (G′ − E[G′ ])

k
]. (16)
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Figure 3: Zero-shot accuracy when applying different quantization methods to specific weights. For the weight in each
sub-figure, SQacc denotes the performance when SQ is applied, VQacc denotes the performance when VQ is applied,
while all other weights are quantized with VQ. Pc and Pf are coarse- and fine-grained proxy, while µc and µf are their
corresponding thresholds.

The central moment can serve as a metric for assessing
the local features of data. This is because the difference
between outliers and other data points is magnified by the
k-th power. For instance, when k = 2, Equation 16 yields
the variance, indicating the spread of the data. For k = 3,
the central moment corresponds to skewness, assessing the
symmetry of the data. For k = 4, it represents kurtosis,
revealing the data’s long-tail characteristic.

Step 5 Considering that Pc(G
′) signifies the overall uni-

formity, sk and vk can be regarded as the direction and the
significance of the local feature Mk. Since only the magni-
tudes of features are considered when it comes to outliers,
the fine-grained proxy can be defined as:

Pf (G
′) =

K∑
k=2

vk|Mk|, (17)

where K is a hyper-parameter. By introducing a threshold
τf , outliers can be detected by larger values of Pf , indicating
the usage of VQ as shown in Figure 3(b).

Finally, our proxy solution of Equation 4 can be obtained
by the combination of Pc and Pf :

ϕ̂ = {ϕz =


1 Pc(G

′
z) < τc andPf (G

′
z) < τf

0 Pc(G
′
z) < τc andPf (G

′
z) ≥ τf

orPc(G
′
z) ≥ τc

| z = 1, 2, ...,M},

(18)

where G′
z denotes the m-th weight after the transformation.

Only if both the coarse-grained proxy and the fine-grained
proxy are lower than their corresponding threshold will
SQ be applied, as shown in Figure 3(c). Otherwise, the
weight distribution is supposed to be generally uneven, or
relatively uniform but with local outliers, which indicates

the application of VQ. Notably, the fine-grained proxy is
only utilized in condition that Pc(G

′
z) < τc.

3.2. Codebook Optimization for Element-wise
Multiplication

Different from Transformer-based LLMs, the element-wise
multiplication ‘⊙’between the input x and the weight µ is
applied in all projection layers of the RWKV structure, as
shown in Figure 2. In accordance with the proxy introduced
in Section 3.1, VQ is expected to be applied to most of
them. However, existing VQ methods are primarily tailored
for matrix multiplication modules. We thereby propose to
optimize the VQ codebook specifically for element-wise
multiplication modules.

Given a weight µ ∈ Rm×n, it is first transformed to µ′ ∈
R(m·n//d)×d, where d is the hidden dimension. Following
the VQ process stated in Equation 3, it can be quantized into
Q(µ′). Typically, the quantization loss L can be written as:

L = ||X ⊙ µ′ −X ⊙Deq(Q(µ′))||2F

=

m·n//d∑
i=1

d∑
j=1

X2
ij(∆µ′

ij)
2
,

(19)

where X is a representative of the calibration activations,
Deq is the de-quantization process, and ∆µ′ denotes the
quantization error of the weight. To minimize Equation 19,
a larger activation value should correspond to a smaller ∆µ′,
indicating the significance of this position. Thus, we employ
the term X2 to direct the weighted KMeans algorithm in
the generalization of codebooks.

Due to the nature of element-wise multiplication, X must
have the same shape as µ′, which further introduces an
issue of integrating batches of data. The most straightfor-
ward approach is to simply average all samples. However,
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Table 2: Comparison of perplexity on LAMBADA and averaged accuracy on nine Zero-Shot tasks. For all methods except
ours and floating-point, we report metrics under both bpw settings of 3.5 and 3.25.

RWKV7-0.1B RWKV7-0.5B RWKV7-1.47B RWKV6-1B RWKV6-3B RWKV6-7B RWKV6-14B
Bpw. Method 0-shot9 LambA. 0-shot9 LambA. 0-shot9 LambA. 0-shot9 LambA. 0-shot9 LambA. 0-shot9 LambA. 0-shot9 LambA.

Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑) (↓)
16 FloatingPoint 43.02 14.21 48.67 7.21 55.08 4.80 54.39 4.60 58.32 3.83 61.69 3.21 63.65 3.02

3.25

RTN 36.22 152.82 39.99 57.11 45.46 11.43 49.84 6.39 54.17 4.71 58.34 3.87 61.16 3.34
GPTQ 37.92 63.54 41.16 23.29 51.15 7.93 50.55 6.43 53.94 4.88 59.28 3.72 60.18 3.43
AWQ 36.20 132.06 68.92 5.92 43.62 15.27 44.41 17.97 47.24 11.97 49.48 8.33 49.35 8.18

QuaRot 34.53 243.99 40.17 76.89 50.81 9.39 45.02 29.38 48.24 22.67 54.29 8.81 54.76 14.05
kMeans 38.21 87.06 44.59 20.19 52.77 6.57 47.02 15.93 53.06 8.27 55.72 4.69 61.40 4.61
GPTVQ 40.25 23.75 43.64 14.15 52.06 5.54 49.86 6.11 54.23 4.31 58.57 3.49 59.63 3.15
VPTQ 35.78 128.59 40.14 30.63 45.83 11.13 43.89 14.67 48.22 7.77 53.06 4.75 57.87 3.62

3.5

RTN 38.08 81.14 43.02 25.09 51.74 7.89 51.76 5.83 54.42 4.50 59.20 3.59 60.84 3.31
GPTQ 39.33 40.16 45.73 13.07 52.28 6.55 51.23 5.86 54.89 4.54 60.07 3.68 61.14 3.29
AWQ 38.31 55.72 42.40 16.98 44.61 10.71 51.20 10.07 48.40 8.77 50.50 7.07 50.86 6.06

QuaRot 37.26 126.19 40.84 40.38 51.98 7.94 47.00 16.29 51.01 16.99 56.95 6.44 56.33 10.63
kMeans 39.55 36.26 43.07 17.05 52.77 6.57 50.03 8.24 54.99 6.28 59.51 3.96 61.15 3.84
GPTVQ 40.10 25.82 44.13 10.88 52.13 5.51 50.29 5.74 55.12 4.12 59.70 3.30 59.76 3.34
VPTQ 37.07 74.70 41.06 25.03 47.38 9.52 43.82 14.74 48.86 8.62 52.95 4.47 57.93 3.75

3.275 Ours 41.10 18.41 46.01 9.39 52.40 5.24 51.69 5.29 55.79 3.88 60.19 3.23 62.69 2.89

this method is not sufficiently effective because it is highly
susceptible to the influence of a small number of outliers.
Given that the activations of RWKV models typically fol-
lows an approximately normal distribution, we introduce
a percentile-based clipping operation to limit the range of
samples prior to averaging, thereby alleviating this issue.

4. Experiments
4.1. Experimental Settings

Models and Datasets. We evaluate the RWKVQuant frame-
work on RWKV6 (Peng et al., 2024), RWKV7, and VR-
WKV models (Duan et al., 2024). For vision tasks, we
utilize ImageNet (Deng et al., 2009) for image classifi-
cation, Coco (Lin et al., 2014) for object detection, and
ADE20K (Zhou et al., 2019) for segmentation. Aligned
with the accuracy evaluation methods used in the VRWKV
experiments, we report Top-1 Accuracy for classification
tasks, Box Average Precision (AP) for detection tasks, and
Mean Intersection over Union (MIoU) for segmentation
tasks. For language tasks, consistent with the RWKV6 pa-
per, we report the perplexity (PPL) on the Lambada dataset.
We also evaluate the models on up to nine zero-shot tasks
using the LM-evaluation-harness (version 0.4.4), including
LAMBADA(OpenAI) (Radford et al., 2019), HEADQA
(EN) (Rogers et al., 2023), HellaSwag (Zellers et al.,
2019), OpenBookQA (OBQA) (Mihaylov et al., 2018),
PIQA (Bisk et al., 2020), SCIQ (Pedersen et al., 2020),
Winogrande (Sakaguchi et al., 2021), ARC-Challenge and
ARC-Easy (Boratko et al., 2018).

Baselines and Implementation Details. In addition to com-
paring with SQ methods such as RTN, GPTQ (Frantar et al.,
2022), AWQ (Lin et al., 2023), and Qurot (Ashkboos et al.,
2024), we also benchmark our approach against VQ meth-
ods like K-Means, GPTVQ (van Baalen et al., 2024) and
VPTQ (Liu et al., 2024a) for weight-only quantization. To
ensure fairness, we report the performance of each method
under two configurations, where the average number of bits
per weight (bpw) is set to 3.25 and 3.5. For SQ methods,
we take the scale size into account when calculating the
bpw. To achieve 3.25 and 3.5 bits per weight, we set the
group size for quantization to 32 and 64 respectively. For
VQ methods, we consider not only the bit size occupied
by the quantized weights but also the bit size required for
storing the codebook to achieve the corresponding bpw. In
our method, we dynamically set τc and τf according to dif-
ferent models, ensuring that SQ with a bpw of 3.25 is used
in nine-tenths of the layers, while VQ with a bpw of 3.5
is used in one-tenth. For example, in RWKV7, τc is set to
1.54, while τf is set to 30. For both vision and language
tasks, we select 128 samples from the corresponding test
datasets for calibration.

4.2. Overall Results

Performance Comparison on Language Tasks. As shown
in Table 2, on language tasks our method consistently out-
performs other approaches across nearly all models. Com-
pared to methods with a bpw of 3.25, regardless of whether
they based on SQ or VQ, our method demonstrates signifi-

6



RWKVQuant: Proxy-Guided Hybrid Scalar-Vector Quantization for RWKV Models

Table 3: Comparative results under different quantization
settings for Vision RWKV models.

Bpw. Method
RWKV-T RWKV-S

Cls. Det. Seg. Cls. Det. Seg.
16 FloatingPoint 75.10 41.70 43.3 80.10 44.8 47.2

3.5

GPTQ 69.74 39.85 41.20 78.30 43.37 45.50
AWQ 68.50 39.03 38.88 78.00 42.90 42.88

GPTVQ 70.31 40.14 41.65 78.65 44.03 45.00
VPTQ 67.21 39.02 40.14 76.40 42.01 43.54

3.275 Ours 70.41 40.22 41.70 78.74 43.95 46.09

cant improvements in both PPL and accuracy on zero-shot
tasks. Compared to methods with a bpw of 3.5, our method
consistently achieves lower PPL. Except for slightly lower
accuracy on RWKV7-0.5B and RWKV6-1B with certain
methods, it achieves the highest accuracy across all other
models. It can be observed that on the smallest 0.1B model,
the PPL of other methods increases by at least 10 points,
whereas our method results in an increase of only 4.2 points.
On larger models such as RWKV6-7B and RWKV7-14B,
our method results in almost no increase in PPL, while the
accuracy decreases by less than 1 point.

Performance Comparison on Vision Tasks. Table 3
presents the results of the quantized RWKV models applied
to various vision tasks, including classification, detection
and segmentation. Our method achieves the highest scores
in both segmentation and classification tasks. For detection
tasks, although the precision of RWKV-S is not the highest,
it is very close to the best-performing method.

Memory Occupancy and Computational Cost. Our
method incurs only negligible loss in 3.275-bpw quanti-
zation, making 3.275-bpw inference feasible. As described
in the section 1, models based on the RWKV architecture
differ from those built on GPT or LLaMA architectures.
Whether in the pre-fill or decoder stage, RWKV models
exhibit a lower compute-to-memory-access ratio. Conse-
quently, quantizing the weights to lower bit-widths can sig-
nificantly reduce memory access time, thereby accelerating

Table 4: Comparison of generation speed and memory usage
before and after 3.275-bpw quantization on RWKV6 models.
All tests were conducted on an NVIDIA A6000 GPU.

Model Size
speed (tokens/sec) Memory use (GB)

FP Quantized Speed up FP Quantized Mem. saving

3B 32.95 51.29 1.55x 5.88 1.65 3.56x

7B 30.75 62.42 2.03x 13.91 4.25 3.27x

14B 16.02 34.32 2.14x 26.07 9.21 2.83x

Table 5: Ablation study on the impact of hybrid quantiza-
tion on LAMBADA PPL and zero-shot9 score for language
RWKV models.

Model
GPTQ GPTVQ Ours

0-shot9 LambA. 0-shot9 LambA. 0-shot9 LambA.
Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑) (↓)

RWKV7-0.1B 39.33 40.16 38.49 55.30 40.69 24.71
RWKV7-0.5B 45.36 13.07 43.85 20.16 45.03 13.49

RWKV7-1.47B 52.28 6.55 51.31 6.85 52.23 6.54
RWKV6-1B 51.20 5.86 49.70 5.52 51.44 5.32
RWKV6-3B 55.24 4.54 54.86 4.41 55.40 3.97
RWKV6-7B 59.20 3.59 48.29 3.41 60.18 3.21

RWKV6-14B 61.14 3.29 59.86 3.31 62.03 2.89

the model’s inference speed, as shown in Table 4.

4.3. Ablation Study

Hybrid Quantization. We conduct a series of ablation stud-
ies on the hybrid quantization method proposed in Section
3.1, comparing its performance on the RWKV model with
that of employing single quantization methods. For fairness,
the weights of all multiplication operations are quantized
using the RTN method. Our method leverages the proposed
coarse-grained and fine-grained proxy to hybridize GPTQ
and GPTVQ. While GPTQ and GPTVQ use a bpw of 3.5,
our method achieves a bpw of 3.275 by applying GPTVQ
(bpw 3.5) to one-tenth of the layers and GPTQ (bpw 3.25)
to the remaining nine-tenths. The ablation study results
in Table 5 highlight the effectiveness of the hybrid quan-
tization method. In nearly all RWKV models, the hybrid
method achieves better metrics compared to both GPTQ and
GPTVQ.

Proxy Strategy. Table 5 shows that our hybrid quantization
improves accuracy but still lags behind floating-point preci-
sion. We then apply the proxy described in Section 3.1, com-
bining coarse-grained and fine-grained proxies to determine
the quantization method for each layer. The ablation results,

Table 6: Ablation study on the impact of different proxies
for hybrid quantization in language RWKV models.

Method
RWK7-0.1B RWK7-0.5B RWK7-1.47B

0-shot9 LambA. 0-shot9 LambA. 0-shot9 LambA.
Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑) (↓)

Variance 40.67 20.80 42.51 9.74 51.29 5.90
CV 39.09 22.36 40.92 10.10 51.58 5.79

Range 39.92 23.78 40.24 10.41 51.37 5.82
MAD 38.97 22.65 42.33 10.02 51.95 6.04
MSE 37.99 28.56 42.60 10.22 51.05 6.87

IE 41.01 20.03 45.12 9.67 52.12 5.31
Ours 41.04 19.70 45.54 9.55 52.32 5.24
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Table 7: Ablation study on the impact of codebook opti-
mization for element-wise multiplication.

Model
wo. w.

0-shot9 Lambda 0-shot9 Lambda
Avg.(↑) (↓) Avg.(↑) (↓)

RWKV7-0.1B 40.69 24.71 41.09 18.41
RWKV7-0.5B 45.03 13.49 46.01 9.39

RWKV7-1.47B 52.24 6.54 52.41 5.24
RWKV6-1B 51.45 5.32 51.69 5.29
RWKV6-3B 55.48 3.97 55.79 3.88
RWKV6-7B 60.18 3.21 60.19 3.23

RWKV6-14B 62.03 2.89 62.69 2.89

comparing the use of different proxies such as Variance,
Coefficient of Variation (CV) (Abdi, 2010), Range (Gum-
bel, 1947), Mean Absolute Deviation (MAD) (Konno &
Koshizuka, 2005), Mean Squared Error(MSE), and IE, are
presented in Table 6. Notably, MSE denotes making se-
lections between SQ and VQ by directly comparing their
MSE of each weight. The other metrics are used in the
same manner as described in our method, focusing on the
transformed weights G′. Intuitively, the MSE method is the
local optimum for each weight. However, our coarse-to-fine
proxy attains the best results across all three models from
the global perspective.

Codebook Optimization. We conduct ablation experiments
on the codebook optimization for the element-wise multi-
plication proposed in Section 3.2, across all RWKV models.
The results are presented in Table 7. It can be observed that
using the codebook optimization for the element-wise multi-
plication operator generates better accuracy across all mod-
els compared to not applying the optimization. Specifically,
we also visualize the effectiveness of the clipping-based per-
centile technique within this codebook optimization. From
Figure 4, it can be clearly observed that the input activation
approximately follows the normal distribution. However,
the outliers make the representative feature to leave far from
the center point, thereby decreasing the overall performance.
By clipping these outliers, a more close-to-center feature
can be obtained, thus enhancing the calibration process.

Figure 4: Effectiveness of clipping for batch integration.

Figure 5: Comparison of SQ proportion between RWKV
and LLaMA Models.

4.4. More Uniform Weights in RWKV

Table 1 in Section 1 presents the average relative clustering
loss of weights using K-Means methods (Lloyd, 1982) for
the RWKV family and the LLaMA family respectively. In
depth, we conduct experiments leveraging the proposed
coarse-to-fine proxy in Section 3.1 to investigate the usage
proportions of SQ and VQ. Under the settings of τc = 1.5
and τf = 50, Figure 5 shows that approximately 60% of the
layers in the RWKV family are categorized as suitable for
scaler quantization, whereas the proportion is only about
10% for the LLaMA family. This further demonstrates that
the RWKV models have a significantly higher number of
uniform weights.

5. Conclusion
In this paper, we focus on introducing the quantization tech-
niques into the realm of RWKV models. Our investigation
reveals that applying SQ or VQ individually may not be
optimal for RWKV. We have subsequently identified that
enhancing VQ with conventional compensation-based SQ
holds great promise. To this end, we propose RWKVQuant,
a comprehensive post training quantization framework es-
pecially designed for RWKV models. The core idea is to
design an optimal strategy that indicates the choice between
SQ and VQ for each weight. Specifically, we propose a
guidance that employs a coarse-grained proxy to evaluate
uniformity and a fine-grained proxy to identify outliers. We
also optimize the codebook generation for element-wise
multiplication modules, which are unique to the RWKV
models. Our proposed RWKVQuant advances in accuracy
for both RWKV-based vision and language tasks compared
to existing methods, making RWKV models more practical
for deployment in resource-constrained environments. As a
pioneering study on quantization within the RWKV family,
we will publish the code in the hope of promoting further
research and facilitating advancements in this field.
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Impact Statement
This paper aims to promote the application of the RWKV
family, mainly focused on the post training quantization
methods. By introducing RWKVQuant, our approach
enables the deployment of RWKV models on resource-
constrained devices.
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A. Appendix
A.1. Structure of Time- and Channel-Mixing

The RWKV model, similar to Transformer networks, is composed of multiple identical blocks, each containing a Time
Mixing component. The Time Mixing process can be written as:

rt = Wr · (µr ⊙ xt + (1− µr)⊙ xt−1), (20)

kt = Wk · (µk ⊙ xt + (1− µk)⊙ xt−1), (21)

vt = Wv · (µv ⊙ xt + (1− µv)⊙ xt−1), (22)

wkvt =

∑t−1
i=1 f(i)⊙ vi + exp(u+ kt)⊙ vt∑t−1

i=1 f(i) + exp(u+ kt)

wheref(i) = exp(−(t− 1− i)w + ki),

(23)

ot = Wo · (σ(rt)⊙wkvt). (24)

Here, the symbol ‘⊙’represents element-wise multiplication, while the symbol ‘ · ’stands for matrix multiplication. Both W
and µ are parameters. In the context of RWKV, the terms rt, kt, and vt bear an analogy to the Q, K, and V components
found in the attention mechanism of Transformers. Notably, the input x in RWKV is not simply the embedding of the
current token. Rather, it signifies the weighted sum of the embedding of the current token and that of the previous token.
Subsequently, the Channel Mixing module performs:

r′t = W ′
r · (µ′

r ⊙ xt + (1− µ′
r)⊙ xt−1), (25)

k′
t = W ′

k · (µ′
k ⊙ xt + (1− µ′

k)⊙ xt−1), (26)

o′
t = σ(r′t)⊙ (W ′

v ·max(k′
t, 0)

2). (27)

A.2. RWKV Weight Distribution

Figue 6 shows layers with relatively uniform weight distributions in the RWKV7-0.1B model, which are classified as layers
that should use SQ based on our proposed coarse-to-fine proxy. In contrast, Figure 7 illustrates layers with uneven weight
distributions, which are typically classified as layers that should use VQ. Furthermore, although the weights in Figure 8
appear generally uniform, the presence of local unevenness still leads to their classification as layers that require VQ.

Figure 6: Unifrom weights without outliers in RWKV7-0.1B different layers.

Figure 7: Non-uniform weights in RWKV7-0.1B different layers.
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Figure 8: Unifrom weights with outliers in RWKV7-0.1B different layers.

A.3. Compute-to-memory Ratio

The figure 9 compares the Compute-to-Memory Ratio (FLOPs per byte) across various models and highlights that RWKV
consistently exhibits the lowest ratio, indicating that its operations rely more on memory access rather than intensive
computations, compared to models like GPT-3 and LLAMA. This characteristic makes RWKV particularly well-suited for
acceleration through weight quantization, as its lower computational demands relative to memory usage allow for more
significant gains in inference speed, especially when optimizing for resource-constrained environments.

Figure 9: Compute-to-memory-ratio for different models.

Table 8: Complete comparative results under different quantization settings for Vision RWKV models. For classification
tasks, we report the Top-1 Accuracy on ImageNet. For detection tasks, the Box AP is evaluated on Coco, while for
segmentation tasks, the mIoU is measured on ADE20K.

Bpw. Method
RWKV-T RWKV-S RWKV-B RWKV-L RWKV6-T RWKV-L RWKV6-T

Cls. Det. Seg. Cls. Det. Seg. Cls. Det. Seg. Cls. Det. Seg. Cls. Det. Seg. Cls. Det. Seg. Cls. Det. Seg.

16 FloatingPoint 75.10 41.70 43.30 80.10 44.80 47.20 82.00 46.80 49.20 - 50.6 53.50 76.60 - - 81.10 - - 82.60 - -

3.5

GPTQ 69.74 39.85 41.20 78.30 43.37 45.50 81.42 46.14 48.64 - 50.30 53.26 72.79 - - 80.13 - - 82.31 - -

AWQ 68.50 39.03 38.88 78.00 42.90 42.88 81.15 45.70 48.55 - 50.19 53.18 71.46 - - 79.74 - - 82.09 - -

GPTVQ 70.61 40.14 41.65 78.65 44.03 45.00 81.37 46.23 48.70 - 50.28 52.90 73.22 - - 80.23 - - 82.25 - -

VPTQ 67.21 39.02 40.14 76.40 42.01 43.54 80.29 45.02 48.68 - 49.10 51.45 70.36 - - 77.75 - - 81.31 - -

3.275 Ours 70.41 40.22 41.70 78.74 43.85 46.09 81.58 46.40 48.49 - 50.31 52.95 73.13 - - 80.24 - - 82.32 - -
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A.4. Additional Results

We provide a comprehensive presentation of our results across various datasets to complement the main paper. Specifically,
the results include:

• Complete comparison of the results under different quantization settings for Vision RWKV models.(Table 8).

• Complete comparison of the perplexity score on LAMBADA and averaged accuracy on zero-shot common sense
reasoning tasks on RWKV7 (Tab 9) and RWKV6 (Table 10).

• Validate the effectiveness of codebook optimization for element-wise multiplication. (Table 11).

Table 9: Complete comparison of perplexity on LAMBADA and averaged accuracy on nine Zero-Shot tasks. For all methods except ours
and floating-point, we report metrics under both bpw settings of 3.5 and 3.25.

Model Bpw. Method ARC-c ARC-e HQA. HellaS. Lam. OBQA PIQA SCIQ WinoG. Avg. Wiki2
(↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↓)

RWKV-7 0.1B

16 Full Precision 19.7 47.90 25.12 31.59 45.62 17.2 65.61 81.8 52.6 43.02 14.21

3.25

RTN 19.53 40.66 23.70 30.12 12.83 14.4 62.73 70.2 51.93 36.22 152.82
GPTQ 20.39 42.17 23.52 30.59 20.47 15.40 62.62 73.60 52.50 37.92 63.54
AWQ 20.13 41.16 22.72 29.88 15.20 25.44 61.15 76.70 52.40 38.31 132.06
QuaRot 19.96 39.94 22.46 29.38 12.28 13.80 60.93 58.80 53.19 34.53 243.99
KMeans 18.94 43.56 23.81 29.85 19.93 15.00 63.49 75.70 53.59 38.21 87.06
GPTVQ 18.94 43.93 22.75 30.04 38.06 16.40 63.36 77.00 51.77 40.25 23.75
VPTQ 18.94 39.60 21.84 28.59 17.50 13.20 59.90 71.90 50.51 35.78 128.59

3.5

RTN 19.36 43.47 24.50 30.17 18.13 16.20 64.09 74.40 52.48 38.08 81.14
GPTQ 18.68 44.06 24.14 30.69 26.74 17.80 63.76 74.30 53.82 39.33 40.16
AWQ 19.88 40.40 22.97 29.52 14.92 14.00 59.99 71.50 52.64 36.20 55.72
QuaRot 19.88 44.40 22.72 30.16 15.36 15.60 62.78 72.40 52.09 37.26 126.19
KMeans 19.19 44.02 24.14 29.98 29.44 15.00 63.54 77.40 53.27 39.55 36.23
GPTVQ 19.11 42.88 22.68 30.25 38.35 15.80 63.11 74.40 54.30 40.10 25.82
VPTQ 18.51 40.74 22.42 28.82 23.17 13.80 61.31 72.90 51.93 37.07 74.70

3.275 Ours 19.73 42.17 24.14 30.02 42.25 17.00 63.10 79.10 52.30 41.10 18.41

RWKV-7 0.5B

16 Full Precision 23.80 57.11 28.55 38.28 57.85 20.80 69.31 86.6 55.72 48.67 7.21

3.25

RTN 21.84 45.28 23.66 32.64 26.45 19.20 64.96 73.4 52.56 39.99 57.11
GPTQ 22.61 52.77 26.14 35.92 42.52 20.80 67.46 79.60 55.40 43.69 15.97
AWQ 19.62 43.09 22.93 32.64 39.34 17.00 62.57 79.20 54.14 41.16 23.29
QuaRot 22.18 48.69 24.76 33.85 20.22 19.00 65.01 73.80 54.06 40.17 76.89
KMeans 23.46 52.48 26.29 36.19 39.41 20.00 67.35 81.50 54.69 44.59 20.19
GPTVQ 21.50 51.30 26.14 34.80 46.19 19.40 66.64 82.40 54.38 43.64 14.15
VPTQ 18.68 42.97 22.86 31.15 34.81 16.40 62.73 78.80 52.88 40.14 30.63

3.5

RTN 18.13 19.36 43.47 24.50 30.17 16.20 64.09 74.40 52.48 38.08 81.14
GPTQ 22.26 53.11 25.41 36.51 45.78 21.40 67.51 83.10 56.51 45.73 13.07
AWQ 21.33 43.60 22.57 33.06 45.14 18.80 61.75 82.60 52.80 42.40 16.98
QuaRot 28.33 20.13 46.38 24.54 32.30 18.80 65.23 80.40 51.46 40.84 40.38
KMeans 20.73 47.55 25.05 33.58 41.39 17.40 65.83 82.00 54.14 43.07 17.05
GPTVQ 21.92 52.18 25.38 34.90 52.05 17.80 67.51 81.60 53.82 44.13 10.88
VPTQ 19.79 44.73 23.12 31.62 37.78 16.40 63.98 78.90 53.27 41.06 25.03

3.275 Ours 22.61 53.11 25.41 34.45 53.39 19.60 66.53 84.20 54.80 46.01 9.39

RWKV-7 1.47B

16 Full Precision 31.65 65.40 32.12 46.55 66.97 26.00 72.68 90.00 64.40 55.08 4.84

3.25

RTN 21.69 53.44 25.65 35.81 46.63 17.90 65.39 85.14 57.55 45.46 11.43
GPTQ 29.01 59.93 28.99 42.74 55.52 23.60 70.34 87.30 62.98 51.15 7.93
AWQ 22.35 44.91 22.72 35.22 45.04 16.00 61.26 85.50 59.58 43.62 15.27
QuaRot 29.43 63.04 30.01 42.24 52.30 22.80 70.78 88.10 58.64 50.81 9.39
KMeans 29.86 60.39 28.92 43.07 57.75 23.20 70.78 90.20 62.90 51.89 7.04
GPTVQ 27.21 61.48 28.51 42.95 64.84 22.80 70.34 88.40 62.03 52.06 5.54
VPTQ 22.78 51.55 25.23 36.13 49.31 18.20 66.21 85.40 57.69 45.83 11.13

3.5

RTN 29.94 61.82 30.45 43.81 54.84 24.2 71.27 88.1 61.32 51.74 7.89
GPTQ 30.54 61.65 29.79 43.96 59.23 23.80 71.65 88.90 61.06 52.28 6.55
AWQ 22.44 46.00 21.95 35.30 52.65 17.20 61.86 84.50 59.66 44.61 10.71
QuaRot 30.80 62.28 30.85 43.27 55.64 23.20 71.87 89.20 60.77 51.98 7.94
KMeans 29.69 61.44 30.48 43.92 61.58 24.60 71.32 89.90 62.03 52.77 6.57
GPTVQ 28.32 61.57 29.24 42.63 64.18 21.20 70.83 88.60 62.66 52.13 5.51
VPTQ 23.54 54.25 26.44 37.70 52.24 19.04 67.73 86.90 58.64 47.38 9.52

3.275 Ours 28.15 61.32 29.35 43.24 65.38 22.60 71.70 88.90 61.01 52.40 5.24
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Table 10: Complete comparison of perplexity on LAMBADA and averaged accuracy on nine Zero-Shot tasks. For all methods except
ours and floating-point, we report metrics under both bpw settings of 3.5 and 3.25.

Model Bpw. Method ARC-c ARC-e HQA. HellaS. Lam. OBQA PIQA SCIQ WinoG. Avg. Wiki2
(↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↓)

RWKV-6 1B

16 Full Precision 31.22 64.40 30.45 46.34 67.11 25.20 74.26 89.60 60.93 54.39 4.60

3.25

RTN 25.25 55.43 27.13 42.59 59.73 24.00 71.00 84.80 58.64 49.84 6.39
GPTQ 25.17 58.62 27.06 42.07 60.18 24.00 71.16 86.70 60.06 50.55 6.43
AWQ 23.72 50.16 23.12 37.34 40.03 19.60 65.12 83.50 57.14 44.41 17.97
QuaRot 27.30 51.89 26.65 37.42 32.08 21.20 67.84 85.00 55.80 45.02 29.38
KMeans 27.98 55.21 26.80 40.03 41.24 20.20 69.53 85.20 57.06 47.02 15.93
GPTVQ 24.65 57.82 27.20 39.67 62.33 22.00 70.02 86.30 58.80 49.86 6.11
VPTQ 21.33 49.45 23.59 34.65 42.95 17.80 65.56 84.40 55.32 43.89 14.67

3.5

RTN 29.43 60.81 27.46 43.64 61.11 22.60 72.52 88.40 59.90 51.76 5.83
GPTQ 26.53 59.55 27.53 43.63 61.61 23 71.76 87.9 59.58 51.23 5.86
AWQ 24.57 53.07 22.90 38.57 50.48 20.40 66.43 85.20 58.87 51.20 10.97
QuaRot 26.19 54.67 26.91 39.21 41.34 23.60 68.60 85.70 56.82 47.00 16.29
KMeans 28.07 60.26 28.11 41.84 51.50 22.40 70.23 87.80 60.14 50.03 8.24
GPTVQ 27.81 58.71 26.18 40.41 61.96 22.20 70.83 87.30 57.22 50.29 5.74
VPTQ 20.87 49.99 23.41 34.37 43.41 17.80 64.20 85.50 54.85 43.82 14.74

3.275 Ours 27.90 60.35 28.08 42.51 63.87 23.00 71.38 87.90 60.22 51.69 5.29

RWKV-6 3B

16 Full Precision 35.58 71.33 33.29 50.53 71.32 28.00 76.15 92.30 66.45 58.32 3.83

3.25

RTN 30.54 64.52 28.55 47.21 66.87 24.8 73.34 88.8 62.98 54.17 4.71
GPTQ 31.14 65.06 28.77 46.92 65.65 25.40 73.83 85.1 63.61 53.94 4.88
AWQ 26.02 55.13 23.48 40.42 47.53 17.00 66.05 87.80 61.79 47.24 11.97
QuaRot 29.43 57.82 28.55 41.59 38.35 24.00 69.74 83.80 60.93 48.24 22.67
KMeans 31.99 66.41 30.99 44.62 52.26 25.60 72.41 92.10 61.24 53.06 8.27
GPTVQ 29.77 64.52 28.84 44.56 69.92 24.40 72.57 91.20 62.35 54.23 4.31
VPTQ 25.00 56.56 25.20 37.93 55.95 18.40 67.57 86.20 61.24 48.22 7.77

3.5

RTN 31.56 66.75 30.78 47.91 68.02 26.00 74.75 90.50 53.53 54.42 4.50
GPTQ 31.48 67.17 29.80 47.65 67.49 25.80 74.26 90.30 63.22 55.24 4.54
AWQ 28.41 54.67 24.03 39.96 53.06 19.20 66.15 88.20 61.95 48.40 8.77
QuaRot 31.22 61.48 29.46 43.04 42.99 29.20 71.21 89.10 61.48 51.01 16.99
KMeans 34.72 67.46 31.43 46.63 58.53 25.60 73.77 91.90 64.95 54.99 6.28
GPTVQ 30.04 65.61 29.57 45.39 69.84 24.60 73.12 89.90 65.58 54.85 4.12
VPTQ 25.59 56.81 25.52 38.09 53.72 19.60 68.49 87.70 60.69 48.46 8.62

3.275 Ours 30.97 65.74 30.12 46.90 71.18 25.00 74.53 92.20 65.51 55.79 3.88

RWKV-6 7B

16 Full Precision 41.70 75.25 35.66 55.82 75.35 31.4 78.18 93.80 68.11 61.69 3.21

3.25

RTN 35.66 70.32 32.53 51.85 70.04 28.20 77.20 92.60 66.69 58.34 3.87
GPTQ 38.56 72.51 31.69 51.98 71.78 29.40 77.14 93.50 67.00 59.28 3.72
AWQ 29.01 57.40 23.92 40.72 52.44 20.60 67.3 88.10 65.91 49.48 8.33
QuaRot 32.25 67.46 31.36 47.39 51.43 28.40 74.59 89.60 66.21 54.29 8.81
KMeans 38.73 72.72 34.71 51.41 61.85 29.00 76.93 81.50 54.69 55.72 4.69
GPTVQ 36.34 71.63 32.09 49.78 74.17 28.40 74.64 92.40 67.71 58.57 3.49
VPTQ 28.83 63.80 28.18 42.15 66.23 21.20 71.32 91.10 64.79 53.06 4.75

3.5

RTN 37.37 70.79 32.53 53.26 73.06 29.80 76.93 90.5 68.58 59.20 3.59
GPTQ 39.33 73.40 32.96 52.95 71.96 30.60 77.2 94.20 68.11 60.07 3.68
AWQ 29.01 57.40 23.92 40.72 61.54 20.60 67.3 88.10 65.91 50.50 7.07
QuaRot 35.32 67.76 31.36 49.68 60.18 31.40 75.46 94.50 66.92 56.95 6.44
KMeans 39.84 74.03 34.35 53.01 67.48 28.60 76.98 93.90 67.48 59.51 3.96
GPTVQ 38.50 72.50 31.69 51.98 75.04 29.40 77.71 93.50 67.00 59.70 3.30
VPTQ 28.78 62.33 27.83 42.45 67.86 21.00 71.49 90.40 64.48 52.95 4.47

3.275 Ours 37.62 72.93 33.63 52.03 75.70 30.40 76.60 95.10 67.71 60.19 3.23

RWKV-6 14B

16 Full Precision 44.70 76.97 37.05 58.76 76.23 33.6 79.59 94.7 71.27 63.65 3.02

3.25

RTN 39.76 73.98 32.93 55.66 74.03 31.80 79.10 93.00 70.24 61.16 3.34
GPTQ 38.22 69.99 33.36 55.28 74.00 31.40 78.18 91.50 69.69 60.18 3.43
AWQ 28.15 55.34 23.77 38.82 58.59 20.60 65.61 88.90 64.40 49.35 8.18
QuaRot 36.51 69.27 32.78 50.38 40.09 28.20 76.06 91.60 67.95 54.76 14.05
KMeans 43.85 74.16 35.55 54.84 67.81 32.40 78.18 94.80 71.27 61.40 4.61
GPTVQ 35.65 71.66 30.45 52.33 76.46 30.14 76.31 93.24 70.44 59.63 3.15
VPTQ 36.27 69.54 29.46 50.08 73.01 27.35 76.38 91.40 67.39 57.87 3.62

3.5

RTN 39.59 72.22 33.55 56.31 74.29 31.4 78.01 92.3 69.92 60.84 3.31
GPTQ 38.90 72.72 34.46 56.34 75.08 31.20 78.67 91.70 71.19 61.14 3.29
AWQ 29.09 57.82 23.59 39.99 64.47 20.20 67.19 90.70 64.71 50.86 6.06
QuaRot 38.05 69.06 33.80 50.96 44.56 30.80 76.38 93.00 70.40 56.33 10.63
KMeans 41.29 74.07 34.82 54.76 70.66 31.60 78.23 94.30 70.63 61.15 3.84
GPTVQ 36.65 70.87 31.91 52.43 75.04 30.00 77.31 93.40 70.24 59.76 3.34
VPTQ 37.10 69.87 29.69 50.31 72.31 27.45 76.56 91.60 66.55 57.93 3.75

3.275 Ours 41.80 76.50 34.09 55.26 78.17 32.80 78.61 95.40 71.60 62.69 2.89
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Table 11: Complete ablation study on the impact of codebook optimization for element-wise multiplication.

Model Method ARC-c ARC-e HQA. HellaS. Lam. OBQA PIQA SCIQ WinoG. Avg. Wiki2
(↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↓)

RWKV7-0.1B w. 19.79 42.17 24.14 30.02 42.25 17.00 63.10 79.10 52.30 41.09 18.41
wo. 20.15 44.45 24.47 30.32 38.09 17.80 64.08 73.95 52.91 40.69 24.71

RWKV7-0.5B w. 22.61 53.11 25.41 34.45 53.39 19.60 66.53 84.20 54.80 46.01 9.39
wo. 21.61 53.02 25.31 34.55 47.10 18.90 66.53 83.7 54.61 45.03 13.49

RWKV7-1.47B w. 28.15 61.32 29.35 43.24 65.38 22.60 71.70 88.90 61.01 52.40 5.24
wo. 29.15 61.90 29.99 42.92 59.31 24.10 70.13 88.52 64.14 52.24 6.54

RWKV6-1B w. 27.90 60.35 28.08 42.51 63.87 23.00 71.38 87.9 60.22 51.69 5.29
wo. 27.38 60.05 27.42 42.31 63.71 23.2 71.72 87.5 59.75 51.44 5.32

RWKV6-3B w. 30.97 65.74 30.12 46.90 71.18 25.00 74.53 92.20 65.51 55.79 3.88
wo. 30.97 68.00 29.72 46.84 70.46 25.20 74.21 90.80 63.14 55.48 3.97

RWKV6-7B w. 37.62 72.93 33.63 52.03 75.70 30.40 76.6 95.1 67.71 60.19 3.23
wo. 37.97 73.19 33.44 52.04 75.18 30.80 76.61 93.8 68.59 60.18 3.21

RWKV6-14B w. 41.80 76.50 34.09 55.26 78.17 32.80 78.61 95.40 71.60 62.69 2.89
wo. 40.53 73.82 34.13 56.19 77.72 32.00 78.44 94.00 71.50 62.03 2.89

Table 12: Our method’s performance on RWKV6, using the LambA training dataset, shows advantages in PPL and ACC
metrics under consistent experimental settings.

GPTQ GPTVQ Ours
Avg-acc LambA. PPL Avg-acc LambA. PPL Avg-acc LambA. PPL

RWKV6 - 1B 51.28 5.87 49.69 5.51 51.41 5.35
RWKV6 - 3B 55.25 4.56 54.85 4.42 55.38 3.97
RWKV6 - 7B 59.18 3.59 48.30 3.41 60.18 3.21
RWKV6 - 14B 61.15 3.29 59.86 3.31 62.03 2.89

Although using the test set for calibration is a common practice in Post - Training Quantization (PTQ), we conducted
additional comparative experiments based on the LambA training dataset for RWKV6 in Tab. 12. The results show that our
method outperforms both GPTVQ (Vector Quantization) and GPTQ (Scalar Quantization). This verifies the effectiveness
and robustness of our approach.

In Equation 17, the hyperparameter K represents the order of Taylor decomposition. Higher-order terms in the Taylor
expansion are close to zero and have minimal impact on the final result. In our previous paper, we used K = 4 as the
configuration. To further validate the influence of K on our method, we conducted comparative experiments on RWKV6 as
shown in Tab. 13. Under the same configurations of τf and τc, we compared the model accuracy under different values of
K. It can be observed that when K increases from 2 to 4, the model accuracy significantly improves. However, as K further
increases, the accuracy does not continue to increase and even starts to decline. Therefore, we conclude that an excessively
large K is unnecessary: it not only fails to improve accuracy but also introduces additional computations.

A.5. Limitations and Future Work

Our proposed RWKVQuant framework relies on the coarse-to-fine proxy introduced in Section 3.1, where τc and τf play a
important role in determining the appropriate quantization method for each layer. In our experiments, these values were
empirically set based on different model configurations, ensuring that the 3.25 bpw SQ proportion is approximately one-tenth
and nine-tenths for 3.5 bpw VQ across different models.

Actually, as shown in algorithm 1, τc and τf are automatically set for each individual model and do not require adaptation.
Specifically, we obtain their values in the following steps:
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Table 13: The detailed performance metrics for the RWKV6 model across different K, τf and τc configurations. C is the
percentile of M (384) values of Pc used to determine τc. F is the percentile of M ∗ C values of Pf used to determine τf .

Lambda accuracy
SQ:VQ Proportion
Quantization Bits

K = 2 K = 3 K = 4 K = 5 K = 6

F = 0.2, C = 0.5
63.11 63.82 63.87 63.88 63.87
10:90 10:90 10:90 10:90 10:90
3.275 3.275 3.275 3.275 3.275

F = 0.4, C = 0.5
62.95 63.71 63.78 63.74 63.78
20:80 20:80 20:80 16:84 20:80
3.300 3.300 3.300 3.290 3.300

F = 0.6, C = 0.5
61.96 62.87 62.98 62.95 62.91
30:70 30:70 30:70 30:70 30:70
3.325 3.325 3.325 3.325 3.325

F = 0.8, C = 0.5
60.98 61.35 61.56 61.68 61.54
40:60 40:60 40:60 40:60 40:60
3.350 3.350 3.350 3.350 3.350

1. Compute the coarse-grained proxy Pc(Eq.15) for each layer to be quantized.

2. Set τc to the value at the 50th percentile of all Pc.

3. Compute the fine-grained proxy Pf (Eq.17) for each layer whose Pc < τc.

4. Set τf to the value at the 20th percentile of all Pf .

Although fine-tuning the percentile values for each network may further improve accuracy, the percentile values (i.e., 20%
and 50%) —used in all our experiments—already delivers strong performance across all RWKV networks, as shown in
Table 2.

Table 14: Comparison of perplexity on LAMBADA and averaged accuracy on nine Zero-Shot tasks under different τc and
τf configurations for the RWKV models.

τc τf

RWKV7-0.1B RWKV7-0.5B RWKV7-1.47B
0-shot9 LambA. 0-shot9 LambA. 0-shot9 LambA.
Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑) (↓)

1.00

20.00 40.27 23.65 43.72 13.98 52.09 5.52
25.00 40.27 23.65 43.72 13.98 52.09 5.52
30.00 40.27 23.65 43.62 14.06 52.09 5.52
35.00 40.25 23.75 43.64 14.15 52.06 5.54
40.00 40.25 23.75 43.64 14.15 52.06 5.54

1.50

20.00 40.56 18.68 45.93 9.88 52.37 5.24
25.00 41.01 18.31 46.01 9.46 52.40 5.24
30.00 41.10 18.41 46.01 9.39 52.40 5.24
35.00 40.86 18.71 46.01 9.45 52.40 5.24
40.00 40.78 18.41 45.88 9.67 52.34 5.24

2.00

20.00 39.86 28.12 45.93 9.88 52.34 6.12
25.00 39.86 28.12 45.93 9.88 52.34 6.12
30.00 39.65 31.34 45.87 10.07 52.26 6.32
35.00 39.37 37.25 45.83 13.01 52.28 6.54
40.00 39.37 37.25 45.83 13.01 52.28 6.54
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Table 15: The detailed performance metrics for the RWKV6 model under various configurations of the parameters τf and
τc. C is the percentile of M (384) values of Pc used to determine τc. F is the percentile of M ∗ C values of Pf used to
determine τf .

Lambda accuracy
SQ:VQ Proportion
Quantization Bits

C = 0.1 C = 0.2 C = 0.3 C = 0.4 C = 0.5 C = 0.6 C = 0.7 C = 0.8

wo F ( wo τf )
61.20 62.14 61.78 61.65 61.21 60.84 60.75 60.54
10:90 20:80 30:70 40:60 50:50 60:40 70:30 80:20
3.275 3.300 3.325 3.350 3.375 3.400 3.425 3.450

F = 0.1

61.28 61.31 61.54 62.45 62.44 62.47 61.25 60.84
1:99 2:98 3:97 4:96 5:95 6:94 7:93 8:92
3.253 3.255 3.258 3.260 3.263 3.265 3.268 3.270

F = 0.2

61.29 61.52 61.88 62.63 63.87 63.88 61.34 60.88
2:98 4:96 6:94 8:92 10:90 12:88 14:86 16:84
3.255 3.260 3.265 3.270 3.275 3.280 3.285 3.290

F = 0.3

61.39 61.64 62.62 62.73 63.83 62.86 60.95 60.89
3:97 6:94 9:91 12:88 15:85 18:82 21:79 24:76
3.258 3.265 3.273 3.280 3.288 3.295 3.302 3.310

F = 0.4

61.42 61.94 62.65 62.21 62.78 62.32 61.36 61.26
4:96 8:92 12:88 16:84 20:80 24:76 28:72 32:68
3.260 3.270 3.280 3.290 3.300 3.310 3.320 3.330

F = 0.6

61.43 62.37 62.54 61.95 61.18 60.92 60.73 60.54
6:94 12:88 18:82 24:76 30:70 36:64 42:58 48:52
3.265 3.280 3.295 3.310 3.325 3.340 3.355 3.370

F = 0.8

61.44 61.47 61.13 60.88 60.56 60.53 60.33 60.34
8:92 16:84 24:76 32:68 40:60 48:52 56:44 64:36
3.270 3.290 3.310 3.330 3.390 3.410 3.430 3.450

However, this allocation might not reflect the most balanced or effective proportion. As shown in Table 14, we conducted
multiple comparative experiments on the RWKV language model with varying τc and τf . The results demonstrate that when
τc is larger than the optimal value, the final accuracy approaches that of directly using uniform quantization, whereas a
smaller τc yields results closer to codebook quantization. Moreover, with an appropriately chosen τc, the setting of τf has a
direct impact on the final accuracy.Therefore, in future work, we will further explore how to determine appropriate values
for τc and τf :

• Based on proper initialization, we plan to utilize fine-tuning to achieve the optimal configuration for different models.

• At the same time, we will remove the fixed constraint of bpw being 3.275 and, when selecting τc and τf , consider the
trade-off between compression rate and post-quantization model performance to meet different accuracy requirements
across various scenarios.

• In addition, we plan to use the proposed coarse-to-fine proxy to determine whether specific features at a finer granularity
are better suited for SQ or VQ quantization, such as channel-level or block-level finer granularity.
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Algorithm 1 RWKV Model Quantization Algorithm

input RWKV model with weights θ, number of weights M , hyperparameters C and F
output Quantized model with weights θ′

1: Initialize: C_List← [], F_List← [], ϕ← {} {Compute τc}
2: for m = 0M − 1 do
3: Apply Equations (5) and (9) to θm to get Pc

4: C_List.append(Pc)
5: end for
6: τc ← topK(C_List, k = C ·M, largest = False)

{Compute τf}
7: for m = 0M − 1 do
8: if C_List[m] < τc then
9: Apply Equations (10) and (17) to θm to get Pf

10: F_List.append(Pf )
11: end if
12: end for
13: τf ← topK(F_List, k = F · C ·M, largest = False)

{Perform quantization}
14: for m = 0M − 1 do
15: if Pc ≥ τc then
16: Apply Vector Quantization (VQ)
17: else
18: if Pf ≥ τf then
19: Apply Vector Quantization (VQ)
20: else
21: Apply Scalar Quantization (SQ)
22: end if
23: end if
24: end for
25: return θ′ =0
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