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Abstract

RWKYV is a modern RNN architecture with com-
parable performance to Transformer, but still
faces challenges when deployed to resource-
constrained devices. Post Training Quantization
(PTQ), which is a an essential technique to reduce
model size and inference latency, has been widely
used in Transformer models. However, it suf-
fers significant degradation of performance when
applied to RWKV. This paper investigates and
identifies two key constraints inherent in the prop-
erties of RWKYV: (1) Non-linear operators hinder
the parameter-fusion of both smooth- and rotation-
based quantization, introducing extra computation
overhead. (2) The larger amount of uniformly
distributed weights poses challenges for cluster-
based quantization, leading to reduced accuracy.
To this end, we propose RWKVQuant, a PTQ
framework tailored for RWKYV models, consist-
ing of two novel techniques: (1) a coarse-to-fine
proxy capable of adaptively selecting different
quantization approaches by assessing the unifor-
mity and identifying outliers in the weights, and
(2) a codebook optimization algorithm that en-
hances the performance of cluster-based quantiza-
tion methods for element-wise multiplication in
RWKYV. Experiments show that RWKVQuant can
quantize RWKV-6-14B into about 3-bit with less
than 1% accuracy loss and 2.14x speed up.

1. Introduction

RWKYV (Peng et al., 2023) is a modern sequence model that
integrates the strengths of both Recurrent Neural Networks

(RNNs) (Elman, 1990) and Transformer (Vaswani, 2017).
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Figure 1: Accuracy-model size curve. Results of zero-shot
accuracy are evaluated on the LAMBADA dataset (Radford
et al., 2019). Our proposed RWKVQuant outperforms the
individual utilization of SQ and VQ methods for all sizes of
models.

It has a comparable capacity to Transformer-based Large
Language Models (T-LLMs) while retaining the efficient
inference feature of RNNs, positioning it a promising foun-
dational architecture for both language (Peng et al., 2024)
and vision (Zhou & Chen, 2024) tasks.

Despite the advantages, its vast size of parameters have
posed a significant barrier to the deployment on resource-
constrained devices. For instance, the compute-to-memory
access ratio (FLOPs/Bytes) of RWKV-6-7B (Peng et al.,
2024) is 0.97, while that for the decoding phase of LLaMA-
2-7B (Touvron et al., 2023) is 4.88 (detailed in A.3). Sec-
ondly, large RWKYV models demand substantial memory
resources. For instance, RWKV-6-14B requires approx-
imately 30GB of memory to be loaded, which typically
exceeds the capacity of edge devices.

Post Training Quantization (PTQ), including Scaler Quanz-
ization (SQ) and Vector Quantization (VQ), is a widely
adopted approach to reduce model size and inference la-
tency for T-LLMs (Shao et al., 2023; Ashkboos et al., 2024;
ost, 2024; Yuan et al., 2024). However, directly applying
the most advanced quantization frameworks to RWKV mod-
els leads to severe performance degradation. For instance,
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Table 1: The average relative cluster loss of weights for the
RWKYV and LLaMA family, computed by KMeans (Lloyd,
1982).

Family Model 8 Clusters 16 Clusters
6-7B 2.01 0.78

RWKV 6-14B 1.98 0.78
2-7B 0.96 0.65

LLaMA 5148 089 0.64

applying QuaRot (Ashkboos et al., 2024) (belongs to SQ)
to RWKV-7 series models increases the overall FLOP by
more than 99%, and applying VPTQ (Liu et al., 2024a) (be-
longs to VQ) to RWKV-6-7B model leads to more than 16%
accuracy decline.

In depth, we investigate and identify two primary limitations
inherent in the properties of RWKV. @ Non-linear opera-
tors hinder the parameter-fusion of both smooth- and
rotation-based methods. Typically, these SQ approaches
fuse the introduced parameters, i.e., smoothing vectors and
orthogonal matrices, into neighbored normalization layers
and linear layers of T-LLMs. However, the RWKYV structure
employs several non-linear operators along the fusion path,
including token-shift, Sigmoid function, and exponential
function. These modules can block the linear fusion process,
inevitably leading to additional runtime overhead. @ The
larger amount of uniformly distributed weights poses
challenges for cluster-based quantization. While such
VQ methods benefit from distinctly categorized distribution,
RWKY tends to have more uniform weights compared to
T-LLMs (detailed in Section 4.4), which complicates the
clustering process as shown in Table 1.

To this end, we propose RWKVQuant, an effective and effi-
cient post-training quantization (PTQ) framework tailored
for RWKV models. Our core insight is to enhance VQ
by partially applying the classic compensation-based SQ
methods like GPTQ (Frantar et al., 2022), which are more
suitable for uniformly distributed weights. Specifically, we
propose a coarse-to-fine proxy to optimize the hybrid strat-
egy. (1) The coarse-grained proxy is established on the
basis of Information Entropy (IE) (Shannon, 1948), which
evaluate the overall uniformity. For non-uniform weights,
VQ is directly applied. (2) For uniform weights, we fur-
ther introduce a fine-grained proxy, computed by weighted
high-order central moments, to detect local outliers. VQ
is applied when outliers emerge; otherwise, SQ is applied.
In addition to the hybrid, we further optimize VQ for the
unique element-wise multiplication operator of RWKV.

Experiments show that RWKVQuant outperforms existing
methods across various tasks on different RWKYV model

families, including RWKV-6 (Peng et al., 2024) and RWKV-
7 (Bo, 2021) for RWKV-based language tasks, as well as
VRWKY (Duan et al., 2024) for RWKV-based vision tasks.
As shown in Figure 1, RWKVQuant quantizes weights
into about 3-bit and achieves superior accuracy compared
to the individual utilization of SQ and VQ. Additionally,
RWKVQuant demonstrates remarkable efficiency. For in-
stance, it can quantize RWKV-6-14B with less than 1%
accuracy loss, 2.83x memory saving, and 2.14 x speed up.
Lastly, our contributions can be concluded as follows.

¢ We reveal that both smooth- and rotation-based PTQ
methods are not well-suitable for RWKYV, primarily due
to the unavoidable runtime overhead. Further, cluster-
based PTQ methods suffer severe accuracy drop, owing
to the larger amount of uniformly distributed weights.

* We propose RWKVQuant, which enhances VQ by par-
tially adopting compensation-based SQ methods. It
introduces a coarse-to-fine proxy to guide the hybrid
strategy. It further enhances the VQ for the unique
element-wise multiplication modules in RWKV.

* RWKVQuant can effectively and efficiently quantize
weights into about 3-bit and outperforms both SQ and
VQ methods as shown in Figure 1.

* To the best of our knowledge, RWKVQuant is the first
comprehensive PTQ framework for the RWKYV family.
As a pioneering study, we will publish the code in
the hope of promoting further research and facilitating
advancements in this field.

2. Preliminaries
2.1. RWKY Structure and Models

Referring to Figure 2, RWKYV structure contains two key
modules, including Time Mixing and Channel Mixing (de-
tailed in A.1). With the previous word x;_1, the current
word x; can be derived by a token-shift operator:

x; = concat(x;—1[1 :,],0), (D

where 0 denotes an all-zero vector. RWKYV models make use
of Time Mixing for seizing the relationship among tokens
and utilize Channel Mixing to probe the dimensions within
the hidden layer that are relevant to individual tokens.

Compared to T-LLMs, these modifications enables RWKV
to decrease substantially the computational overhead and
memory demands while effectively retaining the capacity
to model long-term dependencies. Thereby, the RWKV
family has already manifested its potential in a diverse
array of real-world applications (Li et al., 2024), includ-
ing QQ (Cryscan, 2023), WeChat (MrTom34, 2023; Le-
oLin4258, 2024), and Telegram (spion, 2023). For natural
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Figure 2: Model Structure of RWKV-7. It contains several
blocks and each block has two key modules: Time Mixing
and Channel Mixing.

language understanding tasks, RWKV-v6 (Peng et al., 2024)
has achieved remarkable advancements in accuracy, attain-
ing comparable performance to those of larger models like
SomlLM and Qwen (Chen et al., 2024). For vision tasks,
BSBP-RWKYV (Zhou & Chen, 2024) excels in the domain
of image segmentation.

2.2. Post Training Quantization (PTQ)

PTQ serves as a potent strategy for model compression. By
converting the high-precision variables of pre-trained mod-
els into low-bit integers, it achieves a reduction in memory
usage and an acceleration of inference speed. Typically,
PTQ can be divided into two main approaches: SQ and VQ.

Scalar Quantization (SQ) SQ maps the original data to
the quantized range by a scaling factor, and subsequently
rounds floating points to the uniform-distributed integers.
For a tensor @ to be quantized, it can be uniformly quantized
to b-bits as follows (Jacob et al., 2018):

Qz) = clamp(L% 420,28~ 1), )

where Q(-) represents the quantization function, s =
(max(z) — min(x))/2" — 1 is the scale factor, z =
—min(x)/s is the zero point, |-] denotes the rounding-
to-nearest operator, and clamp is the clipping function.

SQ is widely-adopted by most of the PTQ frameworks
(Yang et al., 2024). For instance, the classic compensation-
based GPTQ (Frantar et al., 2022) can quantize weights
to 3-4 bit with slight accuracy drop based on approximate
second-order information. To address outliers, AWQ (Lin
et al., 2023), SmoothQuant (Xiao et al., 2022), and Omni-
Quant (Shao et al., 2023) explore the scheme of smoothing
by detecting the importance of different activation channels.
Recent works (e.g., Quarot (Ashkboos et al., 2024), Spin-
Quant (Liu et al., 2024b), and OSTQuant (ost, 2024)) further
suppress outliers by rotating the variables to be quantized
with orthogonal matrices.

Vector Quantization (VQ) VQ quantizes several vectors
into a finite subset, which is commonly referred to as a
codebook C' (Gersho, 1979). Typically it has shape (2%, d),
where k£ is the bits of the index and d is the vector dimension.
Given a tensor & with shape (m,n) to be quantized, VQ
first transforms it into 2’ with dimensions (m * n//d, d).
Second, for each d-dimensional vector in ', VQ replaces it
with the k-bit index of the nearest vector from the codebook.
For instance, if we use the Euclidean distance (calculated by
the Frobenius normalization || - || ) to measure similarities,
the quantization process can be expressed as:

Q(x) = {argmin||z; — C}|| |i =1,...,mxn//d}. (3)

je2k

Compared to SQ, this scheme takes the advantage of main-
taining the shape of the source distribution, especially under
lower bit-width. For example, VPTQ (Liu et al., 2024a) and
GPTVQ (van Baalen et al., 2024) combine VQ with GPTQ,
achieving advanced performances under 2~ 3 bits. To obtain
the codebook, they cluster the source vectors by K-Means
Algorithm (Lloyd, 1982) and Expectation-Maximization
Algorithm (Moon, 1996), respectively. AQLM (Egiazar-
ian et al., 2024) further utilizes layer-wise training for the
codebook to obtain optimal accuracy.

3. Method

3.1. Coarse-to-fine Proxy for Hybrid Quantization

Hybrid of SQ and VQ Given inputs a, weights 8, number
of weights M, and the model f(-), the optimization goal is
to minimize the expectation E[-] of the Mean Square Error
(MSE) of the model output:

argmin E[|| fo(z) — for(@)|[7]
¢

st.p={¢m €{0,1} m=1,2,..., M} )
9/ = {¢mSQ(0m) + (1 - d)m)VQ(am)
16,, €60, m=1,2,.... M}.

Here, ¢ represents the collection of options for SQ and VQ.
Although the optimal solution of Equation 4 can be found by
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the exhaustive algorithm, its complexity increases exponen-
tially with the number of weights, i.e., O(2). Considering
the computational cost, we construct an effective proxy by
evaluating the uniformity and outliers of each weight from
both coarse- and fine-grained perspectives, whose complex-
ity decreases to O(M).

Coarse-grained Proxy Information Entropy (IE) (Shan-
non, 1948) is one of the most common approaches to eval-
uate uniformity. However, it measures the probability dis-
tribution, rather than the original data that concerned by
quantization. To take advantage of its effectiveness, we
perform a series of transformations on the model weights.

Given a weight W € R°°*%¢ it is first flattened, then sorted
in ascending order to formulate W' € R°¢, Subsequently,
the intervals G € R(°“©)~1 of all adjacent positions in W’
can be calculated by:

G=W'[1:]-W':-1]. 5)

For the clarity of expression, the term (oc-ic) — 1 is denoted
by the symbol n in the following contents. Next, G is
transformed to G’ by:

G;
Zz 1 G
Considering that G’ satisfies that ) ;- | G = 1, it can be

treated as a discrete probability distribution. Consequently,
its IE (denoted by H) can be obtained by:

- (G = li=1,2,...,n}. (6

H(G) = Z G’ log G'. (7

i=1

According to the property of IE, Equation 7 measures the
concentration of G’. Since G’ are the intervals, its concen-
tration can equivalently reflect the uniformity of the original
weight W.

Assuming an absolutely uniform weight W with fixed in-
tervals, it can be transformed to G’ following the above
process, which finally should be:

. 1
G ={Gi=—|i=12..n}. ®)

Owing to the property of IE, only if W = W does Equa-
tion 7 take the maximum value. Finally, the coarse-grained
proxy P, can be obtained by computing the gap between
the IE of G’ and G":
P.(G') = H(G") — H(G"). ©)
By introducing a threshold 7., non-uniform weights can
have larger values of P,., indicating the usage of VQ as
shown in Figure 3(a). Since IE is a measure of the entire

system, a small amount of local outliers does not signifi-
cantly effect P.. However, in case of SQ, the accuracy is
highly dependent to the data scale. Such outliers can cause
more minimal values to be mapped to the same integer, thus
increasing the rounding error. For instance, Figure 3(b) and
Figure 3(c) have close P, values, while the former contains
obvious outliers and is more accurate under VQ.

Fine-grained Proxy To mitigate the issue that P, is not
sensitive enough to local outliers of a relatively uniform data,
we further introduce a fine-grained proxy. Specifically, we
perform the Taylor expansion (Taylor, 1717) to Equation 9
to evaluate the minor disturbances & around G”.

Step 1 The gap d between G’ and G’ can be written as:
! / 1 .
6=G — :{51:Gi—ﬁ\z:1,2,...,n}. (10)

According to Equation 6, it should be satisfied that:

Z& _ZG;—%)zo. (11)
=1

Step 2 The Taylor expansion can be formulated as:

K
= P(G) + Y (k)71 PHG)6" + 0(6%)
k=1

K n
N ];( Z aG'k

Taking the Euler’s number e as the base of the log function
in Equation 9, the k-th order partial derivative of P, with
respect to G; can be expressed as:

P.(G)
(12)

55 + o(6%).

=n

k InG’ +1 =1
9* P, _{nGl—l— k 0%

AGE | (=D -G k>

Step 3 Taking Equation 11 and 13 into consideration, Equa-
tion 12 can be transformed into:

kkl n
k — Zak (14)

Step 4 Omitting the term o(6%), Equation 14 can be refor-
mulated as:

K
P.(G') =
k=2

PC(G') ~ [527 ,SK] O] [’Ug, ...,’UK] ® [MQ, 7MK]
k 6’“
where s = (—1)", v = h M, = ZTl

(15)
Here, ‘©’represents element-wise multiplication. My, is the
k-th order central moment of G, which is defined as:

M(G') =E[(G' —E[G')"]. (16)



RWKYVQuant: Proxy-Guided Hybrid Scalar-Vector Quantization for RWKYV Models

layer.0.att.linear_a2

700 600 500 400 300 200 100 O
i i ° -
N =

700 600 500 400 300 200 100 O

0 20 40 60
SQacc:39.33
VQacc:39.54 vV

(a) Non-uniform weight

Pc=2.65> T SQacc:39.33

80

«=0.96 < T,
VQacc:39.46 v/ Pr=79.98 > ¢
(b) Unifrom weight with outliers

layer.0.att.key 03

0.2

0.1

o
700 600 500 400 300 200 100 O

0 100 200 300 400 500 600 700

100 120
SQacc:39.33 =094 <1,
VQacc:39.14 Pr=16.78 < 1¢

(c) Unifrom weight without outliers

Figure 3: Zero-shot accuracy when applying different quantization methods to specific weights. For the weight in each

sub-figure, SQ

acc

denotes the performance when SQ is applied, VQ

.cc denotes the performance when VQ is applied,

while all other weights are quantized with VQ. P, and P; are coarse- and fine-grained proxy, while . and ji5 are their

corresponding thresholds.

The central moment can serve as a metric for assessing
the local features of data. This is because the difference
between outliers and other data points is magnified by the
k-th power. For instance, when k = 2, Equation 16 yields
the variance, indicating the spread of the data. For k = 3,
the central moment corresponds to skewness, assessing the
symmetry of the data. For k = 4, it represents kurtosis,
revealing the data’s long-tail characteristic.

Step 5 Considering that P.(G") signifies the overall uni-
formity, s;, and v can be regarded as the direction and the
significance of the local feature M. Since only the magni-
tudes of features are considered when it comes to outliers,
the fine-grained proxy can be defined as:

K
Pi(G') = vkl Myl, (17
k=2

where K is a hyper-parameter. By introducing a threshold
T¢, outliers can be detected by larger values of Py, indicating
the usage of VQ as shown in Figure 3(b).

Finally, our proxy solution of Equation 4 can be obtained
by the combination of P, and Py:

1 PG)) <T1.and Pr(G)) < 7

¢=1{p.=30 PG.) < 1eand P;(G.) >y s
or P.(GL) > 1. (18)
|z =1,2,.., M},

where G, denotes the m-th weight after the transformation.
Only if both the coarse-grained proxy and the fine-grained
proxy are lower than their corresponding threshold will
SQ be applied, as shown in Figure 3(c). Otherwise, the
weight distribution is supposed to be generally uneven, or
relatively uniform but with local outliers, which indicates

the application of VQ. Notably, the fine-grained proxy is
only utilized in condition that P.(G",) < 7.

3.2. Codebook Optimization for Element-wise
Multiplication

Different from Transformer-based LLMs, the element-wise
multiplication ‘®’between the input x and the weight p is
applied in all projection layers of the RWKYV structure, as
shown in Figure 2. In accordance with the proxy introduced
in Section 3.1, VQ is expected to be applied to most of
them. However, existing VQ methods are primarily tailored
for matrix multiplication modules. We thereby propose to
optimize the VQ codebook specifically for element-wise
multiplication modules.

Given a weight g € R™*™ it is first transformed to ' €
R(m7//d)xd \where d is the hidden dimension. Following
the VQ process stated in Equation 3, it can be quantized into
Q(p). Typically, the quantization loss £ can be written as:

L=]X6p —X 6 Deq(Q(u))|[%

mmn//d d (19)
2
= > D X5(Auy)
=1 =1

where X is a representative of the calibration activations,
Deq is the de-quantization process, and Au’ denotes the
quantization error of the weight. To minimize Equation 19,
a larger activation value should correspond to a smaller A g/,
indicating the significance of this position. Thus, we employ
the term X ? to direct the weighted KMeans algorithm in
the generalization of codebooks.

Due to the nature of element-wise multiplication, X must
have the same shape as p’, which further introduces an
issue of integrating batches of data. The most straightfor-
ward approach is to simply average all samples. However,
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Table 2: Comparison of perplexity on LAMBADA and averaged accuracy on nine Zero-Shot tasks. For all methods except
ours and floating-point, we report metrics under both bpw settings of 3.5 and 3.25.

RWKV7-0.1B | RWKV7-0.5B RWKV7-1.47B | RWKV6-1B | RWKV6-3B ~ RWKV6-7B | RWKV6-14B
Bpw.| Method |O-shot? LambA. 0-shot’ LambA.|0-shot’ LambA. O-shot? LambA.,0-shot’ ia}l%A.To’.sB&g’ LambA. | O-shot? LambA.
I R & Ave® () jAve® @) tAve® ) |Ave® @ jAve® () tAved @ jAve® @)
16 |FloatingPoint| 43.02 1421 | 48.67 721 15508 480 | 5439 460 | 5832 383 16169 321 ' 6365 3.02
RTN 3622 1528213999 5701 14546 1143 [4984 639 15417 471 15834 387 | 6l16 334
GPTQ | 3792 6354 1 41.16 2329 | 51.15 7.93 | 5055 643 | 5394 488 | 5928 372 1 60.18 3.43
AWQ | 3620 13206 | 68.92 592 | 4362 1527 | 4441 17.97 | 4724 1197 | 4948 833 | 4935 8.8
325| QuaRot | 3453 243991 40.17 7689 1 5081 939 | 4502 2938 | 4824 2267 1 5429 881 | 5476 1405
KMeans | 38.21 87.06 | 44.59 2019 | 5277 657 | 47.02 1593 | 5306 827 | 5572 469 | 6140 4.6l
GPTVQ | 4025 2375 | 43.64 1415 ! 5206 554 | 4986 611 | 5423 431 !5857 349 | 5963 3.5
VPTQ | 3578 128591 40.14 3063 1 4583 1113 | 4380 1467 1 4822 7.77 15306 475 1 5787 3.62
RTN 38.08 81.14 1 43.02 2509 | 5174 7.89 | 5176 583 1 5442 450 | 5920 3.59 1 60.84 331
GPTQ | 3933 40.16 | 4573 1307 | 5228 655 | 5123 586 | 5480 454 ' 6007 368 | 61.14 3.29
AWQ | 3831 5572 14240 1698 1 4461 1071 | 5120 1007 ! 4840 877 15050 7.07 ! 5086 6.06
35 | QuaRot | 3726 126.19 40.84 4038 | 5198 794 |47.00 1629 i 5101 1699 | 5695 644 1 5633 10.63
kMeans | 39.55 3626 | 43.07 1705 | 5277 657 | 5003 824 | 5499 628 | 5951 396 | 6115 3.84
GPTVQ | 4010 2582 ' 4413 1088 | 5213 551 | 5029 574 15502 412 15970 330 15976 334
VPTQ | 37.07 7470 | 41.06 2503 | 4738 9.52 | 43.82 1474 | 4886 8.62 | 5295 447 | 57.93 375
3275|  Ours 4110 1841 | 4601 939 | 5240 524 | 51.69 529 |, 5579 3.88 | 60.19 323 | 62.69 2.89

this method is not sufficiently effective because it is highly
susceptible to the influence of a small number of outliers.
Given that the activations of RWKYV models typically fol-
lows an approximately normal distribution, we introduce
a percentile-based clipping operation to limit the range of
samples prior to averaging, thereby alleviating this issue.

4. Experiments
4.1. Experimental Settings

Models and Datasets. We evaluate the RWKVQuant frame-
work on RWKV6 (Peng et al., 2024), RWKV7, and VR-
WKYV models (Duan et al., 2024). For vision tasks, we
utilize ImageNet (Deng et al., 2009) for image classifi-
cation, Coco (Lin et al., 2014) for object detection, and
ADE20K (Zhou et al., 2019) for segmentation. Aligned
with the accuracy evaluation methods used in the VRWKV
experiments, we report Top-1 Accuracy for classification
tasks, Box Average Precision (AP) for detection tasks, and
Mean Intersection over Union (MIoU) for segmentation
tasks. For language tasks, consistent with the RWKV6 pa-
per, we report the perplexity (PPL) on the Lambada dataset.
We also evaluate the models on up to nine zero-shot tasks
using the LM-evaluation-harness (version 0.4.4), including
LAMBADA(OpenAl) (Radford et al., 2019), HEADQA
(EN) (Rogers et al., 2023), HellaSwag (Zellers et al.,
2019), OpenBookQA (OBQA) (Mihaylov et al., 2018),
PIQA (Bisk et al., 2020), SCIQ (Pedersen et al., 2020),
Winogrande (Sakaguchi et al., 2021), ARC-Challenge and
ARC-Easy (Boratko et al., 2018).

Baselines and Implementation Details. In addition to com-
paring with SQ methods such as RTN, GPTQ (Frantar et al.,
2022), AWQ (Lin et al., 2023), and Qurot (Ashkboos et al.,
2024), we also benchmark our approach against VQ meth-
ods like K-Means, GPTVQ (van Baalen et al., 2024) and
VPTQ (Liu et al., 2024a) for weight-only quantization. To
ensure fairness, we report the performance of each method
under two configurations, where the average number of bits
per weight (bpw) is set to 3.25 and 3.5. For SQ methods,
we take the scale size into account when calculating the
bpw. To achieve 3.25 and 3.5 bits per weight, we set the
group size for quantization to 32 and 64 respectively. For
VQ methods, we consider not only the bit size occupied
by the quantized weights but also the bit size required for
storing the codebook to achieve the corresponding bpw. In
our method, we dynamically set 7. and 7 according to dif-
ferent models, ensuring that SQ with a bpw of 3.25 is used
in nine-tenths of the layers, while VQ with a bpw of 3.5
is used in one-tenth. For example, in RWKV7, 7. is set to
1.54, while 7y is set to 30. For both vision and language
tasks, we select 128 samples from the corresponding test
datasets for calibration.

4.2. Overall Results

Performance Comparison on Language Tasks. As shown
in Table 2, on language tasks our method consistently out-
performs other approaches across nearly all models. Com-
pared to methods with a bpw of 3.25, regardless of whether
they based on SQ or VQ, our method demonstrates signifi-
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Table 3: Comparative results under different quantization
settings for Vision RWKYV models.

Bpw_ Method | — ,R,Vylg‘i-? R }{YV,I(,V:S, _ -
Cls. Det. Seg.| Cls. Det. Seg.
16 |FloatingPoint|75.10 41.70 43.3 |80.10 44.8 47.2
GPTQ  [69.74 39.85 41.20|78.30 43.37 45.50
35 AWQ 68.50 39.03 38.88|78.00 42.90 42.88
GPTVQ |70.31 40.14 41.65|78.65 44.03 45.00
VPTQ  [67.21 39.02 40.14|76.40 42.01 43.54
3.275 Ours 70.41 40.22 41.70|78.74 43.95 46.09

cant improvements in both PPL and accuracy on zero-shot
tasks. Compared to methods with a bpw of 3.5, our method
consistently achieves lower PPL. Except for slightly lower
accuracy on RWKV7-0.5B and RWKV6-1B with certain
methods, it achieves the highest accuracy across all other
models. It can be observed that on the smallest 0.1B model,
the PPL of other methods increases by at least 10 points,
whereas our method results in an increase of only 4.2 points.
On larger models such as RWKV6-7B and RWKV7-14B,
our method results in almost no increase in PPL, while the
accuracy decreases by less than 1 point.

Performance Comparison on Vision Tasks. Table 3
presents the results of the quantized RWKYV models applied
to various vision tasks, including classification, detection
and segmentation. Our method achieves the highest scores
in both segmentation and classification tasks. For detection
tasks, although the precision of RWKV-S is not the highest,
it is very close to the best-performing method.

Memory Occupancy and Computational Cost. Our
method incurs only negligible loss in 3.275-bpw quanti-
zation, making 3.275-bpw inference feasible. As described
in the section 1, models based on the RWKYV architecture
differ from those built on GPT or LLaMA architectures.
Whether in the pre-fill or decoder stage, RWKV models
exhibit a lower compute-to-memory-access ratio. Conse-
quently, quantizing the weights to lower bit-widths can sig-
nificantly reduce memory access time, thereby accelerating

Table 4: Comparison of generation speed and memory usage
before and after 3.275-bpw quantization on RWKV6 models.
All tests were conducted on an NVIDIA A6000 GPU.

speed (tokens/sec) Memory use (GB)

Model Size

FP Quantized Speed up| FP Quantized Mem. saving

3B 3295 51.29 1.55x |5.88 1.65 3.56x
7B 30.75 6242 2.03x [1391 425 3.27x
14B 16.02  34.32 2.14x |26.07 9.21 2.83x

Table 5: Ablation study on the impact of hybrid quantiza-
tion on LAMBADA PPL and zero-shot? score for language
RWKYV models.

GPTQ GPTVQ Ours
Model  |0-shot® LambA |0-shot® LambA |0-shot® LambA.
Ave.(H) () |JAve.() @ JAvg(D) (D)
RWKV7-0.1B | 39.33 40.16 | 38.49 55.30 | 40.69 24.71
RWKV7-0.5B | 45.36 13.07 | 43.85 20.16 | 45.03 13.49
RWKV7-1.47B| 52.28 6.55 |51.31 6.85 |52.23 6.54
RWKV6-1B | 51.20 5.86 |49.70 5.52 |51.44 532
RWKV6-3B | 5524 454 |54.86 441 |5540 397
RWKV6-7B | 59.20 3.59 |48.29 341 |60.18 3.21
RWKV6-14B | 61.14 3.29 |59.86 3.31 |62.03 2.89

the model’s inference speed, as shown in Table 4.

4.3. Ablation Study

Hybrid Quantization. We conduct a series of ablation stud-
ies on the hybrid quantization method proposed in Section
3.1, comparing its performance on the RWKYV model with
that of employing single quantization methods. For fairness,
the weights of all multiplication operations are quantized
using the RTN method. Our method leverages the proposed
coarse-grained and fine-grained proxy to hybridize GPTQ
and GPTVQ. While GPTQ and GPTVQ use a bpw of 3.5,
our method achieves a bpw of 3.275 by applying GPTVQ
(bpw 3.5) to one-tenth of the layers and GPTQ (bpw 3.25)
to the remaining nine-tenths. The ablation study results
in Table 5 highlight the effectiveness of the hybrid quan-
tization method. In nearly all RWKV models, the hybrid
method achieves better metrics compared to both GPTQ and
GPTVQ.

Proxy Strategy. Table 5 shows that our hybrid quantization
improves accuracy but still lags behind floating-point preci-
sion. We then apply the proxy described in Section 3.1, com-
bining coarse-grained and fine-grained proxies to determine
the quantization method for each layer. The ablation results,

Table 6: Ablation study on the impact of different proxies
for hybrid quantization in language RWKYV models.

RWK?7-0.1B | RWK7-0.5B | RWK7-1.47B

Method|0-shot® LambA |0-shot® LambA |0-shot® LambA.
Aved 1) |aved A Aved W
Variance| 40.67 20.80 | 42.51 9.74 |51.29 590
CV |39.09 2236|4092 10.10 | 51.58 5.79
Range | 39.92 23.78 | 40.24 1041 |51.37 5.82
MAD | 3897 22.65 |42.33 10.02 | 51.95 6.04
MSE | 37.99 28.56 | 42.60 10.22 | 51.05 6.87
IE 41.01 20.03 | 45.12 9.67 |52.12 5.31
Ours | 41.04 19.70 | 45.54 9.55 |52.32 5.24
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Table 7: Ablation study on the impact of codebook opti-
mization for element-wise multiplication.

wo. w.
Model 0-shot” Lambda | 0-shot® Lambda
Avg.(D) () |AveD D)

RWKV7-0.1B | 40.69 2471 | 41.09 1841
RWKV7-0.5B | 45.03 13.49 | 46.01 9.39
RWKV7-1.47B| 52.24 6.54 52.41 5.24
RWKV6-1B 51.45 5.32 51.69 5.29
RWKV6-3B 55.48 3.97 55.79 3.88
RWKV6-7B 60.18 3.21 60.19 3.23
RWKV6-14B | 62.03 2.89 62.69 2.89

comparing the use of different proxies such as Variance,
Coefficient of Variation (CV) (Abdi, 2010), Range (Gum-
bel, 1947), Mean Absolute Deviation (MAD) (Konno &
Koshizuka, 2005), Mean Squared Error(MSE), and IE, are
presented in Table 6. Notably, MSE denotes making se-
lections between SQ and VQ by directly comparing their
MSE of each weight. The other metrics are used in the
same manner as described in our method, focusing on the
transformed weights G’. Intuitively, the MSE method is the
local optimum for each weight. However, our coarse-to-fine
proxy attains the best results across all three models from
the global perspective.

Codebook Optimization. We conduct ablation experiments
on the codebook optimization for the element-wise multi-
plication proposed in Section 3.2, across all RWKV models.
The results are presented in Table 7. It can be observed that
using the codebook optimization for the element-wise multi-
plication operator generates better accuracy across all mod-
els compared to not applying the optimization. Specifically,
we also visualize the effectiveness of the clipping-based per-
centile technique within this codebook optimization. From
Figure 4, it can be clearly observed that the input activation
approximately follows the normal distribution. However,
the outliers make the representative feature to leave far from
the center point, thereby decreasing the overall performance.
By clipping these outliers, a more close-to-center feature
can be obtained, thus enhancing the calibration process.

layer.0.xmaa_mul

700 LambA.Acc:40.76 ||| T Mean:-0.107

600 R Meancipped:-0.023
>.500 LambA.Acc:40.69 I C[Iip_value
< Min_Max
3 400 [ Distribution
g f
@300
w

200

° wﬂ(

° -1o =05 0.0 05
Value

Figure 4: Effectiveness of clipping for batch integration.
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Figure 5: Comparison of SQ proportion between RWKV
and LLaMA Models.

4.4. More Uniform Weights in RWKV

Table 1 in Section 1 presents the average relative clustering
loss of weights using K-Means methods (Lloyd, 1982) for
the RWKYV family and the LLaMA family respectively. In
depth, we conduct experiments leveraging the proposed
coarse-to-fine proxy in Section 3.1 to investigate the usage
proportions of SQ and VQ. Under the settings of 7. = 1.5
and 77 = 50, Figure 5 shows that approximately 60% of the
layers in the RWKYV family are categorized as suitable for
scaler quantization, whereas the proportion is only about
10% for the LLaMA family. This further demonstrates that
the RWKYV models have a significantly higher number of
uniform weights.

5. Conclusion

In this paper, we focus on introducing the quantization tech-
niques into the realm of RWKYV models. Our investigation
reveals that applying SQ or VQ individually may not be
optimal for RWKV. We have subsequently identified that
enhancing VQ with conventional compensation-based SQ
holds great promise. To this end, we propose RWKVQuant,
a comprehensive post training quantization framework es-
pecially designed for RWKYV models. The core idea is to
design an optimal strategy that indicates the choice between
SQ and VQ for each weight. Specifically, we propose a
guidance that employs a coarse-grained proxy to evaluate
uniformity and a fine-grained proxy to identify outliers. We
also optimize the codebook generation for element-wise
multiplication modules, which are unique to the RWKV
models. Our proposed RWKVQuant advances in accuracy
for both RWKV-based vision and language tasks compared
to existing methods, making RWKYV models more practical
for deployment in resource-constrained environments. As a
pioneering study on quantization within the RWKV family,
we will publish the code in the hope of promoting further
research and facilitating advancements in this field.
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Impact Statement

This paper aims to promote the application of the RWKV
family, mainly focused on the post training quantization
methods. By introducing RWKVQuant, our approach
enables the deployment of RWKYV models on resource-
constrained devices.
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A. Appendix
A.1. Structure of Time- and Channel-Mixing

The RWKYV model, similar to Transformer networks, is composed of multiple identical blocks, each containing a Time
Mixing component. The Time Mixing process can be written as:

re =W, (r Oy + (1 — pr) © 1), (20)
ke =Wg (upr 0+ (1 — py) @ z—1), 2n
v =Wy (py O + (1 — poy) © @p—1), (22)

UL () © v+ explu+ k) O vy
wkv; = T —
>y f(i) +exp(u + ky) (23)
wheref(i) = exp(—(t — 1 — ))w + k;),

Oy = Wo . (O'(T't) O) ’LUk’Ut). (24)

Here, the symbol ‘®’represents element-wise multiplication, while the symbol ‘- ’stands for matrix multiplication. Both W
and p are parameters. In the context of RWKYV, the terms 7y, k¢, and v; bear an analogy to the Q, K, and V components
found in the attention mechanism of Transformers. Notably, the input x in RWKYV is not simply the embedding of the
current token. Rather, it signifies the weighted sum of the embedding of the current token and that of the previous token.
Subsequently, the Channel Mixing module performs:

=W (g Ome+ (1 - py) O @i1)), (25)
kp = Wi - (p, © @+ (1 - ) © 1), (26)
ot = o(ry) © (W, - max(ki, 0)?). @7

A.2. RWKYV Weight Distribution

Figue 6 shows layers with relatively uniform weight distributions in the RWKV7-0.1B model, which are classified as layers
that should use SQ based on our proposed coarse-to-fine proxy. In contrast, Figure 7 illustrates layers with uneven weight
distributions, which are typically classified as layers that should use VQ. Furthermore, although the weights in Figure 8
appear generally uniform, the presence of local unevenness still leads to their classification as layers that require VQ.
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Figure 6: Unifrom weights without outliers in RWKV7-0.1B different layers.

layer.2.att.linear_a2

10

05

00
--05
10

0 10 20 30 40 50 60

layer.2.att.linear_v2

10
: 05
00
-5
--10
0 10 20 30

Figure 7: Non-uniform weights in RWKV7-0.1B different layers.

layer.2.att.linear_w2

. |3
2
1
0
Fo1
-2
-3

0 10 20 30 40 50 60

layer.3.att.linear_a2

100
075
050
025
000
025
--050
075
--100

0 10 20 30 40 50 60

layer.4.att.linear_w2

- lz
1
0
-1
-2
-3

0 10 20 30 40 50 60

700 600 500 400 300 200 100 0O
700 600 500 400 300 200 100 O

o ° °
) 2 9
3 ] ]
2 E 2
o o o
S S 3
] & &
2 9 )
e 2 3
B 8 R
2 2 9
8 8 e
g s <
o o o
] 2 2
a a !
o o o
38 ] 3
38 3 3
9 9 9
38 8 38
R R R

11



RWKYVQuant: Proxy-Guided Hybrid Scalar-Vector Quantization for RWKYV Models

60 50 40 30 20 10 O

layer.0.att.linear_wl

20
15
10
0s
00
05
10
s
20

0 100 200 300 400 500 600 700

layer.2.att.linear_v1

°
06
04
02
00
--02
--04
--06

2 --08

0 100 200 300 400 500 600 700

60 50 40 30 20 10 O

0 100 200 300 400 500 600

layer.3.att.linear_w1l

10

05

00
--05
--10

700

700 600 500 400 300 200 100 0

0 20

layer.5.att.linear_g1

40 60 80 100 120

Figure 8: Unifrom weights with outliers in RWKV7-0.1B different layers.

A.3. Compute-to-memory Ratio

The figure 9 compares the Compute-to-Memory Ratio (FLOPs per byte) across various models and highlights that RWKV
consistently exhibits the lowest ratio, indicating that its operations rely more on memory access rather than intensive
computations, compared to models like GPT-3 and LLAMA. This characteristic makes RWKYV particularly well-suited for
acceleration through weight quantization, as its lower computational demands relative to memory usage allow for more

significant gains in inference speed, especially when optimizing for resource-constrained environments.
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Figure 9: Compute-to-memory-ratio for different models.

Table 8: Complete comparative results under different quantization settings for Vision RWKYV models. For classification
tasks, we report the Top-1 Accuracy on ImageNet. For detection tasks, the Box AP is evaluated on Coco, while for
segmentation tasks, the mloU is measured on ADE20K.

Bpw. Method | _ v | RWKVS | | RWKV-E | _RWKV-L | RWKVET | RWKVL | RWKVET
Cls. Det. Seg.| Cls. Det. Seg.| Cls. Det. Seg. |Cls. Det. Seg. | Cls. Det. Seg.| Cls. Det. Seg.| Cls. Det. Seg.
16 |FloatingPoint|75.10 41.70 43.30|80.10 44.80 47.20|82.00 46.80 49.20| - 50.6 53.50{76.60 - - |81.10 - - [82.60 - -
GPTQ  [69.74 39.85 41.20(78.30 43.37 45.50(81.42 46.14 48.64| - 50.3053.26/72.79 - - |80.13 - - |8231 - -
35 AWQ 68.50 39.03 38.88|78.00 42.90 42.88(81.15 45.70 48.55| - 50.1953.18|71.46 - - |79.74 - - |82.09 - -
GPTVQ [70.61 40.14 41.65|78.65 44.03 45.00(81.37 46.23 48.70| - 50.28 52.90|73.22 - - [80.23 - - |8225 - -
VPTQ |67.21 39.02 40.14|76.40 42.01 43.54/80.29 45.02 48.68| - 49.1051.45/70.36 - - (7775 - - |81.31 - -
3.275 Ours 70.41 40.22 41.70|78.74 43.85 46.09|81.58 46.40 48.49| - 50.31 52.95|73.13 - - [80.24 - - |8232 - -
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A.4. Additional Results

We provide a comprehensive presentation of our results across various datasets to complement the main paper. Specifically,
the results include:

* Complete comparison of the results under different quantization settings for Vision RWKYV models.(Table 8).

* Complete comparison of the perplexity score on LAMBADA and averaged accuracy on zero-shot common sense
reasoning tasks on RWKV7 (Tab 9) and RWKV6 (Table 10).

* Validate the effectiveness of codebook optimization for element-wise multiplication. (Table 11).

Table 9: Complete comparison of perplexity on LAMBADA and averaged accuracy on nine Zero-Shot tasks. For all methods except ours
and floating-point, we report metrics under both bpw settings of 3.5 and 3.25.

ARC-c ARC-e HQA. HellaS. Lam. OBQA PIQA SCIQ WinoG. Avg. | Wiki2
Model | Bpw. | Method RS I G G O I O R G R )
16 |Full Precision| 19.7 47.90 25.12 3159 4562 172 6561 81.8 526 43.02] 1421
| |RIN |1 19.53 4066 2370 30.12 1283 144 6273 702 5193 36.22[152.82
GPTQ 2039 42.17 2352 3059 2047 1540 62.62 73.60 5250 37.92| 63.54
AWQ 20.13 41.16 2272 2988 1520 2544 61.15 7670 5240 38.31|132.06
395 | QuaRot 19.96 3994 2246 2938 1228 13.80 60.93 58.80 53.19 34.53|243.99
2 | KMeans 1894 4356 2381 29.85 19.93 1500 63.49 7570 53.59 38.21| 87.06
GPTVQ 1894 4393 2275 30.04 3806 1640 63.36 77.00 51.77 40.25| 23.75
VPTQ 1894 39.60 21.84 2859 17.50 1320 59.90 71.90 50.51 35.78|128.59
| |RIN |1 1936 4347 2450 30.17 18.13 1620 64.09 7440 5248 38.08] 81.14
GPTQ 18.68 44.06 24.14 30.69 2674 17.80 63.76 7430 53.82 39.33| 40.16
RWKV-70.1B AWQ 19.88 4040 2297 2952 1492 14.00 59.99 7150 52.64 36.20| 55.72
3.5 | QuaRot 19.88 4440 2272 30.16 1536 1560 6278 7240 52.09 37.26|126.19
KMeans 19.19  44.02 24.14 2998 2944 1500 63.54 7740 5327 39.55|36.23
GPTVQ 19.11 4288 22.68 3025 3835 1580 63.11 7440 5430 40.10| 25.82
VPTQ 1851 4074 2242 28.82 23.17 13.80 61.31 7290 51.93 37.07| 74.70
13975|0urs | 1 19.73 4217 24.14 30.02 4225 17.00 63.10 79.10 5230 41.10] 1841
16 |Full Precision| 23.80 57.11 28.55 3828 57.85 20.80 6931 86.6 5572 4867 7.21
| |RIN ]2 21.84 4528 23.66 32.64 2645 1920 6496 734 5256 39.99| 57.11
GPTQ 2261 5277 26.14 3592 4252 2080 67.46 79.60 55.40 43.69| 15.97
AWQ 19.62 43.09 2293 32.64 3934 17.00 6257 7920 54.14 41.16| 23.29
305 | QuaRot 2018 4869 2476 3385 2022 19.00 6501 73.80 54.06 40.17| 76.89
2> | KMeans 2346 5248 2629 36.19 3941 20.00 67.35 81.50 54.69 44.59| 20.19
GPTVQ 2150 5130 26.14 3480 46.19 19.40 66.64 8240 5438 43.64| 14.15
VPTQ 18.68 4297 2286 31.15 3481 1640 6273 78.80 52.88 40.14| 30.63
| |RIN ] 18.13 1936 4347 2450 30.17 1620 64.09 7440 52.48 38.08] 81.14
GPTQ 2226 5311 2541 3651 4578 2140 6751 83.10 56.51 45.73| 13.07
RWKV-70.5B AWQ 2133 4360 2257 33.06 4514 1880 61.75 82.60 5280 42.40| 16.98
3.5 |QuaRot 2833 20.13 4638 2454 3230 1880 6523 80.40 51.46 40.84| 40.38
KMeans 20.73 4755 25.05 33.58 4139 17.40 6583 82.00 54.14 43.07| 17.05
GPTVQ 2192 5218 2538 3490 52.05 17.80 67.51 81.60 53.82 44.13| 10.88
VPTQ 1979 4473 23.12 31.62 3778 1640 6398 7890 5327 41.06| 25.03
13275 |0urs | : 2261 5311 2541 3445 5339 19.60 66.53 8420 5480 46.01] 9.39
16 |Full Precision | 31.65 6540 32.12 4655 6697 2600 72.68 90.00 6440 55.08| 4.84
| |RIN ]2 21.69 5344 25.65 35.81 46.63 1790 6539 85.14 5755 4546|1143
GPTQ 29.01 59.93 28.99 4274 5552 23.60 7034 8730 6298 51.15| 7.93
AWQ 2235 4491 2272 3522 45.04 1600 6126 8550 59.58 43.62| 15.27
395 | QuaRot 2943  63.04 30.01 4224 5230 2280 70.78 88.10 58.64 50.81| 9.39
2> | KMeans 2086 60.39 28.92 43.07 5775 2320 70.78 9020 6290 51.89| 7.04
GPTVQ 2721 6148 2851 4295 64.84 2280 7034 88.40 62.03 52.06| 5.54
VPTQ 2278 51.55 2523 36.13 4931 1820 6621 8540 57.69 45.83| 11.13
| |RIN | 2094 61.82 3045 43.81 54.84 242 7127 88.1 6132 51.74| 7.89
GPTQ 30.54  61.65 29.79 4396 5923 2380 71.65 8890 61.06 5228| 6.55
RWKV-71.47B AWQ 2244 4600 2195 3530 52.65 1720 61.86 8450 59.66 44.61| 10.71
3.5 |QuaRot 30.80 62.28 30.85 4327 55.64 2320 71.87 8920 6077 51.98| 7.94
KMeans 29.69 61.44 3048 4392 61.58 2460 71.32 89.90 62.03 52.77| 6.57
GPTVQ 2832  61.57 2924 4263 6418 2120 70.83 88.60 62.66 52.13| 5.51
VPTQ 2354 5425 2644 3770 5224 19.04 67.73 8690 58.64 47.38| 9.52
13275 |0urs | : 28.15 61.32 2935 4324 6538 2260 7170 8890 61.01 5240| 524
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Table 10: Complete comparison of perplexity on LAMBADA and averaged accuracy on nine Zero-Shot tasks. For all methods except
ours and floating-point, we report metrics under both bpw settings of 3.5 and 3.25.

ARC-c ARC-e HQA. HellaS. Lam. OBQA PIQA SCIQ WinoG. Avg. | Wiki2
Model | Bpw. | Method mom DD DD D DD DD
16 |Full Precision | 31.22 6440 3045 4634 67.11 2520 7426 89.60 60.93 54.39| 4.60
| |RIN |72 25.25 5543 2713 4259 5973 24.00 71.00 84.80 58.64 49.84| 6.39
GPTQ 2517 58.62 27.06 4207 60.18 2400 71.16 8670 60.06 50.55| 6.43
AWQ 2372 50.16 23.12 3734 4003 19.60 65.12 83.50 57.14 44.41|17.97
325 | QuaRot 2730 51.89 26.65 3742 3208 2120 67.84 85.00 55.80 45.02]29.38
KMeans 2798 5521 26.80 40.03 4124 2020 6953 8520 57.06 47.02|15.93
GPTVQ 2465 5782 2720 39.67 6233 2200 70.02 8630 58.80 49.86| 6.11
VPTQ 2133 4945 2359 3465 4295 17.80 6556 8440 5532 43.89| 14.67
| |RIN |72 2043 60.81 27.46 43.64 61.11 22.60 72.52 8840 59.90 51.76| 5.83
RWKV-6 1B GPTQ 26.53 5955 2753 4363 61.61 23 7176 879 5958 51.23| 5.86
AWQ 2457 53.07 2290 3857 5048 2040 6643 8520 58.87 51.20| 10.97
3.5 | QuaRot 26.19 5467 2691 3921 4134 2360 68.60 8570 56.82 47.00| 16.29
KMeans 28.07 6026 28.11 41.84 51.50 2240 7023 87.80 60.14 50.03| 8.24
GPTVQ 2781 5871 26.18 4041 61.96 2220 70.83 8730 57.22 50.29| 5.74
VPTQ 20.87 49.99 2341 3437 4341 17.80 6420 85.50 54.85 43.82|14.74
3275 | Ours 2790 6035 28.08 4251 63.87 23.00 7138 87.90 6022 51.69 5.29
16 |Full Precision| 35.58 71.33 3329 5053 7132 28.00 76.15 9230 66.45 5832| 3.83
| |RIN |7 30.54 6452 2855 4721 6687 248 73.34 888 6298 54.17] 471
GPTQ 31.14  65.06 28.77 4692 65.65 2540 73.83 85.1 63.61 53.94| 4.88
AWQ 26.02 55.13 2348 4042 4753 17.00 66.05 87.80 61.79 47.24|11.97
325 | QuaRot 2043 5782 2855 4159 3835 2400 69.74 83.80 60.93 48.24|22.67
KMeans 31.99 6641 3099 4462 5226 2560 7241 92.10 6124 53.06| 8.27
GPTVQ 2077 6452 28.84 4456 69.92 2440 7257 9120 6235 54.23| 4.31
VPTQ 25.00 56.56 2520 3793 5595 1840 67.57 8620 61.24 4822| 7.77
T TIRIN T T | 31.56  66.75 30.78 4791 6802 2600 7475 90.50 5353 54.42] 4350
RWKV-6 3B GPTQ 3148 67.17 29.80 47.65 6749 2580 7426 90.30 63.22 55.24| 4.54
AWQ 2841 5467 24.03 3996 53.06 1920 66.15 8820 61.95 48.40| 8.77
3.5 | QuaRot 3122 6148 2946 43.04 4299 2920 7121 89.10 61.48 51.01|16.99
KMeans 3472 6746 3143 46.63 5853 2560 73.77 9190 6495 54.99| 6.28
GPTVQ 30.04  65.61 2957 4539 69.84 2460 73.12 89.90 6558 54.85| 4.12
VPTQ 2559 5681 2552 38.09 53.72 19.60 68.49 87.70 60.69 48.46| 8.62
(3275|0urs | - 30.97 65.74  30.12° 4690 71.18 25.00 7453 9220 6551 55.79] 3.88
16 |Full Precision | 41.70 7525 35.66 55.82 7535 314 78.18 9380 68.11 61.69] 3.21
T TIRIN T T | 35.66 7032 32.53° 51.85 70.04 2820 77200 92.60 66.69 58.34] 387
GPTQ 38.56 7251 31.69 51.98 7178 29.40 77.14 9350 67.00 59.28| 3.72
AWQ 2901 5740 23.92 40.72 5244 2060 673 88.10 6591 49.48| 8.33
325 | QuaRot 3225 6746 3136 4739 5143 2840 7459 89.60 6621 54.29| 8.81
KMeans 3873 7272 3471 5141 61.85 29.00 7693 81.50 54.69 55.72| 4.69
GPTVQ 36.34  71.63 32.09 49.78 74.17 2840 7464 9240 67.71 58.57| 3.49
VPTQ 28.83 63.80 28.18 42.15 6623 2120 71.32 91.10 64.79 53.06| 4.75
T TIRIN T T 37.37 7079 32.53° 5326 73.06 29.80 76.93 905 6858 59.20] 3359
RWKV-6 7B GPTQ 39.33 7340 3296 5295 7196 30.60 772 9420 68.11 60.07| 3.68
AWQ 2901 5740 2392 4072 61.54 2060 673 88.10 6591 50.50| 7.07
3.5 | QuaRot 3532 6776 31.36 49.68 60.18 31.40 7546 9450 66.92 56.95| 6.44
KMeans 39.84 74.03 3435 53.01 6748 2860 7698 9390 67.48 59.51| 3.96
GPTVQ 3850 7250 31.69 5198 75.04 2940 77.71 93.50 67.00 59.70| 3.30
VPTQ 2878 6233 27.83 4245 67.86 21.00 71.49 9040 64.48 52.95| 4.47
(3275|0urs | - 37.62 7293 33.63 5203 7570 3040 76.60 95.10 67.71 60.19] 323
16 |Full Precision | 44.70 7697 37.05 58.76 7623 33.6 7959 947 7127 63.65| 3.02
T TIRIN T | 30.76 7398 3293 55.66 74.03 31.80 79.100 93.00 7024 61.16] 334
GPTQ 3822 69.99 3336 5528 74.00 3140 78.18 91.50 69.69 60.18| 3.43
AWQ 28.15 5534 2377 3882 5859 20.60 6561 8890 6440 49.35| 8.18
395 | QuaRot 36,51 6927 3278 5038 40.09 2820 76.06 91.60 67.95 54.76| 14.05
KMeans 4385 74.16 3555 54.84 67.81 3240 78.18 94.80 7127 61.40| 4.61
GPTVQ 3565 71.66 3045 5233 7646 30.14 7631 9324 7044 59.63| 3.15
VPTQ 3627 6954 2946 50.08 73.01 2735 7638 9140 6739 57.87| 3.62
| |RIN |7 39.59 7222 3355 5631 7429 314 7801 923 69.92 60.84| 3.31
RWKV-6 14B GPTQ 3890 7272 3446 5634 75.08 31.20 78.67 91.70 71.19 61.14| 3.29
AWQ 2009 57.82 2359 3999 6447 2020 67.19 90.70 6471 50.86| 6.06
3.5 | QuaRot 3805 69.06 33.80 5096 44.56 30.80 7638 93.00 7040 56.33|10.63
KMeans 4129 7407 3482 5476 70.66 31.60 7823 9430 70.63 61.15| 3.84
GPTVQ 36.65 70.87 3191 5243 75.04 30.00 77.31 9340 7024 59.76| 3.34
VPTQ 37.10  69.87 29.69 5031 7231 2745 7656 91.60 66.55 57.93| 3.75
(3275 |Ours | ¢ 41.80 7650 34.09 5526 78.17 32.80 78.61 9540 71.60 62.69| 2.89
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Table 11: Complete ablation study on the impact of codebook optimization for element-wise multiplication.

ARC-c ARC-e HQA. HellaS. Lam. OBQA PIQA SCIQ WinoG. Avg. | Wiki2
Model Method

M (M ) M (M (M (M M (M ™| D

RWKV7-0.1B Ww. 19.79  42.17 24.14 30.02 4225 17.00 63.10 79.10 52.30 41.09| 18.41
e wo. 20.15 4445 2447 3032 38.09 17.80 64.08 7395 5291 40.69|24.71
RWKV7-0.5B Ww. 22.61 53.11 2541 3445 5339 19.60 66.53 8420 54.80 46.01| 9.39
) wo. 21.61 53.02 2531 3455 47.10 1890 66.53 83.7 54.61 45.03| 13.49

W. 28.15 61.32 29.35 4324 6538 2260 71.70 8890 61.01 52.40| 5.24

RWKV7-1.478 wo. 29.15 6190 29.99 4292 5931 24.10 70.13 88.52 64.14 52.24| 6.54
RWKV6-1B W. 2790 60.35 28.08 4251 63.87 23.00 7138 879 6022 51.69| 5.29
wo. 2738 60.05 2742 4231 6371 232 71.72 815 59.75 51.44| 5.32

RWKV6-3B W. 3097 65.74 30.12 4690 71.18 25.00 7453 9220 6551 55.79| 3.88
wo. 3097 68.00 29.72 46.84 7046 2520 7421 90.80 63.14 55.48| 3.97

RWKV6-7B W. 37.62 7293 33.63 5203 7570 3040 76.6 95.1 67.71 60.19] 3.23
wo. 3797 73.19 3344 5204 75.18 30.80 76.61 93.8 68.59 60.18| 3.21

RWKV6-14B W. 41.80 76.50 34.09 5526 78.17 32.80 78.61 9540 71.60 62.69| 2.89
wo. 40.53 73.82 34.13 56.19 77.72 32.00 7844 94.00 71.50 62.03| 2.89

Table 12: Our method’s performance on RWKV6, using the LambA training dataset, shows advantages in PPL. and ACC
metrics under consistent experimental settings.

GPTQ GPTVQ Ours
Avg-acc LambA.PPL Avg-acc LambA.PPL Avg-acc LambA.PPL
RWKV6 - 1B 51.28 5.87 49.69 5.51 51.41 5.35
RWKV6 - 3B 55.25 4.56 54.85 4.42 55.38 3.97
RWKV6 - 7B 59.18 3.59 48.30 3.41 60.18 3.21
RWKV6 - 14B 61.15 3.29 59.86 3.31 62.03 2.89

Although using the test set for calibration is a common practice in Post - Training Quantization (PTQ), we conducted
additional comparative experiments based on the LambA training dataset for RWKV6 in Tab. 12. The results show that our
method outperforms both GPTVQ (Vector Quantization) and GPTQ (Scalar Quantization). This verifies the effectiveness
and robustness of our approach.

In Equation 17, the hyperparameter K represents the order of Taylor decomposition. Higher-order terms in the Taylor
expansion are close to zero and have minimal impact on the final result. In our previous paper, we used K = 4 as the
configuration. To further validate the influence of K on our method, we conducted comparative experiments on RWKV6 as
shown in Tab. 13. Under the same configurations of 7; and 7., we compared the model accuracy under different values of
K. Tt can be observed that when K increases from 2 to 4, the model accuracy significantly improves. However, as K further
increases, the accuracy does not continue to increase and even starts to decline. Therefore, we conclude that an excessively
large K is unnecessary: it not only fails to improve accuracy but also introduces additional computations.

A.5. Limitations and Future Work

Our proposed RWKVQuant framework relies on the coarse-to-fine proxy introduced in Section 3.1, where 7. and 7 play a
important role in determining the appropriate quantization method for each layer. In our experiments, these values were
empirically set based on different model configurations, ensuring that the 3.25 bpw SQ proportion is approximately one-tenth
and nine-tenths for 3.5 bpw VQ across different models.

Actually, as shown in algorithm 1, 7. and 7 are automatically set for each individual model and do not require adaptation.
Specifically, we obtain their values in the following steps:
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Table 13: The detailed performance metrics for the RWKV6 model across different K, 7; and 7. configurations. C'is the
percentile of M (384) values of P, used to determine 7. F' is the percentile of M * C' values of Py used to determine 7.

Lambda accuracy

SQ:VQProportion K =2 K=3 K=4 K=5 K=6
Quantization Bits
63.11 63.82 63.87 63.88  63.87
F=02,C=05 10:90  10:90 10:90 10:90  10:90
3275 3275 3275 3275 3275
62.95 63.71 63.78  63.74  63.78
F=04,C=05 20:80 20:80 20:80 16:84  20:80
3300 3.300 3300 3.290  3.300
61.96 62.87 6298 6295 6291
F=06,C=05 3070 30:70 30:70 30:70  30:70
3325 3325 3325 3325 3.325
60.98 61.35 61.56 61.68 61.54
F=08,C=05 40:60 40:60 40:60 40:60 40:60
3350 3350 3350 3350  3.350

1. Compute the coarse-grained proxy P.(Eq.15) for each layer to be quantized.
2. Set 7, to the value at the 50th percentile of all P..
3. Compute the fine-grained proxy P (Eq.17) for each layer whose P, < .

4. Set 74 to the value at the 20th percentile of all Py.

Although fine-tuning the percentile values for each network may further improve accuracy, the percentile values (i.e., 20%
and 50%) —used in all our experiments—already delivers strong performance across all RWKYV networks, as shown in
Table 2.

Table 14: Comparison of perplexity on LAMBADA and averaged accuracy on nine Zero-Shot tasks under different 7. and
7 configurations for the RWKV models.

RWKV7-0.1B . RWKV7-0.5B ' RWKV7-1.47B
7o | 74 [0-shot’ LambA.i0-sho® LambA.|0-shot” LambA.
A ) Ave® () Ave® D)
20.00| 4027 ~23.657, 4372~ 13.98 7 5200 552
2500| 4027 23.65 | 4372 1398 ' 5209 552
1.0030.00| 40.27 2365 ' 4362 1406 ' 5200 5.2
3500| 4025 2375 | 43.64 1415 | 5206 554
4000| 4025 2375 | 4364 1415 | 5206 554
20.00| 4056 ~ 18.6871 4593 ~ 988 1 52037 534
2500| 4101 1831 ' 4601 946 ' 5240 524
1.50(30.00| 41.10 1841 ' 4601 939 ' 5240 524
35.00| 4086 1871 ' 4601 945 | 5240 5.4
40.00| 4078 1841 | 4588  9.67 | 5234 524
20.00| 3986 ~ 28127174593~ 988 T 52034 “6.02
2500( 39.86 28.12 ' 4593 988 ' 5234  6.12
2.00(30.00| 39.65 31.34 ' 4587 1007 | 5226  6.32
35.00| 39.37 3725 | 4583 1301 , 5228 654
40.00| 3937 3725 , 4583 1301 | 5228  6.54
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Table 15: The detailed performance metrics for the RWKV6 model under various configurations of the parameters 7, and
Tc. C' is the percentile of M (384) values of P, used to determine 7. F' is the percentile of M * C' values of Py used to
determine 7.

Lambda accuracy

SQ:VQ Proportion C'=0.1 C=02 C=03 C=04 C=05 C=06 C=07 C=08
Quantization Bits

61.20 62.14 61.78 61.65 61.21 60.84 60.75 60.54
wo F (wo 7y) 10:90 20:80 30:70 40:60 50:50 60:40 70:30 80:20
3.275 3.300 3.325 3.350 3.375 3.400 3.425 3.450
61.28 61.31 61.54 62.45 62.44 62.47 61.25 60.84
F=0.1 1:99 2:98 3:97 4:96 5:95 6:94 7:93 8:92
3.253 3.255 3.258 3.260 3.263 3.265 3.268 3.270
61.29 61.52 61.88 62.63 63.87 63.88 61.34 60.88
F=02 2:98 4:96 6:94 8:92 10:90 12:88 14:86 16:84
3.255 3.260 3.265 3.270 3.275 3.280 3.285 3.290
61.39 61.64 62.62 62.73 63.83 62.86 60.95 60.89
F=03 3:97 6:94 9:91 12:88 15:85 18:82 21:79 24:76
3.258 3.265 3.273 3.280 3.288 3.295 3.302 3.310
61.42 61.94 62.65 62.21 62.78 62.32 61.36 61.26
F=04 4:96 8:92 12:88 16:84 20:80 24:76 28:72 32:68
3.260 3.270 3.280 3.290 3.300 3.310 3.320 3.330
61.43 62.37 62.54 61.95 61.18 60.92 60.73 60.54
F=06 6:94 12:88 18:82 24:76 30:70 36:64 42:58 48:52
3.265 3.280 3.295 3.310 3.325 3.340 3.355 3.370
61.44 61.47 61.13 60.88 60.56 60.53 60.33 60.34
F=038 8:92 16:84 24:76 32:68 40:60 48:52 56:44 64:36
3.270 3.290 3.310 3.330 3.390 3.410 3.430 3.450

However, this allocation might not reflect the most balanced or effective proportion. As shown in Table 14, we conducted
multiple comparative experiments on the RWKYV language model with varying 7. and 7. The results demonstrate that when
T, is larger than the optimal value, the final accuracy approaches that of directly using uniform quantization, whereas a
smaller 7, yields results closer to codebook quantization. Moreover, with an appropriately chosen 7., the setting of 7, has a
direct impact on the final accuracy.Therefore, in future work, we will further explore how to determine appropriate values
for 7. and 7y:

* Based on proper initialization, we plan to utilize fine-tuning to achieve the optimal configuration for different models.

* At the same time, we will remove the fixed constraint of bpw being 3.275 and, when selecting 7. and 7¢, consider the
trade-off between compression rate and post-quantization model performance to meet different accuracy requirements
across various scenarios.

* In addition, we plan to use the proposed coarse-to-fine proxy to determine whether specific features at a finer granularity
are better suited for SQ or VQ quantization, such as channel-level or block-level finer granularity.
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Algorithm 1 RWKYV Model Quantization Algorithm

input RWKYV model with weights 6, number of weights M, hyperparameters C and F’
output Quantized model with weights 6’
1: Initialize: C_List « [], F_List < [|, ¢ < {} {Compute 7.}
2: form=0M —1do
3:  Apply Equations (5) and (9) to 6,, to get P,
C_List.append(P,)
: end for
: Tc < topK(C_List, k = C - M, largest = False)
{Compute 7}
7: form=0M —1do
8: if C_Listim] < 7. then
9: Apply Equations (10) and (17) to 0, to get Py
10: F_List.append(Py)

11:  endif
12: end for

13: 75 < topK(F_List,k = F - C' - M, largest = False)
{Perform quantization}

14: form =0 M — 1do

15:  if P. > 7. then

16: Apply Vector Quantization (VQ)
17:  else

18: ifPf > Ty then

19: Apply Vector Quantization (VQ)
20: else

21: Apply Scalar Quantization (SQ)
22: end if

23:  end if

24: end for

25: return 6’ =0
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