
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EXPLORATORY MEMORY-AUGMENTED LLM AGENT
VIA HYBRID ON- AND OFF-POLICY OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Exploration remains the key bottleneck for large language model agents trained
with reinforcement learning. While prior methods exploit pretrained knowledge,
they fail in environments requiring the discovery of novel states. We propose
Exploratory Memory-Augmented On- and Off-Policy Optimization (EMPO2), a
hybrid RL framework that leverages memory for exploration and combines on-
and off-policy updates to make LLMs perform well with memory while also en-
suring robustness without it. On ScienceWorld and WebShop, EMPO2 achieves
128.6% and 11.3% improvements over GRPO, respectively. Moreover, in out-
of-distribution tests, EMPO2 demonstrates superior adaptability to new tasks, re-
quiring only a few trials with memory and no parameter updates. These results
highlight EMPO2 as a promising framework for building more exploratory and
generalizable LLM-based agents.

1 INTRODUCTION

Large Language Models (LLMs) have recently emerged as powerful agents capable of reasoning,
planning, and interacting with external environments (Achiam et al., 2023; Park et al., 2023; Yao
et al., 2023; Kim et al., 2025). When combined with reinforcement learning (RL), such agents can
adapt their behavior based on experience and feedback, enabling them to go beyond static prompting
or supervised fine-tuning (Guo et al., 2025; Tan et al., 2024). This paradigm has driven recent
progress in areas such as interactive decision-making, tool use, and embodied AI (Feng et al., 2025b;
Lu et al., 2025b; Feng et al., 2025a; Dong et al., 2025; Luo et al., 2025).

However, a key limitation of current LLM-based agents lies in their reliance on exploiting prior
knowledge rather than engaging in systematic exploration. While RL frameworks emphasize bal-
ancing exploration and exploitation, many LLM-agent systems primarily leverage pretrained knowl-

(a) (b)

Figure 1: (a) Comparison of the learning curves of GRPO and EMPO2 (ours) on the Science-
World power-component task. While GRPO converges to suboptimal performance, EMPO2

continues to improve and accomplish the task. (b) Comparison of EMPO2 and other baselines in
in-distribution (ID) and out-of-distribution (OOD) settings on and WebShop. In ID experiments,
it adapts well to familiar environments, achieving 128.6% on ScienceWorld and 11.3% on Web-
shop improvements over GRPO. In OOD experiments, it also shows strong performance with few
trials and no weight updates, indicating effective use of memory to explore unfamiliar environments.
Full results are in Tables 1, 2, and Figure 8.
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edge and conduct only limited search within familiar distributions. As a result, these agents often
struggle in environments where progress depends on discovering novel states or actively acquiring
new information, rather than reusing what is already known.

To address this challenge, recent research has incorporated external memory modules into LLMs as
a form of long-term memory. This enables models to leverage past experiences to correct failed at-
tempts, thereby improving decision-making in subsequent trials without requiring parameter updates
(Shinn et al., 2023; Zhang et al., 2023). However, as noted in Zhang et al. (2023), the performance
of such methods tends to saturate quickly, since collecting experiences with static parameters cannot
fully capture the diversity needed for continuous improvement.

Figure 2: Non-parametric
updates can encourage
exploration, bootstrapping
parametric updates.

In this work, we present a unified framework that enables LLM agents
to learn more effectively through broader exploration by jointly updating
their parametric policy parameters with RL and their non-parametric
memory module through interaction. Crucially, the non-parametric up-
dates not only complement but also enhance the efficiency of paramet-
ric learning, thereby enabling more effective exploration and adaptation.
This dual-update paradigm serves as a bridge between parameter-level
optimization and memory-augmented reasoning. While memory is uti-
lized during learning, moving toward more generalizable intelligence re-
quires reducing dependence on external memory and instead embedding
its benefits directly into the model’s parameters. To this end, we pro-
pose Exploratory Memory-Augmented On- and Off-Policy Optimization (EMPO2), a new hybrid
RL algorithm that incorporates two modes in the rollout phase—depending on whether memory is
used—and two modes in the update phase—on-policy and off-policy learning—thereby enabling
agents to leverage memory when available while remaining robust in its absence.

In our experiments, we evaluate EMPO2 on two widely used multi-step embodied reasoning envi-
ronments that require exploration to solve complex tasks: ScienceWorld (Wang et al., 2022) and
WebShop (Yao et al., 2022). We compare its performance against a range of non-parametric and
parametric (offline and online) RL approaches. As summarized in Figure 1, EMPO2 substantially
outperforms prior algorithms, achieving a 128.6% improvement on ScienceWorld and an 11.3%
improvement on WebShop over the strong online RL baseline GRPO. The training curve in Fig-
ure 1 (a) further shows that, unlike GRPO, which converges prematurely to a suboptimal solution,
EMPO² leverages continuous exploration and successfully solves the task. Moreover, for the OOD
experiments (Figure 1, rightmost), the model also achieves good scores with only a few trials and no
weight updates, indicating that the updated model has acquired the ability to use memory to explore
unseen or unfamiliar environments. These results highlight EMPO2 as a promising direction for
building more adaptive and generalizable embodied agents.

2 PRELIMINARIES

Online RL consists of alternating between a rollout phase, in which trajectories are generated using
the current policy π parameterized by θ, and an update phase, in which the policy is optimized based
on those rollouts.

Policy Rollout. We consider a setting where, given a sampled task u ∼ p(U), an LLM agent
solves the task through multi-step interactions with the environment. Starting from task u, the LLM
πθ generates the first natural-language action a1 ∼ πθ(· | u) ∈ A. Executing this action, the envi-
ronment returns a reward r1 and the next state s1. At a general timestep t, conditioned on the current
state st and the task u, the policy produces the next action at+1 ∼ πθ(· | st, u). This interaction loop
continues until the task is completed or a maximum number of steps is reached. A rollout trajectory
is thus defined as the sequence of states, actions, and rewards, τ =

(
u, a1, r1, s1, a2, r2, . . . , sT

)
.

Group Relative Policy Optimization. Group Relative Policy Optimization (GRPO) (Shao et al.,
2024) updates the policy by comparing multiple rollouts of the same task u, removing the need for
the value function in PPO (Schulman et al., 2017). Given a task u, the policy πθ generates N rollout
trajectories {τ (1), . . . , τ (N)}. Each trajectory receives a return {R(1), . . . , R(N)}, defined as the
sum of rewards along the trajectory: R(i) =

∑T
t=1 r

(i)
t .. For each action a

(i)
t taken in trajectory τ (i),
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we define its relative advantage as: A(a
(i)
t ) =

R(i)− 1
N

∑N
j=1 R(j)

σ(R) , where actions from trajectories
with higher-than-average reward obtain positive advantage, while those from lower-performing ones
obtain negative advantage. The GRPO loss is then:

E u∼p(U)

{τ(i)}N
i=1∼πθold

[
1

NT

N∑
i=1

T∑
t=1

min
(
ρθ(a

(i)
t )A(a

(i)
t ), clip

(
ρθ(a

(i)
t ), 1− ϵ, 1 + ϵ

)
A(a

(i)
t )

)]
− β DKL

(
πθ(·|u) ∥ πref(·|u)

)
, (1)

where ρθ(a
(i)
t ) =

πθ(a
(i)
t |s(i)t ,u)

πθold (a
(i)
t |s(i)t ,u)

, with β ≥ 0 controlling the regularization strength toward a refer-

ence policy πref.

3 THE EXPLORATION PROBLEM OF LLM AGENTS

LLMs encode rich prior knowledge, but such priors often fail to reflect the actual rules or dynamics
of a given environment. Blind reliance on these priors can lead to erroneous behaviors, making it
necessary for agents to adapt through direct interaction and trial-and-error. A key requirement for
such adaptation is exploration, which involves seeking information beyond pre-training, sometimes
by taking atypical or counterintuitive actions. However, current LLM-based agents struggle with this
(Qiao et al., 2024; Zhou et al., 2024), as it demands stepping outside the distribution of behaviors
where the model feels most confident.

Consequently, many prior studies have sought to align agents with new environments through warm-
start supervised fine-tuning (SFT) using numerous golden trajectories (Song et al., 2024; Qiao et al.,
2024; Xiang et al., 2024), leveraging large-scale models such as GPT-4 (Tang et al., 2024; Lin et al.,
2023), or employing human engineering or well-established simulation information (Choudhury &
Sodhi, 2025). While these methods achieve strong results in constrained settings, their effectiveness
is limited to cases where such external support is available, and they generalize poorly to unseen
scenarios without it.

Figure 3: When training LLM with GRPO in ScienceWorld, the agent struggles because of
insufficient exploration. For instance, in the task “turn on the red light bulb,” the agent must first
find the red light bulb before activating it. However, the agent fails to locate it and, as a result, cannot
complete the task. Rather than analyzing the cause of failure and exploring alternative actions, the
agent proceeds unchanged, so its score stagnates even as additional training steps are taken.

Therefore, we focus on how to efficiently train agents in online RL through trial and error, with-
out any prior embedding of the environment’s rules. The key challenge is that, without intrinsic
exploration capability, online RL struggles to optimize effectively. As illustrated in Figure 3, in
ScienceWorld (Wang et al., 2022) environment the agent is given the mission “turn on the red light
bulb.” The instructions specify that the agent should first focus on the light bulb and then build a
circuit to activate it, based on the current room observation. However, since no red light bulb is
present in the observation, the agent must search the environment to locate it. Instead, the agent
follows the instruction literally, attempts to focus on the red light bulb, and fails because it does not
exist in the room. Ideally, when an agent fails to reach its goal, it should analyze the reasons for
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failure and broaden its action space to discover successful strategies. Yet in representative online RL
algorithms GRPO (Shao et al., 2024), prior trajectory rollouts provide no continuity beyond a scalar
reward signal, thereby restricting exploration and ultimately limiting learning.

4 METHOD

In this section, we present Exploratory Memory-augmented On- and Off-Policy Optimization
(EMPO2), a novel algorithm aimed at tackling the exploration challenges in online RL. EMPO2

operates in two modes for both rollout phase and update phase. During rollout, actions can be gen-
erated either through (1) prompting without memory, where no retrieved information is used, or
(2) memory-augmented prompting, conditioned on tips retrieved from memory. In the update
phase, rollouts with memory-augmented prompting are used in two ways: (a) on-policy, where tips
are retained and the update is performed with the original prompt, and (b) off-policy, where tips are
removed during update. Notably, tips are generated not by a separate model but by the policy πθ

itself, which is continually updated during training. The full algorithm is provided in Appendix A.

4.1 ADVANCING EXPLORATION WITH SELF-GENERATED MEMORY

A key component of EMPO2 is its use of memory to maintain continuity across rollouts. Information
obtained from an agent’s interactions can be encoded into parameters through policy optimization,
but it can also be recorded in an external memory that the agent continuously consults. Since our
policy is initialized from a pretrained LLM with inherent summarization and reflection abilities,
these abilities can be leveraged as auxiliary signals in addition to scalar rewards, thereby guiding
exploration more effectively. To realize this, EMPO2 integrates both parametric (parameter updates
within the LLM) and non-parametric (external memory) updates, strengthening the linkage between
rollouts and promoting exploration, with all data and guidance generated autonomously by the agent.

Figure 4: In EMPO2, the current policy parameters πθ are used to review past rollouts, with the
resulting insights added to memory. This updated memory conditions subsequent rollouts and pro-
motes exploration.

In the non-parametric updates, similar to Reflexion (Shinn et al., 2023), the agent reviews past
rollouts, generates self-guidance tips , and stores them in memory. These tips help the agent avoid
repeated mistakes and explore new strategies. Unlike Reflexion, focuses on iterative verbal guidance
to achieve higher rewards in the next trial, our approach aims for these tips to lead to enhanced
exploration that is ultimately consolidated through parametric updates.

Self-Generated Memory and Tips. We define a memory buffer M = {tip1, tip2, . . .}, which
stores reflective tips generated by the policy πθ during trajectory reflection. Formally, when an
episode i of task u terminates at timestep t, the policy takes the final state st together with a tip-
generation prompt as input and produces a tip, where tipi ∼ πθ(st, u, tip-generation prompt). A set
of illustrative examples is provided below, while the tip-generation prompt is presented in Appendix
B, and additional examples are included in Appendix E.1.

4
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Examples of Generated Tips – ScienceWorld <power-component> task

- You moved between the kitchen and bathroom but did not find a green wire or a green light bulb to
connect.
- You focused on the red light bulb but did not complete the task of turning on the red light bulb. You
are in the hallway and need to find a way.
- The trajectory involves connecting the battery to the green wire terminals to power the green light
bulb, but the connections to air and other objects are irrelevant.
- The circuit for the green light bulb was partially connected but still missing the battery connection;
the task is not fully completed.

4.2 PARAMETERIZE NON-PARAMETRIC UPDATES VIA HYBRID POLICY OPTIMIZATION

Agents can use memory to improve exploration and learning efficiency, but the acquired knowledge
needs be internalized into model parameters to enhance inherent capabilities. To this end, we pro-
pose two modes for the rollout and update phases, whose combinations yield three hybrid learning
modes (Figure 5).

Figure 5: EMPO2 mode combinations. By combining the two rollout modes and update modes,
three EMPO mode configurations are possible: on-policy learning without memory, on-policy learn-
ing with memory and off-policy learning.

Rollout Modes. During rollouts, the agent samples between the two modes, selecting mode (1)
with probability p and mode (2) with 1− p. In our experiment, we set p = 0.75. The ablation study
of p can be found in Appendix E.1.

(1) Prompting Without Memory. For each task u, at each timestep t, the policy πθ generates
actions conditioned only on the current state st and the task u: at+1 ∼ πθ(· | st, u).

(2) Memory-Augmented Prompting. For each task u, at each timestep t, a retrieval operator
Retr(ot;M) ⊆ M selects tips most relevant to the current state st, e.g., via similarity search in
the embedding space. We denote the retrieved set as tips

t
. In memory-augmented prompting,

the policy conditions its action on both st and tips
t
: at+1 ∼ πθ

(
·
∣∣ st, u, tips

t

)
. We limit the

number of retrieved tips at 10.

Update Modes. Trajectories generated under rollout mode (1) are directly used for updates,
whereas those generated under rollout mode (2) — memory-augmented prompting — follow one
of two update modes chosen at random during the update phase. In our experiments, mode (a) is
selected with probability q = 1/3, and mode (b) with probability 1− q. The ablation study of q can
be found in Appendix E.1.

(a) On-Policy Updates. On-policy update uses the same prompt as in the rollout, and ρθ(a
(i)
t ) in

eq.1 becomes ρθ(a
(i)
t ) =

πθ(a
(i)
t |s(i)t ,u, tips

t
)

πθold (a
(i)
t |s(i)t ,u, tips

t
)
.
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(b) Off-Policy Updates. In this mode, the stored log-probabilities ℓtips
t = log πθ(at | st, u, tips

t
)

are replaced with the log-probabilities assigned by the same policy πθ when conditioned only
on (st, u), namely ℓno-tips

t = log πθ(at | st, u). In this formulation, the advantage update is
performed based on how natural the action appears under the distribution without tips.
This construction can be interpreted as a form of reward-guided knowledge distillation. Trajec-
tories sampled under the tips-conditioned policy act as teacher demonstrations, while the student
policy πθ(· | s, u) is updated to reproduce those trajectories in proportion to their advantage.
High-reward trajectories (Ât > 0) are reinforced, while low-reward trajectories (Ât < 0) are
suppressed, resulting in selective distillation that emphasizes beneficial behaviors. In this way,
tips serve as an intermediate scaffolding mechanism that improves exploration and trajectory
quality, while the reward signal ensures that only advantageous behaviors are ultimately retained.
Consequently, the final policy learns to internalize the benefits of tip conditioning without requir-
ing tips at inference time. Appendix B provides an illustrative breakdown and a summary table
for the calculation of the importance sampling ratio.

Figure 6: Mask-
ing tokens stabilizes
training.

Stabilizing Off-Policy Training. Off-policy training is prone to instabil-
ity and may collapse (see Figure 6). In such cases, gradient normalization,
entropy loss, KL loss, and policy gradient loss can all diverge to NaN. Prior
work, Yang et al. (2025) shows that low-probability tokens destabilize train-
ing by amplifying gradient magnitudes through unbounded likelihood ratios.
Motivated by this, we introduce a masking mechanism that suppresses the ad-
vantage term for tokens whose probability under πθ falls below a threshold δ.
Finally, the loss in Eq. 1 is modified as

E u∼p(U)

{τ(i)}∼πθold

[
1

NT

N∑
i=1

T∑
t=1

min
(
ρ
(i,t)
θ A(a

(i)
t ), clip

(
ρ
(i,t)
θ , 1− ϵ, 1 + ϵ

)
A(a

(i)
t )

)
· 1

πθ(a
(i)
t |s(i)t ,u)≥δ

]
− βDKL

(
πθ(·|u) ∥ πref(·|u)

)
. (2)

Figure 7: Policy
entropy comparison
with vs. without
intrinsic rewards.

Intrinsic Rewards for Exploration. To further encourage exploration,
and inspired by prior work on exploration-targeted online RL (Burda et al.,
2018b; Bellemare et al., 2016; Ecoffet et al., 2019), we introduce an intrinsic
reward based on the novelty of the current state. A memory list stores distinct
states, and for each new state we compute its cosine similarity with existing
entries. If the similarity falls below a threshold, the state is added to memory
and assigned a reward. The intrinsic reward is defined as rintrinsic =

1
n , where

n denotes the number of similar past states. This mechanism encourages the
agent to explore novel states even when no extrinsic reward is provided by the
environment and maintains policy entropy, as shown in Figure 7.

5 RELATED WORK

LLM Agents in Multi-Step Embodied Tasks. LLM agents for multi-step embodied tasks have
been studied under different paradigms. Data-driven approaches (Song et al., 2024; Xiong et al.,
2024; Qiao et al., 2025; 2024; Tajwar et al., 2025) enhance decision-making through effective data
collection methods and imitation learning. Model-based agents (Tang et al., 2024; Zhou et al.,
2024) build world models, often by generating code with large closed-source systems such as GPT-
4. Other methods (Lin et al., 2023; Choudhury & Sodhi, 2025) strengthen reasoning through model
transitions or by leveraging privileged information provided by the simulation environment. In
contrast, our approach reduces reliance on such external resources and emphasizes autonomous
growth through the agent’s own exploration and self-improvement.

Memory for LLM Agents. To enable progressive improvement from past experiences, Reflexion
(Shinn et al., 2023) and REMEMBERER (Zhang et al., 2023) leverage external memory. Reflexion
stores verbal reflections for later prompting, while REMEMBERER records observations, actions,
rewards, and Q-values, retrieving similar cases as few-shot exemplars. These methods show that
LLMs can improve without parameter updates. However, with fixed parameters, they cannot ex-
pand intrinsic knowledge, so adaptation remains short-term (Zhang et al., 2023), relying on external
memory rather than achieving long-term evolution and generalization.

6
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Learning by Knowledge Distillation Our hybrid off-policy update functions as reward-guided
knowledge distillation during online training. Snell et al. (2022) introduced context distillation,
where the model first solves tasks using a Teacher prompt (with instructions, examples, explanations,
and scratch-pad reasoning) and then learns to produce the final answer from a minimal Student
prompt via offline, SFT-based distillation. In contrast, we integrate knowledge distillation into online
RL, leveraging online adaptability while enhancing exploration for more efficient training.

RL for LLM Agents. RL provides a robust framework for optimizing LLM parameters through
observations and reward signals from environment interactions. Prior work, Retrospex (Xiang et al.,
2024), showed that offline RL, which learns optimal policies from large logged datasets, can im-
prove LLM agent performance. Recent studies focus on online RL (Shao et al., 2024; Feng et al.,
2025b; Wang et al., 2025), where agents learn in real time. GiGPO (Feng et al., 2025b) advanced
GRPO by grouping rollouts with similar observations, enabling finer credit assignment and stronger
performance. Our work advances this online RL direction by integrating non-parametric memory
updates into both on- and off-policy learning, yielding substantially higher sample efficiency.

Enhancing Exploration for Online RL. A central challenge in online RL is effective exploration.
Classical methods such as count-based exploration (Bellemare et al., 2016) and Random Network
Distillation (Burda et al., 2018b) use intrinsic rewards to encourage novelty. Go-Explore (Ecoffet
et al., 2019) stores key states and re-explores from them, solving hard-exploration tasks like Atari
games. Its LLM extension, Intelligent Go-Explore (Lu et al., 2025a), achieves strong results in
environments such as TextWorld (Côté et al., 2018), but relies on large closed-source models and
does not perform parameter updates. In our concurrent work, RLVMR (Zhang et al., 2025) employs
warm-start SFT to elicit diverse reasoning types (planning, exploration, and reflection) and provides
dense, process-level rewards for each reasoning type during online RL, enhancing exploration and
credit assignment. Together, these studies underscore the importance of structured exploration for
scaling RL to complex environments.

6 EXPERIMENTS

To examine the effectiveness of EMPO2, we conduct extensive experiments on two widely used
LLM agent benchmarks: ScienceWorld (Wang et al., 2022) and WebShop (Yao et al., 2022) using
Qwen2.5-7B-Instruct (Qwen et al., 2025) as the base model. The EMPO2 performance we evaluate
is the performance of the trained model without memory at test time.

6.1 SCIENCEWORLD

ScienceWorld (Wang et al., 2022) is an interactive text-based benchmark in which an agent performs
science experiments at the elementary school level. Successfully completing these experiments
requires long-term multi-step planning, hypothesis testing, and interpretation of outcomes, as well
as sufficient exploration to determine where the necessary tools are and what appropriate actions
should be taken. ScienceWorld includes tasks from diverse topics and in our experiments, we cover
19 tasks spanning chemistry, classification, biology, electricity, and measurement.

Baselines. We compare EMPO2 with several RL approaches. For non-parametric RL, Re-
flexion (Shinn et al., 2023) updates memory in a non-parametric manner by incorporating LLM
reflections from previous trajectories and using them in the prompt for the subsequent trial. For
offline RL, Retrospex (Xiang et al., 2024) leverages an SFT-trained model and uses a Q-function
learned via Implicit Q-learning (Kostrikov et al., 2022) to dynamically rescore actions. The offi-
cial Retrospex paper used the smaller Flan-T5-Large (Chung et al., 2024) (770M) and incorporated
human-designed heuristics to assist the agent during evaluation. In contrast, to ensure consistency
in our experimental setup, we standardize the base model of Retrospex to Qwen2.5-7B-Instruct and
exclude these heuristics. Finally, for online RL, we include GRPO (Shao et al., 2024) as a represen-
tative baseline. Further details are provided in Appendix D.

Training Details. Our EMPO2 implementation is based on verl (Sheng et al., 2024), one of the
representative RL-for-LLM libraries. We extended GRPO in verl from a single-step setup to a multi-
step setup and incorporated both a memory module and an off-policy loss calculation component.
We use the same hyperparameter configuration for GRPO and EMPO2. The prompt used is provided
in Appendix B, and implementation details are given in Appendix D.2.
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Table 1: Comparison results of ScienceWorld. Each task in ScienceWorld contains multiple vari-
ants. We use the first five variants for training and evaluate on the 20 unseen test variants. Bold
shows the best performance per task, while red shading marks cases where parametric updates score
lower than non-parametric updates.

Qwen2.5-7B-Instruct
Naive

Non-Parametric Offline RL Online RL
Topic Task Reflexion Retrospex GRPO EMPO2

Chem
istry

chemistry-mix −42.0±38.0 1.2±0.7 20.8±10.0 12.4±3.5 42.7±12.4

chemistry-mix-paint-secondary-color −33.0±47.1 0.0±0.0 27.8±6.3 7.1±2.8 33.3±0.6

chemistry-mix-paint-tertiary-color −33.9±44.3 36.9±5.7 7.6±4.2 42.6±6.2 39.2±8.7

Classi
fication

find-animal −58.2±50.2 39.5±5.8 25.9±13.5 72.4±6.8 100.0±0.0

find-living-thing −65.1±48.1 36.6±6.1 20.6±4.8 68.7±7.1 100.0 ±0.0

find-non-living-thing −35.9±68.6 4.8±2.0 89.1±11.5 24.7±6.4 100.0±0.0
find-plant −47.1±66.2 15.1±3.8 23.0±3.5 46.2±7.9 100.0±0.0

Bio
logy1

identify-life-stages-1 −48.9±65.4 9.2±2.4 19.0±25.7 17.9±4.7 36.2±11.2

identify-life-stages-2 −50.7±65.0 33.8±5.5 11.0±1.7 39.5±6.0 56.3±8.1

Bio
logy2

lifespan-longest-lived −51.8±64.8 44.6±6.5 55.0±15.0 78.2±7.3 100.0±0.0

lifespan-longest/shortest-lived −56.2±63.5 34.1±5.1 38.0±15.0 62.3±6.9 100.0±0.0

life-span-shortest-lived −56.8±63.0 6.1±1.9 67.0±23.8 20.6±4.4 100.0±0.0

Elec
tricity

power-component −90.0±39.4 6.3±1.8 8.2±2.4 15.1±3.9 94.3±3.6

power-component-renewable-vs-
nonrenewable-energy

−85.0±49.8 11.7±2.9 10.0±3.2 24.6±5.5 92.6±0.9

test-conductivity −86.9±42.4 13.2±3.1 60.0±0.0 27.8±6.1 89.5±3.2

test-conductivity-of-unknown-sub −81.7±48.6 2.6±1.0 65.5±23.7 9.5±3.4 71.4±6.3

Measu
rement

measure-melting-point-known-sub −97.5±7.5 11.4±3.0 26.5±16.1 19.8±5.0 27.6±4.2

use-thermometer −83.7±43.6 0.9±0.4 32.5±32.1 7.6±2.5 82.7±13.3

Average -61.3 17.1 33.8 33.2 75.9

Main Results. Table 1 presents the comparison results among baselines. In ScienceWorld, failed
tasks lead to negative rewards, producing returns between -100 and 100. The baseline Qwen2.5-
7B-Instruct obtains an average return of -61.3, which improves to 17.1 when non-parametric RL
(Reflexion) is applied. Offline RL (Retrospex) produces substantial performance gains compared
to them, but in some tasks underperforms compared to non-parametric RL (highlighted in red).
Online RL with GRPO also achieves considerable improvements, and its average performance is
comparable to that of offline RL. However, unlike offline RL, it never underperforms non-parametric
RL, indicating that online RL generalizes better to unseen variants. Our EMPO2 demonstrates
substantially higher learning performance compared to all baselines. Among the tasks that initially
started with negative rewards, seven reached the maximum score of 100. On average, EMPO2

achieved more than twice the performance improvement over GRPO, demonstrating its effectiveness
in greatly enhancing learning efficiency in online RL.

Adaptation in New Tasks with Memory Updates. An agent post-trained on a single task may
exhibit limited ability to generalize to new scenarios. However, EMPO2, which acquires the ability
to explore by leveraging memory, demonstrates significantly stronger adaptability to novel situa-
tions compared to GRPO, which is trained without learning to utilize memory. Figure 8 illustrates
how a model trained on one task adapts when memory is introduced in a new task. In particular,
we demonstrate cases with varying levels of topic difference. For a relatively similar transition, we
examine Biology 1 (identify-life-stages-2) → Biology 2 (life-span-shortest-lived). For a more dis-
tinct transition, we examine Biology 2 (lifespan-longest-lived) → Electricity (test-conductivity), and
Electricity (power-component) → Chemistry (chemistry-mix-paint-secondary-color).

Figure 8: Comparison of GRPO and EMPO2 adapting to new tasks. Step 0 has no memory, while
later steps use accumulated memory as in EMPO2 training.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

As shown in Figure 8, without memory (step 0), EMPO2 achieves stronger baseline performance
on novel tasks than GRPO. When memory is enabled, EMPO2 adapts rapidly, yielding an average
improvement of 136% across three scenarios within 10 steps. GRPO, by contrast, demonstrates
notable gains in some cases but exhibits greater variability and, in other instances, fails to adapt to
unfamiliar tasks. In certain situations, its performance even falls below that of the Qwen2.5-7B-
Instruct base model. Though these findings are preliminary, they indicate that EMPO2 has strong
potential as an RL framework for developing agents that are both more general and adaptable.

6.2 WEBSHOP

WebShop (Yao et al., 2022) is an HTML-based online shopping environment where agents search,
navigate, and purchase items according to user instructions. When the “buy” action is selected, a
final reward is given based on how well the product’s attributes and price match the criteria.

Baselines. For the WebShop experiments, we use the same baselines as in the ScienceWorld
experiments, with the addition of one more online RL baseline, GiGPO (Feng et al., 2025b), as
GiGPO does not cover ScienceWorld but provides benchmarking results on WebShop. The scores
of Naive, Reflexion, GRPO, and GiGPO are taken from Feng et al. (2025b), while Retrospex results
are re-run using the official Retrospex code with the Qwen2.5-7B-Instruct model.

Training Details. The WebShop EMPO2 implementation builds on the official GiGPO (Feng
et al., 2025b) code with the same hyperparameters. Further details are provided in Appendix D.3.

Main Results. Table 2 presents the baseline comparison results on WebShop. Consistent with the
findings in ScienceWorld, EMPO2 once again delivers the strongest performance. Although offline
RL, online GRPO, and GiGPO each outperform non-parametric RL, GiGPO further enhances GRPO
by leveraging additional advantage estimation through grouping similar observations within rollout
groups. Despite these gains, EMPO2 surpasses all baselines, achieving both higher scores and suc-
cess rates than GiGPO. Taken together, these results indicate that EMPO2 consistently demonstrates
superior performance in web-based environments due to its improved exploration.

Table 2: Comparison results of WebShop. Following Feng et al. (2025b), we average results over
three random seeds and report both the mean score and the mean success rate (%). GiGPOw/ std
denotes the use of the normalization factor Fnorm = std, whereas GiGPOw/o std uses Fnorm = 1, as
specified in Feng et al. (2025b). The EMPO2 performance we evaluate is the performance of the
trained model without memory at test time.

Qwen2.5-7B-Instruct Naive Non-Parametric Offline RL Online RL
Reflexion Retrospex GRPO GiGPO w/ std GiGPO w/o std EMPO2

Score 26.4 58.1 73.1±4.1 79.3±2.8 84.4±2.9 86.2±2.6 88.3±2.6
Succ. 7.8 28.8 60.4±3.9 66.1±3.7 72.8±3.2 75.2±3.8 76.9±4.1

6.3 ABLATION STUDY ON MODE COMBINATIONS

Figure 9: Comparison of training curves between EMPO2 and variants that exclude either off-policy
learning or on-policy learning with memory.

As shown in Figure 5, EMPO2 incorporates three mode combinations: on-policy learning with-
out memory, on-policy learning with memory, and off-policy learning, and we further analyze how
leveraging each affects performance on two ScienceWorld tasks, where EMPO2 shows significant
improvements over GRPO. Figure 9 presents training curves comparing EMPO2 with variants that
exclude either off-policy or on-policy learning with memory. As shown in the graphs, removing
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either component results in suboptimal learning, indicating that a balanced integration of on-policy
and off-policy updates is most effective for performance improvement. This highlights their com-
plementary roles: on-policy updates contribute to stable learning, while off-policy updates enable
reasoning as if guided by additional tips, and their combination yields both faster convergence and
stronger final performance.

7 CONCLUSION

In this work, we propose EMPO2, a novel RL method that enhances exploration in parametric RL
by leveraging non-parametric memory updates. EMPO2 integrates both on-policy and off-policy
learning, thereby improving training efficiency and stability. Our experiments demonstrate that
EMPO2 achieves remarkable gains in training efficiency on ScienceWorld and WebShop, and further
shows the ability to adapt rapidly to new domains in a few-shot manner by incorporating additional
memory. An ablation study confirms the importance of the three distinct modes of EMPO2.

While our study demonstrates the potential of EMPO2 as a RL framework for general agents, our
current implementation for memory employs a simple similarity-based search for memory retrieval.
More advanced retrieval mechanisms may further enhance performance. Moreover, although our
experiments primarily utilize Qwen2.5-7B-Instruct, extending EMPO2 to a broader range of model
families and sizes could yield deeper insights into its generality and robustness. In particular, scaling
to larger models may further amplify the benefits of our approach. Beyond model scaling, applying
EMPO2 to new domains such as mathematics, coding, multi-hop question answering, and multi-
modal RL represents an exciting and challenging direction for future research. In addition, exploring
other off-policy techniques beyond importance sampling could be of interest to achieve more stable
and efficient hybrid optimization.

ETHICS STATEMENT

This work evaluates EMPO2 on ScienceWorld and WebShop, which are publicly available research
benchmarks that do not include private data or sensitive information. We complied with dataset
licenses and community standards for responsible use and citation, and no additional data collection
or modification of the environments was performed.

Although our method exhibits strong adaptability in exploration and reasoning tasks, online RL sys-
tems may be misapplied in safety-critical real-world contexts. To reduce such risks, we confine our
study to benchmark environments, and for real-world applications, responses generated by LLMs
will require more careful scrutiny. We hope that future research will further address safety and
broader societal impacts when extending embodied reasoning agents beyond simulation.

REPRODUCIBILITY STATEMENT

We provide detailed training information, including pseudocode in Appendix A, the hyperparame-
ters used in our experiments, the hyperparameters for the baseline experiments, the GPU resources
utilized, and code snippets for the additional components we implemented in Appendix D.
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A PSEUDO CODE

Algorithm 1 presents the pseudocode of EMPO2. Compared to the original GRPO algorithm,
EMPO2 introduces several new components: a memory buffer, and tip retrieval and addition, and
two rollout modes and two update modes.

Algorithm 1 EMPO2: Exploratory Memory-Augmented On- and Off-Policy Optimization

1: Inputs: Initial policy πθold , memory bufferM, task distribution p(U), group size N , batch size B, max
episode length T

2: for each training iteration do
3: {// Multi-step rollout}
4: Sample B tasks u ∼ p(U) and initialize N identical environments (total B ×N )
5: Sample mrollout ∼ {Prompting Without Memory : p, Memory-Augmented Prompting : 1− p}
6: Initialize state s

(i)
0 ← u(i) for i = 0, . . . , B ×N − 1

7: for t = 0 to T − 1 do
8: for i = 0 to B ×N − 1 do
9: if mrollout = Memory-Augmented Prompting then

10: tips t ← Retr(s(i)t ;M)

11: Sample a
(i)
t ∼ πold

θ (· | s(i)t , tips t, u
(i))

12: else
13: Sample a

(i)
t ∼ πold

θ (· | s(i)t , u(i))
14: end if
15: Execute a

(i)
t , observe r

(i)
t , s(i)t+1

16: end for
17: end for
18: for i = 0 to B ×N − 1 do
19: Sample tips ∼ πold

θ (· | s(i), u(i), tip-generation prompt)
20: Append tips toM
21: end for
22: {// Policy update}
23: if mrollout = Memory-Augmented Prompting then
24: Sample mupdate ∼ {On-Policy : q, Off-Policy : 1− q}
25: if mupdate = Off-Policy then
26: for i = 0 to B ×N − 1 do
27: log πθold(a | s

(i)
t , tips t, u

(i))← log πθold(a | s
(i)
t , u(i))

28: end for
29: end if
30: end if
31: Update policy θ using the loss function in Eq. 2.
32: end for

B PROMPTS

The following prompts were used in our experiments. The ScienceWorld and WebShop prompts
were used identically for both the online RL baseline and EMPO2, with the WebShop prompt
adapted from Feng et al. (2025b). The content inside the curly brackets ({}) is dynamically filled
based on the current progress at each episode step.

Tip Generation Prompt

Thanks for your playing. Now you have ended a trajectory and collect some meaningless or valuable
information from the interactions with the environment. Please summary the trajectory, and also sum-
mary what information you get from this trajectory, and how far this trajectory is from fully completing
the task. Please response with only one sentence with only one line, do not include any extra words.
You sentence should be less than 100 words.
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Prompt for ScienceWorld

You have done a few science experiments successfully and below are the action history of your
experiments with similar tasks. Here is 2 examples: {example 1} {example 2} Follow the report of
the two example tasks shown to you previously, try to solve a similar new task.

Task Description: {task description}
All your possible action formats are: {available action description}

If you enter an unfamiliar room for the first time, you can use the action ’look around’ to discover the
objects in it. Items in your inventory: {inventory}

Important! You can only use FOCUS actions on these items: {focus items}. You cannot FO-
CUS on any other things. Please only use FOCUS as required by the task description. Also, please
FOCUS more directly, try not to focus on the container. You could try to explore different actions,
especially when you are not sure what the best action for your current observation.
{current observation}

Prompt for WebShop

You are an expert autonomous agent operating in the WebShop e-commerce environment.

Your task is to: {task description}.

Prior to this step, you have already taken {step count} step(s). Below are the most recent
{history length} observations and the corresponding actions you took: {action history}
You are now at step current step and your current observation is: {current observation}.

Your admissible actions of the current situation are:
[{available actions}].

Now it’s your turn to take one action for the current step.

You should first reason step-by-step about the current situation, then think carefully which ad-
missible action best advances the shopping goal. This reasoning process MUST be enclosed within
<think> </think> tags.

Once you’ve finished your reasoning, you should choose an admissible action for current step
and present it within <action> </action> tags.

C DETAILED EXPLANATION OF IMPORTANCE SAMPLING RATIOS IN POLICY
UPDATES

To further clarify our policy update mechanism, this section details the calculation of the importance
sampling ratio ρθ. The specific calculation depends on whether tips were used during the rollout
and update phases. This leads to three distinct scenarios, as summarized in Table 3. The importance
sampling ratio ρθ is defined as the ratio of the probability of an action under the current policy πθ

to its probability under the old policy πθold , used to correct for the distributional shift in off-policy
learning.

Table 3: Calculation of the importance sampling ratio ρθ for different policy update modes. The
ratio is computed as ρθ = πθ(at|·)

πθold (at|·) , which in practice is often calculated using log-probabilities.

Update Mode Rollout Condition Current Log Prob Old Log Prob
Regular On-Policy No tips log πθ(at | st, u) log πθold(at | st, u)
On-Policy w/ Tips With tips t log πθ(at | st, u, tips t) log πθold(at | st, u, tips t)

Off-Policy With tips t(rollout) log πθ(at | st, u) log πθold(at | st, u, tips t)
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The three update modes shown in the table cover all scenarios. An update is considered on-policy
when the policy used to generate actions (πθold ) and the policy being updated (πθ) are conditioned
on the same information. This applies to the first two modes:

• Regular On-Policy: This is the standard on-policy update. The conditioning context for
both the current and old policies is identical (st, u), with no tips involved.

• On-Policy w/ Tips: This mode is also on-policy because both policies are consistently
conditioned on the provided tips (st, u, tips t).

The Off-Policy update is the key mechanism through which the model learns from external guid-
ance. In this scenario, actions are sampled from the old policy augmented with tip information:
πθold(· | st, u, tips t). Consequently, the old log-probabilities are computed using this tip-conditioned
policy. However, to “internalize” this guidance, the current log-probabilities for the new policy πθ

are recomputed without the tips, using only πθ(at | st, u). This mismatch in conditioning between
the new and old policies makes the update off-policy and allows the base policy to absorb the knowl-
edge contained in the tips.

D EXPERIMENTS DETAILS

D.1 RETROSPEX

In Retrospex (Xiang et al., 2024), the base models differ by environment: Flan-T5-Large (Chung
et al., 2024) is used for ScienceWorld, while Llama-3-8B-Instruct (Grattafiori et al., 2024) is used for
WebShop. To ensure consistency in our experiments, we standardized the base model to Qwen2.5-
7B-Instruct. For this purpose, we utilized the offline trajectories provided by Retrospex and con-
ducted SFT with LLaMA-Factory (Zheng et al., 2024). For the IQL (Kostrikov et al., 2022) Q-
function, we employed the model released by Retrospex. During SFT training, we tuned the hy-
perparameters over learning rates 1.0× 10−5, 5.0× 10−5, 1.0× 10−6 and epochs 3, 8, and adopted
the configuration that yielded the best performance. Each run was conducted using two NVIDIA
A100 GPUs with 80GB memory.

Moreover, in our Retrospex ScienceWorld evaluation, we remove human-designed heuristics to re-
duce reliance on manual rules. Retrospex normally skips any “focus on” action unless repeated three
times or explicitly mentioned in the task, and replaces step-by-step “go to” actions with direct “tele-
port” moves. Removing these heuristics ensures the evaluation better reflects the agent’s inherent
capabilities.

D.2 ONLINE RL: SCIENCEWORLD

We base our EMPO2 implementation on the GRPO framework provided in verl (Sheng et al., 2024),
while introducing the following key modifications:

• Multi-step implementation: In the original GRPO implementation in verl, an LLM rollout termi-
nates after generating a single response to a given problem. We extend this to a multi-step setting,
where the agent continues interacting with the environment until either a maximum episode length
is reached or the environment issues a termination signal. This modification allows the agent to
perform sequential reasoning and adapt its responses across turns.

• Memory buffer integration: To support EMPO2’s memory-based mechanism, we incorporate
an explicit memory buffer. During multi-step rollouts, the agent can retrieve tips from memory
and append newly generated tips to it. The code snippet for this part is as follows:

# Memory compression and storage utilities
def do_compress(text):

response = requests.post("http://127.0.0.1:8000/key_cal/", json={"text": text})
return response.json()

def retrieve_memory(idx, key):
response = requests.post("http://127.0.0.1:8001/mem/", json={"key": key, "idx": idx})
return response.json()

def add_memory(idx, key, content, score):
requests.post("http://127.0.0.1:8001/mem/", json={
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"key": key, "idx": idx, "content": content, "score": score
})

# Use memory retrieval depending on training phase
if phase in ["on-policy-with-memory", "off-policy"]:

text = " ".join([f"{c[’role’]}: {c[’content’]}" for c in pure_chats[i]])
key = np.array(do_compress(text)[’key’]).reshape(-1,).tolist()
count, mem_list = retrieve_memory(random_var, key)

else:
count, mem_list = 0, []

Listing 1: Implementation of memory buffer integration.

• Off-policy log probability refinement: To support off-policy updates, we introduce off-policy
log probability refinement. For each action region, the on-policy log probabilities are replaced
with their off-policy counterparts. The code snippet for this part is as follows:

# Create an off-policy batch by replacing inputs
off_policy_batch = deepcopy(batch)
off_policy_batch.replace_inputs_with_off_policy()

# Compute log probabilities for both on- and off-policy data
off_policy_log_probs = actor.compute_log_prob(off_policy_batch)
on_policy_log_probs = actor.compute_log_prob(batch)

# For each action region, update the original log probs
# with corresponding off-policy values
for gen_id in range(num_generations):

for region in action_regions[gen_id]:
loc_l, loc_r = region.on_policy_range
loc_l_off, loc_r_off = region.off_policy_range
range_len = loc_r_off - loc_l_off

# substitute log probs with off-policy values
on_policy_log_probs[gen_id, loc_l:loc_l+range_len] = \

off_policy_log_probs[gen_id, loc_l_off:loc_l_off+range_len]

# Update the batch with refined log probs
batch.update_log_probs(on_policy_log_probs)

Listing 2: Implementation of off-policy log probability refinement.

Hyperparameters. All online RL algorithms (GRPO, EMPO2) use the same hyperparameter
configuration. The maximum response length is set to 4,500 tokens, and each episode is limited to
30 steps. The actor learning rate is configured as 1 × 10−6. For GRPO, the group size is fixed at
8, and the mini-batch size is 16. The KL-divergence loss coefficient is set to 0.0. In addition, the
actor rollout parameters are specified as follows: the clipping upper bound is set to 0.30, the clipping
lower bound to 0.20, and the clipping ratio coefficient to 10.0.

Computing Resources. All experiments were conducted using eight NVIDIA A100 40GB GPUs.

D.3 ONLINE RL: WEBSHOP

We base our EMPO2 implementation on the GRPO framework provided in verl-agent (Feng et al.,
2025b), and the modifications for EMPO2 are the same as those described in Appendix D.2.

Hyperparameters. All online RL algorithms (GRPO, GiGPO, EMPO2) use the same hyperpa-
rameter configuration, following Feng et al. (2025b). The maximum response length is set to 512
tokens, and each episode is limited to 15 steps. The actor learning rate is configured as 1 × 10−6.
For GRPO, the group size is fixed at 8. The rollout temperature is set to 1.0, while the validation
temperature is set to 0.4. The mini-batch size is 64, and the KL-divergence loss coefficient is 0.01.
Finally, the discount factor γ is set to 0.95.

Computing Resources. All online RL experiments were conducted using eight NVIDIA A100
GPUs (40GB each).
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E QUALITATIVE ANALYSIS ON TIPS

E.1 MORE EXAMPLES OF GENERATED TIPS

Following the example of the generated tips in Section 4.1, below are more detailed examples of
how the tips evolve as the task progresses.

ScienceWorld <power-component> task

You focused on the red light bulb but did not complete the task of turning on the red light bulb. You
are in the hallway and need to find a way; At that timestep, The specific action your took was focus
on red light bulb. score -100.0

Trajectory far from completion; connected battery to red wire but not in correct configuration;
gained insights on available objects but missed key steps in circuit creation.; At that timestep, The
specific action your took was connect battery cathode to red wire terminal 1. score 0.0

Connected green wire to green light bulb but did not find the battery to complete the circuit.
Trajectory is incomplete as the task requires powering the green light bulb.; At that timestep, The
specific action your took was connect battery to green wire terminal 1, connect green wire terminal 2
to green light bulb, connect red wire terminal 1 to battery. score 7.0

Connected green wire to green light bulb, but task not fully completed due to missing battery
connection.; At that timestep, The specific action your took was connect green wire to green light
bulb. score 13.0

Task incomplete, terminal connections incorrect; got red wire, battery, and red light bulb, but
terminal connections not successfully made to power red light bulb.; At that timestep, The specific
action your took was connect battery cathode to red wire terminal 1. score 27.0

I persisted in connecting the green wire to the green light bulb but the circuit was interrupted
by other wires, affecting the task completion.; At that timestep, The specific action your took was
connect green wire terminal 2 to green light bulb. score 33.0

You moved to the workshop, connected the circuit, but the green light bulb is still not powered
on due to the lack of a power source and proper connections.; At that timestep, The specific action
your took was turn on green light bulb. score 83.0

The green light bulb was turned on, but the door to the workshop was closed repeatedly.; At
that timestep, The specific action your took was open door to workshop. score 83.0
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ScienceWorld <chemistry-mix-paint-secondary-color> task

You moved to the greenhouse but did not find the necessary materials to create green paint, indicating
the task cannot be completed with the current information and location.; At that timestep, The specific
action your took was go to kitchen. score -100.0

Failed to execute the task due to unknown actions; collected information about paint colors
and mixing process but unable to complete the task of creating green paint.; At that timestep, The
specific action your took was pour cup containing yellow paint in art studio in bowl, pour cup
containing blue paint in art studio in bowl, mix bowl. score 0.0

Failed to find a way to the kitchen or other useful areas; picked up an orange but it’s not suit-
able for making green paint. At that timestep, The specific action your took was open door to kitchen.
score 10.0

Failed to create green paint; mixed blue and yellow paint but action was ambiguous. Col-
lected info on room layout and objects but not sufficient to complete task.; At that timestep, The
specific action your took was open door to workshop. score 30.0

The agent attempted to pour yellow paint into the bowl in the art studio but could not find the
appropriate action, indicating a need to directly interact with the paint containers; At that timestep,
The specific action your took was pour cup containing yellow paint in art studio in bowl and pour cup
containing blue paint in art studio in bowl and mix bowl. score 40.0

The task is to create green paint by mixing blue and yellow paint, but I repeatedly tried to
pour blue paint into the bowl without success.; At that timestep, The specific action your took was
pour cup containing blue paint in art studio in bowl. score 40.0

Created green paint by mixing yellow and blue paint, but focus action was unnecessary as the
paint was already in the bowl. At that timestep, The specific action your took was pour cup containing
yellow paint in art studio in bowl. score 80.0
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E.2 EFFECTS OF TIPS ON EXPLORATION BEHAVIOR

This section provides a qualitative analysis of how tips promote exploration.

ScienceWorld <power-component> task

[Without Memory]

Task: Your task is to turn on the red light bulb.
First, focus on the red light bulb. Then, create an
electrical circuit that powers it on.
Observation : This room is called the hallway. In
it, you see:
- the agent
- a picture
You also see:
- A door to the workshop (that is open)
...
Action : focus on red bulb

# Task Failed

[With Memory-Augmented Prompting]

Task: Your task is to turn on the red light bulb.
First, focus on the red light bulb. Then, create an
electrical circuit that powers it on.
Observation : This room is called the hallway. In
it, you see:
- the agent
- a picture
You also see:
- A door to the workshop (that is open)
...
tips : Here are some memories you collected in
your previous exploration:
Focus on red light bulb but cannot find it in the
hallway.; At that timestep, the specific action
your took was focus on red light bulb; Eventually
you got the score -100.0/100.
Action : go to workshop
Observation : You move to the workshop.
...

ScienceWorld <chemistry-mix-paint-secondary-color> task

[Without Memory]

Task: Your task is to use chemistry to create
green paint. When you are done, focus on the
green paint.
Observation : This room is called the hallway. In
it, you see:
- the agent
- a picture
You also see:
- A door to the art studio (that is open)
...
Action : pour cup containing yellow paint in
hallway in bowl

# Task Failed

[With Memory-Augmented Prompting]

Task: Your task is to use chemistry to create
green paint. When you are done, focus on the
green paint.
Observation : This room is called the hallway. In
it, you see:
- the agent
- a picture
You also see:
- A door to the art studio (that is open)
...
tips : Here are some memories you collected in
your previous exploration:
Need to find a green pigment or mixture to create
green paint.; At that timestep, the specific action
your took was pour cup containing yellow paint
in hallway in bowl; Eventually you got the score
-100.0/100.
Need to find a green pigment or mixture to
create green paint.; At that timestep, the specific
action your took was open door to art studio;
Eventually you got the score -100.0/100.
Action : go to art studio
Observation : You move to the art studio.
...
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As shown in the examples above, an agent without memory tends to repeat the same mistakes be-
cause it cannot incorporate feedback from previous failures into future attempts. In contrast, with
memory-augmented prompting, the agent can refer to its past unsuccessful attempts, use them as
guidance, and actively avoid repeating those errors. This enables the agent to explore novel and
more effective behaviors, ultimately expanding its search capabilities and boosting learning perfor-
mance.

F MORE ABLATION STUDY

F.1 MODE SELECTION PROBABILITY

As discussed in Section 4.2, EMPO2 employs a memory-rollout probability p during the rollout
phase and an off-policy update probability q during the update phase. We conduct comprehensive
ablation studies to systematically investigate the effects of these hyperparameters p and q.

(a) (b)

Figure 10: (a) EMPO² learning curves with varying p, (b) with varying q

Ablation on p (Memory Rollout Probability): We evaluated p ∈ {0.3, 0.6, 0.9} on the
chemistry-mix-paint-secondary-color task. When p = 0.9, performance degrades
significantly because EMPO2 effectively collapses to GRPO, confirming the importance of mem-
ory. Both p = 0.3 and p = 0.6 show faster initial learning due to more aggressive knowledge
internalization, although p = 0.3 exhibits minor fluctuations in the later stages. Our choice of
p = 0.75 provides stable convergence across diverse tasks.

Ablation on q (Off-Policy Update Probability): We tested q ∈ {0.05, 0.15, 0.5, 0.70} on the
power-component task. Extreme values (q = 0.05 or q = 0.70) underperform: very small
q overemphasizes distillation at the expense of training the memory policy, while large q slows
knowledge internalization. Notably, q = 0.15 achieves faster early exploration than our default q =
1/3. This aligns with our expectations, as the default hyperparameters prioritize overall robustness
rather than task-specific optimization. Therefore, it is natural that more optimal settings exist for
particular tasks, highlighting the robustness of EMPO² within a reasonable hyperparameter range.

These results confirm that EMPO2 performs effectively across a broad hyperparameter range
(p ∈ [0.6, 0.75], q ∈ [0.15, 0.5]). Our default settings represent a well-balanced configuration that
generalizes across multiple tasks without task-specific tuning, while the algorithm remains adaptable
when further optimization is desired.

F.2 ROLE OF INTRINSIC REWARD

To further investigate the role of the intrinsic reward in our proposed algorithm, EMPO², we conduct
an ablation study to examine its impact. We compare our full method against variants with different
intrinsic reward coefficients (0.5× and 2×), a complete removal of the intrinsic reward, and its re-
placement with a standard exploration bonus based on Random Network Distillation (RND) (Burda
et al., 2018a). For the RND baseline, we adopt the same hyperparameter configuration as in the
original work. The results of these experiments are presented in Figure 11.
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Figure 11: EMPO2 learning curves with different intrinsic reward configurations on ScienceWorld
chemistry-mix-paint-secondary-color task. We compare our full method against four
variants: scaling the intrinsic reward coefficient by 0.5× and 2×, substituting it with a Random
Network Distillation (RND) bonus, and its complete removal (w/o Intrinsic Reward).

Altering the intrinsic reward’s scale mainly affects the learning dynamics. A smaller coefficient
(0.5×) leads to a smoother but slower convergence, whereas a larger one (2×) introduces minor in-
stabilities. Notably, all variants using an intrinsic reward—including the RND-based one—converge
to a similar level of final performance. However, removing the intrinsic reward entirely causes learn-
ing to plateau at a lower level, suggesting its necessity in preventing the policy from collapsing into
homogeneous behaviors by encouraging sufficient exploration. Overall, these results indicate that
EMPO² is robust to the specific mechanism and scale of the intrinsic reward, which primarily influ-
ence the stability and speed of learning rather than the final outcome.

G ANALYSIS OF COMPUTATIONAL COST

G.1 COST ANALYSIS OF MEMORY-AUGMENTED ROLLOUTS

Figure 12: A breakdown of the
time each component spends dur-
ing the rollout of each training
step.

We analyzed the additional computational overhead introduced by
the memory mechanism in EMPO². During the rollout phase, this
mechanism incurs extra costs related to tip generation, retrieval,
and storage. For the analysis, we conducted experiments using the
Qwen2.5-7B-Instruct model on 8 A100 40GB GPUs.

As reported in Figure 12, the memory mechanism adds approxi-
mately 50.4 seconds per iteration, which accounts for about 19%
of the total rollout time. Among these, tip generation and the sub-
sequent storage of tips in memory account for a substantial por-
tion of the cost. Therefore, while we have verified that the mem-
ory mechanism substantially aids exploration and significantly im-
proves learning efficiency, it is more desirable to internalize these
benefits within the model parameters themselves rather than relying on the mechanism continu-
ously—both to enhance the model’s inherent capabilities and to improve overall efficiency.

G.2 COST ANALYSIS OF TOTAL TRAINING TIME

Figure 13: Time–performance
curves for EMPO2 and
GRPO on ScienceWorld
power-component task.

Compared to GRPO, the training time of EMPO2 is primarily influ-
enced by two factors:

• The memory component: As discussed in the previous section,
the memory component accounts for 19% of the total rollout time.
Since memory-augmented prompting is selected with probability
(1 − p = 0.25) (as described in Section 4.2), this implies that, on
average, 19% of the rollout time is incurred with a 25% probabil-
ity.

• The response length: In LLM-based RL training, rollout time
constitutes a major portion of the total cost. As the response
length increases, the rollout itself becomes slower, and the time
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required for log-probability computation and actor updates in-
creases accordingly. In our experiments, we found that the response length of EMPO2 is generally
longer than that of GRPO. We attribute this to the model spending more time reasoning and ex-
ploring when given the tips, which we believe enhances its exploration behavior and ultimately
improves performance.

To ensure a fair comparison with GRPO from a training-time perspective, we plot the performance
in Figure 13 using training time on the x-axis. The results show that, even under this perspective,
EMPO2 exhibits substantially higher efficiency than GRPO.

H THE USE OF LARGE LANGUAGE MODELS

We used a LLM to polish the writing of the manuscript. The LLM was not employed in any aspect
of research ideation, experimental design, or analysis.
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