

EXPLORATORY MEMORY-AUGMENTED LLM AGENT VIA HYBRID ON- AND OFF-POLICY OPTIMIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Exploration remains the key bottleneck for large language model agents trained with reinforcement learning. While prior methods exploit pretrained knowledge, they fail in environments requiring the discovery of novel states. We propose **Exploratory Memory-Augmented On- and Off-Policy Optimization (EMPO²)**, a hybrid RL framework that leverages memory for exploration and combines on- and off-policy updates to make LLMs perform well with memory while also ensuring robustness without it. On ScienceWorld and WebShop, EMPO² achieves 128.6% and 11.3% improvements over GRPO, respectively. Moreover, in out-of-distribution tests, EMPO² demonstrates superior adaptability to new tasks, requiring only a few trials with memory and no parameter updates. These results highlight EMPO² as a promising framework for building more exploratory and generalizable LLM-based agents.

1 INTRODUCTION

Large Language Models (LLMs) have recently emerged as powerful agents capable of reasoning, planning, and interacting with external environments (Achiam et al., 2023; Park et al., 2023; Yao et al., 2023; Kim et al., 2025). When combined with reinforcement learning (RL), such agents can adapt their behavior based on experience and feedback, enabling them to go beyond static prompting or supervised fine-tuning (Guo et al., 2025; Tan et al., 2024). This paradigm has driven recent progress in areas such as interactive decision-making, tool use, and embodied AI (Feng et al., 2025b; Lu et al., 2025b; Feng et al., 2025a; Dong et al., 2025; Luo et al., 2025).

However, a key limitation of current LLM-based agents lies in their reliance on exploiting prior knowledge rather than engaging in systematic exploration. While RL frameworks emphasize balancing exploration and exploitation, many LLM-agent systems primarily leverage pretrained knowl-

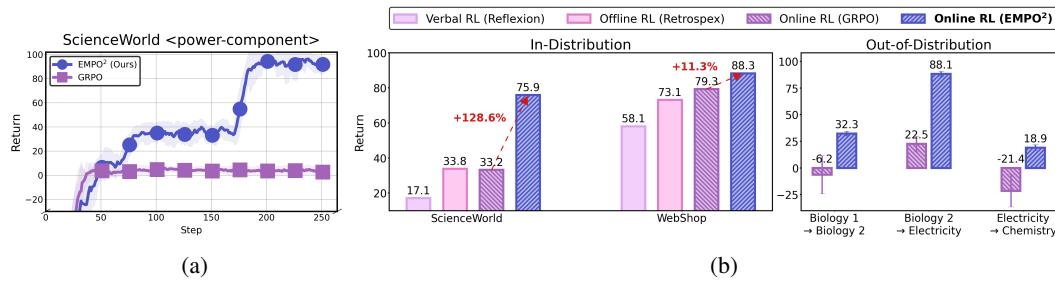


Figure 1: (a) **Comparison of the learning curves of GRPO and EMPO² (ours)** on the ScienceWorld power-component task. While GRPO converges to suboptimal performance, EMPO² continues to improve and accomplish the task. (b) **Comparison of EMPO² and other baselines in in-distribution (ID) and out-of-distribution (OOD) settings** on and WebShop. In ID experiments, it adapts well to familiar environments, achieving **128.6% on ScienceWorld** and **11.3% on Webshop** improvements over GRPO. In OOD experiments, it also shows strong performance with few trials and no weight updates, indicating effective use of memory to explore unfamiliar environments. Full results are in Tables 1, 2, and Figure 8.

edge and conduct only limited search within familiar distributions. As a result, these agents often struggle in environments where progress depends on discovering novel states or actively acquiring new information, rather than reusing what is already known.

To address this challenge, recent research has incorporated external memory modules into LLMs as a form of long-term memory. This enables models to leverage past experiences to correct failed attempts, thereby improving decision-making in subsequent trials without requiring parameter updates (Shinn et al., 2023; Zhang et al., 2023). However, as noted in Zhang et al. (2023), the performance of such methods tends to saturate quickly, since collecting experiences with static parameters cannot fully capture the diversity needed for continuous improvement.

In this work, we present a unified framework that enables LLM agents to learn more effectively through broader exploration by jointly updating their **parametric policy parameters** with RL and their **non-parametric memory module** through interaction. Crucially, the non-parametric updates not only complement but also enhance the efficiency of parametric learning, thereby enabling more effective exploration and adaptation. This dual-update paradigm serves as a bridge between parameter-level optimization and memory-augmented reasoning. While memory is utilized during learning, moving toward more generalizable intelligence requires reducing dependence on external memory and instead embedding its benefits directly into the model’s parameters. To this end, we propose **Exploratory Memory-Augmented On- and Off-Policy Optimization** (EMPO²), a new hybrid RL algorithm that incorporates two modes in the rollout phase—depending on whether memory is used—and two modes in the update phase—on-policy and off-policy learning—thereby enabling agents to leverage memory when available while remaining robust in its absence.

In our experiments, we evaluate EMPO² on two widely used multi-step embodied reasoning environments that require exploration to solve complex tasks: ScienceWorld (Wang et al., 2022) and WebShop (Yao et al., 2022). We compare its performance against a range of non-parametric and parametric (offline and online) RL approaches. As summarized in Figure 1, EMPO² substantially outperforms prior algorithms, achieving a 128.6% improvement on ScienceWorld and an 11.3% improvement on WebShop over the strong online RL baseline GRPO. The training curve in Figure 1 (a) further shows that, unlike GRPO, which converges prematurely to a suboptimal solution, EMPO² leverages continuous exploration and successfully solves the task. Moreover, for the OOD experiments (Figure 1, rightmost), the model also achieves good scores with only a few trials and no weight updates, indicating that the updated model has acquired the ability to use memory to explore unseen or unfamiliar environments. These results highlight EMPO² as a promising direction for building more adaptive and generalizable embodied agents.

2 PRELIMINARIES

Online RL consists of alternating between a rollout phase, in which trajectories are generated using the current policy π parameterized by θ , and an update phase, in which the policy is optimized based on those rollouts.

Policy Rollout. We consider a setting where, given a sampled task $u \sim p(\mathcal{U})$, an LLM agent solves the task through multi-step interactions with the environment. Starting from task u , the LLM π_θ generates the first natural-language action $a_1 \sim \pi_\theta(\cdot | u) \in \mathcal{A}$. Executing this action, the environment returns a reward r_1 and the next state s_1 . At a general timestep t , conditioned on the current state s_t and the task u , the policy produces the next action $a_{t+1} \sim \pi_\theta(\cdot | s_t, u)$. This interaction loop continues until the task is completed or a maximum number of steps is reached. A rollout trajectory is thus defined as the sequence of states, actions, and rewards, $\tau = (u, a_1, r_1, s_1, a_2, r_2, \dots, s_T)$.

Group Relative Policy Optimization. Group Relative Policy Optimization (GRPO) (Shao et al., 2024) updates the policy by comparing multiple rollouts of the same task u , removing the need for the value function in PPO (Schulman et al., 2017). Given a task u , the policy π_θ generates N rollout trajectories $\{\tau^{(1)}, \dots, \tau^{(N)}\}$. Each trajectory receives a return $\{R^{(1)}, \dots, R^{(N)}\}$, defined as the sum of rewards along the trajectory: $R^{(i)} = \sum_{t=1}^T r_t^{(i)}$. For each action $a_t^{(i)}$ taken in trajectory $\tau^{(i)}$,

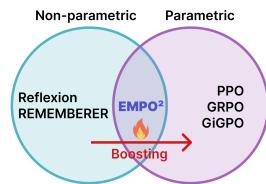


Figure 2: Non-parametric updates can encourage exploration, bootstrapping parametric updates.

108 we define its relative advantage as: $A(a_t^{(i)}) = \frac{R^{(i)} - \frac{1}{N} \sum_{j=1}^N R^{(j)}}{\sigma(R)}$, where actions from trajectories
 109 with higher-than-average reward obtain positive advantage, while those from lower-performing ones
 110 obtain negative advantage. The GRPO loss is then:
 111

$$\mathbb{E}_{\substack{u \sim p(\mathcal{U}) \\ \{\tau^{(i)}\}_{i=1}^N \sim \pi_{\theta_{\text{old}}}}} \left[\frac{1}{NT} \sum_{i=1}^N \sum_{t=1}^T \min \left(\rho_{\theta}(a_t^{(i)}) A(a_t^{(i)}), \text{clip}(\rho_{\theta}(a_t^{(i)}), 1 - \epsilon, 1 + \epsilon) A(a_t^{(i)}) \right) \right] \\ - \beta D_{\text{KL}}(\pi_{\theta}(\cdot|u) \parallel \pi_{\text{ref}}(\cdot|u)), \quad (1)$$

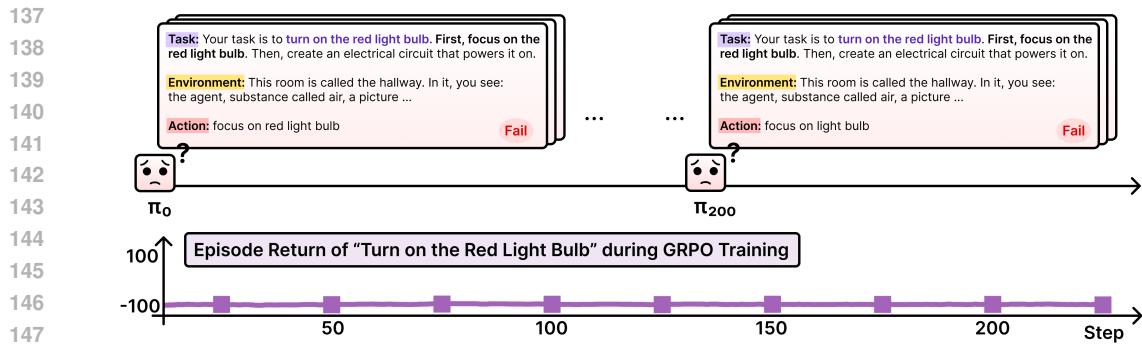
112 where $\rho_{\theta}(a_t^{(i)}) = \frac{\pi_{\theta}(a_t^{(i)}|s_t^{(i)}, u)}{\pi_{\theta_{\text{old}}}(a_t^{(i)}|s_t^{(i)}, u)}$, with $\beta \geq 0$ controlling the regularization strength toward a refer-
 113 ence policy π_{ref} .
 114

115

116 3 THE EXPLORATION PROBLEM OF LLM AGENTS

117 LLMs encode rich prior knowledge, but such priors often fail to reflect the actual rules or dynamics
 118 of a given environment. Blind reliance on these priors can lead to erroneous behaviors, making it
 119 necessary for agents to adapt through direct interaction and trial-and-error. A key requirement for
 120 such adaptation is **exploration**, which involves seeking information beyond pre-training, sometimes
 121 by taking atypical or counterintuitive actions. However, current LLM-based agents struggle with this
 122 (Qiao et al., 2024; Zhou et al., 2024), as it demands stepping outside the distribution of behaviors
 123 where the model feels most confident.
 124

125 Consequently, many prior studies have sought to align agents with new environments through warm-
 126 start supervised fine-tuning (SFT) using numerous golden trajectories (Song et al., 2024; Qiao et al.,
 127 2024; Xiang et al., 2024), leveraging large-scale models such as GPT-4 (Tang et al., 2024; Lin et al.,
 128 2023), or employing human engineering or well-established simulation information (Choudhury &
 129 Sodhi, 2025). While these methods achieve strong results in constrained settings, their effectiveness
 130 is limited to cases where such external support is available, and they generalize poorly to unseen
 131 scenarios without it.
 132



140 Figure 3: **When training LLM with GRPO in ScienceWorld, the agent struggles because of**
 141 **insufficient exploration.** For instance, in the task “turn on the red light bulb,” the agent must first
 142 find the red light bulb before activating it. However, the agent fails to locate it and, as a result, cannot
 143 complete the task. Rather than analyzing the cause of failure and exploring alternative actions,
 144 the agent proceeds unchanged, so its score stagnates even as additional training steps are taken.
 145

146 Therefore, we focus on how to efficiently train agents in online RL through trial and error, with-
 147 out any prior embedding of the environment’s rules. The key challenge is that, without intrinsic
 148 exploration capability, online RL struggles to optimize effectively. As illustrated in Figure 3, in
 149 ScienceWorld (Wang et al., 2022) environment the agent is given the mission “turn on the red light
 150 bulb.” The instructions specify that the agent should first focus on the light bulb and then build a
 151 circuit to activate it, based on the current room observation. However, since no red light bulb is
 152 present in the observation, the agent must search the environment to locate it. Instead, the agent
 153 follows the instruction literally, attempts to focus on the red light bulb, and fails because it does not
 154 exist in the room. Ideally, when an agent fails to reach its goal, it should analyze the reasons for
 155

failure and broaden its action space to discover successful strategies. Yet in representative online RL algorithms GRPO (Shao et al., 2024), prior trajectory rollouts provide no continuity beyond a scalar reward signal, thereby restricting exploration and ultimately limiting learning.

4 METHOD

In this section, we present Exploratory Memory-augmented On- and Off-Policy Optimization (EMPO²), a novel algorithm aimed at tackling the exploration challenges in online RL. EMPO² operates in two modes for both rollout phase and update phase. During rollout, actions can be generated either through (1) **prompting without memory**, where no retrieved information is used, or (2) **memory-augmented prompting**, conditioned on **tips** retrieved from memory. In the update phase, rollouts with memory-augmented prompting are used in two ways: (a) **on-policy**, where tips are retained and the update is performed with the original prompt, and (b) **off-policy**, where tips are removed during update. Notably, tips are generated not by a separate model but by the policy π_θ itself, which is continually updated during training. The full algorithm is provided in Appendix A.

4.1 ADVANCING EXPLORATION WITH SELF-GENERATED MEMORY

A key component of EMPO² is its use of memory to maintain continuity across rollouts. Information obtained from an agent’s interactions can be encoded into parameters through policy optimization, but it can also be recorded in an external memory that the agent continuously consults. Since our policy is initialized from a pretrained LLM with inherent summarization and reflection abilities, these abilities can be leveraged as auxiliary signals in addition to scalar rewards, thereby guiding exploration more effectively. To realize this, EMPO² integrates both **parametric** (parameter updates within the LLM) and **non-parametric** (external memory) updates, strengthening the linkage between rollouts and promoting exploration, with all data and guidance generated autonomously by the agent.

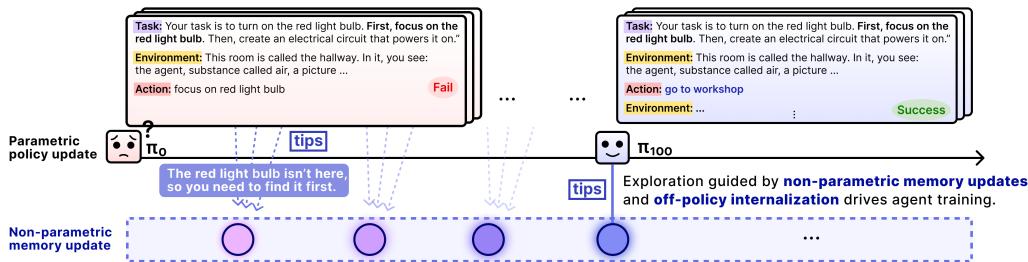


Figure 4: In EMPO², the current policy parameters π_θ are used to review past rollouts, with the resulting insights added to memory. This updated memory conditions subsequent rollouts and promotes exploration.

In the non-parametric updates, similar to Reflexion (Shinn et al., 2023), the agent reviews past rollouts, generates self-guidance **tips**, and stores them in memory. These tips help the agent avoid repeated mistakes and explore new strategies. Unlike Reflexion, focuses on iterative verbal guidance to achieve higher rewards in the next trial, our approach aims for these tips to lead to enhanced exploration that is ultimately consolidated through parametric updates.

Self-Generated Memory and Tips. We define a memory buffer $\mathcal{M} = \{tip_1, tip_2, \dots\}$, which stores reflective tips generated by the policy π_θ during trajectory reflection. Formally, when an episode i of task u terminates at timestep t , the policy takes the final state s_t together with a tip-generation prompt as input and produces a tip, where $tip_i \sim \pi_\theta(s_t, u, \text{tip-generation prompt})$. A set of illustrative examples is provided below, while the tip-generation prompt is presented in Appendix B, and additional examples are included in Appendix E.1.

216

217 Examples of Generated Tips – ScienceWorld <power-component> task

218

- You moved between the kitchen and bathroom but did not find a green wire or a green light bulb to connect.
- You focused on the red light bulb but did not complete the task of turning on the red light bulb. You are in the hallway and need to find a way.
- The trajectory involves connecting the battery to the green wire terminals to power the green light bulb, but the connections to air and other objects are irrelevant.
- The circuit for the green light bulb was partially connected but still missing the battery connection; the task is not fully completed.

225

226

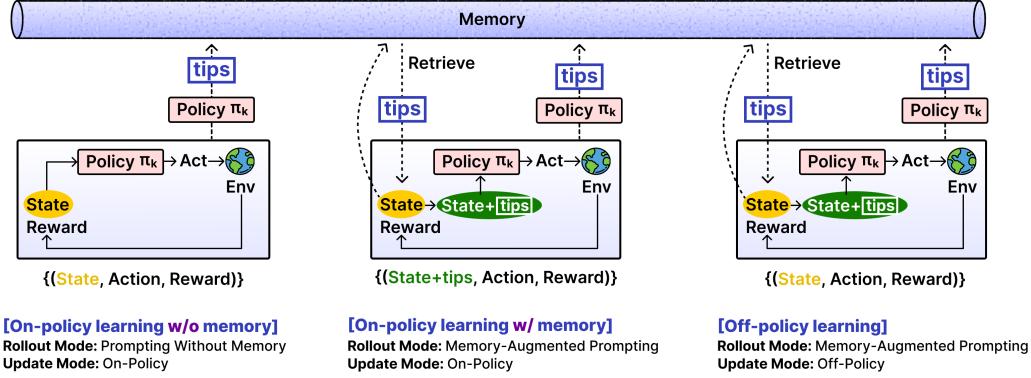
227 4.2 PARAMETERIZE NON-PARAMETRIC UPDATES VIA HYBRID POLICY OPTIMIZATION

228

229 Agents can use memory to improve exploration and learning efficiency, but the acquired knowledge
 230 needs be internalized into model parameters to enhance inherent capabilities. To this end, we pro-
 231 pose two modes for the rollout and update phases, whose combinations yield three hybrid learning
 232 modes (Figure 5).

233

234



246

247 Figure 5: **EMPO² mode combinations.** By combining the two rollout modes and update modes,
 248 three EMPO mode configurations are possible: on-policy learning without memory, on-policy learn-
 249 ing with memory and off-policy learning.

250

251

252 **Rollout Modes.** During rollouts, the agent samples between the two modes, selecting mode (1)
 253 with probability p and mode (2) with $1 - p$. In our experiment, we set $p = 0.75$. The ablation study
 of p can be found in Appendix E.1.

254

- (1) **Prompting Without Memory.** For each task u , at each timestep t , the policy π_θ generates actions conditioned only on the current state s_t and the task u : $a_{t+1} \sim \pi_\theta(\cdot | s_t, u)$.
- (2) **Memory-Augmented Prompting.** For each task u , at each timestep t , a retrieval operator $\text{Retr}(o_t; \mathcal{M}) \subseteq \mathcal{M}$ selects tips most relevant to the current state s_t , e.g., via similarity search in the embedding space. We denote the retrieved set as $[\text{tips}]_t$. In memory-augmented prompting, the policy conditions its action on both s_t and $[\text{tips}]_t$: $a_{t+1} \sim \pi_\theta(\cdot | s_t, u, [\text{tips}]_t)$. We limit the number of retrieved tips at 10.

261

262

263 **Update Modes.** Trajectories generated under rollout mode (1) are directly used for updates,
 264 whereas those generated under rollout mode (2) — memory-augmented prompting — follow one
 265 of two update modes chosen at random during the update phase. In our experiments, mode (a) is
 266 selected with probability $q = 1/3$, and mode (b) with probability $1 - q$. The ablation study of q can
 be found in Appendix E.1.

267

268

269

- On-Policy Updates.** On-policy update uses the same prompt as in the rollout, and $\rho_\theta(a_t^{(i)})$ in eq.1 becomes $\rho_\theta(a_t^{(i)}) = \frac{\pi_\theta(a_t^{(i)} | s_t^{(i)}, u, [\text{tips}]_t)}{\pi_{\theta_{\text{old}}}(a_t^{(i)} | s_t^{(i)}, u, [\text{tips}]_t)}$.

(b) **Off-Policy Updates.** In this mode, the stored log-probabilities $\ell_t^{\text{tips}} = \log \pi_\theta(a_t | s_t, u, \text{tips}_t)$ are replaced with the log-probabilities assigned by the same policy π_θ when conditioned only on (s_t, u) , namely $\ell_t^{\text{no-tips}} = \log \pi_\theta(a_t | s_t, u)$. In this formulation, the advantage update is performed based on how natural the action appears under the distribution without tips. This construction can be interpreted as a form of **reward-guided knowledge distillation**. Trajectories sampled under the tips-conditioned policy act as teacher demonstrations, while the student policy $\pi_\theta(\cdot | s, u)$ is updated to reproduce those trajectories in proportion to their advantage. High-reward trajectories ($\hat{A}_t > 0$) are reinforced, while low-reward trajectories ($\hat{A}_t < 0$) are suppressed, resulting in selective distillation that emphasizes beneficial behaviors. In this way, tips serve as an intermediate scaffolding mechanism that improves exploration and trajectory quality, while the reward signal ensures that only advantageous behaviors are ultimately retained. Consequently, the final policy learns to internalize the benefits of tip conditioning without requiring tips at inference time. [Appendix B](#) provides an illustrative breakdown and a summary table for the calculation of the importance sampling ratio.

Stabilizing Off-Policy Training. Off-policy training is prone to instability and may collapse (see Figure 6). In such cases, gradient normalization, entropy loss, KL loss, and policy gradient loss can all diverge to NaN. Prior work, Yang et al. (2025) shows that low-probability tokens destabilize training by amplifying gradient magnitudes through unbounded likelihood ratios. Motivated by this, we introduce a masking mechanism that suppresses the advantage term for tokens whose probability under π_θ falls below a threshold δ . Finally, the loss in Eq. 1 is modified as

$$\mathbb{E}_{\substack{u \sim p(\mathcal{U}) \\ \{\tau^{(i)}\} \sim \pi_{\theta_{\text{old}}}}} \left[\frac{1}{NT} \sum_{i=1}^N \sum_{t=1}^T \min \left(\rho_\theta^{(i,t)} A(a_t^{(i)}), \text{clip}(\rho_\theta^{(i,t)}, 1 - \epsilon, 1 + \epsilon) A(a_t^{(i)}) \right) \cdot \mathbf{1}_{\pi_\theta(a_t^{(i)} | s_t^{(i)}, u) \geq \delta} \right] - \beta D_{\text{KL}}(\pi_\theta(\cdot | u) \| \pi_{\text{ref}}(\cdot | u)). \quad (2)$$

Intrinsic Rewards for Exploration. To further encourage exploration, and inspired by prior work on exploration-targeted online RL (Burda et al., 2018b; Bellemare et al., 2016; Ecoffet et al., 2019), we introduce an intrinsic reward based on the novelty of the current state. A memory list stores distinct states, and for each new state we compute its cosine similarity with existing entries. If the similarity falls below a threshold, the state is added to memory and assigned a reward. The intrinsic reward is defined as $r_{\text{intrinsic}} = \frac{1}{n}$, where n denotes the number of similar past states. This mechanism encourages the agent to explore novel states even when no extrinsic reward is provided by the environment and maintains policy entropy, as shown in Figure 7.

5 RELATED WORK

LLM Agents in Multi-Step Embodied Tasks. LLM agents for multi-step embodied tasks have been studied under different paradigms. Data-driven approaches (Song et al., 2024; Xiong et al., 2024; Qiao et al., 2025; 2024; Tajwar et al., 2025) enhance decision-making through effective data collection methods and imitation learning. Model-based agents (Tang et al., 2024; Zhou et al., 2024) build world models, often by generating code with large closed-source systems such as GPT-4. Other methods (Lin et al., 2023; Choudhury & Sodhi, 2025) strengthen reasoning through model transitions or by leveraging privileged information provided by the simulation environment. In contrast, our approach reduces reliance on such external resources and emphasizes autonomous growth through the agent’s own exploration and self-improvement.

Memory for LLM Agents. To enable progressive improvement from past experiences, Reflexion (Shinn et al., 2023) and REMEMBERER (Zhang et al., 2023) leverage external memory. Reflexion stores verbal reflections for later prompting, while REMEMBERER records observations, actions, rewards, and Q-values, retrieving similar cases as few-shot exemplars. These methods show that LLMs can improve without parameter updates. However, with fixed parameters, they cannot expand intrinsic knowledge, so adaptation remains short-term (Zhang et al., 2023), relying on external memory rather than achieving long-term evolution and generalization.

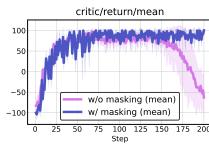


Figure 6: Masking tokens stabilizes training.

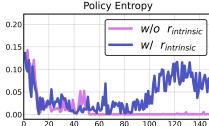


Figure 7: Policy entropy comparison with vs. without intrinsic rewards.

324 **Learning by Knowledge Distillation** Our hybrid off-policy update functions as reward-guided
 325 knowledge distillation during online training. Snell et al. (2022) introduced context distillation,
 326 where the model first solves tasks using a Teacher prompt (with instructions, examples, explanations,
 327 and scratch-pad reasoning) and then learns to produce the final answer from a minimal Student
 328 prompt via offline, SFT-based distillation. In contrast, we integrate knowledge distillation into online
 329 RL, leveraging online adaptability while enhancing exploration for more efficient training.

330 **RL for LLM Agents.** RL provides a robust framework for optimizing LLM parameters through
 331 observations and reward signals from environment interactions. Prior work, Retrospect (Xiang et al.,
 332 2024), showed that offline RL, which learns optimal policies from large logged datasets, can im-
 333 prove LLM agent performance. Recent studies focus on online RL (Shao et al., 2024; Feng et al.,
 334 2025b; Wang et al., 2025), where agents learn in real time. GiGPO (Feng et al., 2025b) advanced
 335 GRPO by grouping rollouts with similar observations, enabling finer credit assignment and stronger
 336 performance. Our work advances this online RL direction by integrating non-parametric memory
 337 updates into both on- and off-policy learning, yielding substantially higher sample efficiency.

338 **Enhancing Exploration for Online RL.** A central challenge in online RL is effective exploration.
 339 Classical methods such as count-based exploration (Bellemare et al., 2016) and Random Network
 340 Distillation (Burda et al., 2018b) use intrinsic rewards to encourage novelty. Go-Explore (Ecoffet
 341 et al., 2019) stores key states and re-explores from them, solving hard-exploration tasks like Atari
 342 games. Its LLM extension, Intelligent Go-Explore (Lu et al., 2025a), achieves strong results in
 343 environments such as TextWorld (Côté et al., 2018), but relies on large closed-source models and
 344 does not perform parameter updates. In our concurrent work, RLVMR (Zhang et al., 2025) employs
 345 warm-start SFT to elicit diverse reasoning types (planning, exploration, and reflection) and provides
 346 dense, process-level rewards for each reasoning type during online RL, enhancing exploration and
 347 credit assignment. Together, these studies underscore the importance of structured exploration for
 348 scaling RL to complex environments.

349 6 EXPERIMENTS

350 To examine the effectiveness of EMPO², we conduct extensive experiments on two widely used
 351 LLM agent benchmarks: ScienceWorld (Wang et al., 2022) and WebShop (Yao et al., 2022) using
 352 Qwen2.5-7B-Instruct (Qwen et al., 2025) as the base model. **The EMPO² performance we evaluate**
 353 **is the performance of the trained model without memory at test time.**

356 6.1 SCIENCEWORLD

357 ScienceWorld (Wang et al., 2022) is an interactive text-based benchmark in which an agent performs
 358 science experiments at the elementary school level. Successfully completing these experiments
 359 requires long-term multi-step planning, hypothesis testing, and interpretation of outcomes, as well
 360 as sufficient exploration to determine where the necessary tools are and what appropriate actions
 361 should be taken. ScienceWorld includes tasks from diverse topics and in our experiments, we cover
 362 19 tasks spanning chemistry, classification, biology, electricity, and measurement.

363 **Baselines.** We compare EMPO² with several RL approaches. For non-parametric RL, Re-
 364 flexion (Shinn et al., 2023) updates memory in a non-parametric manner by incorporating LLM
 365 reflections from previous trajectories and using them in the prompt for the subsequent trial. For
 366 offline RL, Retrospect (Xiang et al., 2024) leverages an SFT-trained model and uses a Q-function
 367 learned via Implicit Q-learning (Kostrikov et al., 2022) to dynamically rescore actions. The offi-
 368 cial Retrospect paper used the smaller Flan-T5-Large (Chung et al., 2024) (770M) and incorporated
 369 human-designed heuristics to assist the agent during evaluation. In contrast, to ensure consistency
 370 in our experimental setup, we standardize the base model of Retrospect to Qwen2.5-7B-Instruct and
 371 exclude these heuristics. Finally, for online RL, we include GRPO (Shao et al., 2024) as a represen-
 372 tative baseline. Further details are provided in Appendix D.

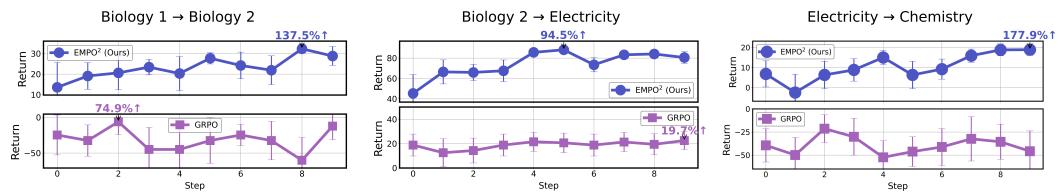
373 **Training Details.** Our EMPO² implementation is based on verl (Sheng et al., 2024), one of the
 374 representative RL-for-LLM libraries. We extended GRPO in verl from a single-step setup to a multi-
 375 step setup and incorporated both a memory module and an off-policy loss calculation component.
 376 We use the same hyperparameter configuration for GRPO and EMPO². The prompt used is provided
 377 in Appendix B, and implementation details are given in Appendix D.2.

378
379
380
381
382
383 **Table 1: Comparison results of ScienceWorld.** Each task in ScienceWorld contains multiple vari-
384 ants. We use the first five variants for training and evaluate on the 20 unseen test variants. Bold
385 shows the best performance per task, while red shading marks cases where parametric updates score
386 lower than non-parametric updates.
387

Topic	Task	Qwen2.5-7B-Instruct	Naive	Non-Parametric	Offline RL	Online RL	
			Reflexion	Retrospect	GRPO	EMPO ²	
Chemistry	chemistry-mix	-42.0±38.0	1.2±0.7	20.8±10.0	12.4±3.5	42.7±12.4	
	chemistry-mix-paint-secondary-color	-33.0±47.1	0.0±0.0	27.8±6.3	7.1±2.8	33.3±0.6	
	chemistry-mix-paint-tertiary-color	-33.9±44.3	36.9±5.7	7.6±4.2	42.6±6.2	39.2±8.7	
Classification	find-animal	-58.2±50.2	39.5±5.8	25.9±13.5	72.4±6.8	100.0±0.0	
	find-living-thing	-65.1±48.1	36.6±6.1	20.6±4.8	68.7±7.1	100.0±0.0	
	find-non-living-thing	-35.9±68.6	4.8±2.0	89.1±11.5	24.7±6.4	100.0±0.0	
	find-plant	-47.1±66.2	15.1±3.8	23.0±3.5	46.2±7.9	100.0±0.0	
Biology 1	identify-life-stages-1	-48.9±65.4	9.2±2.4	19.0±25.7	17.9±4.7	36.2±11.2	
	identify-life-stages-2	-50.7±65.0	33.8±5.5	11.0±1.7	39.5±6.0	56.3±8.1	
	lifespan-longest-lived	-51.8±64.8	44.6±6.5	55.0±15.0	78.2±7.3	100.0±0.0	
Biology 2	lifespan-longest/shortest-lived	-56.2±63.5	34.1±5.1	38.0±15.0	62.3±6.9	100.0±0.0	
	life-span-shortest-lived	-56.8±63.0	6.1±1.9	67.0±23.8	20.6±4.4	100.0±0.0	
	power-component	-90.0±39.4	6.3±1.8	8.2±2.4	15.1±3.9	94.3±3.6	
Electricity	power-component-renewable-vs-nonrenewable-energy	-85.0±49.8	11.7±2.9	10.0±3.2	24.6±5.5	92.6±0.9	
	test-conductivity	-86.9±42.4	13.2±3.1	60.0±0.0	27.8±6.1	89.5±3.2	
	test-conductivity-of-unknown-sub	-81.7±48.6	2.6±1.0	65.5±23.7	9.5±3.4	71.4±6.3	
Measurement	measure-melting-point-known-sub	-97.5±7.5	11.4±3.0	26.5±16.1	19.8±5.0	27.6±4.2	
	use-thermometer	-83.7±43.6	0.9±0.4	32.5±32.1	7.6±2.5	82.7±13.3	
Average		-61.3	17.1	33.8	33.2	75.9	

402
403
404 **Main Results.** Table 1 presents the comparison results among baselines. In ScienceWorld, failed
405 tasks lead to negative rewards, producing returns between -100 and 100. The baseline Qwen2.5-
406 7B-Instruct obtains an average return of -61.3, which improves to 17.1 when non-parametric RL
407 (Reflexion) is applied. Offline RL (Retrospect) produces substantial performance gains compared
408 to them, but in some tasks underperforms compared to non-parametric RL (highlighted in red).
409 Online RL with GRPO also achieves considerable improvements, and its average performance is
410 comparable to that of offline RL. However, unlike offline RL, it never underperforms non-parametric
411 RL, indicating that online RL generalizes better to unseen variants. Our EMPO² demonstrates
412 substantially higher learning performance compared to all baselines. Among the tasks that initially
413 started with negative rewards, seven reached the maximum score of 100. On average, EMPO²
414 achieved more than twice the performance improvement over GRPO, demonstrating its effectiveness
415 in greatly enhancing learning efficiency in online RL.

416 **Adaptation in New Tasks with Memory Updates.** An agent post-trained on a single task may
417 exhibit limited ability to generalize to new scenarios. However, EMPO², which acquires the ability
418 to explore by leveraging memory, demonstrates significantly stronger adaptability to novel situations
419 compared to GRPO, which is trained without learning to utilize memory. Figure 8 illustrates
420 how a model trained on one task adapts when memory is introduced in a new task. In particular,
421 we demonstrate cases with varying levels of topic difference. For a relatively similar transition, we
422 examine Biology 1 (*identify-life-stages-2*) → Biology 2 (*life-span-shortest-lived*). For a more distinct
423 transition, we examine Biology 2 (*lifespan-longest-lived*) → Electricity (*test-conductivity*), and
424 Electricity (*power-component*) → Chemistry (*chemistry-mix-paint-secondary-color*).
425



426
427
428
429
430
431 **Figure 8: Comparison of GRPO and EMPO² adapting to new tasks. Step 0 has no memory, while
432 later steps use accumulated memory as in EMPO² training.**

432 As shown in Figure 8, without memory (step 0), EMPO² achieves stronger baseline performance
 433 on novel tasks than GRPO. When memory is enabled, EMPO² adapts rapidly, yielding an average
 434 improvement of 136% across three scenarios within 10 steps. GRPO, by contrast, demonstrates
 435 notable gains in some cases but exhibits greater variability and, in other instances, fails to adapt to
 436 unfamiliar tasks. In certain situations, its performance even falls below that of the Qwen2.5-7B-
 437 Instruct base model. Though these findings are preliminary, they indicate that EMPO² has strong
 438 potential as an RL framework for developing agents that are both more general and adaptable.

439

440 6.2 WEBSHOP

441

442 WebShop (Yao et al., 2022) is an HTML-based online shopping environment where agents search,
 443 navigate, and purchase items according to user instructions. When the “buy” action is selected, a
 444 final reward is given based on how well the product’s attributes and price match the criteria.

445

446 **Baselines.** For the WebShop experiments, we use the same baselines as in the ScienceWorld
 447 experiments, with the addition of one more online RL baseline, GiGPO (Feng et al., 2025b), as
 448 GiGPO does not cover ScienceWorld but provides benchmarking results on WebShop. The scores
 449 of Naive, Reflexion, GRPO, and GiGPO are taken from Feng et al. (2025b), while Retrospecx results
 are re-run using the official Retrospecx code with the Qwen2.5-7B-Instruct model.

450

451 **Training Details.** The WebShop EMPO² implementation builds on the official GiGPO (Feng
 et al., 2025b) code with the same hyperparameters. Further details are provided in Appendix D.3.

452

453 **Main Results.** Table 2 presents the baseline comparison results on WebShop. Consistent with the
 454 findings in ScienceWorld, EMPO² once again delivers the strongest performance. Although offline
 455 RL, online GRPO, and GiGPO each outperform non-parametric RL, GiGPO further enhances GRPO
 456 by leveraging additional advantage estimation through grouping similar observations within rollout
 457 groups. Despite these gains, EMPO² surpasses all baselines, achieving both higher scores and suc-
 458 cess rates than GiGPO. Taken together, these results indicate that EMPO² consistently demonstrates
 459 superior performance in web-based environments due to its improved exploration.

460

461 **Table 2: Comparison results of WebShop.** Following Feng et al. (2025b), we average results over
 462 three random seeds and report both the mean score and the mean success rate (%). GiGPO_{w/std}
 463 denotes the use of the normalization factor $F_{\text{norm}} = \text{std}$, whereas GiGPO_{w/o std} uses $F_{\text{norm}} = 1$, as
 464 specified in Feng et al. (2025b). **The EMPO² performance we evaluate is the performance of the**
 465 **trained model without memory at test time.**

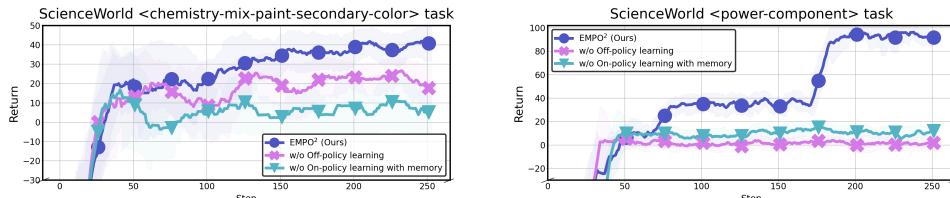
466

Qwen2.5-7B-Instruct	Naive	Non-Parametric Reflexion	Offline RL		Online RL			EMPO ²
			Retrospecx	GRPO	GiGPO w/ std	GiGPO w/o std		
Score	26.4	58.1	73.1±4.1	79.3±2.8	84.4±2.9	86.2±2.6	88.3±2.6	
Succ.	7.8	28.8	60.4±3.9	66.1±3.7	72.8±3.2	75.2±3.8	76.9±4.1	

467

468 6.3 ABLATION STUDY ON MODE COMBINATIONS

469



470

471 Figure 9: Comparison of training curves between EMPO² and variants that exclude either off-policy
 472 learning or on-policy learning with memory.

473

474

475

476

477

478

479

480

481

482

483

484

485

486 As shown in Figure 5, EMPO² incorporates three mode combinations: on-policy learning with-
 487 out memory, on-policy learning with memory, and off-policy learning, and we further analyze how
 488 leveraging each affects performance on two ScienceWorld tasks, where EMPO² shows significant
 489 improvements over GRPO. Figure 9 presents training curves comparing EMPO² with variants that
 490 exclude either off-policy or on-policy learning with memory. As shown in the graphs, removing

486 either component results in suboptimal learning, indicating that a balanced integration of on-policy
 487 and off-policy updates is most effective for performance improvement. This highlights their
 488 complementary roles: on-policy updates contribute to stable learning, while off-policy updates enable
 489 reasoning as if guided by additional tips, and their combination yields both faster convergence and
 490 stronger final performance.

492 7 CONCLUSION

494 In this work, we propose EMPO², a novel RL method that enhances exploration in parametric RL
 495 by leveraging non-parametric memory updates. EMPO² integrates both on-policy and off-policy
 496 learning, thereby improving training efficiency and stability. Our experiments demonstrate that
 497 EMPO² achieves remarkable gains in training efficiency on ScienceWorld and WebShop, and further
 498 shows the ability to adapt rapidly to new domains in a few-shot manner by incorporating additional
 499 memory. An ablation study confirms the importance of the three distinct modes of EMPO².

500 While our study demonstrates the potential of EMPO² as a RL framework for general agents, our
 501 current implementation for memory employs a simple similarity-based search for memory retrieval.
 502 More advanced retrieval mechanisms may further enhance performance. Moreover, although our
 503 experiments primarily utilize Qwen2.5-7B-Instruct, extending EMPO² to a broader range of model
 504 families and sizes could yield deeper insights into its generality and robustness. In particular, scaling
 505 to larger models may further amplify the benefits of our approach. Beyond model scaling, applying
 506 EMPO² to new domains such as mathematics, coding, multi-hop question answering, and multi-
 507 modal RL represents an exciting and challenging direction for future research. **In addition, exploring**
 508 **other off-policy techniques beyond importance sampling could be of interest to achieve more stable**
 509 **and efficient hybrid optimization.**

511 ETHICS STATEMENT

513 This work evaluates EMPO² on ScienceWorld and WebShop, which are publicly available research
 514 benchmarks that do not include private data or sensitive information. We complied with dataset
 515 licenses and community standards for responsible use and citation, and no additional data collection
 516 or modification of the environments was performed.

517 Although our method exhibits strong adaptability in exploration and reasoning tasks, online RL sys-
 518 tems may be misapplied in safety-critical real-world contexts. To reduce such risks, we confine our
 519 study to benchmark environments, and for real-world applications, responses generated by LLMs
 520 will require more careful scrutiny. We hope that future research will further address safety and
 521 broader societal impacts when extending embodied reasoning agents beyond simulation.

523 REPRODUCIBILITY STATEMENT

525 We provide detailed training information, including pseudocode in Appendix A, the hyperparam-
 526 eters used in our experiments, the hyperparameters for the baseline experiments, the GPU resources
 527 utilized, and code snippets for the additional components we implemented in Appendix D.

530 REFERENCES

531 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
 532 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
 533 report. *arXiv preprint arXiv:2303.08774*, 2023.

535 Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
 536 Unifying count-based exploration and intrinsic motivation. *Advances in neural information pro-*
 537 *cessing systems*, 29, 2016.

538 Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
 539 distillation. *arXiv preprint arXiv:1810.12894*, 2018a.

540 Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
 541 distillation. *arXiv preprint arXiv:1810.12894*, 2018b.
 542

543 Sanjiban Choudhury and Paloma Sodhi. Better than your teacher: LLM agents that learn from
 544 privileged AI feedback. In *The Thirteenth International Conference on Learning Representations*,
 545 2025. URL <https://openreview.net/forum?id=st7XqFgbAH>.

546 Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
 547 Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned lan-
 548 guage models. *Journal of Machine Learning Research*, 25(70):1–53, 2024.
 549

550 Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine,
 551 James Moore, Ruo Yu Tao, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, Wendy
 552 Tay, and Adam Trischler. Textworld: A learning environment for text-based games. *CoRR*,
 553 [abs/1806.11532](https://arxiv.org/abs/1806.11532), 2018.

554 Guanting Dong, Hangyu Mao, Kai Ma, Licheng Bao, Yifei Chen, Zhongyuan Wang, Zhongxia
 555 Chen, Jiazhen Du, Huiyang Wang, Fuzheng Zhang, et al. Agentic reinforced policy optimization.
 556 *arXiv preprint arXiv:2507.19849*, 2025.
 557

558 Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a
 559 new approach for hard-exploration problems. *arXiv preprint arXiv:1901.10995*, 2019.

560 Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
 561 Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms.
 562 *CoRR*, 2025a.
 563

564 Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
 565 agent training. *arXiv preprint arXiv:2505.10978*, 2025b.

566 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 567 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 568 of models. *arXiv preprint arXiv:2407.21783*, 2024.
 569

570 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 571 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 572 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

573 Jeonghye Kim, Sojeong Rhee, Minbeom Kim, Dohyung Kim, Sangmook Lee, Youngchul Sung, and
 574 Kyomin Jung. Reflect: World-grounded decision making in llm agents via goal-state reflection.
 575 *arXiv preprint arXiv:2505.15182*, 2025.
 576

577 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
 578 learning. In *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=68n2s9ZJWF8>.
 579

580 Bill Yuchen Lin, Yicheng Fu, Karina Yang, Faeze Brahman, Shiyu Huang, Chandra Bhagavatula,
 581 Prithviraj Ammanabrolu, Yejin Choi, and Xiang Ren. Swiftsage: A generative agent with fast and
 582 slow thinking for complex interactive tasks. *Advances in Neural Information Processing Systems*,
 583 36:23813–23825, 2023.
 584

585 Cong Lu, Shengran Hu, and Jeff Clune. Intelligent go-explore: Standing on the shoulders of giant
 586 foundation models. In *The Thirteenth International Conference on Learning Representations*,
 587 2025a. URL <https://openreview.net/forum?id=apErWGzCAA>.

588 Guanxing Lu, Wenkai Guo, Chubin Zhang, Yuheng Zhou, Haonan Jiang, Zifeng Gao, Yansong
 589 Tang, and Ziwei Wang. Vla-rl: Towards masterful and general robotic manipulation with scalable
 590 reinforcement learning. *arXiv preprint arXiv:2505.18719*, 2025b.
 591

592 Xufang Luo, Yuge Zhang, Zhiyuan He, Zilong Wang, Siyun Zhao, Dongsheng Li, Luna K Qiu, and
 593 Yuqing Yang. Agent lightning: Train any ai agents with reinforcement learning. *arXiv preprint*
arXiv:2508.03680, 2025.

594 Joon Sung Park, Joseph O'Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
 595 Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In *Proceedings*
 596 *of the 36th annual acm symposium on user interface software and technology*, pp. 1–22, 2023.

597

598 Shuofei Qiao, Runnan Fang, Ningyu Zhang, Yuqi Zhu, Xiang Chen, Shumin Deng, Yong Jiang,
 599 Pengjun Xie, Fei Huang, and Huajun Chen. Agent planning with world knowledge model. *Ad-*
 600 *vances in Neural Information Processing Systems*, 37:114843–114871, 2024.

601 Shuofei Qiao, Zhisong Qiu, Baochang Ren, Xiaobin Wang, Xiangyuan Ru, Ningyu Zhang, Xiang
 602 Chen, Yong Jiang, Pengjun Xie, Fei Huang, et al. Agentic knowledgeable self-awareness. *arXiv*
 603 *preprint arXiv:2504.03553*, 2025.

604

605 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 606 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 607 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 608 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 609 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 610 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
 611 URL <https://arxiv.org/abs/2412.15115>.

612 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 613 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

614 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 615 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 616 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

617

618 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 619 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint*
 620 *arXiv: 2409.19256*, 2024.

621

622 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
 623 Language agents with verbal reinforcement learning. *Advances in Neural Information Processing*
 624 *Systems*, 36:8634–8652, 2023.

625 Charlie Snell, Dan Klein, and Ruiqi Zhong. Learning by distilling context. *arXiv preprint*
 626 *arXiv:2209.15189*, 2022.

627 Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error:
 628 Exploration-based trajectory optimization of llm agents. In *Proceedings of the 62nd Annual Meet-*
 629 *ing of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 7584–7600,
 630 2024.

631

632 Fahim Tajwar, Yiding Jiang, Abitha Thankaraj, Sumaita Sadia Rahman, J Zico Kolter, Jeff
 633 Schneider, and Ruslan Salakhutdinov. Training a generally curious agent. *arXiv preprint*
 634 *arXiv:2502.17543*, 2025.

635

636 Weihao Tan, Wentao Zhang, Shanqi Liu, Longtao Zheng, Xinrun Wang, and Bo An. True knowledge
 637 comes from practice: Aligning large language models with embodied environments via reinforce-
 638 ment learning. In *The Twelfth International Conference on Learning Representations*, 2024. URL
 639 <https://openreview.net/forum?id=hILVmJ4Uvu>.

640

641 Hao Tang, Darren Key, and Kevin Ellis. Worldcoder, a model-based llm agent: Building world
 642 models by writing code and interacting with the environment. *Advances in Neural Information*
 643 *Processing Systems*, 37:70148–70212, 2024.

644

645 Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and Prithviraj Ammanabrolu. Scienceworld: Is
 646 your agent smarter than a 5th grader? *arXiv preprint arXiv:2203.07540*, 2022.

647

648 Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing Jin,
 649 Kefan Yu, Minh Nhat Nguyen, Licheng Liu, et al. Ragen: Understanding self-evolution in llm
 650 agents via multi-turn reinforcement learning. *arXiv preprint arXiv:2504.20073*, 2025.

648 Yufei Xiang, Yiqun Shen, Yeqin Zhang, and Nguyen Cam-Tu. Retrospx: Language agent meets of-
 649 line reinforcement learning critic. In *Proceedings of the 2024 Conference on Empirical Methods*
 650 *in Natural Language Processing*, pp. 4650–4666, 2024.

651

652 Weimin Xiong, Yifan Song, Xiutian Zhao, Wenhao Wu, Xun Wang, Ke Wang, Cheng Li, Wei Peng,
 653 and Sujian Li. Watch every step! Ilm agent learning via iterative step-level process refinement. In
 654 *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp.
 655 1556–1572, 2024.

656

657 Zhihe Yang, Xufang Luo, Zilong Wang, Dongqi Han, Zhiyuan He, Dongsheng Li, and Yunjian Xu.
 658 Do not let low-probability tokens over-dominate in rl for llms. *arXiv preprint arXiv:2505.12929*,
 659 2025.

660

661 Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
 662 real-world web interaction with grounded language agents. *Advances in Neural Information Pro-*
 663 *cessing Systems*, 35:20744–20757, 2022.

664

665 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
 666 Cao. React: Synergizing reasoning and acting in language models. In *The Eleventh International*
 667 *Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=WE_vluYUL-X.

668

669 Danyang Zhang, Lu Chen, Situo Zhang, Hongshen Xu, Zihan Zhao, and Kai Yu. Large language
 670 models are semi-parametric reinforcement learning agents. *Advances in Neural Information Pro-*
 671 *cessing Systems*, 36:78227–78239, 2023.

672

673 Zijing Zhang, Ziyang Chen, Mingxiao Li, Zhaopeng Tu, and Xiaolong Li. Rlvmr: Reinforcement
 674 learning with verifiable meta-reasoning rewards for robust long-horizon agents. *arXiv preprint*
 675 *arXiv:2507.22844*, 2025.

676

677 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
 678 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. *arXiv*
 679 *preprint arXiv:2403.13372*, 2024.

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A PSEUDO CODE
703704
705 Algorithm 1 presents the pseudocode of EMPO². Compared to the original GRPO algorithm,
706 EMPO² introduces several new components: a memory buffer, and tip retrieval and addition, and
707 two rollout modes and two update modes.
708709 **Algorithm 1** EMPO²: Exploratory Memory-Augmented On- and Off-Policy Optimization
710

```

711 1: Inputs: Initial policy  $\pi_{\theta_{\text{old}}}$ , memory buffer  $\mathcal{M}$ , task distribution  $p(\mathcal{U})$ , group size  $N$ , batch size  $B$ , max
712   episode length  $T$ 
713 2: for each training iteration do
714   3: {// Multi-step rollout}
715   4: Sample  $B$  tasks  $u \sim p(\mathcal{U})$  and initialize  $N$  identical environments (total  $B \times N$ )
716   5: Sample  $m_{\text{rollout}} \sim \{\text{Prompting Without Memory} : p, \text{Memory-Augmented Prompting} : 1 - p\}$ 
717   6: Initialize state  $s_0^{(i)} \leftarrow u^{(i)}$  for  $i = 0, \dots, B \times N - 1$ 
718   7: for  $t = 0$  to  $T - 1$  do
719     8: for  $i = 0$  to  $B \times N - 1$  do
720       9: if  $m_{\text{rollout}} = \text{Memory-Augmented Prompting}$  then
721         10: tips $t$   $\leftarrow \text{Retr}(s_t^{(i)}; \mathcal{M})$ 
722         11: Sample  $a_t^{(i)} \sim \pi_{\theta}^{\text{old}}(\cdot | s_t^{(i)}, \text{tips}_t, u^{(i)})$ 
723       12: else
724         13: Sample  $a_t^{(i)} \sim \pi_{\theta}^{\text{old}}(\cdot | s_t^{(i)}, u^{(i)})$ 
725       14: end if
726       15: Execute  $a_t^{(i)}$ , observe  $r_t^{(i)}, s_{t+1}^{(i)}$ 
727     16: end for
728   17: end for
729   18: for  $i = 0$  to  $B \times N - 1$  do
730     19: Sample tips  $\sim \pi_{\theta}^{\text{old}}(\cdot | s^{(i)}, u^{(i)}, \text{tip-generation prompt})$ 
731     20: Append tips to  $\mathcal{M}$ 
732   21: end for
733   22: {// Policy update}
734   23: if  $m_{\text{rollout}} = \text{Memory-Augmented Prompting}$  then
735     24: Sample  $m_{\text{update}} \sim \{\text{On-Policy} : q, \text{Off-Policy} : 1 - q\}$ 
736     25: if  $m_{\text{update}} = \text{Off-Policy}$  then
737       26: for  $i = 0$  to  $B \times N - 1$  do
738         27:  $\log \pi_{\theta_{\text{old}}}(a | s_t^{(i)}, \text{tips}_t, u^{(i)}) \leftarrow \log \pi_{\theta_{\text{old}}}(a | s_t^{(i)}, u^{(i)})$ 
739       28: end for
740     29: end if
741   30: end if
742   31: Update policy  $\theta$  using the loss function in Eq. 2.
743 32: end for

```

742 B PROMPTS
743744 The following prompts were used in our experiments. The ScienceWorld and WebShop prompts
745 were used identically for both the online RL baseline and EMPO², with the WebShop prompt
746 adapted from Feng et al. (2025b). The content inside the curly brackets $\{\}$ is dynamically filled
747 based on the current progress at each episode step.
748750 Tip Generation Prompt
751

752 Thanks for your playing. Now you have ended a trajectory and collect some meaningless or valuable
753 information from the interactions with the environment. Please summary the trajectory, and also sum-
754 mary what information you get from this trajectory, and how far this trajectory is from fully completing
755 the task. Please response with only one sentence with only one line, do not include any extra words.
756 You sentence should be less than 100 words.

756
757

Prompt for ScienceWorld

758
759
760

You have done a few science experiments successfully and below are the action history of your experiments with similar tasks. Here are 2 examples: {example_1} {example_2} Follow the report of the two example tasks shown to you previously, try to solve a similar new task.

761
762
763

Task Description: {task.description}
All your possible action formats are: {available.action.description}

764
765

If you enter an unfamiliar room for the first time, you can use the action 'look around' to discover the objects in it. Items in your inventory: {inventory}

766
767
768
769
770

Important! You can only use FOCUS actions on these items: {focus.items}. You cannot FOCUS on any other things. Please only use FOCUS as required by the task description. Also, please FOCUS more directly, try not to focus on the container. You could try to explore different actions, especially when you are not sure what the best action for your current observation.
{current.observation}

771

Prompt for WebShop

772
773

You are an expert autonomous agent operating in the WebShop e-commerce environment.

774
775
776

Your task is to: {task.description}.

777
778
779

Prior to this step, you have already taken {step_count} step(s). Below are the most recent {history.length} observations and the corresponding actions you took: {action.history}
You are now at step current_step and your current observation is: {current.observation}.

780
781
782

Your admissible actions of the current situation are:
[{available.actions}].

783
784
785
786
787

Now it's your turn to take one action for the current step.

You should first reason step-by-step about the current situation, then think carefully which admissible action best advances the shopping goal. This reasoning process MUST be enclosed within <think> </think> tags.

788
789
790
791
792

Once you've finished your reasoning, you should choose an admissible action for current step and present it within <action> </action> tags.

C DETAILED EXPLANATION OF IMPORTANCE SAMPLING RATIOS IN POLICY UPDATES

To further clarify our policy update mechanism, this section details the calculation of the importance sampling ratio ρ_θ . The specific calculation depends on whether tips were used during the rollout and update phases. This leads to three distinct scenarios, as summarized in Table 3. The importance sampling ratio ρ_θ is defined as the ratio of the probability of an action under the current policy π_θ to its probability under the old policy $\pi_{\theta_{\text{old}}}$, used to correct for the distributional shift in off-policy learning.

Table 3: Calculation of the importance sampling ratio ρ_θ for different policy update modes. The ratio is computed as $\rho_\theta = \frac{\pi_\theta(a_t | \cdot)}{\pi_{\theta_{\text{old}}}(a_t | \cdot)}$, which in practice is often calculated using log-probabilities.

Update Mode	Rollout Condition	Current Log Prob	Old Log Prob
Regular On-Policy	No tips	$\log \pi_\theta(a_t s_t, u)$	$\log \pi_{\theta_{\text{old}}}(a_t s_t, u)$
On-Policy w/ Tips	With tips_t	$\log \pi_\theta(a_t s_t, u, \text{tips}_t)$	$\log \pi_{\theta_{\text{old}}}(a_t s_t, u, \text{tips}_t)$
Off-Policy	With tips_t (rollout)	$\log \pi_\theta(a_t s_t, u)$	$\log \pi_{\theta_{\text{old}}}(a_t s_t, u, \text{tips}_t)$

810
 811 The three update modes shown in the table cover all scenarios. An update is considered on-policy
 812 when the policy used to generate actions ($\pi_{\theta_{\text{old}}}$) and the policy being updated (π_{θ}) are conditioned
 813 on the same information. This applies to the first two modes:

814
 815

- **Regular On-Policy:** This is the standard on-policy update. The conditioning context for
 both the current and old policies is identical (s_t, u), with no tips involved.
- **On-Policy w/ Tips:** This mode is also on-policy because both policies are consistently
 conditioned on the provided tips (s_t, u, tips_t).

816
 817 **The Off-Policy** update is the key mechanism through which the model learns from external guidance.
 818 In this scenario, actions are sampled from the old policy augmented with tip information:
 819 $\pi_{\theta_{\text{old}}}(\cdot | s_t, u, \text{tips}_t)$. Consequently, the old log-probabilities are computed using this tip-conditioned
 820 policy. However, to “internalize” this guidance, the current log-probabilities for the new policy π_{θ}
 821 are recomputed without the tips, using only $\pi_{\theta}(a_t | s_t, u)$. This mismatch in conditioning between
 822 the new and old policies makes the update off-policy and allows the base policy to absorb the knowl-
 823 edge contained in the tips.

D EXPERIMENTS DETAILS

D.1 RETROSPEX

830 In Retrospec (Xiang et al., 2024), the base models differ by environment: Flan-T5-Large (Chung
 831 et al., 2024) is used for ScienceWorld, while Llama-3-8B-Instruct (Grattafiori et al., 2024) is used for
 832 WebShop. To ensure consistency in our experiments, we standardized the base model to Qwen2.5-
 833 7B-Instruct. For this purpose, we utilized the offline trajectories provided by Retrospec and con-
 834 ducted SFT with LLaMA-Factory (Zheng et al., 2024). For the IQL (Kostrikov et al., 2022) Q-
 835 function, we employed the model released by Retrospec. During SFT training, we tuned the hy-
 836 perparameters over learning rates $1.0 \times 10^{-5}, 5.0 \times 10^{-5}, 1.0 \times 10^{-6}$ and epochs 3, 8, and adopted
 837 the configuration that yielded the best performance. Each run was conducted using two NVIDIA
 838 A100 GPUs with 80GB memory.

839 Moreover, in our Retrospec ScienceWorld evaluation, we remove human-designed heuristics to re-
 840 duce reliance on manual rules. Retrospec normally skips any “focus on” action unless repeated three
 841 times or explicitly mentioned in the task, and replaces step-by-step “go to” actions with direct “tele-
 842 port” moves. Removing these heuristics ensures the evaluation better reflects the agent’s inherent
 843 capabilities.

D.2 ONLINE RL: SCIENCEWORLD

844 We base our EMPO² implementation on the GRPO framework provided in verl (Sheng et al., 2024),
 845 while introducing the following key modifications:

846
 847

- **Multi-step implementation:** In the original GRPO implementation in verl, an LLM rollout termi-
 nates after generating a single response to a given problem. We extend this to a multi-step setting,
 where the agent continues interacting with the environment until either a maximum episode length
 is reached or the environment issues a termination signal. This modification allows the agent to
 perform sequential reasoning and adapt its responses across turns.
- **Memory buffer integration:** To support EMPO²’s memory-based mechanism, we incorporate
 an explicit memory buffer. During multi-step rollouts, the agent can retrieve tips from memory
 and append newly generated tips to it. The code snippet for this part is as follows:

```
848 # Memory compression and storage utilities
849 def do_compress(text):
850     response = requests.post("http://127.0.0.1:8000/key_cal/", json={"text": text})
851     return response.json()
852
853 def retrieve_memory(idx, key):
854     response = requests.post("http://127.0.0.1:8001/mem/", json={"key": key, "idx": idx})
855     return response.json()
856
857 def add_memory(idx, key, content, score):
858     requests.post("http://127.0.0.1:8001/mem/", json={
```

```

864         "key": key, "idx": idx, "content": content, "score": score
865     })
866
867     # Use memory retrieval depending on training phase
868     if phase in ["on-policy-with-memory", "off-policy"]:
869         text = "\n".join([f'{c["role"]}:{c["content"]}' for c in pure_chats[i]])
870         key = np.array(do_compress(text)[['key']]).reshape(-1,).tolist()
871         count, mem_list = retrieve_memory(random_var, key)
872     else:
873         count, mem_list = 0, []

```

Listing 1: Implementation of memory buffer integration.

- **Off-policy log probability refinement:** To support off-policy updates, we introduce off-policy log probability refinement. For each action region, the on-policy log probabilities are replaced with their off-policy counterparts. The code snippet for this part is as follows:

```

879     # Create an off-policy batch by replacing inputs
880     off_policy_batch = deepcopy(batch)
881     off_policy_batch.replace_inputs_with_off_policy()
882
883     # Compute log probabilities for both on- and off-policy data
884     off_policy_log_probs = actor.compute_log_prob(off_policy_batch)
885     on_policy_log_probs = actor.compute_log_prob(batch)
886
887     # For each action region, update the original log probs
888     # with corresponding off-policy values
889     for gen_id in range(num_generations):
890         for region in action_regions[gen_id]:
891             loc_l, loc_r = region.on_policy_range
892             loc_l_off, loc_r_off = region.off_policy_range
893             range_len = loc_r_off - loc_l_off
894
895             # Substitute log probs with off-policy values
896             on_policy_log_probs[gen_id, loc_l:loc_l+range_len] = \
897                 off_policy_log_probs[gen_id, loc_l_off:loc_l_off+range_len]
898
899     # Update the batch with refined log probs
900     batch.update_log_probs(on_policy_log_probs)

```

Listing 2: Implementation of off-policy log probability refinement.

Hyperparameters. All online RL algorithms (GRPO, EMPO²) use the same hyperparameter configuration. The maximum response length is set to 4,500 tokens, and each episode is limited to 30 steps. The actor learning rate is configured as 1×10^{-6} . For GRPO, the group size is fixed at 8, and the mini-batch size is 16. The KL-divergence loss coefficient is set to 0.0. In addition, the actor rollout parameters are specified as follows: the clipping upper bound is set to 0.30, the clipping lower bound to 0.20, and the clipping ratio coefficient to 10.0.

Computing Resources. All experiments were conducted using eight NVIDIA A100 40GB GPUs.

D.3 ONLINE RL: WEBSHOP

We base our EMPO² implementation on the GRPO framework provided in verl-agent (Feng et al., 2025b), and the modifications for EMPO² are the same as those described in Appendix D.2.

Hyperparameters. All online RL algorithms (GRPO, GiGPO, EMPO²) use the same hyperparameter configuration, following Feng et al. (2025b). The maximum response length is set to 512 tokens, and each episode is limited to 15 steps. The actor learning rate is configured as 1×10^{-6} . For GRPO, the group size is fixed at 8. The rollout temperature is set to 1.0, while the validation temperature is set to 0.4. The mini-batch size is 64, and the KL-divergence loss coefficient is 0.01. Finally, the discount factor γ is set to 0.95.

Computing Resources. All online RL experiments were conducted using eight NVIDIA A100 GPUs (40GB each).

918
919

E QUALITATIVE ANALYSIS ON TIPS

920
921

E.1 MORE EXAMPLES OF GENERATED TIPS

922
923

Following the example of the generated tips in Section 4.1, below are more detailed examples of how the tips evolve as the task progresses.

924
925

ScienceWorld <power-component> task

926
927
928

You focused on the red light bulb but did not complete the task of turning on the red light bulb. You are in the hallway and need to find a way; At that timestep, The specific action your took was focus on red light bulb. **score -100.0**

929
930
931

Trajectory far from completion; connected battery to red wire but not in correct configuration; gained insights on available objects but missed key steps in circuit creation.; At that timestep, The specific action your took was connect battery cathode to red wire terminal 1. **score 0.0**

932
933
934
935
936

Connected green wire to green light bulb but did not find the battery to complete the circuit. Trajectory is incomplete as the task requires powering the green light bulb.; At that timestep, The specific action your took was connect battery to green wire terminal 1, connect green wire terminal 2 to green light bulb, connect red wire terminal 1 to battery. **score 7.0**

937
938
939

Connected green wire to green light bulb, but task not fully completed due to missing battery connection.; At that timestep, The specific action your took was connect green wire to green light bulb. **score 13.0**

940
941
942
943
944
945
946

Task incomplete, terminal connections incorrect; got red wire, battery, and red light bulb, but terminal connections not successfully made to power red light bulb.; At that timestep, The specific action your took was connect battery cathode to red wire terminal 1. **score 27.0**

I persisted in connecting the green wire to the green light bulb but the circuit was interrupted by other wires, affecting the task completion.; At that timestep, The specific action your took was connect green wire terminal 2 to green light bulb. **score 33.0**

947
948
949

You moved to the workshop, connected the circuit, but the green light bulb is still not powered on due to the lack of a power source and proper connections.; At that timestep, The specific action your took was turn on green light bulb. **score 83.0**

950
951
952

The green light bulb was turned on, but the door to the workshop was closed repeatedly.; At that timestep, The specific action your took was open door to workshop. **score 83.0**

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972
973

ScienceWorld <chemistry-mix-paint-secondary-color> task

974
975
976

You moved to the greenhouse but did not find the necessary materials to create green paint, indicating the task cannot be completed with the current information and location.; At that timestep, The specific action your took was go to kitchen. **score -100.0**

977
978
979
980

Failed to execute the task due to unknown actions; collected information about paint colors and mixing process but unable to complete the task of creating green paint.; At that timestep, The specific action your took was pour cup containing yellow paint in art studio in bowl, pour cup containing blue paint in art studio in bowl, mix bowl. **score 0.0**

981
982
983
984

Failed to find a way to the kitchen or other useful areas; picked up an orange but it's not suitable for making green paint. At that timestep, The specific action your took was open door to kitchen. **score 10.0**

985
986
987

Failed to create green paint; mixed blue and yellow paint but action was ambiguous. Collected info on room layout and objects but not sufficient to complete task.; At that timestep, The specific action your took was open door to workshop. **score 30.0**

988
989
990
991

The agent attempted to pour yellow paint into the bowl in the art studio but could not find the appropriate action, indicating a need to directly interact with the paint containers; At that timestep, The specific action your took was pour cup containing yellow paint in art studio in bowl and pour cup containing blue paint in art studio in bowl and mix bowl. **score 40.0**

992
993
994
995

The task is to create green paint by mixing blue and yellow paint, but I repeatedly tried to pour blue paint into the bowl without success.; At that timestep, The specific action your took was pour cup containing blue paint in art studio in bowl. **score 40.0**

996
997
998

Created green paint by mixing yellow and blue paint, but focus action was unnecessary as the paint was already in the bowl. At that timestep, The specific action your took was pour cup containing yellow paint in art studio in bowl. **score 80.0**

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026
1027
1028
1029
1030
1031

E.2 EFFECTS OF TIPS ON EXPLORATION BEHAVIOR

This section provides a qualitative analysis of how tips promote exploration.

1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055

ScienceWorld <power-component> task

[Without Memory]

Task: Your task is to turn on the red light bulb. First, focus on the red light bulb. Then, create an electrical circuit that powers it on.
Observation: This room is called the hallway. In it, you see:
- the agent
- a picture
You also see:
- A door to the workshop (that is open)
...
Action: focus on red bulb

Task Failed

[With Memory-Augmented Prompting]

Task: Your task is to turn on the red light bulb. First, focus on the red light bulb. Then, create an electrical circuit that powers it on.
Observation: This room is called the hallway. In it, you see:
- the agent
- a picture
You also see:
- A door to the workshop (that is open)
...
tips: Here are some memories you collected in your previous exploration:
Focus on red light bulb but cannot find it in the hallway.; At that timestep, the specific action your took was focus on red light bulb; Eventually you got the score -100.0/100.
Action: go to workshop
Observation: You move to the workshop.
...

1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

ScienceWorld <chemistry-mix-paint-secondary-color> task

[Without Memory]

Task: Your task is to use chemistry to create green paint. When you are done, focus on the green paint.
Observation: This room is called the hallway. In it, you see:
- the agent
- a picture
You also see:
- A door to the art studio (that is open)
...
Action: pour cup containing yellow paint in hallway in bowl

Task Failed

[With Memory-Augmented Prompting]

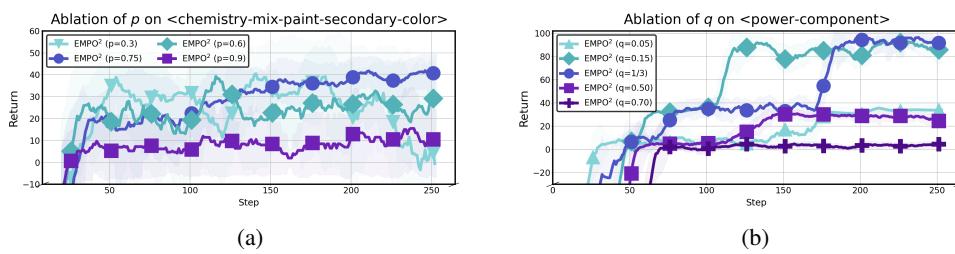
Task: Your task is to use chemistry to create green paint. When you are done, focus on the green paint.
Observation: This room is called the hallway. In it, you see:
- the agent
- a picture
You also see:
- A door to the art studio (that is open)
...
tips: Here are some memories you collected in your previous exploration:
Need to find a green pigment or mixture to create green paint.; At that timestep, the specific action your took was pour cup containing yellow paint in hallway in bowl; Eventually you got the score -100.0/100.
Need to find a green pigment or mixture to create green paint.; At that timestep, the specific action your took was open door to art studio; Eventually you got the score -100.0/100.
Action: go to art studio
Observation: You move to the art studio.
...

1080 As shown in the examples above, an agent without memory tends to repeat the same mistakes be-
 1081 cause it cannot incorporate feedback from previous failures into future attempts. In contrast, with
 1082 memory-augmented prompting, the agent can refer to its past unsuccessful attempts, use them as
 1083 guidance, and actively avoid repeating those errors. This enables the agent to explore novel and
 1084 more effective behaviors, ultimately expanding its search capabilities and boosting learning perfor-
 1085 mance.

F MORE ABLATION STUDY

F.1 MODE SELECTION PROBABILITY

1093 As discussed in Section 4.2, EMPO² employs a memory-rollout probability p during the rollout
 1094 phase and an off-policy update probability q during the update phase. We conduct comprehensive
 1095 ablation studies to systematically investigate the effects of these hyperparameters p and q .
 1096



1104 Figure 10: (a) EMPO² learning curves with varying p , (b) with varying q

1105 **Ablation on p (Memory Rollout Probability):** We evaluated $p \in \{0.3, 0.6, 0.9\}$ on the
 1106 chemistry-mix-paint-secondary-color task. When $p = 0.9$, performance degrades
 1107 significantly because EMPO² effectively collapses to GRPO, confirming the importance of mem-
 1108 ory. Both $p = 0.3$ and $p = 0.6$ show faster initial learning due to more aggressive knowledge
 1109 internalization, although $p = 0.3$ exhibits minor fluctuations in the later stages. Our choice of
 1110 $p = 0.75$ provides stable convergence across diverse tasks.

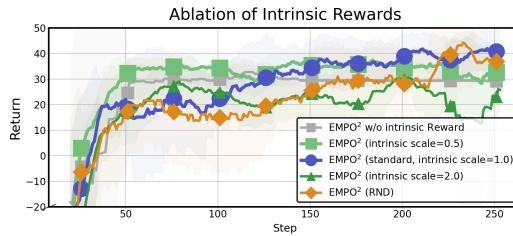
1111 **Ablation on q (Off-Policy Update Probability):** We tested $q \in \{0.05, 0.15, 0.5, 0.70\}$ on the
 1112 power-component task. Extreme values ($q = 0.05$ or $q = 0.70$) underperform: very small
 1113 q overemphasizes distillation at the expense of training the memory policy, while large q slows
 1114 knowledge internalization. Notably, $q = 0.15$ achieves faster early exploration than our default $q =$
 1115 $1/3$. This aligns with our expectations, as the default hyperparameters prioritize overall robustness
 1116 rather than task-specific optimization. Therefore, it is natural that more optimal settings exist for
 1117 particular tasks, highlighting the robustness of EMPO² within a reasonable hyperparameter range.

1118 These results confirm that EMPO² performs effectively across a broad hyperparameter range
 1119 ($p \in [0.6, 0.75]$, $q \in [0.15, 0.5]$). Our default settings represent a well-balanced configuration that
 1120 generalizes across multiple tasks without task-specific tuning, while the algorithm remains adaptable
 1121 when further optimization is desired.

F.2 ROLE OF INTRINSIC REWARD

1122 To further investigate the role of the intrinsic reward in our proposed algorithm, EMPO², we conduct
 1123 an ablation study to examine its impact. We compare our full method against variants with different
 1124 intrinsic reward coefficients (0.5 \times and 2 \times), a complete removal of the intrinsic reward, and its re-
 1125 placement with a standard exploration bonus based on Random Network Distillation (RND) (Burda
 1126 et al., 2018a). For the RND baseline, we adopt the same hyperparameter configuration as in the
 1127 original work. The results of these experiments are presented in Figure 11.

1134
1135
1136
1137
1138
1139
1140
1141



1142 Figure 11: EMPO^2 learning curves with different intrinsic reward configurations on ScienceWorld
1143 `chemistry-mix-paint-secondary-color` task. We compare our full method against four
1144 variants: scaling the intrinsic reward coefficient by $0.5\times$ and $2\times$, substituting it with a Random
1145 Network Distillation (RND) bonus, and its complete removal (w/o Intrinsic Reward).

1146

1147
1148 Altering the intrinsic reward’s scale mainly affects the learning dynamics. A smaller coefficient
1149 ($0.5\times$) leads to a smoother but slower convergence, whereas a larger one ($2\times$) introduces minor in-
1150 stabilities. Notably, all variants using an intrinsic reward—including the RND-based one—converge
1151 to a similar level of final performance. However, removing the intrinsic reward entirely causes learn-
1152 ing to plateau at a lower level, suggesting its necessity in preventing the policy from collapsing into
1153 homogeneous behaviors by encouraging sufficient exploration. Overall, these results indicate that
1154 EMPO^2 is robust to the specific mechanism and scale of the intrinsic reward, which primarily influ-
1155 ence the stability and speed of learning rather than the final outcome.

1156 G ANALYSIS OF COMPUTATIONAL COST

1157

1158 G.1 COST ANALYSIS OF MEMORY-AUGMENTED ROLLOUTS

1159

1160 We analyzed the additional computational overhead introduced by
1161 the memory mechanism in EMPO^2 . During the rollout phase, this
1162 mechanism incurs extra costs related to tip generation, retrieval,
1163 and storage. For the analysis, we conducted experiments using the
1164 Qwen2.5-7B-Instruct model on 8 A100 40GB GPUs.

1165

1166 As reported in Figure 12, the memory mechanism adds approxi-
1167 mately 50.4 seconds per iteration, which accounts for about 19%
1168 of the total rollout time. Among these, tip generation and the sub-
1169 sequent storage of tips in memory account for a substantial por-
1170 tion of the cost. Therefore, while we have verified that the mem-
1171 ory mechanism substantially aids exploration and significantly im-
1172 proves learning efficiency, it is more desirable to internalize these
1173 benefits within the model parameters themselves rather than relying on the mechanism continu-
1174 ously—both to enhance the model’s inherent capabilities and to improve overall efficiency.

1174

1175

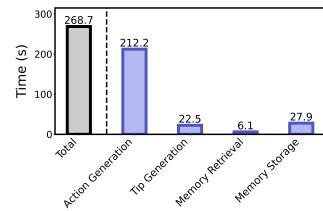
1176 G.2 COST ANALYSIS OF TOTAL TRAINING TIME

1177

1178 Compared to GRPO, the training time of EMPO^2 is primarily influ-
1179 enced by two factors:

1180

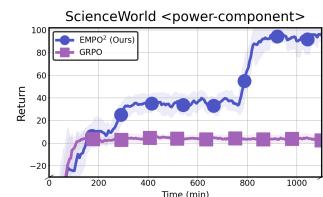
- **The memory component:** As discussed in the previous section, the memory component accounts for 19% of the total rollout time. Since memory-augmented prompting is selected with probability $(1 - p = 0.25)$ (as described in Section 4.2), this implies that, on average, 19% of the rollout time is incurred with a 25% probability.
- **The response length:** In LLM-based RL training, rollout time constitutes a major portion of the total cost. As the response length increases, the rollout itself becomes slower, and the time



1174 Figure 12: A breakdown of the time each component spends during the rollout of each training step.

1175

1176



1177 Figure 13: Time–performance
1178 curves for EMPO^2 and
1179 GRPO on ScienceWorld
1180 power–component task.

1188 required for log-probability computation and actor updates in-
1189 creases accordingly. In our experiments, we found that the response length of EMPO² is generally
1190 longer than that of GRPO. We attribute this to the model spending more time reasoning and ex-
1191 ploring when given the tips, which we believe enhances its exploration behavior and ultimately
1192 improves performance.

1193
1194 To ensure a fair comparison with GRPO from a training-time perspective, we plot the performance
1195 in Figure 13 using training time on the x-axis. The results show that, even under this perspective,
1196 EMPO² exhibits substantially higher efficiency than GRPO.

1197

1198 H THE USE OF LARGE LANGUAGE MODELS

1199

1200 We used a LLM to polish the writing of the manuscript. The LLM was not employed in any aspect
1201 of research ideation, experimental design, or analysis.

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241