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Abstract

Autonomous driving demands safe motion planning, especially in critical “long-tail”
scenarios. Recent end-to-end autonomous driving systems leverage large language
models (LLMs) as planners to improve generalizability to rare events. However,
using LLMs at test time introduces high computational costs. To address this,
we propose DiMA, an end-to-end autonomous driving system that maintains the
efficiency of an LLM-free (or vision-based) planner while leveraging the world
knowledge of an LLM. DiMA distills the information from a multi-modal LLM to a
vision-based end-to-end planner through a set of specially designed surrogate tasks.
Under a joint training strategy, a scene encoder common to both networks produces
structured representations that are semantically grounded as well as aligned to
the final planning objective. Notably, the LLM is optional at inference, enabling
robust planning without compromising on efficiency. Training with DiMA results
in a 44% trajectory error reduction in long-tail scenarios. DiMA also achieves
state-of-the-art performance on the nuScenes planning benchmark.

1 Introduction

Multi-task planning systems that are trained in an end-to-end manner [14, 10, 6, 4, 7, 31] demonstrate
improved performance over modular systems [16, 33, 21, 28, 5, 18, 19] but struggle with long-tail
navigation and perception scenarios. Large language models (LLMs) have emerged as a promising
solution to this issue. Trained on vast, internet-scale datasets, LLMs can leverage world knowledge
to generalize to unseen or rare scenarios. These models can perform high-level reasoning tasks using
mechanisms such as chain-of-thought [29]. Recent end-to-end autonomous driving systems leverage
LLMs to achieve superior robustness to long-tail scenarios [22, 24, 27, 23, 13, 26]. To differentiate
between these methods, we call end-to-end planners that depend on LLMs to perform trajectory
prediction as “LLM-based” planners and ones that do not as “vision-based” planners [14, 12, 30]. In
spite of their recent success “LLM-based” planners face significant challenges.

LLM-based planners require a significant amount of computational overhead at test time, limiting
their practicality. This work addresses a core question: how can we harness LLMs’ world knowledge
while preserving the efficiency of vision-based planners? Secondly, bridging the visual and language
domains is inherently more complex for end-to-end planning tasks compared to general MLLM tasks
[15, 17], with the additional hurdle of limited training data.

To address these challenges, we propose DiMA, a novel framework for Distilling Multi-modal Large
Language Models for Autonomous driving. We introduce a joint-training scheme between a vision-
based planner and an MLLM that enables the learning of robust, grounded and disentangled scene
representations that are aligned to the final objective of planning. Specifically, we use the vision-based
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Figure 1: Overview of DiMA. The input to the framework is a multi-view image sequence and a question text
prompt. The vision-based end-to-end planner consists of a scene encoder and a planning transformer. The scene
encoder learns structured latent representations in the form of bird’s-eye-view, ego, agent, and map (BEAM )
token embeddings and acts as a trainable tokenizer for the multi-modal large language model (MLLM). The
planning transformer is trained under standard planning constraints [14, 12]. The MLLM is trained for planning,
visual question answering, distillation, and a series of surrogate tasks.

planner as a tokenizer, and pass the learned scene representations to the MLLM, providing a more
structured input. The MLLM is then trained for the tasks of visual question-answering, trajectory
estimation, and a series of surrogate tasks designed to ground the multi-modal inputs in language.
The vision-based planner is simultaneously trained for trajectory estimation, while also distilling
features from the MLLM planning head to the planning transformer. Crucially, the MLLM can be
discarded when performing planning inference, maintaining the efficiency of the vision-based
planner while utilizing the knowledge of the language model. Optionally, the MLLM can support
language-guided reasoning through visual question answering. Our experiments show that DiMA is
more robust to challenging long-tail scenarios compared to baselines and state-of-the-art methods
[30, 23]. Our contributions are

• We introduce DiMA, an end-to-end autonomous driving framework that distills knowledge
from an MLLM to a vision-based planner to ensure robustness to long-tail events while
maintaining efficiency. DiMA is capable of planning as well as visual question-answering.

• We propose a distillation task along with a series of surrogate tasks to align the objectives of
the vision-based planner and the MLLM.

• DiMA outperforms both vision-based and LLM end-to-end planners, achieving state-of-the-
art results on the nuScenes planning benchmark. Training with DiMA results in s a 44%
trajectory error reduction in long-tail scenarios.

2 DiMA Framework

We present DiMA, a framework for end-to-end autonomous driving. Given a sequence of multi-
view images, the overall objective is to predict the future trajectory of the ego vehicle and answer
questions about the scene. An overview of DiMA is shown in Figure 1. The framework has two
main components: 1) the vision-based planner; 2) a multi-modal large language model consisting of
adapter layers, an LLM, and a series of task-specific decoder heads.

2.1 Vision-based Planner

Vision-based end-to-end planners are trained in a multi-task fashion to perform perception, mapping,
motion prediction and planning [14, 12, 30, 25]. Considering standard architecture design from
[12, 14, 30] we decompose the planner into the scene encoder and the planning transformer. The
scene encoder provides structured latent representations to the planning transformer that performs
waypoint prediction. We call these representations as scene token embeddings. In our framework,
we leverage the vision-based planner in two ways. First, it acts as the primary network through
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which planning is performed, allowing for fast prediction at test time. Second, the scene encoder is
shared with the the MLLM, acting as tokenizer to provide it with a highly structured set of inputs.
An important distinction of our framework from previous works [13, 23] is that the scene encoder
is trained jointly with the MLLM. The scene encoder models the scene as high-dimensional token
embeddings that explicitly represent components such as the environment map, the ego vehicle, and
the surrounding agents. This is achieved by introducing task specific, learnable query features that
are supervised by a series of planning constraints [14].

2.2 Multi-modal LLM

Our objective is to distill knowledge from an MLLM to the vision-based planner. Towards this, we
jointly train an MLLM with the vision-based planner. Specifically, the scene encoder is used as a
trainable tokenizer for the MLLM to generate the BEAM token embeddings, as well as used as
an encoder for the planning transformer. The advantage from this strategy is two-fold. First, the
MLLM receives a highly structured input that captures rich spatio-temporal information relevant to
the autonomous driving task. Second, the scene encoder learns features that are grounded in language,
improving the robustness of vision-based planning. The main components of the MLLM are adapter
layers, the large language model, and a series of task-specific decoder heads which we discuss next.

Adaptation of scene tokens. In order to project the BEAM token embeddings efficiently while
maintaining their distinctiveness, we leverage the query-transformer (Q-former) module [11] to
compress the visual tokens before being input to the LLM. We implement component-specific Q-
former layers, namely a Map Q-former, a Bird’s-Eye-View (BEV) Q-former, an Ego Q-former, and
an Agent Q-former. Each of these adapters transforms the representing different modalities into a
sequence of fixed-length, higher-dimensional tokens, preparing them for processing by the MLLM.

Table 1: Long-tail performance comparison of L2 tra-
jectory error and collision rate on nuScenes [3] valida-
tion set using standardized evaluation [30]. The perfor-
mance of vision planner DiMA model variants are in
shades of purple. The performance of MLLM-branch
DiMA model variants are in shades of blue. We summa-
rize results by averaging over at t = {1, 2, 3}s as well
as at all time steps. The best average performance in
each setting is in bold.

Method Traj L2 (m)↓ Coll. (%) ↓
1s 2s 3s Ave1,2,3s Aveall Aveall
3-point turn (zero-shot)

VAD-Tiny 0.76 1.68 3.04 1.83 1.55 0.00
VAD-Base 0.71 1.66 3.24 1.87 1.57 0.00
PARA-Drive [30] 0.50 1.38 2.76 1.55 1.29 5.33
TOKEN [23] 0.39 1.29 2.60 1.43 1.18 4.00
DiMA (VAD-Tiny) 0.47 1.27 2.55 1.43 1.17 0.00
DiMA (VAD-Base) 0.36 1.18 2.37 1.30 1.05 0.00
DiMA (MLLM) 0.38 1.12 2.35 1.28 1.04 0.00
DiMA-Dual (VAD-Tiny) 0.38 1.08 2.35 1.27 1.04 0.00

Resume from stop
VAD-Tiny 0.64 1.63 2.99 1.75 1.49 0.00
VAD-Base 0.60 1.72 2.83 1.72 1.42 0.00
PARA-Drive 0.14 0.79 2.30 1.08 0.85 0.00
TOKEN 0.13 0.70 1.58 0.80 0.65 0.00
DiMA (VAD-Tiny) 0.26 1.02 2.40 1.23 0.99 0.00
DiMA (VAD-Base) 0.15 0.65 1.34 0.71 0.66 0.00
DiMA (MLLM) 0.24 1.02 2.16 1.14 0.93 0.00
DiMA-Dual (VAD-Tiny) 0.24 0.98 2.13 1.11 0.91 0.00

Overtake
VAD-Tiny 0.58 1.27 2.12 1.32 1.14 2.42
VAD-Base 0.46 1.16 2.17 1.26 1.06 2.49
PARA-Drive 0.27 0.89 1.94 1.03 0.85 2.30
TOKEN 0.29 0.77 1.63 0.90 0.74 0.00
DiMA (VAD-Tiny) 0.24 0.75 1.49 0.83 0.69 1.32
DiMA (VAD-Base) 0.24 0.72 1.50 0.82 0.66 1.29
DiMA (MLLM) 0.24 0.73 1.50 0.82 0.67 1.30
DiMA-Dual (VAD-Tiny) 0.24 0.73 1.50 0.82 0.67 1.30

MLLM supervision. We design tasks for the
MLLM with the objectives of, a) enriching the
intermediate scene representations; b) ground-
ing the scene token embeddings in language;
and c) training the LLM for planning-related
reasoning. In detail, the MLLM is trained for
visual question answering, trajectory estimation,
feature distillation, and a set of surrogate tasks
[2, 32].

Visual question answering. The MLLM is
trained for visual question answering (VQA) on
question-answer pairs of 4 types: perception
of the scene, prediction of the agent behavior,
prediction of ego-vehicle behavior, and future
planning steps [22]. The answer is predicted
based on a multi-modal prompt consisting of the
question embeddings and the projected BEAM
token embeddings. This is constructed as a stan-
dard next-token prediction task and the VQA
branch is supervised with a cross-entropy loss
as in [15]. We denote the loss from this task
head as LLLM .

Surrogate tasks: The main goal of joint train-
ing is to enrich the BEAM scene representa-
tions learned by the scene encoder. We design
MLLM surrogate tasks whose objectives are in
line with that of future trajectory prediction. We
point the reader to the appendix for more details on these tasks.

Distillation In order to further align the representations learned by the vision planner and the
MLLM, we perform knowledge transfer between the penultimate layers of the language model and
the planning transformer. Concretely, we minimize the KL-divergence between the distributions
of the hidden features of the planning transformer and the LLM hidden features of the ego-token
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embeddings:
Ldistill = DKL(Pllm||Pvis) (1)

where the Pvis are the features of penultimate layers of vision planning transformer and Pllm are the
hidden LLM embeddings features corresponding to the ego-token embeddings of penultimate layers
of MLLM model.

Loss functions. We supervise the network with a weighted sum of the losses corresponding to
planning, visual question answering, distillation, and each surrogate task.

L = Lplanning + LLLM + Lrecon + Lfuture + Ldistill (2)

here Lplanning comes from the planning objective used to train [12, 14]. Here, the loss weights are
chosen to bring each value to the same scale.

3 Experimental Setup

In this section, we present the training strategy and provide information about the datasets used. We
refer the reader to the appendix for the architecture and evaluation strategy details.

Training. DiMA training follows a two-stage approach. First the vision-only planner is pre-trained
for perception, prediction, and planning for 60 epochs in order to learn informative latent scene
representations. Second, we perform joint training of the vision planner and the MLLM for an
additional 30 epochs, incorporating all proposed tasks and losses detailed in Section B. In the second
stage, the language model of the MLLM is fine-tuned using LoRA [9]. Please refer to the appendix
for more details.

Datasets. We use the nuScenes dataset for the task of open-loop planning [3]. For supervising visual
question answering, we train with DriveLM [22]. This dataset consists of a 4k subset of samples from
the nuScenes dataset annotated with 300k QA pairs related to perception, prediction, planning, and
behavior of the ego vehicle. For the samples in nuScenes that do not have text annotations, we create
a set of perception, planning, and prediction QA pairs based on the numerical annotations. More
details on this method as well as examples of generated QA pairs may be found in the appendix.

4 Experimental Results

We perform a comprehensive evaluation of DiMA on the nuScenes open-loop planning benchmark
in a variety of evaluation settings. We compare our performance against that of recent vision-based
planners [10, 12, 14, 30] as well as recent MLLM planners [20, 26, 24, 23].To facilitate a fair
comparison of DiMA with recent works, we use a standardized evaluation detailed in [30].

Performance in long-tail scenarios. Autonomous driving performance is particularly crucial for
rare scenarios. Using the manually selected long-tail events from [23], we demonstrate the robustness
of DiMA in cases of novel navigation and perception. In Table 1, we evaluate the performance of
DiMA for three long-tail scenarios, “3-point turn”, “resume from the stop” and “overtake”, selected
from the nuScenes validation set. Training with DiMA results in a significant and consistent boost in
performance from the baseline vision-based planners. We also consistently outperform PARA-Drive
and TOKEN. Notably, the “3-point turn” case is a zero-shot scenario, not present in the training
data. We achieve the lowest L2 trajectory error for this case. We also point out that the boost in
performance comes with no additional computational cost on the base vision-based planner, making
it more efficient (17 FPS) than LLM planners like TOKEN. See appendix for a latency comparison,
further planning results and qualitative results on visual question answering.

5 Conclusion

We introduce DiMA, an end-to-end autonomous driving framework for robust and efficient planning.
DiMA distills knowledge from an MLLM to a vision-based planner, employing a novel joint training
strategy alongside carefully designed surrogate tasks such as masked token reconstruction, future
token prediction, and scene editing. DiMA enables the model to learn semantically grounded scene
representations, improving its performance in difficult navigation scenarios. We conduct extensive
evaluations and ablation studies, showing that training with DiMA results in a planner that excels in
long-tail cases while maintaining computational efficiency.
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Appendix

A Overview

We present the appendix for the paper “Distilling Multi-modal Large Language Models for Au-
tonomous Driving”. In Section B, we provide details on the surrogate tasks module of DiMA .
Section C has the details on the training setup and the procedure for generating additional text anno-
tations for the nuScenes dataset. In Section D, we present additional qualitative results of DiMA’s
vision-based planning branch as well as visual question-answering results from the MLLM branch.
We provide an additional quantitative evaluation of DiMA in Section E. In Section F, we provide a
set of ablation experiments to examine the role of each surrogate task in planning performance.

B Surrogate tasks overview

Figure 2: Overview of Surrogate tasks.
Here hidden token embeddings are la-
tent representations from the penultimate
layer of LLM. These hidden token em-
beddings corresponding to bird’s-eye-
view, ego, agent, and map (BEAM )
token embeddings are used as input as
surrogate task decoder heads to perform
masked reconstruction, future prediction
and scene editing.

An important component of training the MLLM branch of
DiMA is the surrogate tasks module. In addition to being
trained for planning and visual question answering, the
MLLM is trained to perform the following surrogate tasks:
masked reconstruction, future prediction, and scene edit-
ing. We design these tasks to enrich the bird’s-eye-view,
ego, agent, and map (BEAM ) scene representations. Sur-
rogate tasks module takes hidden token embedding of
penultimate layer of the LLM model. An illustration of
the module can be seen in Figure 2. Each decoder head
in surrogate module is consists of 3 Linear layers with a
ReLU activation layer. Below, we provide some additional
details on the scene editing tasks well as overviews on the
other two tasks.

1) Masked token reconstruction: Each type of token em-
bedding contributes to a holistic representation of the
scene. In order to enrich the visual representations, we
ask the network to reconstruct a masked BEV input based
on the context present in the rest of the multi-modal se-
quence. We perform random masking after scene encoding
and pass the token embeddings to the MLLM. A recon-
struction head takes the latent representations from the
penultimate layer of LLM and predicts reconstructed BEV
token embeddings B̂. This decoder head is supervised
with the L2 loss between the prediction and the complete
input,

Lrecon = ||B̂ −B||2 (3)

where ({m(B), E,A,M}) is input to the MLLM, and the latent MLLM representations associated
with the BEV token embeddings are input to the masked reconstruction decoder head. Here, m(.)
denotes random masking.

2) Future BEV prediction: An important aspect of planning is anticipating future events. We introduce
the surrogate task of future BEV prediction to encourage the LLM to learn spatio-temporal cues
useful for planning. Given latent BEV token embeddings, we train a prediction head to predict future
BEV token embeddings and supervise this task as the L2 loss between predicted and ground truth
future token embeddings:

Lfuture = ||F̂t −Bt+1||2 + ||F̃t −Bt+2||2 (4)

where F̂t, F̃t are the predicted future BEV token embedding at time t. Note, we predict future BEV
token embeddings (Bt+1, Bt+2) of the multi-view image sequence for time steps {t+ 1, t+ 2}.

3) Scene editing: For prediction and reasoning about the ego vehicle, it is crucial to learn how
surrounding agents impact the ego-vehicle’s future path. We propose a novel scene editing task
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in which we augment scenes by removing or adding new agents. Along with this, we construct a
question-answer pair related to the edit. We show examples of this in Figure ??. For scene addition,
given the map constraints, predicted map, the ego bounding box location and the trajectories of
predicted agents, we create a way-point trajectory for a new agent of category “car" or “truck". A
new agent token embedding is then created using a linear layer. This new agent token embedding, the
corresponding text prompt, and the rest of the BEAM token embeddings are passed as input to the
LLM. The hidden latent LLM features corresponding to agent token embeddings are then fed into
a dedicated scene editing decoder head that performs waypoint prediction of the ego vehicle. The
language prediction head performs question-answering on the new QA pair. This task thus contributes
to the existing planning constraint loss and VQA loss of the MLLM.

Before scene editing After scene editing

Added vehicle Removed vehicleAdded vehicle  
trajectory

Q:  How does the car added in the front of ego-vehicle effect the
behavior ? A: Ego vehicle should be cautious about the slow
moving vehicle and maintain safe distance in the fornt.

Before scene editing After scene editing

Q:  How does the car removed in the front of ego-vehicle effect
the behavior ? A: Ego vehicle has more room to accelerate, since
there is no vehicle in front.

Q:  How does the car added in the back of ego-vehicle effect the
behavior ? A: Ego vehicle should be cautious and maintian safe
distance in the back of ego-vehicle.

Q:  How does the car removed in the back of ego-vehicle effect
the behavior ? A: Ego vehicle speed or acceleration is not
effected.

Q:  How does the car added in the left of ego-vehicle effect the
behavior ? A: Ego vehicle cannot merge to left lane or cannot
take left turn.

Q:  How does the cars removed in the left of ego-vehicle effect
the behavior ? A: Ego vehicle has an opputunity to merge to the
left lane.

Q:  How does the car added in the right of ego-vehicle effect the
behavior ? A: Ego vehicle should be cautious and cannot merge
to right lane

Q:  How does the car removed in the right of ego-vehicle effect
the behavior ? A: Ego vehicle has an opportunity to take right
turn or merge to right lane cautiously. 

Figure 3: Examples of addition and deletion in scene editing. In the left column, a car (solid red box)
is added in the premises of the ego-vehicle (green box). In the right column, a car (dashed red box) is
removed from the premises of the ego-vehicle. A corresponding question-answer pair is created to
characterize the edit.

We show further examples of this in Figure 3. For scene addition, given the map constraints, predicted
map, the ego bounding box location and the trajectories of predicted agents obtained from perception,
and prediction tasks of scene encoding (refer [12, 14], using camera meta data we project all these to
two-dimensional space as shown in 3. Using this, we identify possible locations in the premises of
ego-vehicle location, where a new object can be added and randomly choose the location for the new
agent, which is of size maximum 2× of size of ego-vehicle. Given the location for the new agent and
map constraints, we create a way-point trajectory for a new agent of category “car" or “truck". A
new agent token embedding is then created using a linear layer. This new agent token embedding,
the corresponding text prompt, and the rest of the BEAM token embeddings are passed as input to
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the LLM. The hidden latent LLM features corresponding to agent token embeddings are then fed
into a dedicated scene editing decoder head that performs way-point prediction of the ego vehicle.
The output way-point prediction of the ego vehicle from scene editing head is supervised using
Lscene. Lscene is ego-agent collision constraint loss with updated agents incorporating either new
added agent or removed agent in scene editing task. For ego-agent collision constraint loss refer [14].

Table 2: Comparison of L2 trajectory error and collision rate
on nuScenes [3] using standardized evaluation [30]. Mod-
els are evaluated on the general validation split as well as a
“targeted” split of challenging samples from [30]. The perfor-
mance of the DiMA model variants are in shades of purple.
We summarize results by averaging over at t = {1, 2, 3}s as
well as at all time steps.

Method Using Traj L2 (m) ↓ Collision (%) ↓
Ego status 1s 2s 3s Ave1,2,3s Aveall Aveall

Full validation split
UniAD[12] ✗ 0.48 0.89 1.47 0.95 0.83 0.40
PARA-Drive[30] ✗ 0.26 0.59 1.12 0.66 0.56 0.17
TOKEN[23] ✗ 0.26 0.70 1.46 0.81 0.68 0.15
DiMA (UniAD) ✗ 0.19 0.50 1.08 0.59 0.50 0.06

Targeted validation split
UniAD[12] ✗ 0.47 1.09 1.92 1.16 0.99 0.15
PARA-Drive[30] ✗ 0.38 0.97 1.88 1.08 0.91 0.14
DiMA (UniAD) ✗ 0.30 0.82 1.63 0.92 0.77 0.06

3-point turn (zero-shot)
UniAD[12] ✗ 0.68 1.55 2.90 1.71 1.43 0.00
PARA-Drive [30] ✗ 0.50 1.38 2.76 1.55 1.29 5.33
TOKEN [23] ✗ 0.39 1.29 2.60 1.43 1.18 4.00
DiMA (UniAD) ✗ 0.28 0.94 2.16 1.13 0.90 0.00

Resume from stop
UniAD[12] ✗ 1.09 1.66 3.06 1.94 1.73 0.00
PARA-Drive ✗ 0.14 0.79 2.30 1.08 0.85 0.00
TOKEN ✗ 0.13 0.70 1.58 0.80 0.65 0.00
DiMA (UniAD) ✗ 0.38 0.83 1.49 0.90 0.84 0.00

Overtake
UniAD[12] ✗ 0.60 1.39 2.38 1.45 1.27 0.98
PARA-Drive ✗ 0.27 0.89 1.94 1.03 0.85 2.30
TOKEN ✗ 0.29 0.77 1.63 0.90 0.74 0.00
DiMA (UniAD) ✗ 0.28 0.75 1.55 0.86 0.78 0.41

The language prediction head per-
forms question-answering on the new
QA pair. This task thus contributes
to the existing planning constraint
loss and VQA loss of the MLLM.
The QA pairs are generated accord-
ing to a template in which the possi-
ble movements of the ego vehicle are
described.

C Experimental Setup

C.1 Architecture design

Vision-based planner We conduct
experiments using two vision-based
end-to-end planners, VAD [14] and
UniAD [12] due to their performance,
efficiency, and ability to model the in-
teraction between scene components.
We use two model size variants of
VAD. Both planners are trained for
perception, motion prediction and
planning, while UniAD also performs
occupancy prediction.

MLLM design The MLLM is made up of adapter layers, a language model, and a set of task-
specific decoder layers. We project each BEAM token embedding with its own dedicated Q-former
adapter layer following [11]. After projection, the BEAM token embeddings and language token
embeddings lie in the same embedding space. In order to reduce memory consumption, we limit the
agent token sequence length to a fraction of the total number of agents and perform sequence-wise
upsampling after input to the language model. The adapter layers are randomly initialized. We use
the LLM from LLaVA-v1.5-7B [17] as our language model base. The ego prediction and agent
motion prediction task heads are multi-layer-perceptron networks following [14]. For the surrogate
task decoder heads, we use 3 Linear layers with a ReLU activation layer.

C.2 Training details

We train DiMA-VAD-tiny, DiMA-VAD-Base, and DiMA-UniAD, using training setups adapted from
[14] and [12]. Our training process follows a two-stage approach. First, we pre-train the vision
planner only under the perception, prediction, and planning constraints for 60 epochs in order to learn
informative latent scene representations. Second, we perform joint training of the vision planner
and the MLLM for an additional 30 epochs, incorporating all proposed tasks and losses detailed
in Section B. In the second stage, the language model of the MLLM is fine-tuned using LoRA [9].
Question-answer pairs from the augmented DriveLM dataset [22] are input along with the multi-view
image sequence in the second stage. For each input sample, we randomly select one QA-pair from
each category in every iteration to send as text prompt input to the network. This ensures diversity in
questions while avoiding redundant visual inputs. For both stages, we employ the AdamW optimizer
with a cosine annealing scheduler, a weight decay of 0.01, and an learning rate of 2× 10−4. In all
our experiments we set the random masking ratio as [0.2, 0.4].
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C.3 Evaluation details

We evaluate planning performance based on the predicted future trajectories of the ego vehicle 3
seconds into the future, where 2 waypoints are predicted per second. We use two metrics, the L2
error (in meters) between the predicted and ground-truth waypoints as well as the collision rate (in
%) between the ego-vehicle and the surrounding vehicles.

Standardized vs VAD evaluation. In [30], Weng point out inconsistencies in planning evaluation
across VAD [14], UniAD [12] and AD-MLP [34], namely in the way L2 error is averaged over
time and the way noisy and invalid frames are considered. The authors also point out that collision
performance is considerably improved by using a more finely discretized BEV map. Accounting for
these inconsistencies, they propose a “standardized” evaluation metric to maintain a fair comparison
across methods. For accurate reporting and fair comparison with [30, 23], we use this standardized
metric to evaluate our model. Certain existing works use the evaluation scheme followed by [14]
(which we call VAD evaluation) and do not make code or models available [24, 26, 20, 10].

C.4 Generation of text annotations

We augment the existing text annotations of the Drive-LM [22] by generating question-answer (QA)
pairs for samples in the nuScenes dataset [3]. First, we parse the numerical annotations of each
object in the scene, such as the ego-vehicle and the surrounding objects. We denote each object as
an agent and assign attributes such as the camera in which it is visible, the name of the object, and
the vehicle speed. Additionally, we use rule-based algorithms to assign brief text descriptions of the
future movement, the direction of movement relative to the ego-vehicle, the future speed, the type
of interaction with the ego vehicle, and the probability of collision with the ego-vehicle. Using this
annotation along with a few in-context examples, we prompt a Llama 3-70B model [8] to generate
5 Drive-LM-like QA pairs for each category of question. The input system prompt can be seen in
Figure 6. An example of a textual description of the numerical annotations can be seen in Figure 7.
Examples of generated QA pairs can be seen in Figure 8.

D Additional Qualitative Results

We present extensive qualitative results of DiMA . In Section D.1, we present a comparison of
planning performance of the vision-based planner on nuScenes. In Section D.2, we provide numerous
visual question-answering results on various subsets of the nuScenes dataset.

D.1 nuScenes planning

Figure 4: Visualization of three-point turn results. Press
center buttons to play with Adobe Reader.

We present qualitative planning results of
DiMA compared to that of VAD in Figure 5. We
evaluate on difficult “targeted” samples from
nuScenes. These are samples where the ego-
vehicle is performing right and left turns. As
seen in the figure, training with DiMA ensures
safe trajectory prediction, avoiding collisions
with vehicles when turning around corners (see
row 1, columns 1 and 4) as well as avoiding lane
departures (row 1 column 2). DiMA also results
in more precise turns (see row 2).

In Fig. 1 of the main paper, we show a 3-point
turn emphasizing complex maneuver, involving
a sharp left turn, backward movement, and
a second left turn, typically takes ∼1 minute
to complete. In this supplemental material,
we include a complete turn playable video
visualization in Fig. 4 above.
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Ego vehicle Ground-truth trajectory VAD prediction
DiMA prediction (Ours)

Figure 5: Visual comparison of the planning performance of DiMA (VAD-Tiny) with VAD-Tiny [14].
Samples are from the “targeted” subset of the nuScenes validation split.

D.2 Visual question-answering

We present numerous qualitative examples of planning and VQA performance of the DiMA MLLM
branch. For Drive-LM test samples that have ground-truth annotations, we compare the generated
text response with the ground-truth answer in Figure 9. We also plot the predicted future trajectory.
In Figure 10 we show two scenarios in which DiMA provides incorrect VQA results.

For a more extensive qualitative analysis, we compare the performance of DiMA -MLLM with GPT-4
[1] in Figures 11, 12, and 13. We present common reasoning questions along with the DiMA -MLLM
response and the GPT-4 response. The input to GPT-4 is the text prompt and a stitched image of the
multi-view image set. We also show the planning performance plotted in the image as well as in
a diagrammatic form on the right side of each row. As observed in these examples, DiMA is able
to focus on objects important for navigation and planning. As can be seen in Figure 11 row 4, our
model correctly predicts the future right turn to be taken by the ego-vehicle, while GPT-4 suggests
the ego-vehicle should move straight. A similar problem is observed in Figure 13 row 4, where the
prediction by GPT-4 is much more vague than that of DiMA .

E Additional Quantitative Results

VAD evaluation. For a fair comparison with recent works that use the evaluation strategy from VAD
[14], we present an additional set of results under this strategy. 2 In Table 3, we present the evaluation
of DiMA on the nuScenes validation set [3]. We significantly outperform the baseline vision-based
planners VAD [14] and UniAD [12]. Notably, DiMA built on VAD-Tiny outperforms VAD-Base
by 47% in L2 trajectory error while being 4 times faster. We also outperform MLLM planners like
OmniDrive [26] and DriveVLM [24] without requiring an LLM at inference, making our approach
more accurate as well as efficient.

We present the performance of DiMA-UniAD performance evaluated on the nuScenes dataset using
standardized evaluation [30] in Table 2. We compare the performance of both DiMA-UniAD and
UniAD [12] on the general validation split as well as a “targeted” split of challenging samples from
[30] and on long-tail scenarios. We observe consistent improvement across all metrics, resulting in
significantly reduced L2 trajectory error and collision rate. This model version also out-performs
state-of-the-art methods PARA-Drive [30] and TOKEN [23] in almost all cases.

2We compare with reported results due to lack of published code.
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QA pair generation with Llama-3-70B | System prompt

You are a system designed to generate high quality question answer
pairs in the scenario of autonomous driving, from the point of view
of an ego-vehicle viewing a 360 degree scene around you.
Questions-answer pairs may be of three types : Perception, Prediction,
and Planning. Perception questions relate to the nature of the
agents/objects around the ego-vehicle. Planning questions relate to
questions about the future actions of the ego-vehicle. Prediction
questions are detailed questions about the agents/objects around the
ego vehicle. Here are some examples of each type of question.

Perception
1. Q: ’What are objects to the front left of the ego car?’

A: ’There is one truck and one car to the front left of the ego car.’
2. Q: ’Are there moving pedestrians to the front right of the ego car?’

A: ’Yes.’

Prediction
1. Q: ’Is <c1,CAM_FRONT> a traffic sign or a road barrier?’

A: ’No’
2. Q: ’What object should the ego vehicle notice first when the ego

vehicle is getting to the next possible location? .... [TRUNCATED]
A: ’Firstly, notice <c6,CAM_FRONT,1074.8,336.5>..... [TRUNCATED]

Planning
1. Q: ’What is the probability of colliding with <c1,CAM_FRONT> ?’

A: ’Low’
2. Q: ’In this scenario, what are safe actions to take ?’

A: ’Brake gently to a stop, slightly offset to the right.’

For the given scene, generate five of each type of questions based on
the attributes provided of the ego vehicle and each agent
surrounding the ego
vehicle. Make sure that the answer is in the format

{
’Perception’:

{’Q’:’Question’,’A’:’Answer’},
’Prediction’:

{’Q’:’Question’,’A’:’Answer’},
’Planning’:

{’Q’:’Question’,’A’:’Answer’}
}

Do not return any other text than the QA pairs in a correct python
dictionary format.
Make sure the answers are as descriptive as possible. Avoid
one word
answers or yes/no questions.

Figure 6: The system prompt given to Llama-3 to generate question-answer pairs.
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QA pair generation with Llama-3-70B | Sample numerical annotation

"token": "f9878012c3f6412184c294c13ba4bac3",
"scene_description": "Car overtaking, parking lot, pedestrians,
pedestrian exiting car, objects on the ground",
"agent_attributes": {

"c0": {
"category": "truck",
"speed": -0.00784316331860773,
"assigned_cameras": [

"CAM_BACK_LEFT"
],
"future movement": "stopped",
"future speed": "not moving",
"direction": "towards from ego vehicle",
"interaction_with_ego_vehicle_type": "none",
"probability_of_collision_with_ego_vehicle": "low"

},
"c1": {

"category": "pedestrian",
"speed": 0.0,
"assigned_cameras": [

"CAM_FRONT",
"CAM_FRONT_LEFT"

],
"future movement": "stopped",
"future speed": "not moving",
"direction": "away from ego vehicle",
"interaction_with_ego_vehicle_type": "none",
"probability_of_collision_with_ego_vehicle": "low"

},

... [TRUNCATED] ...

"c24": {
"category": "car",
"speed": 0.0,
"assigned_cameras": [

"CAM_BACK"
],
"future movement": "stopped",
"future speed": "not moving",
"direction": "away from ego vehicle",
"interaction_with_ego_vehicle_type": "none",
"probability_of_collision_with_ego_vehicle": "low"

}

Figure 7: An example of the text-description of the numerical annotations of a scene from nuScenes.
This JSON file is created using rule-based algorithms. This is appended to the system prompt.
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QA pair generation with Llama-3-70B | Generated QA pairs

Perception

{
"Q": "What are objects to the back right of the ego car?",
"A": "There is one car and one bicycle to the back right of

the ego car."
},
{

"Q": "Are there moving agents to the right of the ego car?",
"A": "Yes, there is one car to the right of the ego car."

},
... [TRUNCATED] ...

Prediction

{
"Q": "What are the future movements of the agents to the back

rightof the ego car?",
"A": "The car will slightly steer to the right and the bicycle

will remain stopped."
},
{

"Q": "What are the future speeds of the agents to the back
right of the ego car?",

"A": "The car will be driving fast and the bicycle will not be
moving."

},
... [TRUNCATED] ...

Planning

{
"Q": "What is the probability of colliding with the car after

the ego vehicle steps on the brakes?",
"A": "Medium"

},
{

"Q": "What actions taken by the ego vehicle can lead to a
collision with the bicycle?",

"A": "No action."
},
... [TRUNCATED] ...

Behavior

"Q": "Predict the behavior of the ego vehicle.",
"A": "The ego vehicle is slightly steering to the right.

The ego vehicle is moving at a moderate speed."

Figure 8: Some examples of generated QA pairs. The perception, prediction, and planning pairs are
generated with Llama-3. The behavior QA is created using the future motion of the ego vehicle.
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Table 3: Comparison of L2 trajectory error and collision rate on nuScenes [3] using VAD evaluation
[14]. Models are evaluated on the general validation split. The performance of the DiMA model
variants are in shades of purple. The performance of the MLLM-branch DiMA model variant is in
blue. We summarize results by averaging over all time steps. The best average performance in each
setting is in bold. “+” indicates the use of ego-status information.

Method Using Traj L2 (m) ↓ Collision (%) ↓ Latency (ms) FPS
Ego status 1s 2s 3s Aveall 1s 2s 3s Aveall

ST-P3 [10] ✗ 1.33 2.11 2.90 2.11 0.23 0.62 1.27 0.71 628.3 1.6
UniAD[12] ✗ 0.48 0.96 1.65 1.03 0.05 0.17 0.71 0.31 555.6 1.8
VAD-Tiny[14] ✗ 0.46 0.76 1.12 0.78 0.21 0.35 0.58 0.38 59.5 16.8
VAD-Base[14] ✗ 0.41 0.70 1.05 0.72 0.07 0.17 0.41 0.22 224.3 4.5
VLP-VAD-Base[20] ✗ 0.26 0.47 0.78 0.50 0.12 0.17 0.42 0.23 – –
OmniDrive [26] ✗ 0.40 0.80 1.32 0.84 0.04 0.46 2.32 0.94 – –
DiMA (UniAD) ✗ 0.15 0.30 0.56 0.34 0.06 0.08 0.22 0.12 560 1.8
DiMA (VAD-Tiny) ✗ 0.18 0.36 0.61 0.38 0.07 0.10 0.27 0.15 59.5 16.8
DiMA (VAD-Base) ✗ 0.13 0.27 0.47 0.29 0.05 0.08 0.16 0.10 226 4.5
VAD-Tiny ✓ 0.20 0.38 0.65 0.41 0.10 0.12 0.27 0.16 59.5 16.8
VAD-Base ✓ 0.17 0.34 0.60 0.37 0.07 0.10 0.24 0.14 224.3 4.5
DriveVLM [24] ✓ 0.18 0.34 0.68 0.40 0.10 0.22 0.45 0.27 – –
DriveVLM-Dual (VAD-Base) [24] ✓ 0.15 0.29 0.48 0.31 0.05 0.08 0.17 0.10 – –
DiMA + (VAD-Tiny) ✓ 0.17 0.33 0.59 0.37 0.07 0.10 0.26 0.14 59.5 16.8
DiMA + (VAD-Base) ✓ 0.12 0.25 0.44 0.27 0.04 0.06 0.15 0.08 226 4.5
DiMA-Dual+ (VAD-Tiny) ✓ 0.14 0.27 0.46 0.29 0.05 0.07 0.15 0.09 286 3.5

Prompt: What actions taken by the ego vehicle can lead to a collision with <c1,CAM_BACK,1568.3,505.0>?

DiMA: There are no such actions. The ego vehicle is going to keep <c1,CAM_BACK,1568.3,505.0>. 

GT: No such action will lead to a collision

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

Prompt: What is the moving status of object <c1,CAM_FRONT_LEFT,231.5,472.1>?  Please select the
correct answer from the following options:  A. Stopped. B. Going ahead. C. Turn right. D. Turn left

DiMA: S. Going ahead.

GT: B

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

Prompt: Is <c1,CAM_BACK,1088.3,497.5> a traffic sign or a road barrier?

DiMA: No.

GT: No

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

Prompt: What actions could the ego vehicle take based on <c1,CAM_FRONT_RIGHT,850.0,484.2>? Why take
this action and what's the probability?

DiMA: The action is to remain stationary. The reason for this action is to follow the traffic rules.
The probability of taking this action is high.

GT: The action is to remain stationary. The reason for taking this action is to follow traffic rules.
The probability of this action is high.

Figure 9: Visualization of VQA and planning prediction by the MLLM branch of DiMA-VAD-Tiny.
We plot the predicted trajectory (orange-yellow) and show an example response of the language
model branch to a question from the DriveLM test dataset [22].

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

Prompt: What actions taken by the ego vehicle can lead to a collision with <c1,CAM_FRONT,714.3,503.6>?

DiMA: The ego vehicle is going straight and braking.

GT: Accelerate and go straight.

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

Prompt: What actions taken by the ego vehicle can lead to a collision with
<c1,CAM_FRONT,1458.3,492.5>?

DiMA: None.

GT: Moderate right turn.

Figure 10: Visualization of failure cases of DiMA-VAD-Tiny. We plot the predicted trajectory
(orange-yellow) and show an example response of the language model branch to a question from the
DriveLM test dataset [22].
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CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

Prompt: What are the important objects in the scene?

DiMA: There are two cars and one pedestrian in the scene. The pedestrian is standing. The cars are
parked. 

GPT4: The important objects in the scene include a multi-story building, parked cars, grassy areas, and
surrounding trees.

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

Prompt: What are the important objects in the scene?

DiMA: There are many traffic cones in the scene. The road is relatively empty.

GPT4: The important objects in the scene include a roadway, trees, a parking area, a food court
signage, and parts of nearby buildings.

Prompt: Predict the behavior of the ego vehicle.

DiMA: The ego vehicle is slightly steering to the left. The ego vehicle is driving with normal speed.

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

GPT4: The ego-vehicle is likely moving forward along the road while navigating around obstacles, with
potential changes in direction due to the street layout.

Prompt: Predict the behavior of the ego vehicle.

DiMA: The ego vehicle is slightly steering to the right. The ego vehicle is driving fast.

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

GPT4: The ego-vehicle is likely moving straight along the road while encountering light rain and
moderate visibility conditions.

Figure 11: Visualization of visual question-answering on the targeted subset of the nuScenes dataset.
On the image, we plot the predicted trajectory (orange-yellow) The red line is the ground-truth
trajectory. In the diagram, the green line is the predicted trajectory.

F Ablation study

We examine the role of different design choices and proposed tasks in the DiMA framework through
a comprehensive ablation study in Table 4. In order to do so, we build our final frame-work step-by-
step. We begin with VAD-Tiny as our baseline model in the first row, denoted by ID-1. In ID-2, we
observe inconsistent gains and drops in performance by naively training an LLM with the VAD-Tiny
under a the planning and VQA objectives while using only BEV features. By comparing ID-3
and ID-4, we show that that providing more scene context to the MLLM by using all the BEAM
token embeddings to train both LLM and vision-based planner benefits the performance, resulting a
significant improvement in trajectory estimation and collision rate. We show in ID-5 that explicitly
distilling the information from the penultimate layers of the MLLM to the planning transformer gives
another boost in performance. In ID-6, ID-7 and ID-8 we demonstrate the importance of surrogate
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Prompt: What are the important objects in the scene?

DiMA: There are two cars and one pedestrian in the scene. The pedestrian is moving. The cars are
parked.

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

GPT4: The important objects in the scene include cars, greenery, a fire hydrant, signs, and a person
walking.

Prompt: What are the important objects in the scene?

DiMA: There are many cars and one motorcycle in the scene. The ego car is moving ahead.

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

GPT4: The important objects in the scene include a modern building, pathways, trees, parked vehicles,
and street signage..

Prompt: What are the important objects in the scene?

DiMA: The pedestrian in white clothes is moving. 

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

GPT4: The important objects in the scene include modern buildings, pedestrians, traffic signage, and a
vehicle on the road.

Prompt: What are the important objects in the scene?

DiMA: There is a traffic cone, a car, and two barriers in the scene. The traffic cone is to the left of
the car. The car is moving. The barriers are behind the car. There is a truck to the back left of the
car. The truck is moving.

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

GPT4: The important objects in the scene include traffic lights, trucks, cars, construction barriers,
and greenery adjacent to the roadway.

Figure 12: More visualization of visual question-answering on the targeted subset of the nuScenes
dataset. On the image, we plot the predicted trajectory (orange-yellow) The red line is the ground-
truth trajectory. In the diagram, the green line is the predicted trajectory.

tasks like masked-reconstruction, future prediction and scene editing in helping the scene encoder to
learn richer representations useful for planning. We include additional ablation studies to analyze the
effect of surrogate tasks across targeted and long-tail scenarios in nuScenes in Tab. 5 of this appendix.
Our experiments demonstrate that closer the objective of the surrogate task is to the planning task, the
more it boosts performance. For example, masked reconstruction enhances the visual representation.
We observe a stronger boost in planning by training for future prediction, which encourages temporal
consistency. The task of scene editing is most beneficial, as it encodes agent behaviors and reasoning
patterns, further improving planning performance.
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Prompt: What are the important objects in the scene?

DiMA: There are two cars, one truck, and one pedestrian in the scene.

GPT4: The important objects in the scene include vehicles, traffic signals, road markings, and the
Raymond L. Flynn Marine Park sign.

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

Prompt: What are the important objects in the scene?

DiMA: There are two pedestrians moving.

GPT4: The important objects in the scene include cars, street signs, buildings, a river, and
pedestrians.

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

Prompt: What are the important objects in the scene?

DiMA: There are many cars, two pedestrians, and one truck in the scene. The cars are moving. The
pedestrians are standing. The truck is moving. The traffic light is green.

GPT4: The important objects in the scene include vehicles, traffic lights, road signs, and
architectural structures, set in a wet urban environment.
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Prompt: In this scenario, what are safe actions to take for the ego vehicle?

DiMA: Turn left.

GPT4: The ego vehicle should proceed cautiously, ensuring to yield to any approaching traffic while
navigating the area.
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Figure 13: More visualization of visual question-answering on the targeted subset of the nuScenes
dataset. On the image, we plot the predicted trajectory (orange-yellow) The red line is the ground-
truth trajectory. In the diagram, the green line is the predicted trajectory.

Table 4: Results of ablation experiments of DiMA-VAD-Tiny on nuScenes under VAD evaluation.
The baseline model is VAD-Tiny. We report L2 trajectory error and collision rate averaged over all
time steps.

ID VQA Scene
tokens Distillation LLM

Planning
Surrogate tasks Traj L2 (m) ↓ Collision (%) ↓

Masked
recon.

Future
pred.

Scene
editing 1s 2s 3s Aveall 1s 2s 3s Aveall

1 ✗ ✗ ✗ ✗ ✗ ✗ ✗ 0.33 0.58 0.89 0.60 0.12 0.19 0.55 0.29
2 ✓ BEV ✗ ✓ ✗ ✗ ✗ 0.36 0.60 0.91 0.62 0.10 0.17 0.52 0.26
3 ✓ BEV, Map ✗ ✓ ✗ ✗ ✗ 0.28 0.52 0.87 0.56 0.10 0.17 0.49 0.25
4 ✓ All ✗ ✓ ✗ ✗ ✗ 0.26 0.51 0.83 0.52 0.10 0.16 0.38 0.21
5 ✓ All ✓ ✓ ✗ ✗ ✗ 0.22 0.44 0.77 0.48 0.09 0.14 0.34 0.19
6 ✓ All ✓ ✓ ✓ ✗ ✗ 0.19 0.39 0.68 0.42 0.09 0.13 0.32 0.18
7 ✓ All ✓ ✓ ✓ ✓ ✗ 0.18 0.37 0.63 0.39 0.07 0.11 0.29 0.16
8 ✓ All ✓ ✓ ✓ ✓ ✓ 0.18 0.36 0.61 0.38 0.07 0.10 0.27 0.15
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Table 5: Avgall(↓) L2 trajectory error on nuScenes dataset using standardized evaluation ParaDrive

Method Surrogate targeted long-tail
Masked
recon.

Future
pred.

Scene
editing 3point overtake resume

VAD-Tiny ✗ ✗ ✗ 1.37 1.83 1.75 1.32

DiMA (VAD-Tiny)

✓ ✓ ✓ 0.97 1.43 1.23 0.83
✓ ✗ ✗ 1.22 1.67 1.51 1.07
✗ ✓ ✗ 1.16 1.56 1.43 0.98
✗ ✗ ✓ 1.09 1.51 1.39 0.96
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