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Abstract

A classic problem within statistics is log-concave density (LCD) estimation, which asks
for the best log-concave density that maximizes the probability of observing some input
data points. Due to the non-parametric nature of this problem, current algorithms are too
computationally demanding to work beyond a few (i.e. ten) dimensions. We introduce a
new approach that employs energy-based neural networks to convert the non-parametric
problem into a parametric one over the network weights, enabling scalable LCD estimation
in high dimensions. By leveraging deep learning infrastructure (e.g. GPUs), our method
can learn LCDs up to thousands of times faster than existing approaches, while requiring
hundreds of times fewer parameters. We further show that our method learns informa-
tive LCDs on a real protein expression dataset with 77 dimensions, which is beyond the
capabilities of current LCD estimation algorithms.

1. Introduction

Log-concave densities (LCDs) are fundamental tools for statistical data analysis. A LCD
is a continuous distribution p(x) : RD → R such that its logarithm log p(x) is a concave
function. This class encompasses many well-known families, such as the Gaussian, Laplace,
exponential, logistic, Chi, Weibull, and Beta distributions (Bagnoli and Bergstrom, 2006).
LCDs form a natural, non-parametric generalization of Gaussians, which are arguably the
most widely-used densities within all of statistics. Like the Gaussian family, the LCD family
is closed under marginalization, convolution, affine transformation, and taking weak limits
(Saumard and Wellner, 2014). This has inspired many statistical applications – such as
clustering (Cule et al., 2010), regression (Dümbgen et al., 2011), filtering (Henningsson
and Åström, 2006), and independent component analysis (Samworth and Yuan, 2012) – to
replace Gaussians with the more general class of LCDs for increased modeling flexibility.

Within these applications, a recurring problem is log-concave density estimation (Sam-
worth, 2018): given data x1, . . . ,xN ∈ RD, find the maximum likelihood estimator (MLE)

p⋆ = argmax
p∈P

1

N

N∑
i=1

log p(xi), (1)

where P is the set of all LCDs. Compared to parametric families such as the set of all
Gaussians, the non-parametric nature of P allows p⋆ to flexibly adapt to the shape of the
underlying data distribution, without being limited by parametric form. However, this
flexibility comes at a cost: in parametric MLE problems, one can find the best estimator by
simply optimizing over the relevant parameters (e.g. the mean µ ∈ RD and the covariance
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Σ ∈ RD×D for Gaussians). In contrast, Eq. (1) involves searching over all distributions
with a particular geometric constraint, which makes finding p⋆ much more challenging.

Current algorithms for LCD estimation have only been applied to low dimensional (D ≤
10) problems (Cule et al., 2010; Rathke and Schnörr, 2019). These algorithms directly search
over the non-parametric set P and have heavy computational costs for large D, limiting
their applicability to real-world datasets. In this paper, we introduce and study the function
approximator’s log-concave (FALCON) distribution – a new approach to LCD estimation
based on deep learning. Our method parameterizes the negative log-density of an LCD
using an input-convex neural network (ICNN) (Amos et al., 2017). Given data, we train this
network within an energy-based model (EBM) framework (LeCun et al., 2006) to maximize
log-likelihood. By turning the non-parametric problem of Eq. (1) into a parametric one
over the network’s weights, FALCON enables scalable LCD estimation in high dimensions.

Related Work Our work bridges the two disparate literatures on log-concave density
estimation and energy-based modeling. Within statistics, several works have studied LCD
estimation (see reviews by Walther (2009); Saumard and Wellner (2014); Samworth (2018)).
Dümbgen and Rufibach (2009) and Liu and Wang (2018) studied the one-dimensional case.
Cule et al. (2010) provided an exact algorithm for the multivariate case; other algorithms
were later proposed by Koenker and Mizera (2010); Axelrod et al. (2019); Rathke and
Schnörr (2019); Chen et al. (2021). To the best of the authors’ knowledge, none of these
works have applied their methods to datasets beyond a few (e.g. ten) dimensions. In
machine learning, energy-based models have a rich history of casting maximum likelihood
estimation as an energy minimization problem (see reviews by LeCun et al. (2006); Song
and Kingma (2021)). Recently, there has been considerable interest in applying EBMs to
computer vision (Du and Mordatch, 2019; Suhail et al., 2021), chemistry (Liu et al., 2021),
natural language processing (Deng et al., 2020), and reinforcement learning (Haarnoja et al.,
2017). These works typically study how well EBMs can generate realistic data after training.
Our work has a different focus, illustrating how well EBMs optimize densities compared to
exact, non-parametric algorithms; the setting of LCD estimation uniquely enables such
comparisons because exact algorithms exist as baselines. These comparisons contribute to
understanding the expressive power of EBMs, and to what degree they can be improved.

2. FALCON: Function Approximator’s Log-Concave Distribution

FALCON is an energy-based model (EBM) (LeCun et al., 2006), which defines a distribution
pθ over X ⊆ RD by parameterizing its negative log-density (up to an additive constant)
using an energy function Eθ : X → R. Specifically, for any x ∈ X ,

pθ(x) :=
exp(−Eθ(x))

Zθ
. (2)

Here, Zθ :=
∫
x̃∈X exp(−Eθ(x̃))dx̃ is the normalizing constant and θ are the parameters. In

LCD estimation, we want to learn a log-concave pθ, which means enforcing convexity of Eθ.

Energy function architecture The input-convex neural network (ICNN) (Amos et al.,
2017) is a deep learning architecture that guarantees the output is a convex function of the
input. In FALCON, we use the ICNN to parameterize Eθ. In theory, the ICNN is flexible
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enough to approximate any convex function to arbitrary precision (Chen et al., 2019). For an
input x, we define e := Eθ(x) by the following cascade of linear and non-linear operations:

z1 = h1(V 0x+ b0), (input layer) (3)

zℓ = hℓ(W ℓ−1zℓ−1 + V ℓ−1x+ bℓ−1), 2 ≤ ℓ ≤ L, (hidden layers)

e = w⊤zL + v⊤x+ b, (output layer)

where θ := {(V 0, b0), (V 1,W 1, b1), . . . , (V L−1,W L−1, bL−1), (w,v, b)} are the parameters
of the network and {h1, . . . , hL} are the non-linear activations.

To ensure convexity of e in x, some restrictions must be placed on the architecture in
Eq. (3). Observe that (a) if two functions f and g are convex, then their sum f + g is also
convex, and (b) if f is convex and g is convex and increasing, then g ◦ f is convex. Thus,
we can guarantee convexity in x is maintained at every layer (including the output e) as
long as (1) the inter-layer weights W 1,W 2, . . . ,W L−1,w are non-negative and (2) the non-
linear activations are convex and increasing functions. The first constraint can be enforced
when training the network with (projected) gradient descent, and the second constraint is
satisfied by some commonly used activations in deep learning (e.g. ReLU, Softplus).

By composing theoretical results on LCDs and ICNNs, we show that the FALCON
family has sufficient expressive power to solve LCD estimation for any finite dataset:

Proposition 1 Given any finite set of data points x1, . . . ,xN ∈ RD, there exists a FAL-
CON distribution parameterized by an ICNN with rectified linear (ReLU) activations that
can exactly express the log-concave maximum likelihood estimator p∗ of Eq. (1).

Proof Let X denote the convex hull of x1, . . . ,xN . In Theorems 1 and 2 of Cule et al.
(2010), it is shown that (1) for x ̸∈ X , p∗(x) = 0, and (2) for x ∈ X , − log p∗(x) is
piece-wise affine, where the pieces come from a finite triangulation of the convex hull. Any
function that is piece-wise affine and convex can be equivalently expressed as a maximum
over affine functions (Magnani and Boyd, 2009). Theorem 2 of Chen et al. (2019) provides a
constructive proof of how one can set the weights of a K-layer ICNN with ReLU activations
to express any function that is a maximum over K affine functions, which implies that there
exists a FALCON that can exactly express p∗(x) on X .

3. Model Inference

Training the Network Prop. 1 shows existence of a FALCON density that can solve Eq.
(1), but does not say how to find it in practice. We now describe how to train the FALCON
parameters θ to optimize log-likelihood. Due to the non-convexity of the objective, we do
not find the exact optimum; however, our experiments in Section 4.1 suggest that we can
learn LCDs close to the MLE. Given a dataset S := {x1, . . . ,xN}, the objective is:

max
θ

1

N

N∑
i=1

log pθ(xi) ⇐⇒ min
θ

[
L(θ) := 1

N

N∑
i=1

Eθ(xi) + logZθ

]
. (4)

To optimize Eq. (4), we use stochastic gradient descent (SGD). The gradient is

∇θL(θ) =
1

N

N∑
i=1

∇θEθ(xi) +∇θ logZθ = Exi∼S [∇θEθ(xi)]− Ex̃∼pθ [∇θEθ(x̃)], (5)
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where the second equality comes from the log-derivative identity (derivation given in Ap-
pendix A.1). Eq. (5) reveals that we can compute an unbiased estimator of the gradient
using samples x̃ from pθ. The full SGD training algorithm is summarized in Appendix B.1.

Sampling from FALCON To obtain x̃, we employ Markov chain Monte Carlo (MCMC),
which takes the energy function Eθ and constructs an ergodic Markov chain x̃0 → x̃1 →
· · · → x̃T → · · · over X whose stationary distribution is pθ. The specific MCMC method we
use is the Metropolis-adjusted Langevin algorithm (MALA) (Roberts and Tweedie, 1996),
which exploits gradient information ∇x̃Eθ(x̃) to efficiently sample from pθ. We outline
T -step MALA in Algorithm B.2.

MALA is a particularly suitable choice for FALCON: due to its convex energy function,
pθ is always guaranteed to be log-concave. There is a strong line of theoretical work showing
that for log-concave densities in particular, the number of iterations T needed for MALA
to mix grows sub-linearly with the dimension D (Dwivedi et al., 2018; Chewi et al., 2021;
Wu et al., 2022), implying that FALCON can be trained efficiently in high dimensions.

Estimating Log-Likelihood We previously described how to estimate ∇θL(θ), but not
how to compute the negative log-likelihood L(θ) itself. Computing L(θ) is also quite useful:
(1) during training, it allows us to assess convergence of FALCON’s loss, and (2) after
training, it allows us to compare the model fit of FALCON with that of other models.
We now introduce an unbiased estimator for the FALCON log-normalizing constant logZθ,
which subsequently allows for estimation of L(θ). Our approach comes from path sampling
(Gelman and Meng, 1998; Rischard et al., 2018).

Consider some base distribution q0(x) = exp(−E0(x))/Z0 over the same domain X
for which we know the normalizing constant Z0 (e.g. the uniform distribution, the Gaus-
sian distribution). We will compute logZθ by integrating over a continuous path of dis-
tributions qλ(x) for λ ∈ [0, 1], which starts at q0(x) and ends at q1(x) := pθ(x). We
define each qλ(x) := exp(−Eλ(x))/Zλ, where Eλ(x) := (1 − λ) · E0(x) + λ · Eθ(x) and
Zλ :=

∫
x̃∈X exp(−Eλ(x̃))dx̃. Then, it can be shown that (derivation in Appendix A.2)

logZθ = logZ0 +

∫ 1

0

(
d

dλ
logZλ

)
dλ = logZ0 + Eλ∼Unif(0,1) [Ex̃∼qλ [E0(x̃)− Eθ(x̃)]] . (6)

Thus, an unbiased estimator of Eq. (6) arises from (1) sampling k values of λ, (2) running
an independent MCMC chain for each λ (e.g. using MALA) to collect samples x̃ from qλ,
and (3) averaging the quantity E0(x̃)− Eθ(x̃) over all samples. Note that since q1 = pθ is
log-concave, as long as we choose q0 to be log-concave, then all intermediate distributions
qλ will also be log-concave, allowing for efficient MALA sampling.

4. Experimental Results

4.1. Simulated Data

To evaluate how well FALCON can perform LCD estimation in practice, we benchmark it
against two baselines: (a) LogConcDEAD, the seminal algorithm of Cule et al. (2010) which
solves Eq. (1) exactly using non-smooth convex optimization, and (b) fmlogcondens, an
algorithm proposed by Rathke and Schnörr (2019) that is often faster than LogConcDEAD,
but is not guaranteed to find the true MLE. Both packages are implemented in R.
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For each dimension D, we generate N = 512 data points from N (0, I) in RD as the input
to the LCD estimation algorithms. We use default hyperparameters for LogConcDEAD and
fmlogcondens. For FALCON, the network comprises three hidden layers, each with 128 units
and ReLU activations. Following Section 3, we train it using SGD for 500 gradient steps and
T = 250 iterations of MALA per gradient step (see Appendix C.1 for further details). We
implement FALCON in PyTorch (Paszke et al., 2019) to leverage automatic differentiation
and GPU computation (our code is available at https://github.com/al5250/falcon).
Our machine has a 3.5 GHz 16-core Intel i9 CPU and a Nvidia GeForce RTX 3090 GPU.

The results for different dimensions D = 2, 3, . . . , 8, are displayed in Table 1. We make
the following observations: (1) The three-layer FALCON learns LCDs with (negative) log-
likelihood that has < 5% error compared to LogConcDEAD and fmlogcondens, (2) with GPU
acceleration, FALCON has low time cost across all D, and can be up to 1,900× faster than
LogConcDEAD and 120× faster than fmlogcondens, (3) FALCON uses up to 290× fewer
parameters than LogConcDEAD and up to 750× fewer parameters than fmlogcondens.

LogConcDEAD fmlogcondens FALCON

D NLL Time Params NLL Time Params NLL Time Params

2 2.79 0.1 2,268 2.79 0.0 1,338 2.79 2.3 34,307
3 4.05 0.4 13,996 4.05 0.1 13,136 4.14 2.3 34,820
4 5.22 2.0 72,045 5.22 0.4 72,015 5.43 2.3 35,333
5 6.24 4.1 373,122 6.24 1.3 372,978 6.54 2.3 35,846
6 7.08 90.2 1,993,271 7.15 2.5 1,753,010 7.42 2.3 36,359
7 7.83 4,571.5 10,723,640 8.07 16.2 481,936 8.09 2.4 36,872
8 — — — 8.69 397.2 28,244,700 8.79 2.4 37,385

Table 1: Comparing the negative log-likelihood, computation time in minutes, and number
of parameters of different LCD estimation algorithms. FALCON estimates NLL
using Eq. (6); all estimates have ≤ 0.05 standard deviation (see Appendix C.1).

4.2. Real Protein Expression Data

Next, we evaluate FALCON on a real protein expression dataset (Higuera et al., 2015) from
the UCI machine learning repository. The dataset measuresD = 77 proteins acrossN = 552
independent mice samples. Using previous algorithms, it is computationally infeasible to
perform LCD estimation on data with this dimensionality. However, we show that with
FALCON, we can learn an LCD for this dataset in an efficient manner and furthermore, we
can apply the learned LCD to solve statistical problems, such as missing data imputation.

We split the dataset in half to form a training set and an evaluation set. Following
Section 3, we fit a three-layer FALCON distribution pθ(x) to the training set. Appendix
C.2 provides more details on data processing and model training. For each data point
xi ∈ RD in the evaluation set, we independently mask each of its D measurements with
probability α ∈ [0, 1] to create a missing part xm

i ∈ RMi and an observed part xo
i ∈ RD−Mi .

To evaluate how well pθ captures the true joint density of x, we see if it can accurately
impute each xm

i using the conditional distribution pθ(x
m
i |xo

i ), where θ was learned on the
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training data. Note that pθ(x
m
i |xo

i ) is log-concave and we can draw samples from it using
MALA (see Appendix C.2). We consider the following two tasks.

Task 1: Point estimate prediction Let ẋm
i denote the true value of xm

i from the
evaluation set. For FALCON’s prediction, we use the point estimate x̂m

i := Epθ(x
m
i |xo

i )
[xm

i ],
which is approximated by a mean over the MALA samples. Over the entire evaluation set,
we compute the root mean squared error (RMSE) ( 1

M

∑
i∥ẋ

m
i − x̂m

i ∥22)1/2, where M :=∑
iMi is the total number of missing values. We compare FALCON against other popular

algorithms, i.e. mean value imputation (MVI), multivariate Gaussian imputation (MGI),
iterative chained equations (ICE), and k-nearest neighbors (KNN) (see Appendix C.2 for
descriptions). The results are in Table 2. We observe that FALCON outperforms the other
methods, as its non-parametric nature allows it to bend to the shape of the underlying data.

MVI MGI ICE KNN FALCON

α = 0.1 0.970 ±0.014 0.347 ±0.015 0.370 ±0.013 0.409 ±0.018 0.322 ±0.014
α = 0.3 0.964 ±0.008 0.370 ±0.006 0.473 ±0.009 0.407 ±0.005 0.339 ±0.005
α = 0.5 0.971 ±0.007 0.407 ±0.008 0.611 ±0.009 0.425 ±0.010 0.382 ±0.008

Table 2: RMSE of imputation algorithms for different missing probabilities α on the protein
expression dataset. Means and standard deviations are computed over five runs.

Task 2: Uncertainty quantification Beyond point estimates, FALCON can also pro-
vide credible intervals for the missing values. Given a particular dimension xmid of the missing
data vector xm

i and some desired confidence level γ ∈ [0, 1], we can construct an interval
[aid, bid] such that the trained FALCON distribution believes pθ(aid ≤ xmid ≤ bid | xo

i ) = γ.
In practice, we estimate aid and bid by sorting the MALA samples of xmid |xo

i , collecting the
middle γ-percentile samples, and setting aid and bid as the minimum and maximum values
of this collection. Of course, the credible interval is only useful if it is calibrated, i.e. if the
actual empirical probability δ that the true value ẋmid falls between aid and bid is indeed equal
to γ. We therefore define the calibration error as |γ − δ|. In Figure 1, we plot FALCON’s
calibration error for various values of γ ∈ {0.1, 0.2, . . . , 1.0}. For comparison, we construct
and evaluate similar credible intervals based on multivariate Gaussian imputation. We find
that FALCON imputation has better calibration than MGI at all levels of γ. This is due to
FALCON’s superior flexibility as a density estimator, which we showcase in Appendix C.2.
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Figure 1: Actual percentage δ vs. credible interval γ for uncertainty quantification.
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Appendix A. Derivations

A.1. Log-Derivative Identity (Eq. (5))

This equation boils down to showing ∇θ logZθ = −Ex̃∼pθ [∇θEθ(x̃)]. We have

∇θ logZθ =
1

Zθ
· ∇θ

[∫
x̃∈X

exp(−Eθ(x̃))dx̃

]
(7)

=
1

Zθ
·
[∫

x̃∈X
exp(−Eθ(x̃)) · ∇θ[−Eθ(x̃)]dx̃

]
= −Ex̃∼pθ [∇θEθ(x̃)]. (8)

A.2. Path Sampling Identity (Eq. (6))

It follows that

logZθ = logZ1 = logZ0 + (logZ1 − logZ0) = logZ0 +

∫ 1

0

(
d

dλ
logZλ

)
dλ (9)

= logZ0 +

∫ 1

0

1

Zλ

(
d

dλ

∫
x̃∈X

exp(−Eλ(x̃))dx̃

)
dλ (10)

= logZ0 +

∫ 1

0

1

Zλ

(∫
x̃∈X

exp(−Eλ(x̃)) ·
[
d

dλ
(−Eλ(x̃))

]
dx̃

)
dλ (11)

= logZ0 +

∫ 1

0

1

Zλ

(∫
x̃∈X

exp(−Eλ(x̃)) · [E0(x̃)− Eθ(x̃)]dx̃

)
dλ (12)

= logZ0 + Eλ∼Unif(0,1) [Ex̃∼qλ [E0(x̃)− Eθ(x̃)]] . (13)

Appendix B. Algorithms

B.1. Training FALCON with Stochastic Gradient Descent

Algorithm 1: FALCON Training Algorithm

Input: dataset S = {x1, . . . ,xN}, number of iterations J , step size η, minibatch size b
Output: trained parameters θ
Initialize θ := {(V 0, b0), (V 1,W 1, b1), . . . , (V L−1,W L−1, bL−1), (v,w, b)}
for j ← 1 to J do

Sample mini-batch B ⊆ S, where |B| = b
C ← MCMC(Eθ, steps = T ) // Collect MCMC samples from model
g ← 1

|B|
∑

xi∈B∇θEθ(xi)− 1
|C|

∑
x̃∈C ∇θEθ(x̃) // Estimate gradient

θ ← θ − η · g // Update parameters
for ℓ← 1 to L− 1 do

W ℓ ← ReLU(W ℓ) // Enforce convexity
end
w ← ReLU(w) // Enforce convexity

end

10
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B.2. Drawing Samples from FALCON with MALA

Algorithm 2: Metropolis-Adjusted Langevin Algorithm (MALA)

Input: energy function E : X → R, support X ⊆ RD, number of steps T , burnin U ,
initial sample x̃0, proposal standard deviation σ

Output: set of samples C
Initialize C ← ∅
µ̃0 ← x̃0 − 1

2σ
2 · ∇x̃0E(x̃0) // Compute mean proposal

for t← 1 to T do
εt ∼ N (0, I) // Generate noise
ỹt ← µ̃t−1 + σ · εt // Propose candidate sample
ν̃t ← ỹt − 1

2σ
2 · ∇ỹt

E(ỹt) // Compute candidate mean proposal

r ← min

[
1,

exp
(
−E(ỹt)− 1

2σ2 ∥x̃t−1 − ν̃t∥22)
)

exp
(
−E(x̃t−1)− 1

2σ2 ∥ỹt − µ̃t−1∥22)
)] // Compute acceptance prob

δ ∼ Uniform(0, 1)
if ỹt ∈ X and δ ≤ r then

x̃t ← ỹt and µ̃t ← ν̃t // Accept proposal
else

x̃t ← x̃t−1 and µ̃t ← µ̃t−1 // Reject proposal
end
if t ≥ U then
C ← C ∪ {x̃t} // Add sample to final set

end

end

Appendix C. Experimental Details

C.1. Simulated Data

Architecture For every dimension D, we construct a FALCON architecture with 3 hid-
den layers, 128 units per hidden layer, and rectified linear activations. From Theorem 1
and 2 of Cule et al. (2010), we know that the optimal LCD satisfies p∗(x) = 0 for x ̸∈ X ,
where X is the convex hull of the data. Thus, we precompute X using the QuickHull algo-
rithm (see https://scipy.github.io/devdocs/reference/generated/scipy.spatial.

ConvexHull.html) and only use the ICNN to define Eθ(x) for x ∈ X (otherwise, we let
Eθ(x) =∞).

Training We train FALCON for J = 500 gradient steps using full batches (i.e. b = N =
512) and the Adam optimizer with learning rate 0.001 (Kingma and Ba, 2014). We use
gradient clipping with max L2-norm value of 5. For each MALA step, we run 20 chains
in parallel for T = 250 steps and a burnin of U = 100. Samples are aggregated across all
chains to make the FALCON gradient update. The MALA proposal standard deviation is
σ = 0.25. For the first gradient update, we initialize the MALA chain with x̃0 = 0. For
subsequent updates, we initialize each x̃0 by uniformly sampling over x̃T from the different
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chains in the previous gradient update; this is an attempt to accelerate mixing of MALA
through warm start (see e.g. Dwivedi et al. (2018); Chewi et al. (2021); Wu et al. (2022)).

Since we are using MALA to sample from a distribution pθ defined over X , we need
to be able to check if a proposed point ỹ lies in X (if not, it is automatically rejected –
see Appendix B.2). This check is easy for convex hulls, because any convex hull X can be
defined by the set {ỹ|Aỹ ≤ b}, for some A ∈ RP×D and b ∈ RP , where P is the number of
faces. The parameters A, b can be easily obtained from the QuickHull algorithm.

NLL Estimation To estimate the FALCON log-normalizing constant logZθ (Eq. (6)),
we use a base distribution q0(x) = 1/V that is uniform over the convex hull X . Here, V
is the volume of the hull, which can be calculated by QuickHull. Note that this is also a
log-concave distribution, implying that all intermediate qλ are also log-concave. We use 20
values of λ, which corresponds to 20 MALA chains and for each chain, we use the same
settings as used for FALCON training. For the NLL values in Table 1, we estimate logZ
ten times using the aforementioned process and take the mean. The standard deviation
over the ten runs is consistently less than 0.05 for all values of D.

C.2. Real Protein Expression Data

Data Processing We downloaded the data from https://archive.ics.uci.edu/ml/

datasets/Mice+Protein+Expression. We removed data points with any missing values,
leaving N = 552 samples. We randomly split these samples in half to form a training set and
an evaluation set. Each dimension of the training set was independently standardized to
have zero mean and one standard deviation. The standardization inferred from the training
set was then applied to the evaluation set.

FALCON Details We trained a three-layer FALCON on the training set. Each hidden
layer had 512 hidden units with ReLU activations. We trained for 250 epochs (i.e. passes
through the full training set) with minibatch size b = 128, the Adam optimizer, and learning
rate 0.001. The MALA sampler ran 10 chains in parallel for T = 2,000 steps with a burnin
of U = 500. The proposal standard deviation was σ = 0.1. Unlike for the simulations, we
did not limit pθ to be non-zero over only the convex hull of the data. This was for two
reasons: (1) computing convex hulls in high dimensions (i.e. D = 77) is computationally
expensive, and (2) it is highly likely that some points in the evaluation set will not lie in the
convex hull of the training set. Since we will use the network for missing data imputation,
we want it to learn an informative density over all of X := RD, and not just the convex hull
of the training data.

Conditional Distribution for Missing Data Let M ≤ D be the dimension of the
missing data xm. For missing data imputation, we want to sample from the distribution
pθ(x

m|xo), which can be expressed as

pθ(x
m|xo) =

pθ(x
m,xo)∫

x̃m∈RM pθ(x̃
m,xo)dx̃m =

exp(−Eθ(x
m,xo))

Zθ ·
∫
x̃m∈RM pθ(x̃

m,xo)dx̃m . (14)

Thus, the energy function of pθ(x
m|xo) is Fθ,xo(xm) := Eθ(x

m,xo). Observe that F is
certainly convex in xm, meaning pθ(x

m|xo) is a log-concave density. Given xo and θ, we
can use Fθ,xo as input to MALA (Appendix B.2) to produce samples x̃m|xo. These samples
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can then be used to impute the missing data xm (either through point estimation as in
Task 1, or credible intervals as in Task 2).

Descriptions of Imputation Baselines Here, we briefly summarize the popular impu-
tation algorithms that we compare against FALCON.

Mean value imputation (MVI): This is perhaps the simplest imputation algorithm. For
each feature xd ∈ x, we take a simple mean over its values in the dataset. This mean is
used to impute every instance where x(d) is missing from a data point.

Multivariate Gaussian imputation (MGI): This method fits a multivariate Gaussian
distribution to the data to capture correlations between all D dimensions (Lee and Carlin,
2010). The learned parameters are the mean µ ∈ RD and the covariance matrix Σ ∈ RD×D.
Let µo ∈ RD−M and µm ∈ RM be the observed and missing dimensions of µ. Similarly,
let Σoo ∈ R(D−M)×(D−M) be the covariance of the observed data, Σmm ∈ RM×M be the
covariance of the missing data, and Σmo ∈ RM×O be the cross-covariance between missing
and observed data. The distribution pµ,Σ(x

m|xo) can be used to infer the missing data.

This is also a Gaussian distribution with mean µm|o ∈ RM and covariance Σm|o ∈ RM×M ,
given by

µm|o := µm +Σmo(Σoo)−1(xo − µo), (15)

Σm|o := Σmm −Σmo(Σoo)−1(Σmo)⊤. (16)

For Task 1 (Table 2), MGI returns the point estimate µm|o to impute xm. For Task 2 (Figure

1), MGI constructs γ-credible intervals for each dimension xmd by plugging the mean µ
m|o
d

and variance Σ
m|o
d,d corresponding to dimension d into the cumulative distribution function

of a Gaussian random variable.
Iterative chained equations (ICE): This method iteratively builds a predictive regression

model for each missing dimension by using the other dimensions as covariates (Van Buuren
and Groothuis-Oudshoorn, 2011). We use the sci-kit learn software (https://scikit-learn.
org/stable/modules/generated/sklearn.impute.IterativeImputer.html).

k-nearest neighbors (KNN): This method uses the observed data xo to find the closest
neighbors and then uses the corresponding dimensions the neighbors to impute the missing
data xm (Troyanskaya et al., 2001). In our experiments, we tune k ∈ {1, 3, 5, 7, 9}. We
use the sci-kit learn software (https://scikit-learn.org/stable/modules/generated/
sklearn.impute.KNNImputer.html#sklearn.impute.KNNImputer).

FALCON vs. Multivariate Gaussian for Density Estimation We give some more
context for FALCON’s superiority in uncertainty quantification over the multivariate Gaus-
sian in Figure 1. Specifically, in Figure 2, we show a couple of examples of how FALCON can
flexibly adapt to the shape of the underlying data distribution (similar to non-parametric
methods), while the multivariate Gaussian is restricted by its parametric form.
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Figure 2: Comparing log-density fits of multivariate Gaussian vs. FALCON for two di-
mensions of the protein dataset. (Left) FALCON is able to capture the varying
curvature of the data; the multivariate Gaussian is forced to have constant curva-
ture (in log-space) due to parametric form. (Right) FALCON is able to capture
the asymmetry of the data; the multivariate Gaussian is forced to be symmetric
due to parametric form.
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