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Abstract

The viewing graph is a compact tool to encode the ge-
ometry of multiple views: nodes represent uncalibrated
cameras and edges represent fundamental matrices (when
available). Most research focuses on theoretical analyses,
exploring for which viewing graphs it is possible (in princi-
ple) to retrieve cameras from fundamental matrices, in the
sense that the problem admits a unique solution for noise-
less data. However, the practical task of recovering cam-
eras from noisy fundamental matrices is still open, as avail-
able methods are limited to special graphs (such as those
covered by triplets). In this paper, we develop the first
method that can deal with the recovery of cameras from
noisy fundamental matrices in a general viewing graph. Ex-
perimental results demonstrate the promise of the proposed
approach on a variety of synthetic and real scenarios.

1. Introduction

In this paper we consider the task of computing a number
of uncalibrated cameras starting from a set of fundamental
matrices between pairs of views (see Fig. 1). Cameras are
represented as nodes in the so-called viewing graph [16],
whereas fundamental matrices correspond to the edges.
Typically, such a graph is not complete but it contains only
a subset of all possible fundamental matrices, which in turn
are corrupted by noise/outliers. Exploiting redundancy in
the data is the key to achieve error compensation.

The task of camera recovery from fundamental matri-
ces is related to projective structure from motion (SfTM)
[10, 19, 21-23, 29], which aims at recovering both uncal-
ibrated cameras and 3D scene points starting from image
point correspondences. Note that fundamental matrices can
be derived in closed-form from image points [13], however,
there is loss of information when discarding points and us-
ing fundamental matrices only as the starting point for pro-
jective SfM. This is akin to what happens in the calibrated
case with the global SfM approach [1, 25], where essential
matrices only (or, equivalently, relative rotations and trans-
lation directions) are used as input to perform camera recon-
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Figure 1. In the camera recovery problem, the task is to recover
unknown 3 X 4 projective camera matrices, 1, ..., Ps from the
known subset of the fundamental matrices, { F;; }, between them.
The problem has a unique solution, up to a global projective trans-
formation, only if the associated viewing graph is solvable.

struction. In this respect, the task of camera recovery from
fundamental matrices — addressed in this paper — has signif-
icant theoretical relevance, as it aims to answer the follow-
ing question: what can be done in terms of camera recovery,
when we are given only partial information, represented as
fundamental matrices? This problem is poorly studied and
highly challenging, as clarified in the subsequent sections.

1.1. Related Work

We first clarify differences between solvability [16], com-
patibility [7] and camera recovery from fundamental matri-
ces [15], that are tightly related problems. In this paper, we
address the latter. All these tasks involve a viewing graph,
and they differ on assumptions and objectives on this graph.

* Solvability: in this case, we are given a noiseless set
of fundamental matrices, and the question is how many
camera configurations are compliant with them. Specif-
ically, it is assumed that a solution (i.e., a set of com-
patible cameras) exists, and the question is whether such
solution is unique or not (up to a single projective trans-
formation). Viewing graphs are typically analyzed using
random configurations of cameras, in order to focus on
the graph structure itself and understand if the available
edges are generically enough to constrain a single solu-
tion: in the case of uniqueness (under generic camera
configurations), the graph is called solvable.

20934



* Compatibility: in this case, the question is about the ex-
istence of a solution, which is typically possible only on
noiseless data. Hence, the objective is to provide theoret-
ical conditions that characterize a set of compatible cam-
eras in terms of properties of the fundamental matrices.

e Camera Recovery: in this scenario, we are given a
noisy set of fundamental matrices (on a solvable viewing
graph), and the question is how fo compute an approxi-
mate solution that minimizes a suitable objective. Typi-
cally, an exact solution does not exist with noise.

Differences between these problems are summarized in
Tab. 1 and more details on existing work are provided in the
sequel. Observe that checking solvability permits to iden-
tify ill-posed graphs a priori, and it should be done as a pre-
processing step before camera recovery from fundamental
matrices. Compatibility results may inspire practical meth-
ods for camera recovery (as done e.g. by [15]), where the
idea is to recover cameras while refining fundamental ma-
trices by enforcing compatibility conditions. In this paper,
instead, we are not inspired by compatibility theory, but we
propose a new iterative scheme for camera recovery.

Table 1. Differences between solvability, compatibility and cam-
era recovery from fundamental matrices.

Solvability Compatibility Camera Recovery
noiseless noiseless noise
##solutions  existence of a solution  computing a solution

Viewing graph solvability. Existing literature comprises
practical necessary conditions [4, 16, 31] or sufficient con-
ditions [26, 30], as well as theoretical characterizations
based on polynomial equations [3, 31]. Unfortunately, at the
moment, there are no practical methods to check for solv-
ability, in line with the fact that solving polynomial equa-
tions is notoriously hard. To overcome this drawback, re-
cent works [2, 5] focused on relaxations to the notion of
solvability: they check if, for a given graph, the problem
of camera recovery from (noiseless) fundamental matrices
admits a finite number of solutions (instead of a single one),
either globally (finite solvability [5]) or locally (infinitesi-
mal solvability [2]). Thanks to the relaxation, the problem
is no longer polynomial but it becomes linear (i.e., check-
ing the rank of a proper matrix). Although not being able to
distinguish between a single solution and, e.g., two distinct
solutions, these methods [2, 5] can be viewed as practical
approaches to identify ill-posed graphs with infinitely many
solutions, that are the most frequent unsolvable cases in
practice. Furthermore, efficient algorithms for partitioning
an unsolvable graph into components are available [2, 5].

Compatibility and camera recovery. The first attempt at
recovering cameras from a set of noisy fundamental matri-

(a) (®) (©

Figure 2. Some known solvable viewing graph configurations. All
the cameras in (a) can be recovered by [9, 15, 18, 28], since all
nodes are covered by triplets. Only [28] can recover all the nodes
in (b), where there are two real triplets and one virtual triplet,
whereas [9, 15, 18] can only recover a subset of the nodes, namely
{1,2,4,5}. The most general topology of a solvable graph is shown
in (c), which can not be managed by previous methods: our ap-
proach represents a first step to address this challenge.

ces, that we are aware of, was by Sinha et al. [28] for the
task of calibrating a network of cameras from silhouettes.
From a triplet (3-clique) of fundamental matrices, they si-
multaneously obtain the three projective cameras and new
refined (consistent) fundamental matrices between them,
using a linear system. They also provide induction steps
to extend the approach to larger viewing graphs: this allows
recovery of nodes (cameras) belonging to “virtual triplets”,
arising when adding a node of degree two to the sub-graph
containing previously estimated cameras (see Fig. 2b for an
example). More recently, Colombo et al. [9] provided a
closed-form solution for recovering cameras from a triplet
of fundamental matrices, and a sequential extension for
more cameras in triplets. Sengupta et al. [27] introduced
new (necessary) algebraic rank constraints on a collection
of fundamental matrices to be consistent (or compatible),
and optimize the input set of fundamental matrices based
on these conditions. They, however, move to the calibrated
setting for camera recovery so it cannot be considered as an
uncalibrated method for recovering cameras from a set of
fundamental matrices. This procedure was later extended
in GPSFM [15] to introduce more necessary as well as suf-
ficient algebraic constraints for a collection of consistent
fundamental matrices. After optimization based on these
constraints, Kasten et al. [15] recover projective cameras
in triplets, and finally bring them to a common projective
frame by concatenating relative projectivities along a span-
ning tree. GPSFM requires that the nodes of the viewing
graph (cameras) are covered by triplets, similarly to [9] (see
Fig. 2a for an example). Recently, the authors of [18] pro-
posed a framework for Projectivity Synchronization to re-
place the last step of GPSFM (namely the sequential prop-
agation along a spanning tree), exploiting available redun-
dancies. Finally, Bratelund et al. [7] provide a new anal-
ysis on compatibility of fundamental matrices, extending
[15, 27]. However, the results from [7] remain theoretical
without developing a practical method for camera recovery.
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1.2. Challenges and Contribution

Overall, the task addressed in this paper — recovering uncal-

ibrated cameras using fundamental matrices only — is poorly

studied and counts very few approaches in the literature

[9, 15, 18, 28], as reviewed in Sec. 1.1. Most importantly,

these methods are limited in the type of viewing graphs they

can process: [9, 15, 18] require graphs covered by triplets;

[28] considers graphs with a specific topology made of ac-

tual triplets and virtual triplets. Examples of graph struc-

tures that can be handled by the different methods are shown

in Fig. 2. All these cases correspond to solvable graphs [30].

It is important to note that none of the available methods

can manage the most general topology of a solvable viewing

graph: instead, it is known that solvable graphs (for which
in principle it is possible to uniquely recover cameras) also
include cases without real/virtual triplets [16] (see Fig. 2c¢).

In fact, recovering cameras from fundamental matrices
on a general viewing graph is still an open problem. Part of
the motivation behind this limited development is that prac-
tical methods to check for (approximate) solvability and
extract components are extremely recent [2, 5] — note that
this is a necessary pre-processing step (see Sec. 1.1). Such
works have paved the way to the possibility to build a com-
plete pipeline for camera recovery from fundamental ma-
trices in a general viewing graph. This paper places itself

within this context and develops the first approach for such a

problem. Note that this task is very challenging: an efficient

solution is not available even in the noiseless case, where
camera recovery can be reduced to a solvability problem
described by polynomial equations [4]. Moreover, practical
methods that relax solvability [2, 4] can not be used for cam-
era recovery: they analyze an auxiliary linear system that
gives information on the number of solutions of the origi-
nal polynomial system, but no information is given on the
actual solutions (that are not explicitly retrieved).

Our contributions in addressing these challenges are:

* We propose a novel method for camera recovery from
fundamental matrices with an iferative framework based
on alternating optimization, which permits to tackle this
challenging optimization task by solving (in alternation)
easier problems over subsets of variables/cameras.

* We provide experimental results on a variety of syn-
thetic and real-world data, significantly improving upon
the state-of-the-art [9, 15, 18, 28].

* Qur approach is the most general in the literature, with the
ability to manage general graph topologies, provided ini-
tialization of a subset of cameras, whereas previous meth-
ods were limited to graphs covered by real/virtual triplets.

2. Proposed Formulation

Our task is the following: given a solvable subset out of all
possible fundamental matrices between pairs of cameras,

the objective is to estimate the n unknown 3 X 4 camera
matrices Py, Ps, ..., P, consistent with them. We model
this as the problem of inferring the unknown vertices V' of
a graph G = (V, &), given the relative measures between
them as edges £. This graph is also known as the view-
ing graph, whose vertices are cameras and the edges are
the fundamental matrices. We consider an uncalibrated sce-
nario and assume that G is a solvable graph, to ensure that
the camera recovery problem is well posed.

To this end, we exploit a popular result from [13] on the
consistency relation between two cameras, P; and P;, and
their fundamental matrix, F;. Such a result says that F}; is
the fundamental matrix of the pair if and only if the matrix
PTF;; P; is skew-symmetric, which is equivalent to:

PF;P;+ P/ FP; =0 (1)

where the right side here denotes the 4 x 4 matrix whose
elements are all zero. Note that the above equation involves
a single edge (i,j) € & of the viewing graph, where F};
is known, while P; and P; are unknown. In practice we
have multiple equations of the form (1) when considering
the whole graph, giving rise to a large polynomial system in
unknowns P4, ..., P,. Recall that solving Eq. (1) globally
is notoriously hard and there are no efficient solutions even
in the absence of noise, as explained in Sec. 1.2.

To address this challenge, the key idea is the following:
while it is hard to solve Eq. (1) with respect to P, ..., P,
simultaneously, this becomes tractable if we assume that
only one camera is unknown but all the others are known;
indeed, when considering a single camera as unknown, then
Eq. (1) becomes a linear system, comprising one set of
equations for each neighbor of the unknown camera. To
this end, we first rewrite Eq. (1) to its vectorized form as:

(Pl FL@1s)vec(PT)+ (14 (P F))vec(P;) = 0 (2)

where I, denotes the 4 x 4 identity matrix and ® refers to
the Kronecker product [17], which is a useful tool to isolate
one unknown when appearing within a product of matrices'.

The above equation is equivalent to:
((PTED @ L) Ksa+ (L (PTE])) )vee(P) =0 (3)

where K5 4 denotes the commutation matrix>. Note that,
provided that all cameras except P; are known, then Eq. (3)
represents a homogeneous linear system in the canonical
form A;p; = 0 if the following notation is introduced:
Aj = ((P]F}) @ L) K3+ (14 ® (P] F)) € RY*1?
p; = vec(P;) € R'2
“)
!For any matrices A, B, Y of proper dimensions, the Kronecker prod-
uct satisfies: vec(AY B) = (BT ® A)vec(Y).
2The commutation matrix [20], denoted by K3 s, is the ts X ts ma-

trix such that: vec(A) = Ky svec(AT). The commutation matrix is a
permutation, hence it is orthogonal: K, t_,SKtT, s = Its.
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This suggests an iterative scheme where, after properly ini-
tializing all the cameras, each camera is computed in turn
by exploiting linear constraints on its neighbors. This pro-
cedure will be formalized in Sec. 3. An alternative (global)
approach will be discussed in the supplementary material
(Sec. C), which, however, performs poorly.

Remark 1. Observe that, although A;p; = 0 defines a sys-
tem of 16 equations with 12 unknowns (for a single neigh-
bor), only 10 equations are linearly independent: indeed,
the starting point of our derivations —Eq. (1) — is tantamount
to saying that a 4 x 4 matrix is skew-symmetric, which de-
fines 10 distinct equations (not 16). In other terms, one
neighbor is not enough to have a unique solution, but we
need at least two neighbors: this property is automatically
satisfied for solvable viewing graphs. Indeed, it was proved
in [16] that, in a solvable graph, all the vertices have degree
at least two and no two adjacent vertices have degree two.

The input fundamental matrices are typically corrupted
by noise/outliers, hence a proper cost function must be cho-
sen. We define the global inconsistency as:

U(p1,...,pn) = > d(4;p;,0) 5)

(.)€

where d is a suitable distance that evaluates how close the
vector A;p; is to the zero vector. Concrete choices for d
will be detailed in Sec. 3.1 and 3.2, as well as additional
constraints to fix the scale ambiguity for each camera.

Remark 2. Observe that A;p; = A;pj, since the left side in
Eq. (1) does not change if we exchange ¢ and j. Hence we
can equivalently write d(A;p;, 0) or d(A;p;,0) in the loss.

To summarize, we aim to minimize the following global

objective for the vectorized cameras pq, ..., Pn:
min ¥(p1,...,Pn)- (6)
P1,---,Pn
3. Proposed Method

In order to address (6), we rely on the framework of Al-
ternating Optimization [6] (also known as Block Relaxation
[11]), which is a recognized tool for turning challenging op-
timization problems into approachable ones. The procedure
is to alternate minimizations restricted over subsets of vari-
ables (entries of an individual camera p;), while keeping the
others fixed. In other terms, each node is updated in turn
based on its neighbors. An alternating optimization frame-
work was also used in other problems in Computer Vision
(such as [12, 18]), showing good performance.

More precisely, the proposed iterative scheme on the
viewing graph G = (V, £) is defined as follows:
1. Initialize nodes pi(o) fori=1...n;
2. For each iteration k = 1,2, ... do the following steps:

(a) For a given node i, estimate pi*) as the minimizer
of W(pi®) = W(py =1, py(®), ., ppt1),
where the current camera is treated as the only opti-
mization variable while all the others are kept fixed;

(b) Repeat Step (a) for all the nodes; for example,
for node (i + 1), piy1® is the minimizer of
U(p1* Y, M pia®, L pn )

3. Repeat Step 2 until convergence or a maximum number

of iterations is achieved.

For this scheme to work, we need to specify how Step 2 is
addressed, namely how to minimize ¥ (with respect to the
selected camera), given a set of neighbors and the funda-
mental matrices between them. Note that, if only camera ¢
is unknown whereas all the others are fixed, then only edges
involving node ¢ contribute to the varying cost. Those edges
are given by {(i,7) s.t. j € N(¢)} where N (i) denotes
the neighbors of node ¢, which correspond to the adjacent
edges. In other words, in Step 2 we have to solve:

min d(A;p;s,0) @)
o jgf:(i) :

where A;, p; are defined in Eq. (4) and d is the same dis-
tance function as in (5). As will be shown by our exper-
iments in Sec. 4, the simplest idea (i.e., solving a least-
squares problem as detailed in Sec. 3.1) yields subopti-
mal performance, demanding for a more sophisticated tech-
nique, which is described in Sec. 3.2. This results in two
variants of our approach, described next. See also Sec. 4.1
for implementation details. Some insights about conver-
gence are given in the Supplementary Material (Sec. A).

3.1. The least-squares nullspace problem

In the first proposed method, we solve the homogeneous
system of equations from (3) in the least-squares sense. In
other terms, we minimize the following objective:

min > [[A;pill5 stlpill3 = 1. ®)

L IENTD)

Note that the optimal p; which minimizes this objective,
can be retrieved in closed-form. If k& denotes the number
of neighbors of node ¢, such solution is found by stack-
ing the 16 x 12 matrices, A;, into a 16k x 12 matrix A
and obtaining the vector p; from the SVD decomposition of
A. This approach can be made robust to outliers via Itera-
tively Reweighted Least-Squares (IRLS) [14], as explained
in Sec. 4.1. An alternative for robustness could be to em-
ploy the L1 norm, however, experimentally we observed no
improvement and higher execution time.

3.2. Angular distance to null spaces

As an alternative approach, we make use of the fact that
each A; has a multi-dimensional null space: this derives
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from the fact that A;p; = 0 does not have a single solution
for a single neighbor (see Remark 1). In the noiseless case,
these multi-dimensional subspaces (coming from different
neighbors) intersect at a unique p; (for & > 2). In the pres-
ence of noise, we find the p; as the vector that minimizes
the angle between such vector and its projection onto the
nullspaces of A; for j € N (). This problem becomes:

N
Pi Pry(a,(pi)
TP (o stlpills =1
I[P (a,)(Pi)ll

€))
where Pry(4,)(pi) is the projection’ of p; onto N (A;), the
nullspace of A;. The Lagrangian for this problem is:

min
in. Z arccos (
JEN(4)

T T
pPi Na; N, pi
L(pi, \) = Z arccos(A)Jr)\(lfpiTpi).

T b,
JEN(Z) HNA]‘NAjplu
(10)
Taking the partial derivatives, we get:
oL oL
(P, A) =1—pi' pi, +—(Pi, A) = —2Ap;
3 (PirY) Pi P 3pi(p ) pit
_ Z 2||B;pill5(B;pi) — (pi" Bjps)(B] Bjpi)
FEN () (||iji||)4\/||iji||% — (pi" B;pi)?

1D
where B; = Na, NL. The extrema occur when the partial
derivatives are zero, so by setting them to 0 we get:

> 2||B;pill3(B;pi) — (pi" Bjpi)(B] B;pi)
(I1BpilD*V/11B;jpill3 — (i B;pi)?

(12)
where « is a normalizing constant so that ||p;||3 = 1. The
sought variable p; appears on both sides of the equation, so
it is defined as a fixed point, which can be estimated itera-
tively from a good initialization for p; (see Sec. 4.1).

Pi =

JEN(4)

4. Experiments

We run all experiments on a Lenovo Legion 5 laptop, with
an AMD Ryzen 5 4600H processor and a 16GB RAM. Our
iterative framework is implemented in Julia*. The two vari-
ants of our approach are denoted by LS-SVD (Sec. 3.1), and
ANGLE-IT (Sec. 3.2). We compare our approach with pre-
vious methods addressing camera recovery from fundamen-
tal matrices, discussed in Sec. 1.1: GPSFM [15], GPSFM-
SYNCH [18], SINHA [28], and COLOMBO [9]. We use the
code supplied by the authors for GPSFM (MATLAB) and
GPSFM-SYNCH (Julia+MATLAB), whereas for the methods
SINHA and COLOMBO we use our implementation (in Julia),

3The projection is given by PrN(Aj)(x) = Na, N x, where Ny,
is a matrix representing an orthogonal basis of the nullspace of A;.

4The code is available at: https://github.com/rakshith95/
cameras_from_ F.jl

following descriptions in their respective works [9, 28]. In-
terfacing between MATLAB and Julia is done with a MAT-
LAB system call, and MATLAB functions are called in Ju-
lia through the MATLAB.jl library”.

Observe that the set of cameras recovered from funda-
mental matrices (with any method) is defined up to a global
projective transformation. Therefore, in order to compare
a solution (denoted by ]51, ... ,Pn) with the ground-truth
cameras (denoted by P, ..., P,), we have to finda 4 x 4
homography C such that P,C' ~ P, foralli = 1,...,n.
This can be solved linearly [15]. Then, as done in [18], the
error for node ¢ is measured as the angular distance between
the vectorized estimated and ground truth cameras, brought
to a common projective frame: e; = min(¢p, m — ¢), with

¢ = arccos (vec(PZ—C), vec(P;)). (13)

4.1. Implementation Details

Regarding Step 1 of our iterative scheme detailed in Sec. 3
(i.e., initialization), we give reasonable starting values® to
the cameras Py, P» ... P, using the output of GPSFM [15].
Recall that such method requires a graph covered by triplets,
which makes it possible that some cameras are not esti-
mated (if they do not belong to any triplet in the viewing
graph): we initialize such cameras to the Canonical Cam-
era (i.e., the matrix [I3 0] where O is the 3 x 1 vector of
zeros). Regarding Step 2, for ANGLE-IT, we initialize p;
with the vectorized estimate of camera P; from the previous
iteration. More detailed analysis on initialization is given in
the Supplementary Material (Sec. B).

Concerning the order in which cameras are updated, we
proceed as follows: if some weights associated to the edges
in the viewing graph are provided, then we compute the
weight of each node by multiplying the weights of its inci-
dent edges, and we update the nodes in decreasing order of
their weights, based on the idea that higher weights are ex-
pected to provide more stable estimates; if we are given an
unweighted graph, then nodes are updated in the decreasing
order of their centrality measure.

To increase robustness to outliers’” we embed our ap-
proach into an IRLS-like framework, as typically done
in geometric estimation problems [8], thereby introducing
edge weights w;; in our formulation. The idea is as follows:
1. Setw;; = 1 corresponding to each input F;; or compute

w;; using steps 3 & 4 with the initial cameras {P"};

2. Compute {Py,...,P,} = F2C({F;;}, {w;;}), where

F2C is a function that recovers cameras from fundamen-

Shttps://github.com/Julialnterop/MATLAB. j1

SWe also tested other possibilities, such as identity and random 3 x 4
matrices, which performed worse.

"Note that LS-SVD (based on squared errors) is not robust to the pres-
ence of outliers, but ANGLE-IT is (which minimizes an unsquared error).
The IRLS-like framework, hence, has the effect of introducing robustness
to the former, and improving robustness in the case of ANGLE-IT.
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tal matrices, implementing one of the two approaches
from Sec. 3 (namely LS-SVD , or ANGLE-IT);

3. Compute residuals r;; = error(F;, f(P;, P;)), where
error(. ,.) is computed as the angle in R? between the
vectorized matrices, similar to Eq. (13), and f(FP;, P;) is
a function which returns the fundamental matrix given
cameras P; and P; (see [13]);

4. Update weights as w;; = w;; = c(r;;), where c is a
robust loss. We used Huber loss in our experiments, i.e.
c(rij) = L , where h = 1, Cpyper = 1.345

max (1| go—])
and s is computed as the mean absolute deviation (mad)
of the residuals.

5. Repeat Steps 2 to 4 until convergence or a maximum
number of iterations.

4.2. Synthetic Data

In this section we discuss experiments on simulated data.

Data Generation. Given a value n for the number of nodes
in the graph, we set up the synthetic environment by gener-
ating random ground-truth uncalibrated cameras P; € R3*4
for i = 1,...n. Concerning the edge set £ in the graph
G = (V,€), we remove from the complete graph a random
fraction of edges according to a “holes density” 0 < p < 1,
while ensuring connectivity and finite solvability [5] (p = 0
produces a complete graph). For each edge (i,j) € &, we
compute its measure F;; from the nodes P; and P; with
a closed-form expression [13]; such fundamental matrix is
then vectorized and normalized to unit norm (thereby rep-
resenting a 9-dimensional point in the unit sphere) and per-
turbed by noise. Specifically, noise is introduced following
the same protocol used in [ 18], where vec(Fij) is perturbed
by some angle 6;; from a normal distribution with 0 mean
and o standard deviation. Outliers are added by replacing
F;; with a random 3 x 3 matrix R;; of rank 2, with the
fraction of outlying edges determined by an outlier density
v (v = 0 means zero outliers). These fundamental ma-
trices are given as input to all the analyzed methods. The
IRLS scheme is used only in experiments with outliers (i.e.,
~ > 0). For each configuration, the test was repeated 100
times and median results were reported. We perform two
sets of experiments: in the first case, all nodes in the input
graph are covered by triplets and we analyze behaviour of
increasing noise, holes, outliers and cameras; in the second
case, we simulate general graphs, which may or may not
contain a real or “virtual” triplet cover.

Noise. For the first set of experiments, we generate graphs
ensuring that they are covered by adjacent triplets (those
graphs are automatically solvable [30] so we don’t explic-
itly check for solvability). We first analyze the behavior of
all competing methods in the presence of increasing noise
by varying the standard deviation o, while keeping the other
parameters fixed (n = 25, p = 0.4, v = 0.0). Results are

s
—6—GPSFM —O—GPSFM
|—— GPSFM-SYNCH < GPSFM-SYNCH

Ls5vD LS-5vD

20 —5— ANGLE-T —5— ANGLE-T

CoLOMBO 1 coLomso

—E—SINHA |—5—sinHA

0.5 0.6 0.8

1 0.4
Noise (deg) Holes Density

Figure 3. Error [degrees] in camera recovery for several methods.
Left: increasing noise o, with other parameters fixed (n = 25,
p = 0.4, v = 0). Right: increasing holes density p, with other
parameters fixed (n = 25, 0 = 0.015 rad, v = 0). The viewing
graph is covered by triplets in these experiments.

reported in Fig. 3 (left), showing the mean of the error over
cameras — computed as in (13) — for increasing . We ob-
serve that our methods report significantly lower errors in
comparison with the others, with ANGLE-IT narrowly out-
performing LS-SVD. This confirms the effectiveness of our
iterative scheme for computing cameras when provided a
good initialization. The worst performance is achieved by
COLOMBO, due to its sequential nature that tends to accu-
mulate errors. GPSFM, GPSFM-SYNCH and SINHA are more
accurate than COLOMBO, as they refine the input fundamen-
tal matrices in addition to performing camera recovery.

Missing Data. Next, we analyze the behavior of the com-
peting methods with respect to varying holes density, p,
with other parameters fixed: n = 25, ¢ = 0.015 radians,
and v = 0. Results are given in Fig. 3 (right), showing that
the errors of all methods slightly increase with increasing
amount of holes. This is an expected behavior since redun-
dancy helps to achieve error compensation. As before, both
variants of our approach outperform the competitors.

Outliers. We also test the effect of varying outlier den-
sity, 7, with n = 25, ¢ = 0, and p = 0.4, with and
without the added robustness from the IRLS-like scheme.
We can see in Fig. 4 (left) that GPSFM, GPSFM-SYNCH as
well as ANGLE-IT are robust up to 40% outlier density. In-
deed, GPSFM performs an optimization on the input funda-
mental matrices to enforce compatibility constraints before
camera recovery, with the effect of removing noise and out-
liers. GPSFM-SYNCH inherits the same refined fundamen-
tal matrices as GPSFM, and it differs in the camera recov-
ery step. Among the two variants of our approach, only
ANGLE-IT is robust: indeed, LS-SVD minimizes sum of
squares objectives, known to be sensitive to outliers, while
ANGLE-IT minimizes a sum of angles instead (unsquared
error). SINHA and COLOMBO perform poorly in the pres-
ence of outliers, which was also seen in the previous exper-
iments. The effectiveness of our robustness scheme is evi-
dent in Fig. 4 (left): the IRLS process significantly imparts
robustness to LS-SVD and improves ANGLE-IT.
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Figure 4. Left: error [degrees] in camera recovery for several
methods, for increasing outlier density -, with other parameters
fixed (n = 25, 0 = 0, p = 0.4). Right: execution times [sec-
onds] for increasing number of cameras n, with other parameters
fixed (¢ = 0.015 rad, p = 0.4, v = 0.0). The viewing graph is
covered by triplets in these experiments.

Execution Times. We also analyze the efficiency of the
methods by reporting the execution times in Fig. 4 (Right).
Here the number of cameras n varies, whereas other param-
eters are fixed (0 = 0.015 radians, p = 0.4, v = 0.0). Both
variants of our approach are comparable to GPSFM: consid-
ering that cameras produced by GPSFM are used as initial-
ization (see Sec. 4.1), this shows that our iterative minimiza-
tion brings negligible additional complexity. The fastest
methods are SINHA and COLOMBO, which, however, do not
represent valid solutions to the camera recovery problem in
terms of accuracy, as shown by previous experiments.

General Graphs. For the second type of experiments, we
simulate general graphs randomly, only ensuring finite solv-
ability [5]. We choose to generate relatively sparse graphs,
with holes density v = 0.75, to increase the likelihood of
having nodes not covered by triplets. The other parameters
are fixed as n = 25 and v = 0. We analyze the effect of
increasing noise o in Fig. 5 (left), similarly to the experi-
ment with triplet-based graphs from Fig. 3 (left). However,
an important difference is that we do not report the mean of
the error comparing all the estimated nodes {]51} with the
ground truth nodes, { P;}, but we consider only those cam-
eras which could be recovered by a specific method. Recall
that our framework (LS-SVD, ANGLE-IT) is the only one
that can recover all cameras as it processes a general view-
ing graph by design, whereas previous methods are lim-
ited to graphs covered by virtual triplets (SINHA) or real
triplets (GPSFM, GPSFM-SYNCH, COLOMBO), as explained
in Sec. 1.1. The latter, therefore, can fail to estimate a frac-
tion of cameras. For instance, suppose there are n ground
truth nodes out of which m nodes are not estimated: in this
case, the error is computed as mean(error({ P;} , { P;})) for
i€{1,2,...,n}\ U, where U denotes the indices of cam-
eras that are not computed, with |U| = m. The percent-
age of the cameras recovered by all methods is given in
Fig. 5 (right). As expected, our method is the only one able
to recover 100% of the cameras in all scenarios. Triplet-
based methods (GPSFM, GPSFM-SYNCH, COLOMBO), in-

—S-Grsh

- GPSFM-SYNCH

30 LS-SVD

—5— ANGLE-T
COLOMBO

—8—siNHA

Recovered Cameras (%)

[—&—Triplet-Cover Based
|—>—Ours

sinha

0.5 15 0 0.5 1 15

1
Noise (deg) Noise (deg)

Figure 5. In this experiment, general viewing graphs are simu-
lated for increasing noise o with other parameters fixed (n = 25,
p = 0.75, v = 0). Left: error [degrees] in camera recovery for
several methods (note that errors are averaged only over cameras
that have been recovered by each method). Right: the average
(mean) percentage of cameras recovered by each type of method:
Ours (LS-SVD, ANGLE-IT); Triplet-Cover Based (GPSFM, GPSFM-
SYNCH, COLOMBO); SINHA.

stead, perform poorly in terms of amount of recovered cam-
eras, as they miss about 20% of the cameras on average.
SINHA is significantly better than triplet-based techniques,
as it also considers virtual triplets in the formulation, but it
is still inferior to our approach. Concerning accuracy, given
in Fig. 5 (Left), our approach outperforms the competitors.

4.3. Real Data

We consider real datasets used for projective structure from
motion, specifically, we test on the same datasets® used
by the authors of GPSFM [15]: this collection comprises
a total of 25 image sequences taken from [24, 32]. For
each sequence, the authors of [15] have made available the
viewing graphs and the fundamental matrices’, which are
given as input to all the competing methods. Since ground-
truth cameras are not available for these data, we consider a
different evaluation metric than the synthetic experiments.
Specifically, we compute the mean reprojection error (in
pixels), achieved after retrieving scene points using the re-
covered cameras, before Bundle Adjustment.

Results are given in Tab. 2, which also reports the ex-
ecution times of the competing approaches'’. We con-
sider three methods in this analysis: GPSFM [15], GPSFM-
SYNCH [18] and ANGLE-IT embedded in the IRLS-like
scheme — this represents the variant of our approach that
gave the best results in the synthetic experiments. We do
not report results from SINHA [28] and COLOMBO [9] due to
large reprojection error; this is in line with the synthetic ex-
periments with outliers, which cannot be satisfactorily han-
dled by these methods. In this dataset all the viewing graphs

8The datasets can be downloaded from https://www.maths .
1th . se / matematiklth / personal / calle / dataset /
dataset.html

9The fundamental matrices can be downloaded from https: //
github.com/amnonge/GPSFM-code

10The execution times for our method includes the time for initialization,
which is why it is always higher than GPSFM.
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Table 2. Results on real-world projective structure from motion data [24, 32]. For each sequence, the number of nodes/cameras in the
viewing graph is reported in addition to its holes density. The reprojection error [pixels] and execution time [seconds], before bundle
adjustment, are reported for the competing methods. “Ours” stands for ANGLE-IT-IRLS and GPSFM-SYNCH is abbreviated as SYNCH.

Dataset Nodes Holes Error [px] Time [s]
Ours SYNCH [18] GPSFM[15] Ours SYNCH [18] GPSFM[15]

Dino 319 36 0.63 4.38 4.89 5.21 2.67 243 2.50
Dino 4983 36 0.63 1.51 1.59 1.59 2.59 2.55 2.49
Corridor 11 0 0.49 0.67 0.71 0.67 0.65 0.64
House 10 0 1.38 1.40 1.68 0.59 0.57 0.56
Gustav Vasa 18 0.28 1.83 1.99 1.99 1.29 1.29 1.22
Folke Filbyter 40 0.68 1.78 1.83 1.96 3.13 2.77 2.81
Park Gate 34 0 12.81 13.70 18.45 2.94 2.84 2.73
Nijo 19 0 17.38 25.83 29.85 1.47 1.40 1.36
Drinking Fountain 14 0 1.29 1.39 1.54 1.00 0.92 0.94
Golden Statue 18 0 0.82 0.90 0.95 1.27 1.18 1.21
Jonas Ahls 40 0.59 28.84 33.06 36.83 3.08 2.94 2.91
De Guerre 35 0 1.82 1.33 1.31 3.04 2.56 2.60
Dome 85 0 4.39 6.40 4.17 9.57 8.70 7.80
Alcatraz Courtyard 133 0.08 13.37 15.00 36.73 20.66 14.17 14.23
Alcatraz Water Tower 172 0 36.54 19.76 19.10 35.86 28.37 29.63
Cherub 65 0.36 11.92 14.98 16.87 6.98 5.61 541
Pumpkin 195 0.35 4.58 9.27 9.57 51.38 40.80 40.87
Sphinx 70 0.67 7.17 6.16 8.46 7.04 6.74 6.68
Toronto University 77 0.67 64.10 18.28 13.85 8.05 7.37 7.26
Sri Thendayuthapani 98 0 13.30 15.12 14.55 12.43 10.29 11.05
Porta San Donato 141 0 31.81 41.16 32.41 23.42 18.18 19.70
Buddah Tooth 162 0.27 16.03 19.06 25.49 27.70 22.35 21.94
Tsar Nikolai I 98 0.48 10.17 15.26 9.58 12.12 11.16 10.25
Smolny Cathedral 131 0 87.53 182.80 122.82 23.52 14.88 14.47
Skansen Kronan 131 0.12 9.02 10.02 13.71 22.62 15.45 15.39

are actually covered by triplets, therefore all the methods are
able to recover all the cameras. Table 2 shows that our ap-
proach produces the lowest reprojection error in most cases:
more precisely, it outperforms GPSFM in 20 out of 25 se-
quences, and it is better than GPSFM-SYNCH in 21 out of
25 cases. This highlights the effectiveness of our iterative
scheme for camera recovery from fundamental matrices,
confirming the outcome of our previous experiments. Con-
cerning execution times, we note that our method, as before,
requires little additional time in comparison to GPSFM.

by triplets, improving over the competitors.

5. Conclusion

In this paper we considered the task of recovering uncali-
brated cameras from fundamental matrices. This problem
is highly challenging, as there is no reference solution even
in the absence of noise, and existing methods are limited to
special graphs made by triplets. To fill in this gap, we in-
troduced the first approach that can process a general (solv-
able) viewing graph, thereby recovering 100% of the cam-

We conclude this section by reporting further analysis on
the Sphinx sequence. We pruned the input viewing graph by
removing some edges, setting a threshold on the number of
inlier correspondences. This represents standard practice in
structure from motion, where making the graph sparser typ-
ically promotes outlier removal. This process produces a
new viewing graph which, however, contains one node not
appearing in any triplet. In this scenario, both GPSFM and
GPSFM-SYNCH estimate 76 out of 77 cameras, failing to es-
timate the camera not covered by triplets, with mean repro-
jection errors of 8.16 and 7.10, respectively. Our method,
instead, is able to recover all the cameras, thanks to the fact
that it manages general graphs by construction. The error
of our method is 4.71 — when considering all cameras — and
4.19 — when considering the subset of 69 cameras covered

eras even in the case where some cameras do not appear in
any triplet, overcoming a significant limitation of previous
work. Our method is based on an iterative procedure that
solves for a single camera at a time, exploiting the algebraic
relationship between a fundamental matrix and the associ-
ated camera pair. Experimental results demonstrate superior
accuracy than the state of the art in a variety of synthetic
scenarios and projective structure from motion sequences.
The main limitation of the proposed scheme is that it re-
quires a reasonable initialization for a subset of the cameras.
Notwithstanding this, we believe that this work represents
a significant advancement towards understanding the hard
task of camera recovery from partial information (i.e., no
image points but only fundamental matrices), and we hope
to inspire more sophisticated methods in the future.
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