
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

The Open Proof Corpus: A Large-Scale Study of LLM-Generated
Mathematical Proofs

Anonymous Authors1

Abstract
In recent months, large language models (LLMs)
have made significant progress in mathematical
proof generation, but further advancement is hin-
dered by the lack of a large-scale, high-quality
dataset of human-evaluated proofs. While ex-
pensive to create, such a dataset is essential for
driving improvements in training and enabling
a rigorous analysis of proof generation capabil-
ities. In this work, we present the Open Proof
Corpus (OPC), a dataset comprising over 5,000
human-evaluated proofs produced by state-of-
the-art LLMs. The OPC was specifically de-
signed for broad applicability and downstream
usage in proof generation research and is the first
to include a substantial number of correct, LLM-
generated solutions to problems from prestigious
mathematics competitions such as the USAMO
and IMO. Using the OPC, we explore critical
questions in automated proof generation: (1) the
performance gap between natural language and
formal proof generation, (2) the discrepancy be-
tween final-answer accuracy and full-proof valid-
ity, and (3) the impact of best-of-n selection on
proof quality. Finally, to showcase the utility of
the OPC, we finetune an 8B-parameter model on
the dataset, obtaining a model that performs on
par with the best model, GEMINI-2.5-PRO, on
the task of evaluating proof correctness.

1. Introduction
Large language models (LLMs) have recently achieved
remarkable progress in mathematical reasoning, attain-
ing top-competitor performance on various final-answer
benchmarks such as AIME and HMMT (Balunović et al.,
2025). However, growing evidence suggests that these
benchmarks fail to capture the full breadth of mathemat-
ical reasoning capabilities, as they do not require models
to produce complete proofs or detailed intermediate steps
(Mahdavi et al., 2025; Guo et al., 2025b). Such step-by-
step reasoning is critical for applications in theorem prov-
ing, mathematical research, and education.

Proof benchmarking To address this gap, several eval-
uation efforts have emerged, revealing that LLMs signifi-
cantly underperform on proof generation compared to ex-
isting final-answer benchmarks (Petrov et al., 2025; Mah-
davi et al., 2025; Guo et al., 2025b). Despite their value,
these benchmarks are severely limited in their use for
broader analysis, training, and future development pur-
poses. Specifically, they are small in size (Petrov et al.,
2025; Guo et al., 2025b), rely on outputs from outdated
models (Frieder et al., 2023), contain few correct proofs
(Mahdavi et al., 2025), and are not fully open-sourced
(Mahdavi et al., 2025; Guo et al., 2025b).

Open questions Furthermore, key questions about proof
generation capabilities remain unanswered. First, while
it is widely claimed that final-answer benchmarks are in-
sufficient for evaluating proof generation capabilities, this
claim is not yet substantiated by evaluating LLM-generated
proofs on such benchmarks. Second, with recent advances
in formal proof generation using systems like Lean (Ren
et al., 2025; Wang et al., 2025), the performance gap be-
tween natural language and formal proof generation re-
mains unclear. Third, the potential of best-of-n sampling
strategies to improve proof quality has not been explored.

Our work: the Open Proof Corpus To address these
challenges, we introduce the Open Proof Corpus (OPC):
a large-scale, human-validated dataset comprising over
5,000 LLM-generated proofs across more than 1,000 prob-
lems. As shown in Fig. 1(a), each OPC sample includes (1)
a problem from a high-quality mathematical competition
such as the International Mathematical Olympiad (IMO),
(2) a proof generated by a state-of-the-art LLM, and (3)
a binary human evaluation of the proof’s correctness with
feedback. The OPC was specifically designed for down-
stream usage in proof generation research, enabling both
training and evaluation of LLMs on proof generation tasks.
To address the open questions outlined earlier, the OPC in-
cludes problems from specific sources: problems from the
PutnamBench (Tsoukalas et al., 2024) enable comparisons
between formal and informal reasoning, while problems
from MathArena (Balunović et al., 2025) support evalua-
tion of proof correctness for problems with final answers.

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

The Open Proof Corpus

Sample

Problem: EGMO 2012, Problem 3
Level: High School
Split: Generic

Question: Solve over R the functional equation
f(yf(x + y) + f(x)) = 4x + 2yf(x + y)

Proof: To solve the functional equation . . . we
conclude that this is the **only** solution.

Grade (Incorrect): The model substitutes x to be 1.
All further ideas are based on the wrong assumption.

(a) Sample from the OPC

Human Best Model
0%

25%

50%

75%

100% Best model is close
 to human performance

for judging proofs

Formal Informal
0%

20%

40%

60%

80%

Informal solves
11x more problems

 in the PutnamBench

o3 Gemini-Pro
0%

25%

50%

75%

100% Correct Final Answer
Correct Proof

1 3 5 7
25%

35%

45%

55%

Pass@n
Best-of-n

(b) Conclusions from the OPC

Figure 1: Overview of the OPC and its conclusions. On the left, we show a typical sample from the OPC, including a
question taken from a high-quality mathematical competition, a proof generated by an LLM, and a human judgment of the
proof’s correctness. On the right, we summarize the main conclusions drawn from the OPC.

Key findings Despite the difficulty of problems in
the OPC, state-of-the-art LLMs demonstrate surprisingly
strong performance. For instance, O4-MINI correctly
solves almost 20% of the problems in the IMO Shortlist,
and the OPC generally consists of 43% correct proofs. Fur-
thermore, as shown in the top left of Fig. 1(b), LLMs ex-
hibit strong capabilities in evaluating proofs: GEMINI-2.5-
PRO achieves 88.1% accuracy in judging proof correct-
ness—nearly matching human performance at 90.4%. To
showcase the utility of the OPC, we fine-tune DEEPSEEK-
R1-QWEN3-8B (Guo et al., 2025a) using GRPO (Shao
et al., 2024) on the OPC, resulting in an open model that
achieves 88.1% judgment accuracy, on-par with GEMINI-
2.5-PRO and outperforming all other models.

Answering open questions The OPC allows us to em-
pirically resolve the open questions outlined above, with all
conclusions shown in Fig. 1(b). First, as shown on the top
right, we find that natural language proof generation signif-
icantly outperforms formal proof generation: on Putnam-
Bench, GEMINI-2.5-PRO solves 11 times more problems
than the best formal model, DEEPSEEK-PROVER-V2 (Ren
et al., 2025). Second, as shown on the bottom left, we ob-
serve a substantial gap between final-answer accuracy and
proof correctness. While GEMINI-2.5-PRO loses only 8%
of its final-answer accuracy when proof correctness is re-
quired, O3 suffers a drop of almost 30%. Third, as shown
on the bottom right, we find that best-of-n strategies yield
large gains in performance. Interestingly, while standard
best-of-n selection methods moderately improve accuracy
from 26% to 36%, a ranking-based approach inspired by
(Liu et al., 2025) achieves the highest performance of 47%.

Main Contributions Our key contributions are:

• A scalable pipeline for generating and evaluating nat-
ural language mathematical proofs (§3).

• The Open Proof Corpus, a large, human-validated
dataset of over 5,000 LLM-generated proofs (§4).

• New benchmarking results on the OPC, resulting in
novel insights into current LLM capabilities (§5).

• An open-source, 8B-parameter model fine-tuned on
the OPC that achieves 88.1% judgment accuracy, tied
with the best model on this task (§5).

2. Related Work
We briefly recapitulate the relevant literature on mathemat-
ical reasoning benchmarks and datasets.

Final-answer benchmarks Final-answer benchmarks
evaluate models by comparing a final answer from the
model’s output with a ground-truth answer, typically us-
ing rule-based parsers. With the advent of reasoning LLMs
(Jaech et al., 2024; Guo et al., 2025a), older benchmarks
have become saturated (Cobbe et al., 2021; Lightman et al.,
2024), and even more recent ones are nearing saturation
(Gao et al., 2025; He et al., 2024; Balunović et al., 2025;
Gulati et al., 2024). Only private benchmarks such as Fron-
tierMath (Glazer et al., 2024) and HLE (Phan et al., 2025)
remain sufficiently challenging for the latest models. How-
ever, these benchmarks do not require the generation of full
proofs or detailed reasoning steps. Moreover, their private
nature hinders reproducibility and broader community en-
gagement, both key factors in driving progress.

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

The Open Proof Corpus

Formal proof generation Another growing line of work
involves training LLMs to generate formal proofs in lan-
guages such as Lean (de Moura and Ullrich, 2021) or
Isabelle (Nipkow et al., 2002), which can then be auto-
matically verified by these systems (Zheng et al., 2022;
Tsoukalas et al., 2024; Yu et al., 2025). While this
paradigm enables rigorous correctness checking, it typi-
cally requires models to be specifically finetuned for formal
proof generation (Ren et al., 2025; Wang et al., 2025; Lin
et al., 2025). In contrast, state-of-the-art general-purpose
models like O3 and GEMINI-2.5-PRO struggle with formal
proof generation. As a result, formal reasoning currently
does not allow to make full use of the natural language ca-
pabilities of these general-purpose models, and, as we show
in §5, there remains a significant performance gap between
formal and natural language proof generation, with the lat-
ter being substantially more effective.

Proof-generation evaluation efforts Going beyond
final-answer accuracy has gained recent attention, with
several works investigating the reasoning traces of recent
LLMs to identify patterns and potential for improvement
(Shojaee et al., 2025; Mondorf and Plank, 2024; Xia et al.,
2025). However, only a few studies have focused directly
on evaluating full proofs. Petrov et al. (2025) evaluated
LLMs on the six problems from the USAMO 2025, uncov-
ering significant flaws in the generated proofs. Similarly,
Mahdavi et al. (2025) evaluated LLM performance on a
large set of IMO Shortlist problems, finding that no model
surpassed 5% accuracy. In contrast, Frieder et al. (2023) re-
ported that GPT-3.5 and GPT-4 performed well on simpler
tasks, generating correct proofs in a significant fraction of
cases. Still, all these studies are limited by either the use of
outdated models or the small scale of their evaluations.

Two concurrent works have recently expanded this line of
research. Sheng et al. (2025) focus specifically on inequal-
ity proofs and primarily emphasize the development of an
LLM as a judge framework to mitigate the high cost of hu-
man evaluation. Guo et al. (2025b) highlight a notable gap
between final-answer accuracy and the ability to generate
correct proofs, a finding we confirm in §5. However, their
analysis stops at this observation and does not evaluate per-
formance on an established final-answer benchmark. Fur-
ther, both studies are limited in scale compared to the OPC
and have not open-sourced their human-annotated proofs.

Mathematical training datasets Several large-scale
datasets have been developed to train LLMs on mathemati-
cal reasoning. One of the earliest, Li et al. (2024), compiled
a large dataset of internet-sourced problems, including both
final-answer questions and natural language proofs. How-
ever, it lacks LLM-generated proofs, human judgments,
and examples of incorrect proofs. Other datasets have

focused exclusively on final-answer tasks (Albalak et al.,
2025; He et al., 2025; Moshkov et al., 2025), offering lim-
ited support for training or evaluating proof generation.
Finally, Zhang et al. (2025) introduced a dataset of both
valid and invalid problem statements, each accompanied
by LLM-generated proofs. While this ensures that incor-
rect proofs exist for invalid statements, the dataset does not
include human evaluation of proofs or any other informa-
tion on the validity of the proofs.

LLM as a judge The widespread success of LLMs has
led to the development of the "LLM as a judge" paradigm,
which enables scalable, consistent, and cost-effective eval-
uation of complex outputs (Zheng et al., 2023; Gu et al.,
2024). This approach serves as a promising alternative
to traditional expert-based evaluation and opens up new
possibilities for self-assessment during generation through
methods such as best-of-n sampling, feedback-guided de-
coding, and self-training (Pan et al., 2023; Madaan et al.,
2023; Weng et al., 2023; Jiang et al., 2025). However,
concerns remain about the robustness of this framework
in high-stakes domains like mathematical reasoning, where
issues such as overconfidence and self-degradation can un-
dermine reliability (Huang et al., 2024; Pan et al., 2023).

3. Methodology
Accurately evaluating LLM-generated proofs is a challeng-
ing task. Models often make difficult-to-detect errors, and
they rarely acknowledge when they cannot solve a problem
(see §5). In this section, we outline the methodology used
to create the OPC, with particular emphasis on the com-
plexities of evaluating LLM-generated proofs and our ef-
forts to maximize dataset size. Since human judges cannot
reasonably spend hours studying each problem, we devel-
oped a pipeline to support efficient grading. This pipeline
consists of three main components: problem and judge
preparation (§3.1), the grading procedure (§3.2), and mon-
itoring and validation (§3.3).

3.1. Problem and Judge Preparation

Judge selection Judges were selected from among for-
mer IMO participants or individuals who reached the final
stages of IMO selection in their respective countries. We
contacted each judge personally to ensure they were quali-
fied, motivated, and easily accessible for ongoing commu-
nication. A total of 13 judges were involved, each respon-
sible for grading a varying number of problems. Three of
the most active judges had prior experience with evaluating
LLM-generated proofs. One judge served as the coordina-
tor, maintaining regular communication, tracking progress,
and ensuring consistency and motivation across the group.

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

The Open Proof Corpus

Problem selection Problems were drawn from top-tier
national and international mathematics competitions, with
the goal of capturing a balanced mix of correct and incor-
rect proofs. All problems were sourced from official ma-
terials. Non-English problems were translated using GPT-
4.1 and manually verified for accuracy. When available,
official ground-truth solutions were also extracted and pro-
vided to the judges as references.

Proof generation Proofs were generated using a set
of state-of-the-art LLMs known for their strength in
mathematical reasoning. Specifically, we used O4-MINI
and O3 from OpenAI (OpenAI, 2025), GEMINI-2.5-PRO
from Google (Google DeepMind, 2025), GROK-3-MINI
from xAI (xAI, 2025), QWEN3-235B-A22B from Qwen
(Qwen Team, 2025), and the latest version of DEEPSEEK-
R1 from DeepSeek (Guo et al., 2025a). DEEPSEEK-R1
was released mid-way through dataset construction and re-
placed GROK-3-MINI thereafter. We designed the model
prompt to clearly instruct models to generate full solutions,
refining it through small-scale pilot tests. The final prompt
is shown in App. E.1. All models were run with default pa-
rameters and a maximum generation length of 64,000 to-
kens. If this limit was exceeded before a complete proof
was generated, we re-sampled. For the MathArena subset
(Balunović et al., 2025), we only retained solutions with a
correct final answer, retrying generation if necessary. For
PutnamBench (Tsoukalas et al., 2024), we appended the
informal final answer (if present) to the problem statement
to mirror the setup for formal models, allowing direct com-
parison between natural and formal proof outputs.

3.2. Grading Procedure
User interface We built a custom web interface to facil-
itate efficient grading. A sample instance is available at
https://judgeproofs.xyz/sample, with screenshots in-
cluded in App. D. The interface displays the problem, refer-
ence solution (if available), anonymized model-generated
proof, and grading form. Judges could mark the prob-
lem or solution as malformed (to filter such cases from the
dataset), grade the proof, and annotate sentences from the
model-generated proof with comments. Continuous feed-
back from judges helped us refine the interface over time.

Judge instructions Judges were asked to label proofs as
either correct or incorrect and provide written justification.
Precise grading guidelines were critical to avoid inconsis-
tencies in edge cases, such as minor omissions or shortcuts.
To prevent overly strict grading, we clearly defined what
level of omissions and frequency of mistakes were accept-
able in a correct proof. The full guidelines are available at
https://judgeproofs.xyz/instructions/, with a sum-
mary in App. D. These instructions were developed collab-
oratively with the judges and finalized after a pilot phase.

Abstention and uncertainty Judges were allowed to ab-
stain from grading a proof if they lacked the necessary ex-
pertise or found the solution too complex or convoluted.
They could also mark judgments as uncertain in border-
line cases, which proved especially useful for near-correct
proofs containing subtle errors. Less than 3% of proofs in
the OPC are flagged as uncertain.

LLM issue summaries After several hundred graded
proofs, we introduced a new feature to support grading: an
automatically generated summary of the proof using O4-
MINI. These summaries flagged potential issues—such as
logical gaps or missing steps—based on a specially de-
signed prompt (see App. E.2). Importantly, the model was
instructed not to give a final verdict, only to indicate pos-
sible issues for human review. Judges reported that this
significantly improved their efficiency and accuracy in de-
tecting errors. To ensure the inclusion of these summaries
did not bias our judges, we evaluated the agreement rate be-
tween O4-MINI as a judge and human graders before and
after their introduction. There was no significant differ-
ence in agreement, suggesting no introduction of bias into
the grading process. However, in experiments involving
best-of-n selection—where the LLM judge acts as a selec-
tion mechanism—we omitted these summaries to avoid any
form of compounding bias in the evaluation.

Problem distribution Problems were assigned to judges
based on their mathematical background and availability.
Judges not qualified to evaluate undergraduate-level prob-
lems were excluded from grading those problems.

3.3. Monitoring and Validation

To ensure grading quality and judge consistency, we imple-
mented a set of monitoring and validation procedures.

Coordinator One experienced judge was assigned as co-
ordinator, responsible for tracking grading progress, re-
solving issues, and ensuring motivation. As a senior author,
the coordinator had detailed knowledge of the dataset’s
goals and methodology and was available to answer judges’
questions throughout the process.

Pilot phase Prior to full-scale grading, we conducted a
test run with a limited number of problems. This helped
us identify interface issues, unclear instructions, and other
inefficiencies. Based on feedback, we revised the interface
and grading guidelines before launching the full evaluation.

Monitoring discrepancies Approximately 10% of the
proofs were double-graded to evaluate inter-judge consis-
tency. Disagreements were reviewed by the coordinator
to determine whether they arose from misunderstandings,
ambiguous instructions, or errors overlooked by a judge.

4

https://judgeproofs.xyz/sample
https://judgeproofs.xyz/instructions/

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

The Open Proof Corpus

IMOSL

17.6%

Putnam12.1%

MathArena

11.1%

BMOSL

10.5%

BalticWay

7.9%
USAMO

6.3%Irish
5.0%

EGMO 4.7%

IMC 4.3%

IZhO
4.1%

Other

16.4%

Figure 2: Overview of competitions included in the OPC.

If possible, instructions were further improved to prevent
similar issues. However, most inconsistencies stemmed
from overlooked errors in the proofs and could therefore
not be resolved by clarifying the instructions. If the coordi-
nator identified a significant number of discrepancies for a
specific judge, they would discuss the issue with the judge
to clarify instructions.

4. Open Proof Corpus
We now introduce the OPC, providing an overview of the
competitions and models it includes and key dataset statis-
tics. At a high level, the OPC is built to support the training
and evaluation of proof generation models and to facilitate
a rigorous analysis of their capabilities.

Basic properties The OPC consists of 5,062 proofs
across 1,010 distinct problems, generated by six state-of-
the-art LLMs. Each proof is labeled as either correct or in-
correct by one or two human judges. Labels are accompa-
nied by short justifications, with optional annotations high-
lighting specific sentences within the proof. Each problem
may also include metadata such as its competition source,
difficulty level, and other relevant attributes.

Competitions Problems were sourced from a wide range
of prestigious mathematics competitions. A full break-
down is provided in App. A, with a summary shown in
Fig. 2. App. A also reports the average accuracy of the
best-performing model per competition, offering a rough
proxy for difficulty. Most problems are at the high school
level, with only a small portion drawn from undergraduate-
level competitions. Competitions were selected to cover a
broad range of difficulties while ensuring an overall aver-
age model accuracy of approximately 50%.

Table 1: Number of solutions evaluated per model.

Model # Solutions

O4-MINI 1615
O3 892
QWEN3-235B-A22B 890
GEMINI-PRO 878
GROK-3-MINI 461
DEEPSEEK-R1 326

Models Table 1 summarizes the number of proofs gen-
erated by each model in the OPC. Not all models con-
tributed to every problem, but most problems include so-
lutions from at least five models. O4-MINI contributed the
largest share of proofs, as it was used extensively in best-
of-n and pass@n experiments.

Human performance and noise To estimate label relia-
bility, we double-graded approximately 10% of the dataset.
Among these, judges agreed on the proof’s correctness in
90.4% of cases. Assuming independent judgments, we
can estimate the individual judge error rate p by solving
0.904 = (1 − p)2 + p2, giving p = 5%. This indicates a
relatively low noise level, which is expected for a human-
annotated dataset of this complexity.

Data splits The OPC is divided into four subsets, each
serving a distinct purpose:

• MathArena: A test set of 112 problems from Math-
Arena (Balunović et al., 2025), a final-answer bench-
mark for mathematical reasoning.

• PutnamBench: A subset of 114 problems from Put-
namBench (Tsoukalas et al., 2024), used to compare
natural language and formal proof generation.

• Best-of-n: A subset of 152 problems from the
IMOSL, USAMO, and BMOSL, each solved multi-
ple times by O4-MINI. For 60 of these problems, all
8 generations were human-evaluated. The rest include
judgments only for the generation selected by a best-
of-n selection strategy.

• Generic: A subset of 676 problems from various com-
petitions, including the IMOSL, USAMO, BMOSL,
and others, all solved by multiple models.

The MathArena and PutnamBench subsets are drawn from
existing public benchmarks and should be treated strictly
as test sets. The generic and best-of-n subsets, by contrast,
are intended for training, validation, and further analysis.
However, a small portion of the generic subset is held back
for benchmarking purposes as well.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

The Open Proof Corpus

0%

20%

40%

60%

No
t A

pp
lic

ab
le

No
t A

pp
lic

ab
le

61.1%
58.1%

54.9%

39.8% 40.8%
38.6% 39.7%

34.9%

24.3%
26.2%

Gemini-Pro o3 o4-mini Qwen3-235B Grok-Mini R1

First Partition
Second Partition

Figure 3: Average proof correctness of various models on
the OPC. Data is split into two partitions, the first, resp.
second, containing only problems answered by all models
except DEEPSEEK-R1, resp. GROK-3-MINI. The discrep-
ancy between the two partitions is due to the inclusion of
harder competitions in the second partition.

5. Results
We present the main findings derived from the OPC. In
§5.1, we evaluate the proof-generation capabilities of var-
ious models. §5.2 evaluates the ability of LLMs to judge
the correctness of proofs. In §5.3, we compare informal
and formal proof-generation performance. §5.4 analyzes
proof correctness given correct final answers. Finally, §5.5
examines the effectiveness of best-of-n selection strategies.
In App. C, we additionally provide several qualitative ob-
servations about common mistakes in the generated proofs.

5.1. GEMINI-2.5-PRO Is The Best Proof Generator

Fig. 3 shows the average proof correctness of each model
on a filtered subset of the OPC, including only ques-
tions answered by all models except GROK-3-MINI or
DEEPSEEK-R1. GEMINI-2.5-PRO achieves the highest
average accuracy, slightly outperforming O4-MINI. In
contrast, the two open-source models—QWEN3-235B-
A22B and DEEPSEEK-R1—underperform significantly,
highlighting the current performance gap between closed-
source and open-source models in proof generation.

Out of more than 1,700 incorrect solutions analyzed, mod-
els explicitly state their inability to solve the problem in
only 114 instances, with all but five of those generated by
O3. Even O3 is more likely to produce an incorrect proof
than to acknowledge uncertainty. This widespread reluc-
tance to admit failure highlights a key limitation: current
LLMs lack effective mechanisms for confidence calibra-
tion and knowing their limitations. In domains like math-
ematics, this could undermine trust in systems that rely on
LLMs for provably correct solutions, especially given the
difficulty of evaluating proofs correctly.

Table 2: Benchmarking LLMs as proof graders. Cost for
running the model on the entire subset is given in USD.

Judge pass@1 maj@5 Cost

HUMAN 90.4 - N/A
GEMINI-2.5-PRO 85.4 88.1 135.47
OPC-R1-8B 83.8 88.1 N/A
O4-MINI 83.8 85.3 29.57
O3 83.1 84.3 93.30
GEMINI-2.5-FLASH 82.7 86.0 86.95
QWEN3-235B-A22B 81.8 84.6 3.79
DEEPSEEK-R1 80.9 82.6 27.35
QWEN3-30B-A3B 74.0 75.4 N/A
DEEPSEEK-R1-QWEN3-8B 70.7 71.3 N/A
CLAUDE-4-SONNET 70.6 75.0 28.21
QWEN3-8B 64.4 63.6 N/A
GPT-4.1 61.4 60.8 20.33
BASELINE 53.2 53.2 N/A

5.2. LLMs Are Near-Human Level Judges

The OPC is fundamentally a dataset of binary human judg-
ments on proof correctness, making it well-suited for train-
ing and evaluating LLMs as proof judges. To leverage this,
we split the generic subset by problem into training and
test sets. Using GRPO (Shao et al., 2024), we fine-tune
DEEPSEEK-R1-QWEN3-8B on the training set with hu-
man labels for reward modeling.

The test set comprises 293 LLM-generated proofs. We
evaluate both specialized reasoning models, such as
GEMINI-2.5-PRO and O4-MINI, and general-purpose
models like GPT-4.1. As a simple baseline, we classify
proofs under 100 characters as incorrect and guess ran-
domly otherwise.

As shown in Table 2, GEMINI-2.5-PRO achieves the high-
est judging accuracy: 85.4% with a single evaluation pass
and 88.1% with majority voting, approaching the 90.4%
human baseline. Notably, OPC-R1-8B matches GEMINI-
2.5-PRO’s majority voting performance and outperforms
its base model by 17%, demonstrating the value of the OPC
and its potential for advancing the field of proof evaluation
and generation. However, since the train and test sets share
the same distribution, OPC-R1-8B’s performance may de-
grade on out-of-distribution data.

LLMs often favor their own generations (Panickssery et al.,
2024). To investigate this, we evaluate how well models
judge their proofs compared to those generated by others.
In Table 3, we find that all models except QWEN3-235B-
A22B perform significantly worse when judging their own
proofs, indicating an inability to self-critique effectively.
This suggests that LLMs struggle to recognize their mis-
takes, which is a critical limitation for applications requir-
ing self-assessment or iterative improvement.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

The Open Proof Corpus

Table 3: Judgement accuracy breakdown split by solver,
highlighting the lowest score for each judge. For visual
clarity, we shortened GEMINI-2.5-PRO to GEMINI, O4-
MINI to O4, and QWEN3-235B-A22B to QWEN.

Judge
Prover

GEMINI O4 O3 QWEN

GEMINI-2.5-PRO 79.4 87.1 91.6 80.6
O4-MINI 86.9 81.3 83.1 84.1
O3 85.9 84.8 76.9 87.8
QWEN3-235B-A22B 80.0 81.9 79.1 84.4

0%

20%

40%

60%

80%
82.7%

77.6% 76.5%

61.5% 58.1%

Gemini-Pro o4-mini o3 Qwen3-235B Grok-Mini

Figure 4: Average proof correctness on the PutnamBench.

This positive result appears to contradict with Petrov et al.
(2025), who reported poor performance of judge models.
However, their evaluation was based on a limited set of
problems, relied on older models, and focused on the more
challenging task of scoring proofs on a continuous rather
than a binary scale. In addition, we put considerable effort
in crafting clear and comprehensible prompt instructions.

5.3. Formal Proof Generation Lags Behind

Using the PutnamBench subset, we compare formal and
natural language proof-generation models. The best for-
mal model, DEEPSEEK-PROVER-V2 (Ren et al., 2025),
achieves less than 8% accuracy on PutnamBench. In con-
trast, Fig. 4 shows that the top informal model, GEMINI-
2.5-PRO, reaches almost 83% accuracy on the evaluated
subset, clearly outperforming all formal models. Despite
this disparity, formal proofs offer a major advantage: auto-
matic verifiability. While informal methods currently dom-
inate in performance, formal approaches remain crucial for
scalable, rigorous proof checking.

5.4. Proof Generation and Final Answer Do Not Align

Although it is widely claimed that final-answer bench-
marks are inadequate for evaluating proof generation ca-
pabilities (Petrov et al., 2025; Mahdavi et al., 2025; Guan
et al., 2025), it remains unclear how often LLMs can pro-

0%

20%

40%

60%

80%

84.9% 87.4% 87.6%

76.7%77.0%
80.3%

59.5% 57.0%

Gemini-Pro o4-mini o3 Qwen3-235B

P(correct final)
P(correct proof)

Figure 5: Comparison of final-answer accuracy and proof
correctness on the MathArena subset.

1 2 3 4 5 6 7 8
n

25%

35%

45%

55% Pass@n
Discrete
Continuous
Rank (Swiss)
Rank (Bracket)

Figure 6: Pass@n metric on a small subset of the OPC com-
pared with some best-of-n selection strategies.

duce a valid proof when they find the correct answer. To
investigate this, we first collect instances from the Math-
Arena subset where models generate correct final answers,
and then manually evaluate the validity of the accompany-
ing proofs. This enables us to estimate the overall proof
correctness rate P (correct proof) and compare it with the
final-answer accuracy P (correct final answer).

In Fig. 5, we report each model’s accuracy alongside the
stricter metric requiring both a correct final answer and a
valid proof. Despite GEMINI-2.5-PRO, O4-MINI, and O3
achieving similar final-answer accuracy, their proof cor-
rectness rates differ significantly. Specifically, O3 performs
notably worse, with only 59.5% of its answers containing
a correct proof. This substantial variation across models
highlights that final-answer accuracy alone is not a reliable
indicator of proof generation capability.

5.5. Best-of-n Significantly Improves Performance

Best-of-n selection—generating multiple outputs and se-
lecting the best one—is a common strategy for improving
LLM performance. We evaluate this approach using O4-
MINI by generating eight proofs per problem in the best-
of-n subset and testing four selection methods:

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

The Open Proof Corpus

pass@1 Discrete Continuous Rank (Swiss)
0%

20%

40%

22.7%

31.4% 32.9%

40.0%

Figure 7: Best-of-n selection strategies on the entire best-
of-n subset of the OPC.

• Discrete: O4-MINI classifies each proof as correct or
incorrect and selects any correct proof.

• Continuous: O4-MINI scores proofs on a 0-7 scale
and selects the one with the highest score.

• Rank (Bracket): A ranking method proposed by Liu
et al. (2025). Proofs are judged pairwise by O4-MINI
in a knockout tournament until one proof remains.
Note that Liu et al. (2025) finetuned their model on
the judging task, while we use O4-MINI itself.

• Rank (Swiss): Inspired by Liu et al. (2025), proofs
are ranked via pairwise comparisons in a Swiss round-
robin tournament. Ratings are computed using the
Bradley-Terry model (Bradley and Terry, 1952), and
the answer with the highest rating is selected. See
App. B for details of this method.

Prompts for all methods can be found in App. E. Note that
Rank (Bracket) only requires O(n) comparisons, and is
therefore as efficient as the discrete and continuous meth-
ods, while Rank (Swiss) requires O(n2) comparisons, mak-
ing it more expensive.

In Fig. 6, we compare the performance of these methods
with the pass@n metric on the 60 problems that contain hu-
man judgments for all eight proofs. We find that best-of-n
selection strategies can significantly improve proof genera-
tion performance. Furthermore, the pairwise ranking meth-
ods significantly outperform the discrete and continuous
methods by approximately 10%. Notably, while discrete
and continuous methods plateau after n = 5, ranking ap-
proaches continue to scale. Finally, Rank (Swiss) slightly
outperforms Rank (Bracket) by a 3% margin.

In Fig. 7, we evaluate the performance of the best-of-n se-
lection strategies on the entire best-of-n subset of the OPC,
except for the Rank (Bracket) method, which was not eval-
uated on the full subset. The improved performance of the
ranking methods is confirmed on the entire best-of-n sub-
set, with Rank (Swiss) improving accuracy by 17%.

6. Limitations
While the OPC represents a significant advancement in the
development and evaluation of LLM proof-generation ca-

pabilities, it is not without limitations. First, since most
problems in the OPC are sourced from publicly available
mathematical competitions, there is a risk of data contam-
ination. Some of these problems may have been encoun-
tered during the training of the models. However, since the
main purpose of the OPC is not related to benchmarking
but rather to provide a large, human-validated dataset of
LLM-generated proofs, this issue is less critical. Second,
the majority of problems in the OPC are derived from high
school level competitions. As a result, the dataset does not
cover more advanced mathematical domains, such as un-
dergraduate or research-level mathematics.

7. Future Work
The OPC offers a valuable resource for advancing research
in proof generation with LLMs, supporting both the train-
ing and evaluation of models across a diverse set of math-
ematical problems. Our analysis also highlights several
critical gaps and challenges that warrant further research.
First, the significant disparity between formal and natural
language proof generation—outlined in §5.3—points to the
need for more effective strategies to bridge this divide. Sec-
ond, the OPC demonstrates that current benchmarks, which
often rely solely on final answers, fail to capture the full
complexity and quality of generated proofs, as discussed
in §5.4. This underscores the need for the development of
a scalable benchmarking pipeline tailored to proof gener-
ation tasks. Finally, while our results show that best-of-n
sampling strategies can meaningfully improve proof qual-
ity (see §5.5), further research is required to better under-
stand and optimize these methods.

8. Conclusion
In this work, we introduced the Open Proof Corpus (OPC),
a large-scale, human-validated dataset of over 5,000 LLM-
generated proofs across more than 1,000 problems. De-
signed to support training, evaluation, and benchmarking,
the OPC provides a robust foundation for advancing re-
search in automated proof generation. Using the OPC,
we conducted a thorough evaluation of current LLM ca-
pabilities in mathematical reasoning. Our analysis re-
veals several key findings: (1) modern LLMs can gener-
ate a significant number of correct proofs; (2) some mod-
els approach human-level performance in judging proof
correctness; (3) natural language proof generation sub-
stantially outperforms formal proof generation; (4) final-
answer benchmarks are a poor proxy for proof quality;
and (5) best-of-n sampling strategies significantly improve
proof-generation accuracy. Using the OPC, we also trained
an open-source model that achieves 88.1% accuracy in
judging proof correctness, matching the performance of the
best closed-source model, GEMINI-2.5-PRO.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

The Open Proof Corpus

References
Alon Albalak, Duy Phung, Nathan Lile, Rafael Rafailov,

Kanishk Gandhi, Louis Castricato, Anikait Singh, Chase
Blagden, Violet Xiang, Dakota Mahan, and Nick Haber.
Big-math: A large-scale, high-quality math dataset for
reinforcement learning in language models, 2025. URL
https://arxiv.org/abs/2502.17387.

Mislav Balunović, Jasper Dekoninck, Ivo Petrov, Nikola
Jovanović, and Martin Vechev. Matharena: Evaluat-
ing llms on uncontaminated math competitions, Febru-
ary 2025. URL https://matharena.ai/.

Ralph Allan Bradley and Milton E. Terry. Rank analy-
sis of incomplete block designs: The method of paired
comparisons. Biometrika, 39(3-4):324–345, 12 1952.
ISSN 0006-3444. doi: 10.1093/biomet/39.3-4.324. URL
https://doi.org/10.1093/biomet/39.3-4.324.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark
Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,
Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christo-
pher Hesse, and John Schulman. Training verifiers to
solve math word problems. CoRR, abs/2110.14168,
2021. URL https://arxiv.org/abs/2110.14168.

Leonardo de Moura and Sebastian Ullrich. The lean 4 the-
orem prover and programming language. In CADE, vol-
ume 12699 of Lecture Notes in Computer Science, pages
625–635. Springer, 2021.

Jasper Dekoninck, Maximilian Baader, and Martin T.
Vechev. Polyrating: A cost-effective and bias-aware
rating system for LLM evaluation. In The Thirteenth
International Conference on Learning Representations,
ICLR 2025, Singapore, April 24-28, 2025. OpenRe-
view.net, 2025. URL https://openreview.net/forum?

id=URPwT55i6O.

Simon Frieder, Luca Pinchetti, Alexis Chevalier,
Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas
Lukasiewicz, Philipp Petersen, and Julius Berner.
Mathematical capabilities of chatgpt. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko,
Moritz Hardt, and Sergey Levine, editors, Advances
in Neural Information Processing Systems 36: An-
nual Conference on Neural Information Processing
Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023, 2023. URL http:

//papers.nips.cc/paper_files/paper/2023/hash/

58168e8a92994655d6da3939e7cc0918-Abstract-Datasets_

and_Benchmarks.html.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao,
Qingxiu Dong, Lei Li, Chenghao Ma, Liang Chen,
Runxin Xu, Zhengyang Tang, Benyou Wang, Daoguang

Zan, Shanghaoran Quan, Ge Zhang, Lei Sha, Yichang
Zhang, Xuancheng Ren, Tianyu Liu, and Baobao Chang.
Omni-math: A universal olympiad level mathematic
benchmark for large language models. In The Thirteenth
International Conference on Learning Representations,
ICLR 2025, Singapore, April 24-28, 2025. OpenRe-
view.net, 2025. URL https://openreview.net/forum?

id=yaqPf0KAlN.

Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego
Chicharro, Evan Chen, Alex Gunning, Caroline Falk-
man Olsson, Jean-Stanislas Denain, Anson Ho, Emily
de Oliveira Santos, Olli Järviniemi, Matthew Barnett,
Robert Sandler, Matej Vrzala, Jaime Sevilla, Qiuyu Ren,
Elizabeth Pratt, Lionel Levine, Grant Barkley, Natalie
Stewart, Bogdan Grechuk, Tetiana Grechuk, Shreep-
ranav Varma Enugandla, and Mark Wildon. Frontier-
math: A benchmark for evaluating advanced mathemat-
ical reasoning in AI. CoRR, abs/2411.04872, 2024. doi:
10.48550/ARXIV.2411.04872. URL https://doi.org/

10.48550/arXiv.2411.04872.

Google DeepMind. Gemini Pro, March 2025. URL https:

//deepmind.google/technologies/gemini/pro/. Ac-
cessed: 2025-04-03.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xue-
hao Zhai, Chengjin Xu, Wei Li, Yinghan Shen, Shengjie
Ma, Honghao Liu, Yuanzhuo Wang, and Jian Guo. A
survey on llm-as-a-judge. CoRR, abs/2411.15594, 2024.
doi: 10.48550/ARXIV.2411.15594. URL https://doi.

org/10.48550/arXiv.2411.15594.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang,
Youran Sun, Yi Zhu, Fan Yang, and Mao Yang. rstar-
math: Small llms can master math reasoning with self-
evolved deep thinking. CoRR, abs/2501.04519, 2025.
doi: 10.48550/ARXIV.2501.04519. URL https://doi.

org/10.48550/arXiv.2501.04519.

Aryan Gulati, Brando Miranda, Eric Chen, Emily Xia, Kai
Fronsdal, Bruno de Moraes Dumont, and Sanmi Koyejo.
Putnam-axiom: A functional and static benchmark for
measuring higher level mathematical reasoning. In The
4th Workshop on Mathematical Reasoning and AI at
NeurIPS’24, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing
reasoning capability in llms via reinforcement learning.
arXiv preprint arXiv:2501.12948, 2025a.

Jiaxing Guo, Wenjie Yang, Shengzhong Zhang, Tongshan
Xu, Lun Du, Da Zheng, and Zengfeng Huang. Right
is not enough: The pitfalls of outcome supervision in

9

https://arxiv.org/abs/2502.17387
https://matharena.ai/
https://doi.org/10.1093/biomet/39.3-4.324
https://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=URPwT55i6O
https://openreview.net/forum?id=URPwT55i6O
http://papers.nips.cc/paper_files/paper/2023/hash/58168e8a92994655d6da3939e7cc0918-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/58168e8a92994655d6da3939e7cc0918-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/58168e8a92994655d6da3939e7cc0918-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/58168e8a92994655d6da3939e7cc0918-Abstract-Datasets_and_Benchmarks.html
https://openreview.net/forum?id=yaqPf0KAlN
https://openreview.net/forum?id=yaqPf0KAlN
https://doi.org/10.48550/arXiv.2411.04872
https://doi.org/10.48550/arXiv.2411.04872
https://deepmind.google/technologies/gemini/pro/
https://deepmind.google/technologies/gemini/pro/
https://doi.org/10.48550/arXiv.2411.15594
https://doi.org/10.48550/arXiv.2411.15594
https://doi.org/10.48550/arXiv.2501.04519
https://doi.org/10.48550/arXiv.2501.04519

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

The Open Proof Corpus

training llms for math reasoning, 2025b. URL https:

//arxiv.org/abs/2506.06877.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu,
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yu-
jie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan
Liu, and Maosong Sun. Olympiadbench: A challeng-
ing benchmark for promoting AGI with olympiad-level
bilingual multimodal scientific problems. In Lun-Wei
Ku, Andre Martins, and Vivek Srikumar, editors, Pro-
ceedings of the 62nd Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long
Papers), ACL 2024, Bangkok, Thailand, August 11-
16, 2024, pages 3828–3850. Association for Compu-
tational Linguistics, 2024. doi: 10.18653/V1/2024.
ACL-LONG.211. URL https://doi.org/10.18653/

v1/2024.acl-long.211.

Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu
Chen, Yue Wang, Linfeng Song, Dian Yu, Zhenwen
Liang, Wenxuan Wang, Zhuosheng Zhang, Rui Wang,
Zhaopeng Tu, Haitao Mi, and Dong Yu. Deepmath-
103k: A large-scale, challenging, decontaminated, and
verifiable mathematical dataset for advancing reasoning.
CoRR, abs/2504.11456, 2025. doi: 10.48550/ARXIV.
2504.11456. URL https://doi.org/10.48550/arXiv.

2504.11456.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven
Zheng, Adams Wei Yu, Xinying Song, and Denny Zhou.
Large language models cannot self-correct reasoning
yet. In The Twelfth International Conference on Learn-
ing Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net, 2024. URL https://

openreview.net/forum?id=IkmD3fKBPQ.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar, Alek-
sander Madry, Alex Beutel, Alex Carney, Alex Iftimie,
Alex Karpenko, Alex Tachard Passos, Alexander Neitz,
Alexander Prokofiev, Alexander Wei, Allison Tam, Ally
Bennett, Ananya Kumar, Andre Saraiva, Andrea Val-
lone, Andrew Duberstein, Andrew Kondrich, Andrey
Mishchenko, Andy Applebaum, Angela Jiang, Ashvin
Nair, Barret Zoph, Behrooz Ghorbani, Ben Rossen, Ben-
jamin Sokolowsky, Boaz Barak, Bob McGrew, Borys
Minaiev, Botao Hao, Bowen Baker, Brandon Houghton,
Brandon McKinzie, Brydon Eastman, Camillo Lugaresi,
Cary Bassin, Cary Hudson, Chak Ming Li, Charles
de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang,
Chris Koch, Chris Orsinger, Christopher Hesse, Clau-
dia Fischer, Clive Chan, Dan Roberts, Daniel Kappler,
Daniel Levy, Daniel Selsam, David Dohan, David Farhi,
David Mely, David Robinson, Dimitris Tsipras, Doug
Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Ed-
mund Wong, Elizabeth Proehl, Enoch Cheung, Eric

Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan
Wang, Felipe Petroski Such, Filippo Raso, Floren-
cia Leoni, Foivos Tsimpourlas, Francis Song, Fred
von Lohmann, Freddie Sulit, Geoff Salmon, Giambat-
tista Parascandolo, Gildas Chabot, Grace Zhao, Greg
Brockman, Guillaume Leclerc, Hadi Salman, Haiming
Bao, Hao Sheng, Hart Andrin, Hessam Bagherinezhad,
Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian
Kivlichan, Ian O’Connell, Ian Osband, Ignasi Clavera
Gilaberte, and Ilge Akkaya. Openai o1 system card.
CoRR, abs/2412.16720, 2024. doi: 10.48550/ARXIV.
2412.16720. URL https://doi.org/10.48550/arXiv.

2412.16720.

Chunyang Jiang, Chi-Min Chan, Wei Xue, Qifeng Liu,
and Yike Guo. Importance weighting can help large
language models self-improve. In Toby Walsh, Julie
Shah, and Zico Kolter, editors, AAAI-25, Sponsored by
the Association for the Advancement of Artificial Intel-
ligence, February 25 - March 4, 2025, Philadelphia,
PA, USA, pages 24257–24265. AAAI Press, 2025. doi:
10.1609/AAAI.V39I23.34602. URL https://doi.org/

10.1609/aaai.v39i23.34602.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin,
Roman Soletskyi, Shengyi Costa Huang, Kashif Rasul,
Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin
Dong, Li Zhou, Yann Fleureau, Guillaume Lample, and
Stanislas Polu. Numinamath. [https://huggingface.

co/AI-MO/NuminaMath-1.5](https://github.com/

project-numina/aimo-progress-prize/blob/main/

report/numina_dataset.pdf), 2024.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison
Edwards, Bowen Baker, Teddy Lee, Jan Leike, John
Schulman, Ilya Sutskever, and Karl Cobbe. Let’s ver-
ify step by step. In The Twelfth International Confer-
ence on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=v8L0pN6EOi.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou
Lin, Kaiyu Yang, Jia Li, Mengzhou Xia, Danqi Chen,
Sanjeev Arora, and Chi Jin. Goedel-prover: A fron-
tier model for open-source automated theorem proving.
CoRR, abs/2502.07640, 2025. doi: 10.48550/ARXIV.
2502.07640. URL https://doi.org/10.48550/arXiv.

2502.07640.

Yantao Liu, Zijun Yao, Rui Min, Yixin Cao, Lei Hou, and
Juanzi Li. Pairjudge rm: Perform best-of-n sampling
with knockout tournament, 2025. URL https://arxiv.

org/abs/2501.13007.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Halli-
nan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri,

10

https://arxiv.org/abs/2506.06877
https://arxiv.org/abs/2506.06877
https://doi.org/10.18653/v1/2024.acl-long.211
https://doi.org/10.18653/v1/2024.acl-long.211
https://doi.org/10.48550/arXiv.2504.11456
https://doi.org/10.48550/arXiv.2504.11456
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://doi.org/10.48550/arXiv.2412.16720
https://doi.org/10.48550/arXiv.2412.16720
https://doi.org/10.1609/aaai.v39i23.34602
https://doi.org/10.1609/aaai.v39i23.34602
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://openreview.net/forum?id=v8L0pN6EOi
https://doi.org/10.48550/arXiv.2502.07640
https://doi.org/10.48550/arXiv.2502.07640
https://arxiv.org/abs/2501.13007
https://arxiv.org/abs/2501.13007

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

The Open Proof Corpus

Shrimai Prabhumoye, Yiming Yang, Shashank Gupta,
Bodhisattwa Prasad Majumder, Katherine Hermann,
Sean Welleck, Amir Yazdanbakhsh, and Peter Clark.
Self-refine: Iterative refinement with self-feedback. In
Alice Oh, Tristan Naumann, Amir Globerson, Kate
Saenko, Moritz Hardt, and Sergey Levine, editors,
Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023, 2023. URL http:

//papers.nips.cc/paper_files/paper/2023/hash/

91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.

html.

Hamed Mahdavi, Alireza Hashemi, Majid Daliri, Pe-
gah Mohammadipour, Alireza Farhadi, Samira Malek,
Yekta Yazdanifard, Amir Khasahmadi, and Vasant G.
Honavar. Brains vs. bytes: Evaluating LLM proficiency
in olympiad mathematics. CoRR, abs/2504.01995, 2025.
doi: 10.48550/ARXIV.2504.01995. URL https://doi.

org/10.48550/arXiv.2504.01995.

Philipp Mondorf and Barbara Plank. Beyond accuracy:
Evaluating the reasoning behavior of large language
models - A survey. CoRR, abs/2404.01869, 2024. doi:
10.48550/ARXIV.2404.01869. URL https://doi.org/

10.48550/arXiv.2404.01869.

Ivan Moshkov, Darragh Hanley, Ivan Sorokin, Shubham
Toshniwal, Christof Henkel, Benedikt Schifferer, Wei
Du, and Igor Gitman. AIMO-2 winning solution: Build-
ing state-of-the-art mathematical reasoning models with
openmathreasoning dataset. CoRR, abs/2504.16891,
2025. doi: 10.48550/ARXIV.2504.16891. URL https:

//doi.org/10.48550/arXiv.2504.16891.

Tobias Nipkow, Lawrence C Paulson, and Markus Wen-
zel. Isabelle/HOL: a proof assistant for higher-order
logic, volume 2283. Springer Science & Business Me-
dia, 2002.

OpenAI. Openai o3 and o4-mini system card,
April 2025. URL https://cdn.openai.com/

pdf/2221c875-02dc-4789-800b-e7758f3722c1/

o3-and-o4-mini-system-card.pdf.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak
Nathani, Xinyi Wang, and William Yang Wang. Au-
tomatically correcting large language models: Survey-
ing the landscape of diverse self-correction strategies.
CoRR, abs/2308.03188, 2023. doi: 10.48550/ARXIV.
2308.03188. URL https://doi.org/10.48550/arXiv.

2308.03188.

Arjun Panickssery, Samuel R. Bowman, and Shi Feng.
LLM evaluators recognize and favor their own
generations. In Amir Globersons, Lester Mackey,

Danielle Belgrave, Angela Fan, Ulrich Paquet,
Jakub M. Tomczak, and Cheng Zhang, editors, Ad-
vances in Neural Information Processing Systems 38:
Annual Conference on Neural Information Process-
ing Systems 2024, NeurIPS 2024, Vancouver, BC,
Canada, December 10 - 15, 2024, 2024. URL http:

//papers.nips.cc/paper_files/paper/2024/hash/

7f1f0218e45f5414c79c0679633e47bc-Abstract-Conference.

html.

Ivo Petrov, Jasper Dekoninck, Lyuben Baltadzhiev, Maria
Drencheva, Kristian Minchev, Mislav Balunovic, Nikola
Jovanovic, and Martin T. Vechev. Proof or bluff? eval-
uating llms on 2025 USA math olympiad. CoRR,
abs/2503.21934, 2025. doi: 10.48550/ARXIV.2503.
21934. URL https://doi.org/10.48550/arXiv.

2503.21934.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li,
Josephina Hu, Hugh Zhang, Sean Shi, Michael Choi,
Anish Agrawal, Arnav Chopra, Adam Khoja, Ryan
Kim, Jason Hausenloy, Oliver Zhang, Mantas Mazeika,
Daron Anderson, Tung Nguyen, Mobeen Mahmood,
Fiona Feng, Steven Y. Feng, Haoran Zhao, Michael
Yu, Varun Gangal, Chelsea Zou, Zihan Wang, Jes-
sica P. Wang, Pawan Kumar, Oleksandr Pokutnyi, Robert
Gerbicz, Serguei Popov, John-Clark Levin, Mstyslav
Kazakov, Johannes Schmitt, Geoff Galgon, Alvaro
Sanchez, Yongki Lee, Will Yeadon, Scott Sauers, Marc
Roth, Chidozie Agu, Søren Riis, Fabian Giska, Saiteja
Utpala, Zachary Giboney, Gashaw M. Goshu, Joan
of Arc Xavier, Sarah-Jane Crowson, Mohinder Ma-
heshbhai Naiya, Noah Burns, Lennart Finke, Zerui
Cheng, Hyunwoo Park, Francesco Fournier-Facio, John
Wydallis, Mark Nandor, Ankit Singh, Tim Gehrunger,
Jiaqi Cai, Ben McCarty, Darling Duclosel, Jungbae
Nam, Jennifer Zampese, Ryan G. Hoerr, Aras Ba-
cho, Gautier Abou Loume, Abdallah Galal, Hangrui
Cao, Alexis C. Garretson, Damien Sileo, Qiuyu Ren,
Doru Cojoc, Pavel Arkhipov, Usman Qazi, Lianghui
Li, Sumeet Motwani, Christian Schröder de Witt, Ed-
win Taylor, Johannes Veith, Eric Singer, Taylor D.
Hartman, Paolo Rissone, Jaehyeok Jin, Jack Wei Lun
Shi, Chris G. Willcocks, Joshua Robinson, Aleksandar
Mikov, Ameya Prabhu, Longke Tang, Xavier Alapont,
Justine Leon Uro, Kevin Zhou, Emily de Oliveira Santos,
Andrey Pupasov Maksimov, Edward Vendrow, Kengo
Zenitani, Julien Guillod, Yuqi Li, Joshua Vendrow, Vla-
dyslav Kuchkin, and Ng Ze-An. Humanity’s last exam.
CoRR, abs/2501.14249, 2025. doi: 10.48550/ARXIV.
2501.14249. URL https://doi.org/10.48550/arXiv.

2501.14249.

Qwen Team. Qwen3: Think Deeper, Act Faster, April

11

http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2504.01995
https://doi.org/10.48550/arXiv.2504.01995
https://doi.org/10.48550/arXiv.2404.01869
https://doi.org/10.48550/arXiv.2404.01869
https://doi.org/10.48550/arXiv.2504.16891
https://doi.org/10.48550/arXiv.2504.16891
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://doi.org/10.48550/arXiv.2308.03188
https://doi.org/10.48550/arXiv.2308.03188
http://papers.nips.cc/paper_files/paper/2024/hash/7f1f0218e45f5414c79c0679633e47bc-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/7f1f0218e45f5414c79c0679633e47bc-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/7f1f0218e45f5414c79c0679633e47bc-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/7f1f0218e45f5414c79c0679633e47bc-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2503.21934
https://doi.org/10.48550/arXiv.2503.21934
https://doi.org/10.48550/arXiv.2501.14249
https://doi.org/10.48550/arXiv.2501.14249

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

The Open Proof Corpus

2025. URL https://qwenlm.github.io/blog/qwen3/.
Qwen Blog.

Z. Z. Ren, Zhihong Shao, Junxiao Song, Huajian Xin,
Haocheng Wang, Wanjia Zhao, Liyue Zhang, Zhe Fu,
Qihao Zhu, Dejian Yang, Z. F. Wu, Zhibin Gou, Shirong
Ma, Hongxuan Tang, Yuxuan Liu, Wenjun Gao, Daya
Guo, and Chong Ruan. Deepseek-prover-v2: Advancing
formal mathematical reasoning via reinforcement learn-
ing for subgoal decomposition. CoRR, abs/2504.21801,
2025. doi: 10.48550/ARXIV.2504.21801. URL https:

//doi.org/10.48550/arXiv.2504.21801.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, Y. K. Li, Y. Wu,
and Daya Guo. Deepseekmath: Pushing the limits
of mathematical reasoning in open language models.
CoRR, abs/2402.03300, 2024. doi: 10.48550/ARXIV.
2402.03300. URL https://doi.org/10.48550/arXiv.

2402.03300.

Jiayi Sheng, Luna Lyu, Jikai Jin, Tony Xia, Alex Gu, James
Zou, and Pan Lu. Solving inequality proofs with large
language models, 2025. URL https://arxiv.org/abs/

2506.07927.

Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh,
Maxwell Horton, Samy Bengio, and Mehrdad Fara-
jtabar. The illusion of thinking: Understanding the
strengths and limitations of reasoning models via the
lens of problem complexity, 2025. URL https://

arxiv.org/abs/2506.06941.

George Tsoukalas, Jasper Lee, John Jennings, Jimmy
Xin, Michelle Ding, Michael Jennings, Amitayush
Thakur, and Swarat Chaudhuri. Putnambench:
Evaluating neural theorem-provers on the putnam
mathematical competition. In Amir Globersons, Lester
Mackey, Danielle Belgrave, Angela Fan, Ulrich Pa-
quet, Jakub M. Tomczak, and Cheng Zhang, editors,
Advances in Neural Information Processing Systems
38: Annual Conference on Neural Information Pro-
cessing Systems 2024, NeurIPS 2024, Vancouver, BC,
Canada, December 10 - 15, 2024, 2024. URL http:

//papers.nips.cc/paper_files/paper/2024/hash/

1582eaf9e0cf349e1e5a6ee453100aa1-Abstract-Datasets_

and_Benchmarks_Track.html.

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys,
Junqi Liu, Marco Dos Santos, Flood Sung, Marina
Vinyes, Zhenzhe Ying, Zekai Zhu, Jianqiao Lu, Hugues
de Saxcé, Bolton Bailey, Chendong Song, Chenjun Xiao,
Dehao Zhang, Ebony Zhang, Frederick Pu, Han Zhu, Ji-
awei Liu, Jonas Bayer, Julien Michel, Longhui Yu, Léo
Dreyfus-Schmidt, Lewis Tunstall, Luigi Pagani, Mor-
eira Machado, Pauline Bourigault, Ran Wang, Stanislas

Polu, Thibaut Barroyer, Wen-Ding Li, Yazhe Niu, Yann
Fleureau, Yangyang Hu, Zhouliang Yu, Zihan Wang,
Zhilin Yang, Zhengying Liu, and Jia Li. Kimina-prover
preview: Towards large formal reasoning models with
reinforcement learning. CoRR, abs/2504.11354, 2025.
doi: 10.48550/ARXIV.2504.11354. URL https://doi.

org/10.48550/arXiv.2504.11354.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He,
Shengping Liu, Bin Sun, Kang Liu, and Jun Zhao.
Large language models are better reasoners with self-
verification. In Houda Bouamor, Juan Pino, and Kalika
Bali, editors, Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, Singapore, Decem-
ber 6-10, 2023, pages 2550–2575. Association for Com-
putational Linguistics, 2023. doi: 10.18653/V1/2023.
FINDINGS-EMNLP.167. URL https://doi.org/10.

18653/v1/2023.findings-emnlp.167.

xAI. Grok 3 beta — the age of reasoning agents, Febru-
ary 2025. URL https://x.ai/news/grok-3. Accessed:
2025-04-03.

Shijie Xia, Xuefeng Li, Yixin Liu, Tongshuang Wu, and
Pengfei Liu. Evaluating mathematical reasoning be-
yond accuracy. In Toby Walsh, Julie Shah, and Zico
Kolter, editors, AAAI-25, Sponsored by the Association
for the Advancement of Artificial Intelligence, Febru-
ary 25 - March 4, 2025, Philadelphia, PA, USA, pages
27723–27730. AAAI Press, 2025. doi: 10.1609/AAAI.
V39I26.34987. URL https://doi.org/10.1609/aaai.

v39i26.34987.

Zhouliang Yu, Ruotian Peng, Keyi Ding, Yizhe Li,
Zhongyuan Peng, Minghao Liu, Yifan Zhang, Zheng
Yuan, Huajian Xin, Wenhao Huang, Yandong Wen,
Ge Zhang, and Weiyang Liu. Formalmath: Benchmark-
ing formal mathematical reasoning of large language
models, 2025. URL https://arxiv.org/abs/2505.

02735.

Ziyin Zhang, Jiahao Xu, Zhiwei He, Tian Liang, Qiuzhi
Liu, Yansi Li, Linfeng Song, Zhenwen Liang, Zhu-
osheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and
Dong Yu. Deeptheorem: Advancing llm reasoning for
theorem proving through natural language and reinforce-
ment learning, 2025. URL https://arxiv.org/abs/

2505.23754.

Kunhao Zheng, Jesse Michael Han, and Stanislas
Polu. minif2f: a cross-system benchmark for for-
mal olympiad-level mathematics. In The Tenth In-
ternational Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. OpenRe-
view.net, 2022. URL https://openreview.net/forum?

id=9ZPegFuFTFv.

12

https://qwenlm.github.io/blog/qwen3/
https://doi.org/10.48550/arXiv.2504.21801
https://doi.org/10.48550/arXiv.2504.21801
https://doi.org/10.48550/arXiv.2402.03300
https://doi.org/10.48550/arXiv.2402.03300
https://arxiv.org/abs/2506.07927
https://arxiv.org/abs/2506.07927
https://arxiv.org/abs/2506.06941
https://arxiv.org/abs/2506.06941
http://papers.nips.cc/paper_files/paper/2024/hash/1582eaf9e0cf349e1e5a6ee453100aa1-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/1582eaf9e0cf349e1e5a6ee453100aa1-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/1582eaf9e0cf349e1e5a6ee453100aa1-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/1582eaf9e0cf349e1e5a6ee453100aa1-Abstract-Datasets_and_Benchmarks_Track.html
https://doi.org/10.48550/arXiv.2504.11354
https://doi.org/10.48550/arXiv.2504.11354
https://doi.org/10.18653/v1/2023.findings-emnlp.167
https://doi.org/10.18653/v1/2023.findings-emnlp.167
https://x.ai/news/grok-3
https://doi.org/10.1609/aaai.v39i26.34987
https://doi.org/10.1609/aaai.v39i26.34987
https://arxiv.org/abs/2505.02735
https://arxiv.org/abs/2505.02735
https://arxiv.org/abs/2505.23754
https://arxiv.org/abs/2505.23754
https://openreview.net/forum?id=9ZPegFuFTFv
https://openreview.net/forum?id=9ZPegFuFTFv

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

The Open Proof Corpus

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. Judging llm-as-
a-judge with mt-bench and chatbot arena. In Alice
Oh, Tristan Naumann, Amir Globerson, Kate Saenko,
Moritz Hardt, and Sergey Levine, editors, Advances
in Neural Information Processing Systems 36: An-
nual Conference on Neural Information Processing
Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023, 2023. URL http:

//papers.nips.cc/paper_files/paper/2023/hash/

91f18a1287b398d378ef22505bf41832-Abstract-Datasets_

and_Benchmarks.html.

13

http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

The Open Proof Corpus

Table 4: A list of competition sources for the problems in OPC.

Competition Description Problems Solutions Level Type Acc Source

Main Analysis

Balkan MO Shortlist Competition between Balkan countries 74 368 HS I 31.7% Public
Baltic Way MO Northern and Central European Olympiad 80 395 HS I 68.1% Public
British MO Final Final round of the British Olympiad 23 114 HS N 78.3% Public
British MO Prelim Preliminary round for the British Olympiad 28 139 HS N 87.5% Public
Bulgarian Seasonal Competitions Seasonal Competitions hosted in Bulgaria (8th-12th grade) 49 242 HS N 63.5% Public
European Girls’ MO Europe-wide olympiad allowing only girls as participants 47 227 HS I 37.8% Public
IMC International competition for university students 43 212 UG I 62.2% Public
IMO Shortlist Shortlist of problems, from which the IMO is selected 128 629 HS I 18.0% Public
International Zhautykov MO Kazakhstan-based olympiad with near-IMO-level questions 41 203 HS I 34.2% Public
Irish MO Final round of the Irish Olympiad 51 255 HS N 92.0% Public
Putnam Undergraduate competition, regarded as one of the most difficult 8 35 UG I 100.0% Public
Romanian Masters of Mathematics Extralist IMO-level competition hosted in Romania 33 162 HS I 43.3% Private
Swiss MO Various problems from the Swiss Olympiad 8 39 HS N 87.5% Public
USA Junior MO USA olympiad that allows only junior students 25 121 HS N 52.2% Public
USAMO The final round of the USA Math Olympiad 38 190 HS N 35.1% Public

PutnamBench

Putnam Undergraduate competition, regarded as one of the most difficult 114 564 UG I 82.7% Public

MathArena

AIME 2025 Answer-based competition, serving as a qualifier for the USAMO 24 93 HS N 95.7% Public
BRUMO 2025 Answer-based competition hosted by Brown University 28 114 HS N 100.0% Public
HMMT February 2025 Answer-based competition hosted by Harvard and MIT 26 103 HS N 97.8% Public
SMT 2025 Answer-based competition hosted by Stanford 34 128 HS N 92.6% Private

Best-of-n

Balkan MO Shortlist Competition between Balkan countries 45 287 HS I 62.5% Public
IMO Shortlist Shortlist of problems, from which the IMO is selected 57 269 HS I 30.8% Public
USAMO The final round of the USA Math Olympiad 40 173 HS N 66.7% Public

A. Competitions in the OPC
The OPC contains over 1000 problems that were sourced from national and international competitions of varying difficulty.
In Table 4, we present the problem and sample distribution for each. We also include the following additional information:

• Level: the education level the problems are appropriate for, either high school (HS) or undergraduate (UG).

• Type: whether the competition is hosted internationally (I) or only nationally (N).

• Source: we link the source, from which we obtained the problems. Any source that is not publicly available was
marked as "Private".

• Acc: the average accuracy of the best-performing model on the competition problems, which serves as a rough proxy
for difficulty.

B. Swiss Ranking Methodology
We briefly describe the Swiss ranking method used as a best-of-n selection strategy. In this approach, a round-robin
tournament is performed where each proof competes against every other. In each "game", two proofs are compared by
O4-MINI, which decides which proof is better, or if they are equally good.

To determine the overall winner, we compute a rating for each proof using the Bradley-Terry model (Bradley and Terry,
1952), a probabilistic model for paired comparisons commonly applied in LLM evaluation (Zheng et al., 2023; Dekoninck
et al., 2025). The Bradley-Terry model estimates the probability that a proof with rating ri beats a proof with rating rj as:

P (i beats j) =
1

1 + exp(rj − ri)
.

We fit the model to the outcomes of the round-robin tournament using maximum likelihood estimation, resulting in a rating
for each proof. The proof with the highest rating is selected as the best.

14

https://imomath.com/srb/zadaci/
https://www.math.olympiaadid.ut.ee/eng/html/?id=bw
https://bmos.ukmt.org.uk/
https://bmos.ukmt.org.uk/
https://klasirane.com/
https://web.evanchen.cc/problems.html
https://www.imc-math.org.uk/
https://www.imo-official.org/
https://izho.kz/contest/problems/
https://bmos.ukmt.org.uk/
https://kskedlaya.org/putnam-archive/
https://mathematical.olympiad.ch/en/
https://web.evanchen.cc/problems.html
https://web.evanchen.cc/problems.html
https://raw.githubusercontent.com/trishullab/PutnamBench/refs/heads/main/informal/putnam.json
https://matharena.ai/
https://matharena.ai/
https://matharena.ai/
https://imomath.com/srb/zadaci/
https://www.imo-official.org/
https://web.evanchen.cc/problems.html

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

The Open Proof Corpus

C. Qualitative Observations
Building on our quantitative analysis, we present several qualitative insights drawn from our judges’ evaluations. These
include common failure modes and notable model behaviors.

Incorrect handling of inequalities Many models sometimes make mistakes when manipulating inequalities. A frequent
issue is the improper reversal of inequality signs during intermediate steps without mathematical justification. This re-
sults in incorrect final answers despite seemingly coherent reasoning. Below is an example of such a mistake made by
DEEPSEEK-R1, where the incorrect sign reversal is marked with "**".

DEEPSEEK-R1 – Baltic Way 2004 P3

...

Summing these inequalities gives

∑
cyc

a+b
a+b+1 ≥

∑
cyc

(
1 − 1

3(ab)1/3

)
= 3 − 1

3

∑
cyc(ab)

−1/3.

...

By AM-GM again,

a1/3 + b1/3 + c1/3 ≥ 3
3√
a1/3b1/3c1/3 = 3(abc)1/9 = 3 · 11/9 = 3,

with equality if and only if a1/3 = b1/3 = c1/3, i.e., a = b = c. Thus,∑
cyc

a+b
a+b+1 ∗ ∗ ≥ ∗ ∗ 3 − 1

3 · 3 = 3 − 1 = 2.

...

Struggles with synthetic geometry reasoning In Olympiad-level geometry problems, models often default to
coordinate-based methods, i.e., using computations with complex numbers or a specific coordinate system to "bash" the
problem, especially on easier problems where such techniques are tractable. However, for harder problems, models tend
to shift toward synthetic approaches, relying on geometric theorems and properties. These harder problems typically re-
quire keeping track of multiple different but related angles and a robust understanding of geometric relationships. Here,
models frequently struggle: they sometimes confuse angle orientations, misidentify congruent angles, reverse point or-
derings, or apply geometric properties incorrectly. In the following example, GEMINI-2.5-PRO correctly identifies the
base of an isosceles triangle in one case, but subsequently deduces the wrong pair of equal angles—illustrating a common
angle-reasoning failure.

GEMINI-2.5-PRO – IMOSL 2013 G4

...
Thus, ∠PBA = ∠QBA where these angles are ∠(BP,BA) and ∠(AB,BQ). The problem states these are equal to γ.

So, ∠(BP,BA) = γ and ∠(AB,BQ) = γ. This means
∠PBQ = ∠(BP,BA) + ∠(AB,BQ) = γ + γ = 2γ.

We are given that D is an interior point of segment BQ and PD = PB.

Thus, △PBD is an isosceles triangle with base BD.

The angle ∠PBD in △PBD is ∠PBQ, so ∠PBD = 2γ.

The base angles are

∠BPD = ∠BDP = 180◦−2γ
2 = 90◦ − γ.

So, ∠PDB = 90◦ − γ. Since D is on segment BQ, this is ∠(DP,DB) = 90◦ − γ.
...

Incorrect citation of IMOSL 2004 G8 by GEMINI-2.5-PRO A curious behavior observed exclusively in GEMINI-PRO
is the repeated and inappropriate citation of the 2004 IMO Shortlist geometry problem G8. This reference appears in over
15 different solutions, often in problems unrelated to geometry. Notably, these citations consistently occur at points where

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

The Open Proof Corpus

the model appears to get stuck. No other model in our evaluation displayed this behavior. An illustrative example is shown
below.

EGMO 2018 P3

The n contestants of EGMO are named C1, C2, . . . , Cn. After the competition, they queue in front of the restaurant according to the
following rules.

- The Jury chooses the initial order of the contestants in the queue.
- Every minute, the Jury chooses an integer i with 1 ≤ i ≤ n.
- If contestant Ci has at least i other contestants in front of her, she pays one euro to the Jury and moves forward in the queue
by exactly i positions.
- If contestant Ci has fewer than i other contestants in front of her, the restaurant opens and the process ends.

For every n, prove that this process must terminate and determine the maximum number of euros that the Jury can collect by cunningly
choosing the initial order and the sequence of moves.

GEMINI-2.5-PRO

The problem asks us to prove that the process always terminates and to find the maximum number of euros the Jury can collect. One euro
is collected for each move a contestant makes.

...
So we have two relations:

k · mk = jk for each k = 1, . . . , n (positional balance for each Ck).∑n
k=1 k · mk =

∑n
k=1 jk (total jump events balance).

Substitute (1) into (2):∑n
k=1 k · mk =

∑n
k=1(k · mk).

This equation is an identity and does not help by itself.

Let us use the argument from the ISL 2004 G8 solution notes:

The sum of positions is P =
∑n

k=1 pk = n(n + 1)/2, which is constant.

The sum of costs, C =
∑n

k=1(position of Ck) × k.
...

Overgeneralization from simple cases Consistent with prior work (Petrov et al., 2025; Mahdavi et al., 2025), we observe
that models often overgeneralize patterns from small or simple examples. This tendency leads to incorrect solutions,
particularly when the identified properties do not extend to the general case. An example illustrating this pattern overreach
is included below.

GROK 3 MINI – IMO SL 2000 G4

Let A1A2A3 be an acute-angled triangle. Denote the foot of the altitude from vertex Ai to the side opposite Ai as Ki, and the
point where the incircle touches the side opposite Ai as Li. The lines K1K2, K2K3, and K3K1 are the sides of the orthic
triangle, and the lines L1L2, L2L3, and L3L1 are the sides of the contact triangle.

...

In the special case of an equilateral triangle, the orthic triangle and contact triangle coincide, and the reflections result in the
same lines, with vertices on the incircle. For a general acute-angled triangle, coordinate geometry calculations in specific examples
(e.g., a triangle with vertices at B(0, 0), C(4, 0), A(1, 2)) confirm that the intersection points lie on the incircle, with numerical
discrepancies attributable to rounding errors.

Given the symmetry of the configuration and the properties of the incircle as the unique circle tangent to the sides, the intersection
points P , Q, and R lie on the incircle for any acute-angled triangle. Thus, the triangle formed by M12, M23, and M31 has
vertices on the incircle.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

The Open Proof Corpus

D. Grading Interface and Instructions
This appendix outlines the grading interface and the accompanying instructions provided to judges. The full inter-
face and documentation can be accessed online at https://judgeproofs.xyz/sample and https://judgeproofs.xyz/

instructions.

Judge ID Each judge received a unique identifier, which served as their login credential on https://judgeproofs.xyz.
This ID was used to track grading progress while maintaining judge anonymity in the resulting dataset. To facilitate
discussion and resolve ambiguities, a shared communication channel was created between all judges.

Grading interface The grading interface was designed for clarity and ease of use. Figs. 8–10 illustrate its main compo-
nents. The left panel contains a navigation bar for switching between problems and competitions. The right panel displays
the problem statement and the ground-truth solution, along with options for flagging issues in either. Below, the generated
solution is shown, accompanied by an automated summary and potential issues identified by an LLM judge. Judges can
then evaluate the solution using a grading form that allows them to:

• Indicate whether the solution is correct or incorrect

• Provide a brief justification

• Highlight specific parts of the solution relevant to their decision

• Indicate uncertainty or abstain from grading

Instructions Judges received a set of guidelines detailing how to use the interface and evaluate the correctness of solu-
tions. Of particular importance were the criteria for determining whether a proof should be marked correct:

Instructions for judges on when a proof is correct

A solution should be considered correct even if it would earn 5+/7 points in a full grading. Examples of small penalties worth 1 point
are if the solution:

- Makes a small computational mistake that can be easily fixed
- Misses an edge case which can be easily proven/disproven
- Skips over a step that follows without much reasoning or manual work

A solution should be marked as incorrect if:
- It marks a step as trivial, if it is not immediately obvious why this would be the case
- It omits algebra-heavy computational steps, regardless of whether or not it has outlined the methodology
- Generalizes over a pattern without rigorously describing the pattern, or without proving any relevant properties.
- It cites a non-existing or unpopular source/Theorem, which cannot be immediately found from searching for it online. Thus, any
theorems that can be immediately found and have a Wikipedia article are allowed.

The model has been specifically told that it should not skip steps or mark them as trivial. Any violation of this rule should be
considered by assuming the model does not know how to derive the "trivial" step.

These instructions were developed collaboratively with the judges and refined iteratively based on their feedback, ensuring
consistent grading across different problems and evaluators.

17

https://judgeproofs.xyz/sample
https://judgeproofs.xyz/instructions
https://judgeproofs.xyz/instructions
https://judgeproofs.xyz

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

The Open Proof Corpus

Figure 8: Main grading interface. The left panel provides navigation across problems and competitions. The right panel
displays the problem and ground-truth solution, with options to report issues.

Figure 9: Interface for evaluating a generated solution. The problem is repeated for reference. The generated solution
appears on the left, and the LLM’s summary and identified issues on the right.

Figure 10: Grading form. Judges indicate correctness, provide a justification, highlight relevant content, and optionally
express uncertainty or abstain.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

The Open Proof Corpus

E. Prompts
In this section, we provide the prompts used for various tasks in the OPC. The prompts are designed to be clear and
concise, guiding the LLMs through the proof generation process while ensuring that they understand the requirements for
correctness and clarity. In App. E.1, we present the prompts used for generating proofs. In App. E.2, we provide the
prompt used to generate the LLM summary to aid human graders in identifying potential issues in the proof. In App. E.3,
we present the prompt used for LLMs to judge the correctness of a proof, used in §5.2. In App. E.4–E.6, we provide all
prompts used for the LLMs in best-of-n sampling, as described in §5.5.

E.1. Proof Generation Prompt

The following prompt is used for problems with no final answer:

Prompt

Your task is to write a proof solution to the following problem. Your proof will be graded by human judges for accuracy, thoroughness,
and clarity. When you write your proof, follow these guidelines:

- You are creating a proof, not a proof outline. Each step should be carefully explained and documented. If not properly explained,
the judge will assume that you cannot explain it, and therefore decrease your grade.
- You can use general theorems and lemmas, but only if they are well-known. As a rule of thumb: if the result has a name and is famous
enough to have a Wikipedia page or something similar to describe it, it is allowed. Any result from papers that would not be taught

in high school or low-level bachelor courses in mathematics should not be used. Any use of such results will immediately give you a
zero grade.
- Do not skip computation steps in your proof. Clearly explain what transformations were done and why they are allowed in each step of
a calculation.

- You should use correct LaTeX notation to write equations and mathematical symbols. You should encompass these equations in
appropriate symbols ("\\(" and "\\)" for inline math, "\\[" and "\\]" for block math) to enhance the clarity of your proof. Do not use
any unicode characters.

- Your proof should be self-contained.
- If you are not sure about a specific step, or do not know how to prove an intermediate result, clearly state this. It is much
preferable to indicate your uncertainty rather than making incorrect statements or claims.

{problem}

The following prompt is used for problems with a final answer:

Prompt

Your task is to write a proof solution to the following problem. Your proof will be graded by human judges for accuracy, thoroughness,
and clarity. When you write your proof, follow these guidelines:

- You are creating a proof, not a proof outline. Each step should be carefully explained and documented. If not properly explained,
the judge will assume that you cannot explain it, and therefore decrease your grade.
- You can use general theorems and lemmas, but only if they are well-known. As a rule of thumb: if the result has a name and is famous
enough to have a Wikipedia page or something similar to describe it, it is allowed. Any result from papers that would not be taught

in high school or low-level bachelor courses in mathematics should not be used. Any use of such results will immediately give you a
zero grade.
- Do not skip computation steps in your proof. Clearly explain what transformations were done and why they are allowed in each step of
a calculation.

- You should use correct LaTeX notation to write equations and mathematical symbols. You should encompass these equations in
appropriate symbols ("\\(" and "\\)" for inline math, "\\[" and "\\]" for block math) to enhance the clarity of your proof. Do not use
any unicode characters.

- Your proof should be self-contained.
- If you are not sure about a specific step, or do not know how to prove an intermediate result, clearly state this. It is much
preferable to indicate your uncertainty rather than making incorrect statements or claims.
- Put your final answer within \\boxed{{}}.

{problem}

E.2. Issues Interface Prompt

Prompt

Your task is to help a human mathematician grade a proof solution to the given problem. In this task, you will write a summary of the
provided proof and highlight potential issues with it.

Input:

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

The Open Proof Corpus

Your input will consist of the following components:
- **Problem Statement**: A mathematical problem that the proof is attempting to solve.
- **Ground-Truth Solution**: If available, the correct solution to the problem, which can be used as a reference. Note that ground-
truth solutions may not always be provided, can also contain mistakes, and are often overly succinct. The ground-truth proof is mainly
provided to help you understand the problem better.

- **Proof Solution**: The proof that you need to evaluate. This proof may contain errors, omissions, or unclear steps. The proof was
generated by another language model, which was given the following instructions:
<model_prompt>
- You are creating a proof, not a proof outline. Each step should be carefully explained and documented. If not properly explained,
the judge will assume that you cannot explain it, and therefore decrease your grade.
- You can use general theorems and lemmas, but only if they are well-known. As a rule of thumb: if the result has a name and is famous
enough to have a Wikipedia page or something similar to describe it, it is allowed. Any result from papers that would not be taught

in high school or low-level bachelor courses in mathematics should not be used. Any use of such results will immediately give you a
zero grade.
- Do not skip computation steps in your proof. Clearly explain what transformations were done and why they are allowed in each step of
a calculation.

- You should use correct LaTeX notation to write equations and mathematical symbols. You should encompass these equations in
appropriate symbols ("\\(" and "\\)" for inline math, "\\[" and "\\]" for block math) to enhance the clarity of your proof. Do not use
any unicode characters.

- Your proof should be self-contained.
- If you are not sure about a specific step, or do not know how to prove an intermediate result, clearly state this. It is much
preferable to indicate your uncertainty rather than making incorrect statements or claims.
</model_prompt>

Summary Guidelines:

First, you should write a concise summary of the proof solution. The summary should capture the main ideas and steps of the proof, but
it does not need to be exhaustive. The goal is to provide a clear overview of what the proof is attempting to accomplish.

A summary should consist of only a few sentences, and it should not contain any judgment or evaluation of the proof. It should be
purely descriptive.

Potential Issues to Highlight:

Your main task is to identify potential issues in the proof solution. You should include any and all issues that you can find, no
matter how small. Here are some common types of issues to look for:
- **Overgeneralization**: The generated proof proceeds by proving the problem in one or more specific cases, and then concludes that
the result holds in general. However, it does not provide a proof for the general case.
- **Oversimplification**: The proof marks steps as trivial or obvious without proper justification. Highlight any and all steps that
are marked as trivial or obvious, even if you think they are indeed trivial.
- **Skipping Computation Steps**: Proofs that skip computation steps or do not explain transformations clearly can lead to
misunderstandings. Highlight any steps where the proof skips necessary calculations or explanations.
- **Citing Non-Standard Works or Theorems**: Some models may cite theorems or results that are not well-known or are not typically
taught in high school or low-level bachelor courses. Such theorems are only allowed if they are well known. If the proof cites such
results, highlight this as a potential issue, even if you think it is justified.
- **Missing Edge Cases**: The proof may not consider all possible cases or edge cases. If you notice that the proof does not address
certain scenarios, highlight this as a potential issue.
- **Wrong Final Answer**: If the proof arrives at a final answer that is incorrect, highlight this as a potential issue.
- **Other**: Any other issues that do not fit into the above categories but you believe are significant enough to be highlighted.

For each of these issues, you should identify where in the proof they occur, provide a brief explanation of the issue, and indicate
the category of the issue.

If there are more than four issues, you should only highlight the four most significant ones. Sort the issues by their significance,
with the most significant issue first.

Additional Instructions:

- Do not provide a final grade or score for the proof. Your task is to summarize and highlight potential issues, not to evaluate the
proof as a whole.
- Be critical and thorough in your analysis. If you find no issues, you probably did not look closely enough.
- If you are unsure whether something is an issue, it is better to highlight it and let the human grader decide.
- Use clear and concise language in your summary and issue descriptions. The goal of your response is to help and speed up the human
grader's work, not to add extra work for them. The more clear and concise your response is, the better it will be for the human grader
.
- You should use correct LaTeX notation to write equations and mathematical symbols in your output JSON. You should encompass these
equations in appropriate symbols ("\\(" and "\\)" for inline math, "\\[" and "\\]" for block math) to enhance the clarity of your
proof. Do not use any unicode characters.
- Properly escape all symbols in your output JSON. For example, use `\\` for a single backslash.
- Spend special attention to producing valid JSON. It needs to be parsable by a standard JSON parser.

Output Format:

Format your reply using a JSON object as follows:

```json
{{
"summary": "A concise summary of the proof solution.",
"issues": [

{{

20



1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

The Open Proof Corpus

"location": "A description of where the issue occurs in the proof",
"text": "A citation or excerpt from the proof that contains the issue. If the issue is not contained to a very small part of the
proof (e.g., a single sentence), you can leave this field empty.",
"description": "A brief explanation of the issue.",
"category": "The category of the issue (Overgeneralization, Oversimplification, Skipping Computation Steps, Citing Non-Standard
Works or Theorems, Missing Edge Cases, Wrong Final Answer, Other)."
}},
...

]
}}
```
If you truly cannot find any issues, you can return an empty issues array (either null or an empty list).

Problem Statement:
{problem}

Ground-Truth Solution:
{ground_truth_solution}

Proof Solution:
{proof_solution}

E.3. LLM as Judge Prompt

Prompt

You are judging the correctness of an LLM-generated proof for a math problem.

Input:

Your input will consist of the following components:
- **Problem Statement**: A mathematical problem that the proof is attempting to solve.
- **Proof Solution**: The proof that you need to evaluate. This proof may contain errors, omissions, or unclear steps. The proof was
generated by another language model, which was given the following instructions:
<model_prompt>
- You are creating a proof, not a proof outline. Each step should be carefully explained and documented. If not properly explained,
the judge will assume that you cannot explain it, and therefore decrease your grade.
- You can use general theorems and lemmas, but only if they are well-known. As a rule of thumb: if the result has a name and is famous
enough to have a Wikipedia page or something similar to describe it, it is allowed. Any result from papers that would not be taught

in high school or low-level bachelor courses in mathematics should not be used. Any use of such results will immediately give you a
zero grade.
- Do not skip computation steps in your proof. Clearly explain what transformations were done and why they are allowed in each step of
a calculation.

- You should use correct LaTeX notation to write equations and mathematical symbols. You should encompass these equations in
appropriate symbols ("\\(" and "\\)" for inline math, "\\[" and "\\]" for block math) to enhance the clarity of your proof. Do not use
any unicode characters.

- Your proof should be self-contained.
- If you are not sure about a specific step, or do not know how to prove an intermediate result, clearly state this. It is much
preferable to indicate your uncertainty rather than making incorrect statements or claims.
</model_prompt>

How the solution should be graded:
A solution should be considered correct even if it would earn 5+/7 points in a standard grading format. Examples of small penalties
worth 1 point are if the solution:
- Makes a small computational mistake that can be easily fixed
- Misses an edge case which can be easily proven/disproven
- Skips over a step that follows without much reasoning or manual work
Depending on the severity and the context, you may also not penalise a given error. On the other hand, a solution should be marked as
incorrect if:
- It marks a step as trivial, if it is not immediately obvious with little reasoning why this would be the case.
- It omits algebra-heavy computational steps, regardless of whether or not it has outlined the methodology. Skipping shorter
computations should be permitted.
- Generalizes over a pattern without rigorously describing the pattern, or without proving any relevant properties.
- It cites a non-existing or unpopular source/Theorem, which cannot be immediately found from searching for it online. Thus, any
theorems that can be immediately found and have a Wikipedia article are allowed.

The model has been specifically told that it should not skip steps or mark them as trivial. Any violation of this rule should be
considered by assuming the model does not know how to derive the "trivial" step.

Scoring instructions

If you believe the proof is correct, end your analysis with \\boxed{{correct}}. If you believe the proof is incorrect, end your
analysis with \\boxed{{incorrect}}.

Problem Statement:
{problem}

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

The Open Proof Corpus

Model Solution:
{solution}

E.4. LLM as Discrete Judge Prompt

Prompt

You are judging the correctness of an LLM-generated proof for a math problem.

Input:

Your input will consist of the following components:
- **Problem Statement**: A mathematical problem that the proof is attempting to solve.
- **Proof Solution**: The proof that you need to evaluate. This proof may contain errors, omissions, or unclear steps. The proof was
generated by another language model, which was given the following instructions:
<model_prompt>
- You are creating a proof, not a proof outline. Each step should be carefully explained and documented. If not properly explained,
the judge will assume that you cannot explain it, and therefore decrease your grade.
- You can use general theorems and lemmas, but only if they are well-known. As a rule of thumb: if the result has a name and is famous
enough to have a Wikipedia page or something similar to describe it, it is allowed. Any result from papers that would not be taught

in high school or low-level bachelor courses in mathematics should not be used. Any use of such results will immediately give you a
zero grade.
- Do not skip computation steps in your proof. Clearly explain what transformations were done and why they are allowed in each step of
a calculation.

- You should use correct LaTeX notation to write equations and mathematical symbols. You should encompass these equations in
appropriate symbols ("\\(" and "\\)" for inline math, "\\[" and "\\]" for block math) to enhance the clarity of your proof. Do not use
any unicode characters.

- Your proof should be self-contained.
- If you are not sure about a specific step, or do not know how to prove an intermediate result, clearly state this. It is much
preferable to indicate your uncertainty rather than making incorrect statements or claims.
</model_prompt>

How the solution should be graded:
A solution should be considered correct even if it would earn 5+/7 points in a standard grading format. Examples of small penalties
worth 1 point are if the solution:
- Makes a small computational mistake that can be easily fixed
- Misses an edge case which can be easily proven/disproven
- Skips over a step that follows without much reasoning or manual work
Depending on the severity and the context, you may also not penalise a given error. On the other hand, a solution should be marked as
incorrect if:
- It marks a step as trivial, if it is not immediately obvious with little reasoning why this would be the case.
- It omits algebra-heavy computational steps, regardless of whether or not it has outlined the methodology. Skipping shorter
computations should be permitted.
- Generalizes over a pattern without rigorously describing the pattern, or without proving any relevant properties.
- It cites a non-existing or unpopular source/Theorem, which cannot be immediately found from searching for it online. Thus, any
theorems that can be immediately found and have a Wikipedia article are allowed.

Further Potential Issues:

Here are some common types of issues to look for:
- **Overgeneralization**: The generated proof proceeds by proving the problem in one or more specific cases, and then concludes that
the result holds in general. However, it does not provide a proof for the general case.
- **Oversimplification**: The proof marks steps as trivial or obvious without proper justification.
- **Skipping Computation Steps**: Proofs that skip computation steps or do not explain transformations clearly can lead to
misunderstandings.
- **Citing Non-Standard Works or Theorems**: Some models may cite theorems or results that are not well-known or are not typically
taught in high school or low-level bachelor courses. Such theorems are only allowed if they are well known.
- **Missing Edge Cases**: The proof may not consider all possible cases or edge cases.

The model has been specifically told that it should not skip steps or mark them as trivial. Any violation of this rule should be
considered by assuming the model does not know how to derive the "trivial" step.

Scoring instructions

If you believe the proof is correct, end your analysis with \\boxed{{correct}}. If you believe the proof is incorrect, end your
analysis with \\boxed{{incorrect}}.

Problem Statement:
{problem}

Model Solution:
{solution}

22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

The Open Proof Corpus

E.5. LLM as Continuous Judge Prompt

Prompt

You are judging the correctness of an LLM-generated proof for a math problem.

Input:

Your input will consist of the following components:
- **Problem Statement**: A mathematical problem that the proof is attempting to solve.
- **Proof Solution**: The proof that you need to evaluate. This proof may contain errors, omissions, or unclear steps. The proof was
generated by another language model, which was given the following instructions:
<model_prompt>
- You are creating a proof, not a proof outline. Each step should be carefully explained and documented. If not properly explained,
the judge will assume that you cannot explain it, and therefore decrease your grade.
- You can use general theorems and lemmas, but only if they are well-known. As a rule of thumb: if the result has a name and is famous
enough to have a Wikipedia page or something similar to describe it, it is allowed. Any result from papers that would not be taught

in high school or low-level bachelor courses in mathematics should not be used. Any use of such results will immediately give you a
zero grade.
- Do not skip computation steps in your proof. Clearly explain what transformations were done and why they are allowed in each step of
a calculation.

- You should use correct LaTeX notation to write equations and mathematical symbols. You should encompass these equations in
appropriate symbols ("\\(" and "\\)" for inline math, "\\[" and "\\]" for block math) to enhance the clarity of your proof. Do not use
any unicode characters.

- Your proof should be self-contained.
- If you are not sure about a specific step, or do not know how to prove an intermediate result, clearly state this. It is much
preferable to indicate your uncertainty rather than making incorrect statements or claims.
</model_prompt>

How the solution should be graded:
A solution should be graded out of a total of 7 points. Examples of small penalties worth 1 point are if the solution:
- Makes a small computational mistake that can be easily fixed
- Misses an edge case which can be easily proven/disproven
- Skips over a step that follows without much reasoning or manual work
Depending on the severity and the context, you may also not penalise a given error. On the other hand, a solution should receive a
very poor grade if:
- It marks a step as trivial, if it is not immediately obvious with little reasoning why this would be the case.
- It omits algebra-heavy computational steps, regardless of whether or not it has outlined the methodology. Skipping shorter
computations should be permitted.
- Generalizes over a pattern without rigorously describing the pattern, or without proving any relevant properties.
- It cites a non-existing or unpopular source/Theorem, which cannot be immediately found from searching for it online. Thus, any
theorems that can be immediately found and have a Wikipedia article are allowed.

The model has been specifically told that it should not skip steps or mark them as trivial. Any violation of this rule should be
considered by assuming the model does not know how to derive the "trivial" step.

Further Potential Issues:

Here are some common types of issues to look for:
- **Overgeneralization**: The generated proof proceeds by proving the problem in one or more specific cases, and then concludes that
the result holds in general. However, it does not provide a proof for the general case.
- **Oversimplification**: The proof marks steps as trivial or obvious without proper justification.
- **Skipping Computation Steps**: Proofs that skip computation steps or do not explain transformations clearly can lead to
misunderstandings.
- **Citing Non-Standard Works or Theorems**: Some models may cite theorems or results that are not well-known or are not typically
taught in high school or low-level bachelor courses. Such theorems are only allowed if they are well known.
- **Missing Edge Cases**: The proof may not consider all possible cases or edge cases.

Scoring instructions

Your score should be a number between 0 and 7, where 0 means the proof is completely incorrect, and 7 means the proof is completely
correct. Be very critical in your grading. If you find small errors, deduct points accordingly.

Output Format:

At the end of your analysis, present your grade as a number between 0 and 7 in " ".

Problem Statement:
{problem}

Model Solution:
{solution}

23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

The Open Proof Corpus

E.6. LLM as Rank Judge Prompt

Prompt

You are judging which of the two LLM-generated proofs for a given math problem is better.

Input:

Your input will consist of the following components:
- **Problem Statement**: A mathematical problem that the proof is attempting to solve.
- **Proof Solution A/B**: The proofs that you need to evaluate. This proof may contain errors, omissions, or unclear steps. Proofs
were generated by another language model, which was given the following instructions:
<model_prompt>
- You are creating a proof, not a proof outline. Each step should be carefully explained and documented. If not properly explained,
the judge will assume that you cannot explain it, and therefore decrease your grade.
- You can use general theorems and lemmas, but only if they are well-known. As a rule of thumb: if the result has a name and is famous
enough to have a Wikipedia page or something similar to describe it, it is allowed. Any result from papers that would not be taught

in high school or low-level bachelor courses in mathematics should not be used. Any use of such results will immediately give you a
zero grade.
- Do not skip computation steps in your proof. Clearly explain what transformations were done and why they are allowed in each step of
a calculation.

- You should use correct LaTeX notation to write equations and mathematical symbols. You should encompass these equations in
appropriate symbols ("\\(" and "\\)" for inline math, "\\[" and "\\]" for block math) to enhance the clarity of your proof. Do not use
any unicode characters.

- Your proof should be self-contained.
- If you are not sure about a specific step, or do not know how to prove an intermediate result, clearly state this. It is much
preferable to indicate your uncertainty rather than making incorrect statements or claims.
</model_prompt>

How the solution should be graded:
The following examples are small mistakes that should only be slightly penalised:
- Makes a small computational mistake that can be easily fixed
- Misses an edge case which can be easily proven/disproven
- Skips over a step that follows without much reasoning or manual work
On the other hand, a solution should should be severely penalised if:
- It marks a step as trivial, if it is not immediately obvious with little reasoning why this would be the case.
- It omits algebra-heavy computational steps, regardless of whether or not it has outlined the methodology. Skipping shorter
computations should be permitted.
- Generalizes over a pattern without rigorously describing the pattern, or without proving any relevant properties.
- It cites a non-existing or unpopular source/Theorem, which cannot be immediately found from searching for it online. Thus, any
theorems that can be immediately found and have a Wikipedia article are allowed.

The model has been specifically told that it should not skip steps or mark them as trivial. Any violation of this rule should be
considered by assuming the model does not know how to derive the "trivial" step.

Further Potential Issues:

Here are some common types of issues to look for:
- **Overgeneralization**: The generated proof proceeds by proving the problem in one or more specific cases, and then concludes that
the result holds in general. However, it does not provide a proof for the general case.
- **Oversimplification**: The proof marks steps as trivial or obvious without proper justification.
- **Skipping Computation Steps**: Proofs that skip computation steps or do not explain transformations clearly can lead to
misunderstandings.
- **Citing Non-Standard Works or Theorems**: Some models may cite theorems or results that are not well-known or are not typically
taught in high school or low-level bachelor courses. Such theorems are only allowed if they are well known.
- **Missing Edge Cases**: The proof may not consider all possible cases or edge cases.

Scoring instructions

You should compare the two proofs and determine which one is better. If you believe Proof A is better, end your analysis with \\boxed
{{A}}. If you believe Proof B is better, end your analysis with \\boxed{{B}}. If you believe both proofs are equally good, end your
analysis with \\boxed{{equal}}.

Problem Statement:
{problem}

Proof Solution A:
{solution_a}

Proof Solution B:
{solution_b}

24

	Introduction
	Related Work
	Methodology
	Problem and Judge Preparation
	Grading Procedure
	Monitoring and Validation

	Open Proof Corpus
	Results
	Gemini-2.5-Pro Is The Best Proof Generator
	LLMs Are Near-Human Level Judges
	Formal Proof Generation Lags Behind
	Proof Generation and Final Answer Do Not Align
	Best-of-n Significantly Improves Performance

	Limitations
	Future Work
	Conclusion
	Competitions in the OPC
	Swiss Ranking Methodology
	Qualitative Observations
	Grading Interface and Instructions
	Prompts
	Proof Generation Prompt
	Issues Interface Prompt
	LLM as Judge Prompt
	LLM as Discrete Judge Prompt
	LLM as Continuous Judge Prompt
	LLM as Rank Judge Prompt

