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Abstract

In network optimization, especially in environments with sig-
nificant uncertainty, traditional approaches are often overly
conservative which leads to inefficiencies. Robust network
planning is essential when network conditions can vary un-
predictably. Traditional robust approaches tend to protect
against all types of uncertainty, including those with minimal
impact, resulting in suboptimal performance and resource al-
location. To address this, we propose leveraging diffusion
models to generate future network states based on historical
data, capturing realistic variations without overgeneralizing
uncertainty. Our method defines an uncertainty set based on
these generated states, focusing on probable scenarios rather
than extreme outliers. Using this uncertainty set, we use ro-
bust optimization to allocate resources and ensure network re-
liability under dynamic conditions. Preliminary experiments
demonstrate that our approach achieves a balance between ro-
bustness and efficiency, significantly outperforming rational
methods in realistic network scenarios.

Introduction
Optimization theory has been applied to solve a wide range
of problems in communication and networking (Yang et al.
2008; Sedghi, Ahmadian, and Aliakbar-Golkar 2016), from
resource allocation (Chen, Ling, and Giannakis 2017; Ha-
labian 2019) to robust power control (Shen, Dai, and Win
2014). Traditional optimization assumes static, precise data,
but real-world networking often involves uncertain condi-
tions, leading to suboptimal or infeasible solutions in prac-
tice.

Robust optimization has gained attention as a methodol-
ogy specifically to address data uncertainty in network opti-
mization problems. Robust optimization (EI-Ghaoui and Le-
bret 1997; Ben-Tal and Nemirovski 1999; Nemirovski 2003)
seeks solutions that maintain feasible and near-optimal so-
lutions across a range of perturbations in the nominal prob-
lem’s parameters. Each robust optimization problem is typi-
cally defined by three key elements: a nominal formulation,
a robustness criterion, and an uncertainty set. This approach
transforms a nominal optimization problem into a robust
one, while preserving the essential properties, such as con-
vexity. Robust network planning is vital in contested envi-
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ronments (Szabo et al. 2020), where network conditions can
vary unpredictably. However, traditional robust approaches
tend to protect against all types of uncertainty, which leads
to either inefficient or excessive protection.

In this work, we propose a novel approach that leverages
diffusion models (Ho, Jain, and Abbeel 2020) to address
data uncertainty through synthetic data generation. By train-
ing diffusion models on historical network data, we predict
future network conditions, such as variations in the signal-
to-interference-plus-noise ratio (SINR), terrain changes, en-
vironmental factors, and adversarial behaviors, to define a
95% confidence interval for a representative uncertainty set.
Using this set, We apply a robust optimization formulation
to develop robust and effective solutions for network opti-
mization like bandwidth allocation and rate control.

Our experiment in a simulated network environment
shows that our approach, focused on maximizing the mini-
mum data rate for each transmitter and receiver, significantly
outperforms the existing methods, like Yang et al. (2008), in
terms of both efficiency and robustness.

Related Work
Existing approaches of robust network optimization tech-
niques such as KL divergence (Hu and Hong 2013) or el-
lipsoid sets (Yang et al. 2008) are too general and do not
capture the specific patterns seen in real-world scenarios.
Some papers use a max-min formulation (Tu, Chen, and
Yue 2024). As a result, existing algorithms tend to be overly
pessimistic by protecting against all uncertainties. Machine
learning has also been applied in network planning (Wang
et al. 2018) to predict and classify network traffic (Zhang
et al. 2014; Chen, Wen, and Geng 2016), and allocate re-
sources (Winstein and Balakrishnan 2013; Mao et al. 2017).
Despite their strength, these methods often have limited
interpretability and robustness when dealing with unseen
events or uncertainty in the problem. Recently, diffusion
models (Ho, Jain, and Abbeel 2020) have demonstrated sig-
nificant potential in generative tasks, particularly for model-
ing complex data distributions. In planning, diffusion mod-
els (Ajay et al. 2023; Janner et al. 2022) have been used to
generate future states conditioned on past data. Our work in-
tegrates these three areas by proposing a novel framework,
generative robust optimization, to solve network optimiza-
tion problems. Unlike traditional approaches that rely on



static or conservative uncertainty sets, our method generates
a scenario-specific uncertainty set through diffusion models.

Methodology
Problem Statement
In this work, we address a general robust optimization prob-
lem aimed at optimizing network resources in dynamic and
uncertain environments. Specifically, we focus on scenarios
where future network states are critical to achieving the opti-
mal resource allocation. The main challenge in these scenar-
ios is the inherent uncertainty of network conditions, which
can fluctuate due to factors such as adversarial interference,
environmental changes, and user mobility. Robust optimiza-
tion is essential in these settings to ensure that the solution
remains effective across a range of possible future states.

Many robust network optimization problems are often for-
mulated as an optimization with a concave objective func-
tion f0 (e.g., data rate and power consumption) over a set of
linear constraints (e.g., SINR and bandwidth constraints):

maximize f0(x)

subject to aTi x ≤ bi,∀(ai, bi) ∈ A

variables x

(1)

where (ai, bi) lies in a compact uncertainty set A (e.g., cor-
responding to possible network operating conditions). This
formulation captures many important network design prob-
lems, such as maximizing minimum data rate under band-
width constraints and minimizing power consumption under
SINR constraints (Yang et al. 2008). For instance, consider a
network with a set L of communication links. Let SINRℓ

(p,h)

be the SINR function of link ℓ depending on the transmit
powers p and the channel gains/conditions h. For an uncer-
tainty set H of channel gains, a robust bandwidth allocation
problem aims to maximize the minimum sum rate over dif-
ferent h ∈ H , i.e.,

maximize R (2)
subject to R ≤ rh, ∀h ∈ H

rh =
∑
ℓ∈L

bℓ log(1 + SINRℓ
(p,h)), ∀h ∈ H∑

ℓ

bℓ ≤ B.

Variables bℓh, rh ≥ 0, ∀ℓ, h

where B is the total bandwidth constraint, bℓ is the band-
width assigned to link ℓ, and rh is the sum data rate achieved
achieved in scenario h ∈ H from the uncertainty set H .

A key assumption in robust optimization is the availability
of an uncertainty set that can capture the range of possible
states the network may encounter. However, in real-world
applications, future states are unknown and difficult to pre-
dict with precision. The lack of future conditions presents a
challenge, as standard robust optimization approaches rely
on predefined uncertainty sets. To address this, we introduce
a data-driven approach using diffusion models to generate
realistic samples of potential future states. Diffusion models,

which are generative models trained to learn the distribution
of high-dimensional data, provide a powerful tool to model
and generate complex scenarios that reflect real-world vari-
ability in network conditions.

Our approach proceeds in two states. First, we use a diffu-
sion model to generate future network states based on histor-
ical data, capturing variations in SINR. This generated data
serves as the uncertainty set, providing a basis for robust op-
timization that reflects realistic and scenario-specific varia-
tions. Second, we apply a robust optimization formulation
that leverages this uncertainty set to ensure that our solution
is resilient across the majority of possible future states. To
avoid an overly conservative uncertainty set, we focus on
the 95% confidence range of the uncertainty set. This will
allow us to find feasible and near-optimal solutions while
maintaining a balance between flexibility and reliability.

Generation with Diffusion Models
In generation using diffusion models (Ho, Jain, and Abbeel
2020), q(τ0) is the data distribution and p(τN ) is a Gaussian
prior. Plan generation is formulated as trajectory genera-
tion τ through a learned iterative denoising diffusion process
pθ(τi−1|τi) := N (τi−1;µθ(τi, i),Σθ(τi, i)). This denoising
process reverses a forward diffusion process q(τi|τi−1) :=

N (τi;
√
(1− βi)τi−1, βiI) that adds noise to trajectories,

where β1, . . . , βN are predetermined noise coefficients. The
N-step diffusion process in both directions is modeled as
Markov transition probabilities:

q(τ0:N ) := q(τ0)

N∏
i=1

q(τi|τi−1),

pθ(τ0:N ) := p(τN )

N∏
i=1

pθ(τi−1|τi).

(3)

Diffuser maximizes trajectory likelihood through a varia-
tional lower bound:

Eq(τ0)[log pθ(τ0)] ≥ Eq(τ0:N )

[
log

pθ(τ0:N )

q(τ1:N |τ0)

]
≈ Eτ1:N∼q(τ1:N )

[
N∑
i=1

log pθ(τi−1|τi)

]
.

Trajectories are generated by sampling iteratively from
the denoising process for N steps. Following Decision Dif-
fuser (Ajay et al. 2023) to perform conditional diffusion,
we learn and sample from the conditional trajectory density
pθ(τ |J).

Our Generative Robust Optimization
With the assumption that the uncertainty set A is com-
pact, we can introduce an auxiliary function gi(x) =
maxai∈A(ai − a)Tx and rewrite the optimization in (1) as

maximize f0(x)

subject to āTi x+ gi(x) ≤ bi,∀(ai, bi) ∈ A

variables x

(4)
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Figure 1: (a) shows the pipeline of our generative robust op-
timization. (1) We use the simulated channel gains as input
to the diffusion model. (2) We train the diffusion model to
generate future channel gains based on history. (3) We apply
the predicted channel gains to optimization to solve network
problems. (b) shows the convergence of the diffusion model.

where ā is a nominal value, e.g., the mean. As shown in
Yang et al. (2008), this leads to a fully decentralized solu-
tion to robust optimization. In practice, obtaining the uncer-
tainty set A is often challenging due to the lack of accurate
knowledge about the underlying distribution of parameters.
Existing approaches typically rely on protection regions to
approximate the uncertainty. However, these methods may
fail to capture the true dynamics and variability of real-world
scenarios. We will leverage the problem formulation in (4)
and use the proposed diffusion model to generate the un-
certainty set A. Our solution overcomes this limitation by
using a diffusion model to approximate Ai as a sample from
a learned distribution q(τ0), as shown in figure 1a. Our ap-
proach ensures capturing realistic variations in the environ-
ment, providing a more flexible and effective solution to ro-
bust optimization.

Specifically, we generate an uncertainty set of possible
channel gains from the diffusion model, i.e., h ∼ q(τ0). We
then formulate the sum data rate as a function of power p and
channel gain h using rh =

∑
ℓ∈L bℓ log(1+SINRℓ

(p,h)) and
rewrite the robust network optimization in (2) as follows:

maximize R (5)
subject to R ≤ rnormh + gh(b1, . . . , bL), ∀h

gh(b1, . . . , bL) = min
h∼[q(τ0)]

(rh − rnormh ), ∀h∑
ℓ

bℓ ≤ B

Variables bij , ri ≥ 0 ∀i, j
where rnormh is a nominal mean data rate in scenario h. Fur-
ther, we sample h from the 95% confidence interval of the
diffusion model’s output distribution, i.e., h ∼ [q(τ0)]95%.
This means that extreme outliers are excluded from the un-
certainty set, ensuring that the optimization is not overly
conservative. It also achieves different levels of robustness
in planning. We leverage the distributed algorithm in (Yang
et al. 2008) to solve this robust optimization. We omit the
details due to space limitations.

Experiment
In this section, we evaluate the performance of our proposed
generative robust optimization (GRO) framework. We first

show how to obtain the channel gain h through diffusion
model. Then, we compare it to traditional robust optimiza-
tion methods that use a single time step to sample data. We
analyze how the minimum data rate R changes with different
protection regions, highlighting the benefits of our diffusion-
based uncertainty modeling. Next, we explore the trade-off
between robustness and performance by testing the GRO
framework with varying confidence intervals. This analysis
demonstrates the impact of choice on the confidence level.
It provides insights into the balance between robustness and
conservatism. All experiments are conducted on a Linux ma-
chine with AMD EPYC 7513 32-Core Processor CPU and
an NVIDIA RTX A6000 GPU, implemented in python3 and
compiled by a Python compiler.
Diffusion Model Training The input to the diffusion model
is generated by a simple state-based network simulator act-
ing as the channel model. The channel model simulates the
movement of nodes within a dynamic network under con-
figurable conditions. The channel is represented as a grid
of randomly placed nodes, categorized into three types: sol-
diers, drones, and adversaries. The channel model includes
configurable parameters such as the number of nodes of each
type, the probability of node movement, the transmission
power, the speed of nodes, and the height range for drones.
Movement patterns for each node are modeled as indepen-
dent Bernoulli processes, with each node having a config-
urable probability of movement per time step. Channel gains
are computed based on the proximity of adversary nodes and
soldier nodes to drone nodes, i.e., Gain = 1

dα , where d is
the distance between nodes and α represents the path loss
exponent. For drones, α is set to 2, while for soldiers and
adversaries, α is set to 3. The simulation is designed to emu-
late scenarios where soldiers and drones need to maintain
a communication link in dynamic and contested environ-
ments, where the adversaries attempt to degrade communi-
cation by introducing interference. The drones must dynam-
ically adapt bandwidth allocation to maximize the minimum
data rate for soldiers.

To simulate dynamic network conditions, we simulate 100
time steps of the network states. The data are then used as
input to the diffusion model. It will be trained to learn the
underlying patterns in the data and generate realistic future
distance matrices based on history. Figure 1b illustrates the
training loss curve of the diffusion model.
Comparison with Baselines

We compared our proposed method of generative robust
optimization with standard optimization and distributed ro-
bust optimization with three different protection regions. For
standard optimization OPT, we do not consider uncertainty
set in Equation (2). For distributed robust optimization, we
construct uncertainty sets by varying the data in an interval
of [data-x%, data+x%]. We chose x = 5%, x = 10%, and
x = 20% for DROlow, DROmedium, DROhigh respectively.
We sampled 20 channel gains h from the interval for each
soldier-drone pair and computed the corresponding SINR
values. Using these values, we applied distributed robust op-
timization to optimize the minimum data rate R. For the out-
age probability p(r < z), we choose the threshold to be
z = 5th percentile of the data rates in GRO to showcase our
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Figure 2: Comparison of our GRO with baselines in 3 different runs. Our method is able to improve the minimum data rate and
demonstrates robust performance across different scenarios. The outage probability is significantly reduced.

method’s ability to protect against the worst cases.
As shown in Table 1, our generative robust optimization

approach improves the mean and variance of the data rate
and our method achieves a better balance between robust-
ness and performance. We also see a significant decrease in
the outage probability of data rates that fall below the thresh-
old z. This demonstrates the effectiveness of generative ro-
bust optimization in managing uncertainty while ensuring
higher minimum data rates.

In Figure 2, we present the results of three experimen-
tal runs conducted under different network scenarios. The
results demonstrate that our generative robust optimization
consistently outperforms the alternative approaches across
the majority of the time steps, highlighting its effectiveness
and robustness in varying conditions.

Method Mean µr Variance σ2
r Outage p(r < z)

OPT 1.1892 30.9422 27.5000%

DROlow 1.2864 30.9574 27.5000%

DROmedium 1.2815 30.8134 27.500%

DROhigh 1.2838 30.9662 27.5000%

GRO (ours) 1.4636 20.5275 5.000%

Table 1: This illustrates the average, variance, and probabil-
ity of the data rate ri is below a threshold for each soldier i
under different optimization methods.

CI Mean µr Variance σ2
r Outage p(r < z)

95% 1.1889 22.7073 5.0000%

90% 1.1889 22.7073 5.0000%

80% 1.9449 94.8504 5.0000%

50% 2.0629 97.0007 7.5000%

Table 2: This illustrates the average, variance, and probabil-
ity of the data rate ri is below a threshold for each soldier i
under different confidence intervals (CI). It shows the trade-
off between the mean and variance of data rates.

Trade-off Analysis. We further analyze the trade-off be-
tween the confidence intervals (CI) using our generative ro-

bust optimization approach. The results are shown in Table
2. By varying the confidence intervals, we evaluate how the
level of uncertainty affects the data rate. Under high confi-
dence intervals (95% and 90%), the uncertainty set includes
a wide range of potential scenarios, capturing both typical
variations and moderate outliers. This ensures the optimiza-
tion accounts for the most realistic conditions, resulting in
robust data rate solutions across the network. The similarity
between 95% and 90% indicates that the additional scenar-
ios captured by the extra 5% have little impact on the opti-
mization. These rare cases have minimal influence on the op-
timization process. With an 80% confidence interval, the un-
certainty set starts to exclude some realistic variations. The
optimization focuses on a narrower set of scenarios, which
reduces robustness. The average data rate increases slightly
but the variance increases significantly. With a 50% confi-
dence interval, the uncertainty set captures only the central
portion of the data distribution, excluding many real-world
variations. This leads to overly optimistic solutions that fail
to account for common uncertainties, leading to a further
increase in the average and the variance of data rates. This
trade-off leads to more data rates falling under the threshold
z. This analysis demonstrates that 90%-95% confidence in-
tervals provide the best result by capturing the majority of
realistic conditions without rare outliers.

Conclusion
The development of robust optimization models for commu-
nication network design is important in addressing uncer-
tainty in real-world scenarios. In this paper, we introduced a
novel approach that integrates diffusion models with robust
optimization to tackle the challenges posed by dynamic en-
vironments. We applied our approach to a bandwidth alloca-
tion problem involving soldiers and drones, aiming to main-
tain a minimum data rate under uncertain SINR conditions.
Using diffusion model to generate scenario-specific uncer-
tainty sets, our GRO methods demonstrated superior perfor-
mance and robustness compared to traditional methods. Ad-
ditionally, we explored the trade-off between different confi-
dence intervals. The results highlight our approach’s ability
to balance robustness and performance, making it suitable
for many communication network applications. This study
lays the groundwork for further innovations in network opti-
mization that bridge machine learning and robust optimiza-
tion.
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