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Abstract

Human-level driving is an ultimate goal of autonomous driving. Con-
ventional approaches formulate autonomous driving as a perception-
prediction-planning framework, yet their systems do not capitalize on the
inherent reasoning ability and experiential knowledge of humans. In this
paper, we propose a fundamental paradigm shift from current pipelines,
exploiting Large Language Models (LLMs) as a cognitive agent to inte-
grate human-like intelligence into autonomous driving systems. Our sys-
tem, termed Agent-Driver, transforms the traditional autonomous driv-
ing pipeline by introducing a versatile tool library accessible via function
calls, a cognitive memory of common sense and experiential knowledge
for decision-making, and a reasoning engine capable of chain-of-thought
reasoning, task planning, motion planning, and self-reflection. Powered
by LLMs, our Agent-Driver is endowed with intuitive common sense and
robust reasoning capabilities, thus enabling a more nuanced, human-like ap-
proach to autonomous driving. We evaluate our system on both open-loop
and close-loop driving challenges, and extensive experiments substantiate
that our Agent-Driver significantly outperforms the state-of-the-art driving
methods by a large margin (more than 30% on the nuScenes dataset). Our
approach also demonstrates superior interpretability and few-shot learning
ability to these methods. Please visit our webpage for more details.

1 Introduction

(a) Conventional Perception-Prediction-Planning Pipeline.
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(b) Agent-Driver: LLMs as an Agent for Autonomous Driving.
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Figure 1: Comparison between (a) the conven-
tional driving system and (b) the proposed Agent-
Driver. Our approach transforms the conventional
perception-prediction-planning framework by intro-
ducing LLMs as an agent for autonomous driving.

Imagine a car navigating a quiet
suburban neighborhood. Suddenly,
a ball bounces onto the road. A
human driver, leveraging extensive
experiential knowledge, would not
only perceive the immediate pres-
ence of the ball, but also instinc-
tively anticipate the possibility of
a chasing child and consequently
decide to decelerate. In contrast,
an autonomous vehicle, devoid of
such reasoning and experiential an-
ticipation, might continue driving
until sensors detect the child, only
allowing for a narrower margin of
safety. The importance of human
prior knowledge in driving systems becomes clear: driving is not merely about reacting
to the visible, but also to the conceivable scenarios where the system needs to reason and
respond even in their absence.

To integrate human prior knowledge into autonomous driving systems, previous ap-
proaches (Sadat et al., 2020; Casas et al., 2021; Hu et al., 2022; 2023; Jiang et al., 2023)

∗indicates equal contribution.
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Figure 2: Architecture of Agent-Driver. Our system dynamically collects necessary environ-
mental information from the output of neural modules via the tool library. The collected
information is further utilized to query the cognitive memory. Consequently, the reasoning
engine takes collected environmental information and retrieved memory data as input, and
traceably derives a safe and comfortable trajectory for driving through chain-of-thought
reasoning, task planning, motion planning, and self-reflection.

deconstruct the human driving process into three systematic steps following Figure 1 (a).
Perception: they interpret the human perceptual process as object detection (Mao et al.,
2023b) or occupancy estimation (Peng et al., 2020). Prediction: they abstract human drivers’
foresight of upcoming scenarios as the prediction of future object motions (Casas et al., 2018).
Planning: they emulate the human decision-making process by planning a collision-free
trajectory, either using hand-crafted rules (Treiber et al., 2000) or by learning from data (Zeng
et al., 2019). Despite its efficacy, this perception-prediction-planning framework overly simpli-
fies the human decision-making process and cannot fully model the complexity of driving.
For instance, perception modules in these methods are notably redundant, necessitating
the detection of all objects in a vast perception range, whereas human drivers can main-
tain safety by only attending to a few key objects. Moreover, prediction and planning are
designed for collision avoidance with detected objects. Nevertheless, they lack deeper rea-
soning ability inherent to humans, e.g. deducing the connection between a visible ball and
a potentially unseen child. Furthermore, it remains challenging to incorporate long-term
driving experiences and common sense into existing autonomous driving systems.

In addressing these challenges, we found the major obstacle of integrating human priors into
autonomous driving lies in the incompatibility of human knowledge and neural-network-
based driving systems. Human knowledge is inherently encoded and utilized as language
representations, and their reasoning process can also be interpreted by language. However,
conventional driving systems rely on deep neural networks that are designed to process
numerical data inputs, such as sensory signals, bounding boxes, and trajectories. The
discrepancy between language and numerical representations poses a significant challenge
to incorporating human experiential knowledge and reasoning capability into existing
driving systems, thereby widening the chasm from genuine human driving performance.

Taking a step towards more human-like autonomous driving, we propose Agent-Driver, a
cognitive agent empowered by Large Language Models (LLMs). The fundamental insight
of our approach lies in the utilization of natural language as a unified interface, seamlessly
bridging language-based human knowledge and reasoning ability with neural-network-
based systems. Our approach fundamentally transforms the conventional perception-
prediction-planning framework by leveraging LLMs as an interactive scheduler among
system components. As depicted in Figure 1 (b), on top of the LLMs, we introduce: 1)
a versatile tool library that interfaces with neural modules via dynamic function calls,
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streamlining perception with less redundancy, 2) a configurable cognitive memory that
explicitly stores common sense and driving experiences, infusing the system with human
experiential knowledge, and 3) a reasoning engine that processes perception results and
memory data to emulate human-like decision-making. Specifically, the reasoning engine
performs chain-of-thought reasoning to recognize key objects and events, task planning
to derive a high-level driving plan, motion planning to generate a driving trajectory, and
self-reflection to ensure the safety of the planned trajectory. These components, coordinated
by LLMs, culminate in an anthropomorphic driving process. To conclude, we summarize
our contributions as follows:

• We present Agent-Driver, an LLM-powered agent that revolutionizes the traditional
perception-prediction-planning framework, establishing a powerful yet flexible
paradigm for human-like autonomous driving.

• Agent-Driver integrates a tool library for dynamic perception and prediction, a
cognitive memory for human knowledge, and a reasoning engine that emulates hu-
man decision-making, all orchestrated by LLMs to enable a more anthropomorphic
autonomous driving process.

• Agent-Driver significantly outperforms the state-of-the-art autonomous driving sys-
tems by a large margin, with over 30% collision improvements in motion planning.
Our approach also demonstrates strong few-shot learning ability and interpretabil-
ity on the nuScenes benchmark.

• We provide ablation studies to dissect the proposed architecture and understand
the efficacy of each module, to facilitate future research in this direction.

2 Related Works

Perception-Prediction-Planning in Driving Systems. Modern autonomous driving systems
rely on a perception-prediction-planning paradigm to make driving decisions based on
sensory inputs. Perception modules aim to recognize and localize objects in a driving
scene, typically in a format of object detection (Mao et al., 2021b; Wang et al., 2022; Mao
et al., 2021a; 2023b) or object occupancy prediction (Peng et al., 2020; Tong et al., 2023).
Prediction modules aim to estimate the future motions of objects, normally represented
as predicted trajectories (Casas et al., 2018; Ivanovic & Pavone, 2019; Shi et al., 2022) or
occupancy flows (Agro et al., 2023; Casas et al., 2021). Planning modules aim to derive a
safe and comfortable trajectory, using rules (Urmson et al., 2008; Fan et al., 2018; Sauer et al.,
2018; Chen et al., 2015; Bacha et al., 2008; Leonard et al., 2008; Thrun et al., 2006; Treiber
et al., 2000) or learning from human driving trajectories (Dauner et al., 2023; Chitta et al.,
2022; Mao et al., 2023a). These three modules are generally performed sequentially, either
trained separately or in an end-to-end manner (Liang et al., 2020; Sadat et al., 2020; Casas
et al., 2021; Hu et al., 2022; 2023). This perception-prediction-planning framework overly
simplifies the human driving process and cannot effectively incorporate human priors such
as common sense and past driving experiences. By contrast, our Agent-Driver transforms
the conventional perception-prediction-planning framework by introducing LLMs as an
agent to bring human-like intelligence into the autonomous driving system.

LLMs in Autonomous Driving. Trained on Internet-scale data, LLMs (Brown et al., 2020;
OpenAI, 2023; Touvron et al., 2023a;b) have demonstrated remarkable capabilities in com-
monsense reasoning and natural language understanding. How to leverage the power
of LLMs to tackle the problem of autonomous driving remains an open challenge. GPT-
Driver (Mao et al., 2023a) handled the planning problem in autonomous driving by reformu-
lating motion planning as a language modeling problem and introducing fine-tuned LLMs
as a motion planner. DriveGPT4 (Xu et al., 2023) proposed an end-to-end driving approach
that leverages Vision-Language Models to directly map sensory inputs to actions. DiLu (Wen
et al., 2023) introduced a knowledge-driven approach with Large Language Models. These
methods mainly focus on an individual component in conventional driving systems, e.g.
question-answering (Xu et al., 2023), planning (Mao et al., 2023a), or control (Sha et al., 2023).
Some approaches (Fu et al., 2023; Wen et al., 2023) are implemented and evaluated in simple
simulated driving environments. By contrast, Agent-Driver presents a systematic approach
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that leverages LLMs as an agent to schedule the whole driving system, leading to a strong
performance on the real-world driving benchmark.

3 Agent-Driver

In this section, we present Agent-Driver, an LLM-based intelligent agent for autonomous
driving. We first introduce the overall architecture of our Agent-Driver in Section 3.1. Then,
we introduce the three key components of our method: tool library (Section 3.2), cognitive
memory (Section 3.3), and reasoning engine (Section 3.4).

3.1 Overall Architecture

Conventional perception-prediction-planning pipelines leverage a series of neural networks
as basic modules for different tasks. However, these neural-network-based systems lack
direct compatibility with human prior knowledge, constraining their potential for leverag-
ing such priors to enhance driving performance. To handle this challenge, we propose a
novel framework that leverages text representations as a unified interface to connect neural
networks and human knowledge. The overall architecture of Agent-Driver is shown in
Figure 2. Our approach takes sensory data as input and introduces neural modules for
processing these sensory data and extracting environmental information about detection,
prediction, occupancy, and map. On top of the neural modules, we propose a tool library
where a set of functions are designed to further abstract the neural outputs and return
text-based messages. For each driving scenario, an LLM selectively activates the required
neural modules by invoking specific functions from the tool library, ensuring the collec-
tion of necessary environmental information with less redundancy. Upon gathering the
necessary environmental information, the LLM leverages this data as a query to search
in a cognitive memory for pertinent traffic regulations and the most similar past driving
experience. Finally, the retrieved traffic rules and driving experience, together with the
formerly collected environmental information, are utilized as inputs to an LLM-based rea-
soning engine. The reasoning engine performs multi-round reasoning based on the inputs
and eventually devises a safe and comfortable trajectory for driving. Our Agent-Driver
architecture harnesses dynamic perception and prediction capability brought by the tool
library, human knowledge from the cognitive memory, and the strong decision-making
ability of the reasoning engine. This synergistic integration results in a more human-like
driving system with enhanced decision-making capability.

3.2 Tool Library

The profound challenge of incorporating human knowledge into neural-network-based
driving systems is reconciling the incompatibility between text-based human priors and the
numerical representations from neural networks. While prior works (Kuo et al., 2022) have
attempted to translate text-based priors into semantic features or regularization terms for
integration with neural modules, their performances are still constrained by the inherent
cross-modal discrepancy. By contrast, we leverage text as a unified interface to connect
neural modules and propose a tool library built upon the neural modules to dynamically
collect text-based environmental information.

The cornerstones of the tool library are four neural modules, i.e., detection, prediction,
occupancy, and map modules, which process sensory data from observations and generate
detected bounding boxes, future trajectories, occupancy grids, and maps respectively. The
neural modules cover various tasks in perception and prediction and extract environmental
information from observations. However, this information is largely redundant, with
a significant portion insignificant to decision-making. To dynamically extract necessary
information from the neural module outputs, we propose a tool library—where a set of
functions are designed—to summarize the neural outputs into text-based messages, and the
information collection process can be established by dynamic function calls. An illustration
of this process is shown in Figure 3.

Functions. We devised various functions for detection, prediction, occupancy, and mapping,
in order to extract useful information from the neural module’s outputs respectively. Our
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tool library contains more than 20 functions covering diverse usages. Here are some exam-
ples. For detection, get leading object returns a text description of the object in front of
the ego-vehicle on the same lane. For prediction, get pred trajs for object returns a text-
based predicted future trajectory for a specified object. For occupancy, get occ at loc time
returns the probability that a specific location is occupied by other objects at a given timestep.
For map, get lanes returns the information of the left and right lanes to the ego-vehicle, and
get shoulders returns the information of the left and right road shoulders to the ego-vehicle.
Detailed descriptions of all functions are in Appendix A.1.

Task: You should think about what types of information (Detections, Predictions, Maps, 
Occupancy) you need to extract from the driving scenario [context information].

Do you need to execute object detection? Please answer YES or NO.

YES You can execute some of the following functions:
- get_leading_object_detection() # Get detection of the leading 
object, the function will return the leading object id and its 
position and size.
- …

get_front_object_detections; parameters: {} Executing the function 
from tool library …

Front object detections:
Object detected, object type: car, object id: 2, position: (4.36, 9.56), size: (4.72, 1.86)
…

Do you need to execute trajectory prediction? Please answer YES or NO.

YES You can execute some of the following functions:
- get_leading_object_future_trajectory() …

get_future_trajectories_for_specific_objects; 
parameters: {'object_ids': [2, …, 23]} 

Executing the function 
from tool library …

Future trajectories for specific objects:
Object type: car, object id: 2, future waypoint coordinates in 3s: [(4.36, 9.56), … ]

Do you need to get occupancy information? 
Please answer YES or NO.NO 

Do you need to get map information? Please answer YES or NO.

Yes 
You can execute some of the following functions:
- get_drivable(locations) …

get_lanes; parameters: {}
get_shoulders: parameters: {}

Executing the functions 
from tool library …

Current ego-vehicle's distance to the left lane … the right lane …
Current ego-vehicle's distance to the left shoulder … the right shoulder …

Agent System Prompts

Detection Module

Prediction Module

Mapping Module

Function
Call

Function
Call

Function
Call

Figure 3: Illustration of function calls in the tool
library. Agent-Driver can effectively collect nec-
essary environmental information from neural
modules through dynamic function calls.

Tool Use. With the functions in the tool
library, an LLM is instructed to collect
necessary environmental information
through dynamic function calls. Specif-
ically, the LLM is first provided with
initial information such as the current
state for its subsequent decision-making.
Then, the LLM will be asked whether it
is necessary to activate a specific neural
module, i.e.detection, prediction, occu-
pancy, and map. If the LLM decides to
activate a neural module, the functions
related to this module will be provided
to the LLM, and the LLM chooses to call
one or some of these functions to col-
lect the desired information. Through
multiple rounds of conversations, the
LLM eventually collects all necessary
information about the current environ-
ment. Compared to directly utilizing
the outputs of the neural modules, our
approach reduces the redundancy in
current systems by leveraging the rea-
soning power of the LLM to determine
what environmental information is of
real importance to the decision-making
process. Furthermore, the neural mod-
ules are only activated when the LLM
decides to call the relevant functions,
which brings flexibility to the system.
A detailed example of LLM leveraging tool functions for environment perceiving is shown
in Appendix A.2.

3.3 Cognitive Memory

Human drivers navigate using their common sense, such as adherence to local traffic
regulations, and draw upon driving experiences in similar situations. However, it is non-
trivial to adapt this ability to the conventional perception-prediction-planning framework.
By contrast, our approach tackles this problem through interactions with a cognitive memory.
Specifically, the cognitive memory stores text-based common sense and driving experiences.
For every scenario, we utilize the collected environmental information as a query to search in
the cognitive memory for similar past experiences to assist decision-making. The cognitive
memory contains two sub-memories: commonsense memory and experience memory.

Commonsense Memory. The commonsense memory encapsulates the essential knowledge
a driver typically needs for driving safely on the road, such as traffic regulations and
knowledge about risky behaviors. It is worth noting that the commonsense memory is purely
text-based and fully configurable, that is, users can customize their own commonsense
memory for different driving conditions by simply writing different types of knowledge
into the memory.
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Experience Memory. The experience memory contains a series of past driving scenarios,
where each scenario is composed of the environmental information and the subsequent
driving decision at that time. By retrieving the most similar experiences and referencing
their driving decisions, our system enhances its capacity for making more informed and
resilient driving decisions.

Cognitive MemoryQuery

Encode Encode

K-NN 
Search

Query Scenario

The most similar past scenario is the scenario (k) Past Scenario (k)

Stage-1: Vector Search

Stage-2: LLM-Based Fuzzy Search

Retrieve

Past Scenario (i)

Environmental 
Info
- Detection
- Prediction
- Occupancy
- Map
- Ego-states

Past Scenario (1): 
Environmental Info (1); 
Driving Trajectory (1);
…
Past Scenario (N): 
Environmental Info (N); 
Driving Trajectory (N);

Past Scenario (j) Past Scenario (k)

In this step, you need to retrieve the most similar past driving 
experience to the current query scenario to assist decision-making

Query Scenario: …
Past Scenario (i): … Past Scenario (j): … Past Scenario (k): …

Figure 4: Illustration of memory search. The
proposed two-stage search algorithm effec-
tively retrieves the most similar driving expe-
rience and facilitates the subsequent decision-
making process.

Memory Search. As exhibited in Figure 4,
we present an innovative two-stage search
algorithm to effectively search for the most
similar past driving scenario in the expe-
rience memory. The first stage of our algo-
rithm is inspired by vector databases (Lewis
et al., 2020; Wang et al., 2021), where we
encode the input query and each record
in the memory into embeddings and then
retrieve the top-K similar records via K-
nearest neighbors (K-NN) search in the em-
bedding space. Since the driving scenar-
ios are quite diverse, the embedding-based
search is inherently limited by the encod-
ing methods employed, resulting in insuf-
ficient generalization capabilities. To over-
come this challenge, the second stage incor-
porates an LLM-based fuzzy search, where
the LLM is tasked to rank these records ac-
cording to their relevance to the query. This ranking is based on the implicit similarity
assessment by the LLM, leveraging its capabilities in generalization and reasoning.

The cognitive memory equips our system with human knowledge and past driving experi-
ences. The retrieved most similar experiences, together with commonsense and environ-
mental information, collectively form the inputs to the reasoning engine. Text as a unified
interface aligns the environmental information with human knowledge, thereby enhancing
our system’s compatibility. Please refer to Appendix B for more details.

3.4 Reasoning Engine

Reasoning, a fundamental ability of humans, is critical to the decision-making process.
Conventional methods directly plan a driving trajectory based on perception and predic-
tion results, while they lack the reasoning ability inherent to human drivers, resulting in
insufficient capability to handle complicated driving scenarios. Conversely, as shown in
Figure 5, we propose a reasoning engine that effectively incorporates reasoning ability into
the driving decision-making process. Given the environmental information and retrieved
memory, our reasoning engine performs multi-round reasoning to plan a safe and comfort-
able driving trajectory. The proposed reasoning engine consists of four core components:
chain-of-thought reasoning, task planning, motion planning, and self-reflection.

Chain-of-Thought Reasoning. Human drivers are able to identify the key objects and their
potential effects on driving decisions, while this important capability is typically absent
in conventional autonomous driving approaches. To embrace this reasoning ability in our
system, we propose a novel chain-of-thought reasoning module, where we instruct an LLM
to reason on the input environmental information and output a list of key objects and their
potential effects in text. To guide this reasoning process, we instruct the LLM via in-context
learning of a few human-annotated examples. We found this strategy successfully aligns the
reasoning power of the LLM with the context of autonomous driving, leading to improved
reasoning accuracy.

Task Planning. High-level driving plans provide essential guidance to low-level mo-
tion planning. Nevertheless, traditional methods directly perform motion planning with-
out relying on this high-level guidance, leading to sub-optimal planning results. In our
approach, we define high-level driving plans as a combination of discrete driving be-
haviors and velocity estimations. For instance, the combination of a driving behavior
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change lane to left and a velocity estimation deceleration results in a high-level driving
plan change lane to left with deceleration. We instruct an LLM via in-context learning
to devise a high-level driving plan based on environmental information, memory data, and
chain-of-thought reasoning results. The devised high-level driving plan characterizes the
ego-vehicle’s coarse locomotion and serves as a strong prior to guide the subsequent motion
planning process.

**Chain-of-thoughts reasoning:**
- Notable objects: pedestrian at (0.80,18.81), moving to (-2.53,20.89) at 3.0 second.
- Potential effects: may collide if continue driving at this speed.
- Notable objects: …
- Potential effects: …

**Task descriptions:**
You're an autonomous vehicle's brain. Plan a safe trajectory to avoid obstacles…
**Environmental information:**
Front object detections: … Future trajectories for specific objects:… Map information: …
**Common sense:**
- Maintain a safe distance from the objects in front of you...
**Past driving experience for reference:**
Scenario information: … Referenced planning results: …

**Task planning:**
Behavior: move forward   Speed: deceleration
Driving plan: move forward with a deceleration.

**Motion planning:**
Trajectory: [(-0.03, 2.47), …, (-0.49, 13.22)]

**Self-reflection:**
No collision. No change to the trajectory.

Visual Demonstration

Figure 5: Illustration of reasoning engine.
Agent-Driver makes driving decisions like hu-
man in a step-by-step procedure.

Motion Planning. Motion planning aims
to devise a safe and comfortable trajectory
for driving, and each trajectory is repre-
sented as a sequence of waypoints. Fol-
lowing (Mao et al., 2023a), we re-formulate
motion planning as a language modeling
problem. Specifically, we leverage environ-
mental information, memory data, reason-
ing results, and high-level driving plans col-
lectively as inputs to an LLM, and we in-
struct the LLM to generate text-based driv-
ing trajectories by reasoning on the inputs.
By fine-tuning with human driving trajecto-
ries, the LLM can generate trajectories that
closely emulate human driving patterns. Fi-
nally, we transform the text-based trajecto-
ries back into real trajectories for system
execution.

Self-Reflection. Self-reflection is a crucial ability in humans’ decision-making process, aim-
ing to re-assess the former decisions and adjust them accordingly. To model this capability
in our system, we propose a collision check and optimization approach. Specifically, for a
planned trajectory τ̂ from the motion planning module, the collision check function in the
tool library is first invoked to check its collision. If collision detected, we refine the trajectory
τ̂ into a new trajectory τ∗ by optimizing the cost function C:

τ∗ = min
τ

C(τ, τ̂) = min
τ

λ1||τ − τ̂||2 + λ2Fcol(τ). (1)

In this manner, the safety of the planned trajectory is greatly improved.

Our reasoning engine models the human decision-making process in driving as a step-by-
step procedure involving reasoning, hierarchical planning, and self-reflection. Compared to
prior works, our approach effectively emulates the human decision-making process, leading
to enhanced decision-making capability and superior planning performance. More details
of the reasoning engine can be found in Appendix C.

4 Experiments

In this section, we demonstrate the effectiveness, few-shot learning ability, and other char-
acteristics of Agent-Driver through extensive experiments. First, we introduce the experi-
mental settings in Section 4.1. Next, we evaluate the planning performance of our approach
on both open-loop and closed-loop settings (Section 4.2). Subsequently, we investigate the
few-shot learning ability (Section 4.3), interpretability (Section 4.4), compatibility (Section
4.5), and stability (Section 4.6) of Agent-Driver. Finally, we discuss the choices of in-context
learning and fine-tuning in Section 4.7. More experiments can be found in Appendix D.

4.1 Experimental Setup

Benchmarks. For open-loop autonomous driving, we conduct experiments on the large-
scale nuScenes dataset (Caesar et al., 2020). The nuScenes dataset is a real-world autonomous
driving dataset that contains 1, 000 driving scenarios and approximately 34, 000 key frames
encompassing a diverse range of locations and weather conditions. We follow the general
practice and split the whole dataset into training and validation sets. We utilize the training
set to train the neural modules and instruct the LLMs, and we utilize the validation set to
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Method L2 (m) ↓ Collision (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

ST-P3 metrics

ST-P3 (Hu et al., 2022) 1.33 2.11 2.90 2.11 0.23 0.62 1.27 0.71
VAD (Jiang et al., 2023) 0.17 0.34 0.60 0.37 0.07 0.10 0.24 0.14
GPT-Driver (Mao et al., 2023a) 0.20 0.40 0.70 0.44 0.04 0.12 0.36 0.17

Agent-Driver (ours) 0.16 0.34 0.61 0.37 0.02 0.07 0.18 0.09

UniAD metrics

NMP (Zeng et al., 2019) - - 2.31 - - - 1.92 -
SA-NMP (Zeng et al., 2019) - - 2.05 - - - 1.59 -
FF (Hu et al., 2021) 0.55 1.20 2.54 1.43 0.06 0.17 1.07 0.43
EO (Khurana et al., 2022) 0.67 1.36 2.78 1.60 0.04 0.09 0.88 0.33
UniAD (Hu et al., 2023) 0.48 0.96 1.65 1.03 0.05 0.17 0.71 0.31
GPT-Driver (Mao et al., 2023a) 0.27 0.74 1.52 0.84 0.07 0.15 1.10 0.44

Agent-Driver (ours) 0.22 0.65 1.34 0.74 0.02 0.13 0.48 0.21

Table 2: Open-loop planning performance compared to the state-of-the-arts. Agent-Driver
significantly outperforms prior works in terms of L2 and collision rate. Our approach attains
more than 30% performance gains in collisions compared to the state-of-the-art methods.

evaluate the performance of our approach, ensuring a fair comparison with prior works.
Following prior works (Hu et al., 2022; 2023; Jiang et al., 2023), the L2 error and collision
rate are reported to evaluate the planning performance. For the closed-loop autonomous
driving, we adopt the Town05-Short benchmark (Prakash et al., 2021) powered by the
CARLA simulator (Dosovitskiy et al., 2017) for evaluation. The Town05-Short benchmark
consists of 10 challenging driving routes with 3 intersections each, including a high density
of dynamic agents. We adopt the widely-used route completion and driving scores to
evaluate the planning performance. Route Completion denotes the progress of driving on a
route, and the Driving Score additionally takes comfort and safety into calculation. More
details of the open-loop and closed-loop evaluation metrics can be found in Appendix D.1.

Implementation Details. We utilize gpt-3.5-turbo-0613 as the foundation LLM for different
components in our system. For motion planning, we follow (Mao et al., 2023a) and fine-tune
the LLM with human driving trajectories in the nuScenes training set for one epoch. For
neural modules, we adopted the modules in (Hu et al., 2023). For closed-loop experiments,
we leveraged the perception modules in LAV (Chen & Krähenbühl, 2022) and kept the other
parts of our system the same. We also followed the same training setting and evaluation
protocols in (Chen & Krähenbühl, 2022) for a fair comparison. More implementation details
can be found in the appendix D.2.

4.2 Comparison with State-of-the-art Methods

Open-Loop Results. As shown in Table 2, Agent-Driver surpasses state-of-the-art methods
in both metrics and decreases the collision rate of the second-best performance by a large
margin. Specifically, under ST-P3 metrics, Agent-Driver realizes the lowest average L2
error and greatly reduces the average collision rates by 35.7% compared to the second-
best performance. Under UniAD metrics, Agent-Driver achieves an L2 error of 0.74 and
a collision rate of 0.21%, which are 11.9% and 32.3% better than the second-best methods
GPT-Driver (Mao et al., 2023a) and UniAD (Hu et al., 2023), respectively. The promising
performance on the collision rate verifies the effectiveness of the reasoning ability of Agent-
Driver, which considerably increases the safety of the proposed autonomous driving system.

Methods Driving Score ↑ Route Completion ↑
CILRS (Codevilla et al., 2019) 7.47 13.40
LBC (Cui et al., 2021) 30.97 55.01
Transfuser (Prakash et al., 2021) 54.52 78.41
ST-P3 (Hu et al., 2022) 55.14 86.74
VAD (Jiang et al., 2023) 64.29 87.26
Agent-Driver (Ours) 57.33 91.37

Table 1: Closed-loop planning performance
compared to the state-of-the-arts. Agent-
Driver yields the best route completion and an
on-par driving score compared to prior arts.

Closed-Loop Results. To analyze the per-
formance of our approach in closed-loop
settings, we evaluate Agent-Driver against
other state-of-the-art methods on the au-
thoritative CARLA simulator. The results
on the Town05-Short benchmark (Chitta
et al., 2022) are shown in Table 1. Agent-
Driver achieves the highest route comple-
tion, surpassing the second-best VAD (Jiang
et al., 2023) by 4.1%. In terms of driving
score, Agent-Driver also yields a performance of 57.33%, which is on par with the prior arts.
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*****Environmental information:*****
Front object detections:
Front object detected, object type: pedestrian, object id: 0, position: (-4.32, 13.85), size: (0.76, 0.91)
…
Front object detected, object type: pedestrian, object id: 9, position: (2.23, 19.39), size: (0.57, 0.69)
Future trajectories for specific objects:
Object type: pedestrian, object id: 0, future waypoint coordinates in 3s: [(-4.44, 14.50), …]
…
Object type: pedestrian, object id: 9, future waypoint coordinates in 3s: [(1.74, 19.76), …]
Map information (road shoulders):
Current ego-vehicle's distance to left shoulder is 0.5m and right shoulder is 4.5m

*****Common sense:*****
- Maintain a safe distance from the objects in front of you...
*****Past driving experience for reference:*****
Most similar driving experience from memory with similarity score: 0.77:
Scenario information: …
The planned trajectory in this scenario for your reference:[(0.04,2.49), … ,(0.30,12.26)]

*****Chain-of-thoughts reasoning:*****
- Notable objects: pedestrian at (0.80,18.81), moving to (-2.53,20.89) at 3.0 second
- Potential effects: may collide if continue driving at this speed.
…
*****Task planning:*****
Behavior: forward; Speed: deceleration; Driving plan: move forward with a deceleration
*****Motion planning:*****
Trajectory: [(-0.03, 2.47), (-0.10, 4.84), (-0.19, 7.10), (-0.29, 9.25), (-0.39, 11.29), (-0.49, 13.22)]
*****Self-reflection:*****
No collision. No change to the motion planning result.

*****Environmental information:*****
Front object detections:
Front object detected, object type: car, object id: 4, position: (-2.11, 14.95), size: (1.96, 4.76)
…
Front object detected, object type: car, object id: 6, position: (5.31, 32.79), size: (1.90, 4.48)
Future trajectories for specific objects:
Object type: pedestrian, object id: 4, future waypoint coordinates in 3s: [(-2.39, 14.80), …]
…
Object type: pedestrian, object id: 6, future waypoint coordinates in 3s: [(5.32, 32.78), …]
Map information (lanes):
Current ego-vehicle's distance to left lane is 1.5m and right lane is unknown

*****Common sense:*****
- Avoid collision with other objects...
*****Past driving experience for reference:*****
Most similar driving experience from memory with similarity score: 0.45:
Scenario information: …
The planned trajectory in this scenario for your reference:[(-0.14,0.98), … ,(-5.10,8.27)]

*****Chain-of-thoughts reasoning:*****
- Notable objects: car at (-2.11,14.95), moving to (-2.84,14.53) at 1.5 second
- Potential effects: inside the safety zone of the ego-vehicle at 1.5 second.
…
*****Task planning:*****
Behavior: turn left; Speed: deceleration; Driving plan: turn left with a deceleration
*****Motion planning:*****
Trajectory: [(-0.11,0.94), (-0.31,1.81), (-0.62,2.75), (-1.16,3.88), (-1.84,4.93), (-2.95,6.29)]
*****Self-reflection:*****
No collision. No change to the motion planning result.

Figure 7: Interpretability of Agent-Driver. In the referenced images, planned trajectories of
our system and human driving trajectories are in red and green respectively. Agent-Driver
extracts meaningful objects (in yellow) from all detected objects (in blue) via the tool library.
The reasoning engine further identifies notable objects (in red). Messages from the tool
library, cognitive memory, and reasoning engine are recorded in colored text boxes. Every
message is documented and our system is conducted in an interpretable and traceable way.

4.3 Few-shot Learning
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Figure 6: Few-shot learning. The motion plan-
ner in Agent-Driver fine-tuned with 1% data
exceeds the state-of-the-art (Hu et al., 2023)
trained on full data, verifying its few-shot
learning ability.

To assess the generalization ability of mo-
tion planning in our approach, we conduct
a few-shot learning experiment, where we
keep other components the same and fine-
tuned the core motion planning LLM with
0.1%, 1%, 10%, 50%, and 100% of the train-
ing data for one epoch. For comparison, we
adopted the motion planner in UniAD (Hu
et al., 2023) trained with 100% data as the
baseline. The results are shown in Figure 6.
Notably, with only 0.1% of the full training
data, i.e., 23 training samples, Agent-Driver
realizes a promising performance. When
exposed to 1% of training scenarios, the pro-
posed method surpasses the baseline by a
large margin, especially under the average
collision rate. Furthermore, with increased
training data, Agent-Driver stably achieves
better motion planning performance.

4.4 Interpretability

Unlike conventional driving systems that rely on black-box neural networks to perform
different tasks, the proposed Agent-Driver inherits favorable interpretability from LLMs.
As shown in Figure 7, the output messages of LLMs from the tool library, cognitive memory,
and reasoning engine are recorded during system execution. Hence the whole driving
decision-making process is transparent and interpretable.
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4.5 Compatibility with Different LLMs

Method L2 (m) ↓ Collision (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

Llama-2-7B 0.25 0.69 1.47 0.80 0.02 0.27 0.78 0.35
gpt-3.5-turbo-1106 0.24 0.71 1.47 0.80 0.03 0.08 0.63 0.25
gpt-3.5-turbo-0613 0.22 0.65 1.34 0.74 0.02 0.13 0.48 0.21

Table 3: Compatibility to different LLMs.
Agent-Driver realizes satisfactory motion
planning performance utilizing different types
of LLMs as agents.

We tried leveraging the Llama-2-7B (Tou-
vron et al., 2023b), gpt-3.5-turbo-1106, and
gpt-3.5-turbo-0613 models as the founda-
tion LLMs in our system. Table 3 demon-
strates that Agent-Driver powered by dif-
ferent LLMs can yield satisfactory perfor-
mances, verifying the compatibility of our
system with diverse LLM architectures.

4.6 Stability

Percentage of training samples 0.10% 1% 10% 50% 100%

Number of invalid outputs 2 0 0 0 0

Table 4: Stability of Agent-Driver exposed to
different amounts of training samples. With
only 1% training samples (∼ 230 samples),
Agent-Driver produces zero invalid output.

LLMs typically suffer from arbitrary
predictions—they might produce invalid
outputs (e.g., hallucination or invalid
formats)— which is detrimental to driving
systems. To investigate this effect, we con-
ducted a stability test of our Agent-Driver.
Specifically, we used different amounts of
training data to instruct the LLMs in our system, and we tested the number of invalid
outputs during inference on the validation set, where we define “invalid” as waypoint
outputs containing non-numerical values. As shown in Table 4, Agent-Driver exposed to
only 1% of the training data sees zero invalid output during inference of 6,019 validation
scenarios, suggesting that our system attains high output stability with proper instructions.

4.7 In-Context Learning vs. Fine-Tuning

Modules Avg. L2 (m) Avg. Col. (%)CoT Reason.+Task Plan. Motion Plan.

Fine-tuning In-context learning 1.81 0.79
In-context learning In-context learning 1.90 0.79

Fine-tuning Fine-tuning 0.72 0.22
In-context learning Fine-tuning 0.74 0.21

Table 5: In-context learning vs. fine-tuning.
In-context learning performs slightly better in
reasoning and task planning. Fine-tuning is
indispensable for motion planning.

Two prevalent strategies to instruct an LLM
for novel tasks are in-context learning and
fine-tuning. To determine which is the most
effective strategy, we apply these two strate-
gies to the LLMs of the chain-of-thought
reasoning, task planning, and motion plan-
ning modules respectively, benchmarking
them on the downstream motion planning
performance. As indicated in Table 5, in-
context learning performs slightly better than fine-tuning in collision rates for reasoning and
task planning, suggesting that in-context learning is a favorable choice in these modules.
In motion planning, the fine-tuning strategy significantly outperforms in-context learning,
demonstrating the necessity of fine-tuning LLMs in motion planning.

5 Conclusion

This work introduces Agent-Driver, a novel human-like paradigm that fundamentally
transforms autonomous driving pipelines. Our key insight is to leverage LLMs as an agent
to schedule different modules in autonomous driving. On top of the LLMs, we propose a
tool library, a cognitive memory, and a reasoning engine to bring human-like intelligence
into driving systems. Extensive experiments on the real-world driving dataset substantiate
the effectiveness, few-shot learning ability, and interpretability of Agent-Driver. These
findings shed light on the potential of LLMs as an agent in human-level intelligent driving
systems. For future works, we plan to optimize the LLMs for real-time inference.
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Ethics Statement

This paper presents Agent-Driver, a novel method that leverages large language models as
an agent for autonomous driving. While Agent-Driver uses language generation as part of
its reasoning and planning process, the goal is to improve the quality of representations and
decision-making for autonomous vehicles, not text generation itself. Therefore, the potential
negative impact of Agent-Driver on areas like misinformation or deepfakes is minimal.
On the privacy protection side, Agent-Driver uses driving data that does not include any
personal or location information. In summary, we believe Agent-Driver does not lead to
any ethics concerns.

Reproduciblity Statement

We provide as many implementation details as possible in the paper submission and in the
appendix. We also include the code for Agent-Driver, including the large language model,
neural modules, tool library, cognitive memory, and reasoning engine components in the
supplementary material. This will allow others to faithfully reproduce our results and build
upon our proposed approach.
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A Tool Library

In this section, we will first introduce the detailed descriptions of all functions in the tool
library (Section A.1). Next, we will provide a detailed example of how the agent interacts
with the tool library (Section A.2).

A.1 Functions

We include all function definitions in the tool library in Tables 6 and 7. The proposed
functions cover detection, prediction, occupancy, and mapping, and enable flexible and
versatile environmental information collection.

A.2 Tool Use

A detailed example of how the LLM leverages tools to collect environmental information
is shown in Figures 4 and 5. System prompts are shown in blue, the response of LLMs
is shown in green, and the collected data is shown in orange. System prompts provide
sufficient context and guidance for instructing the LLM to dynamically invoke the functions
in the tool library to collect necessary environmental information.

B Cognitive Memory

In this section, we detail the data format and retrieving process of the commonsense and
experience memory.

B.1 Memory Data

As shown in Figure 8 of the main text, the commonsense memory consists of essential
knowledge for safe driving, which is cached in a text-based format and is fully configurable.

We build the experience memory by caching the environmental information of driving
scenarios and corresponding driving trajectories in the training set. Please note that this
experience memory can be editable online, meaning that expert demonstrations conducted
by human drivers can be easily inserted into the memory and benefit the subsequent
decision-making of Agent-Driver.

B.2 Memory Search

We propose a two-stage searching strategy for retrieving the most similar past driving
scenario to the query scenario.

In the first stage, we generate a vectorized key ki ∈ R1×(ne+ng+nh) for each past scenario i
by vectorizing its ego-states ei ∈ R1×ne , mission goals gi ∈ R1×ng , and historical trajectories
hi ∈ R1×nh . The N past scenarios in the experience memory collectively construct a key
tensor K ∈ RN×(ne+ng+nh):

K = {[ei, gi, hi]|i = {1, 2, ..., N}}. (1)

Similarly, we can vectorize the query scenario into Q = [e, g, h] ∈ R1×(ne+ng+nh).

Subsequently, we compute the similarity scores S ∈ RN between the querying scenario Q
and the past scenarios K:

S = QΛK⊤, (2)

where Λ = diag(λe, λg, λh) ∈ R(ne+ng+nh)×(ne+ng+nh) indicates the weights of different
components.

Finally, top-K samples with the K highest similarity scores are selected as candidates for the
second-stage search.
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In the second stage, we propose an LLM-based fuzzy search. The top-K past driving
scenarios selected in the first stage are provided to the LLM. Then, the LLM is tasked to
understand the text descriptions of these scenarios and determine the most similar past
driving scenario to the query scenario. The driving trajectory corresponding to the selected
scenario is also retrieved for reference.

With the proposed vector search and LLM-based fuzzy search, Agent-Driver can effectively
retrieve the most similar past driving experience. The past experience and driving decision
could help the current decision-making process.

C Reasoning Engine

In this section, we provide detailed information on the workflow of the reasoning engine.
The reasoning engine takes environmental information and memory data as inputs, per-
forms chain-of-thought reasoning, task planning, motion planning, and self-reflection, and
eventually generates a driving trajectory for execution. Figures 9, 10, and 11 show an exam-
ple of how the reasoning engine works. We denote the input environmental information as
O and the retrieved memory data as M. Please note that O and M are in the text format.

C.1 Chain-of-Thought Reasoning

Chain-of-thought reasoning aims to emulate the human reasoning process and generate
text-based reasoning results R, which can be formulated as:

R = FLLM(O,M), (3)

where FLLM is a LLM. To avoid arbitrary reasoning outputs of LLMs which might lead to
hallucination and results not relevant to planning, we constrain R to contain two essential
parts: notable objects and potential effects. Specifically, we first instruct the LLM to identify
those notable objects that have critical impacts on decision-making from the input environ-
mental information. Then, we instruct the LLM to assess how these notable objects will
influence the subsequent decision-making process. The instruction can be established by
two strategies: in-context learning and fine-tuning.

For in-context learning, each time we leverage four human-annotated examples E of notable
objects and potential effects in addition to O and M collectively as inputs to the LLM:

R = FLLM(O,M, E). (4)

For fine-tuning, we auto-generate the reasoning targets R̂ leveraging the technique pro-
posed in (Mao et al., 2023a). Then we fine-tune the LLM to make its reasoning outputs R
approaching the targets R̂.

Both in-context learning and fine-tuning effectively reduce invalid outputs. As shown in
Table 6 of the main paper, compared to the fine-tuning strategy, in-context learning enables
the LLMs to generate more diverse reasoning outputs, and results in better motion planning
performance.

C.2 Task Planning

Task planning aims to generate high-level driving plans P for autonomous vehicles, taking
the reasoning results R as well as the environmental information O and memory data M
as inputs. The process can be formulated as

P = FLLM(O,M,R). (5)

We define the driving plan as a combination of discrete driving behaviors and speed
estimations. In this paper, we proposed 6 discrete driving behaviors: move forward,
change lane to left, change lane to right, turn left, turn right, and stop. We
also propose 6 speed estimations: constant speed, deceleration, quick deceleration,
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deceleration to zero, acceleration, quick acceleration. The combinations of driving
behaviors and speed estimations result in 31 different driving plans (stop has no speed
estimation). These driving plans can cover most driving scenarios and they are fully con-
figurable, which means that we can add more behavior and speed types to cover those
long-tailed scenarios. See Table 1 for details.

Driving behavior Speed estimation
move forward constant speed
change lane to left deceleration
change lane to right quick deceleration
turn left deceleration to zero
turn right acceleration
stop quick acceleration

Table 1: Driving behaviors and speed estimations.

Similar to the reasoning module, in-
context learning and fine-tuning can
also be applied to instruct the LLM to
generate driving plans. As shown in Ta-
ble 6 of the main paper, in-context learn-
ing is more appropriate for instructing
the LLM for task planning.

C.3 Motion Planning

Motion planning aims to plan a safe and
comfortable driving trajectory τ, with
the driving plan P , reasoning results
R, environmental information O, and memory data M as inputs. The process can be
formulated as

τ = FLLM(O,M,R,P). (6)

The planned trajectory τ can be represented as 6 waypoint coordinates in 3 seconds: τ =
[(x1, y1), · · · , (x6, y6)]. A recent finding (Mao et al., 2023a) suggests a fine-tuned LLMs can
generate text-based coordinates quite accurately. That is, the LLM can generate a text string
“(1.23, 0.32)” representing a coordinate, and this can be easily transformed back into its
numerical format (1.23, 0.32) for subsequent execution. In particular, given a trajectory τ,
we first transform it into a sequence of language tokens w using a tokenizer T:

τ = T({(x1, y1), · · · , (x6, y6)}) = {w1, · · · , wn}. (7)

With these language tokens, we then reformulate motion planning as a language modeling
problem:

LLM = −
N

∑
i=1

log P(ŵi|w1, · · · , wi−1), (8)

where w and ŵ are the language tokens of the planned trajectory τ from the LLM and the
human driving trajectory τ̂ respectively. By learning to maximize the occurrence probability
P of the tokens ŵ derived from the human driving trajectory τ̂, the LLM can generate
human-like driving trajectories. We suggest readers refer to (Mao et al., 2023a) for more
details.

With proper fine-tuning, the LLM is able to generate a text-based trajectory that can be
further transformed into its numerical format. This step maps natural-language-based
perception, memory, and reasoning into executable driving trajectories, enabling our agent
to perform low-level actions.

C.4 Self-Reflection

Self-reflection is designed to reassess and rectify the driving trajectory τ planned by the
LLM. Specifically, the collision check function is first invoked to check the collision of
τ utilizing the estimated occupancy map. Specifically, we place the ego-vehicle at each
waypoint in a trajectory, and then we will mark the trajectory as collision if there is an
obstacle within a safe margin η to the ego-vehicle in the occupancy map. If a trajectory is not
marked with collision, we directly use this trajectory as output without further rectification.
Otherwise, for those trajectories that have collisions, we leverage an optimization approach
to rectify the trajectory τ into a collision-free one τ∗. Following (Hu et al., 2023), we sample
the obstacle points Ot near each waypoint at timestep t in the occupancy map. Then, an
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optimization problem is formulated and solved through the Newton iteration method:
τ∗ = arg min

τ
(∥τ − τ∗∥2+

∑
t

∑
(x,y)∈Ot

λ

σ
√

2π
exp

(
−
∥τ∗

t − (x, y)∥2
2

2σ2

)
) ,

(9)

where λ and σ are hyperparameters. The first term regulates the optimized trajectory τ∗ to
be similar to the original τ, and the second term pushes the waypoint τ∗

t in the trajectory
away from the obstacle points Ot for each timestep t.

Attributing to self-reflection, those unreliable decisions made by the LLM can further be
corrected, and collisions in the planned trajectories can be effectively mitigated.

C.5 Comparison with GPT-Driver

The most relevant implementation is GPT-Driver (Mao et al., 2023a), which handles the
planning problem in autonomous driving by reformulating motion planning as a language
modeling problem and introducing fine-tuned LLMs as a motion planner. Compared to
(Mao et al., 2023a), our Agent-Driver introduce additional modules such as tool libraries and
cognitive memories that GPT-Driver does not use. Also, it decouples the chain-of-thought
reasoning, task planning, and motion planning as separate steps to the LLM. Compared to
generating both reasoning and planning in a single pass as in GPT-Driver, we empirically
found that such separation eases the learning and prediction process, and yields a better
result. In addition, we use in-context learning to instruct the LLM to perform reasoning
and task planning, which encourages better diversity and generalization ability. While in
GPT-Driver, it uses fine-tuning. Finally, we additionally introduce a self-reflection stage to
further rectify the motion planning results, which leads to fewer collisions and better safety.

D Experiments

D.1 Evaluation Metrics

D.1.1 Open-Loop Metrics

As argued in (Hu et al., 2023), autonomous driving systems should be optimized in pursuit
of the ultimate goal, i.e., planning of the self-driving car. Hence, we focus on the motion
planning performances to evaluate the effectiveness of our system. There are two com-
monly adopted metrics for motion planning on the nuScenes dataset: L2 error (in meters)
and collision rate (in percentage). The average L2 error is computed by measuring each
waypoint’s distance in the planned and ground-truth trajectories, reflecting the proximity
of a planned trajectory to a human driving trajectory. The collision rate is calculated by
placing an ego-vehicle box on each waypoint of the planned trajectory and then checking
for collisions with the ground truth bounding boxes of other objects, reflecting the safety
of a planned trajectory. We follow the common practice and evaluate the motion planning
result in a 3-second time horizon.

We further note that in different papers there are subtle discrepancies in computing these
two metrics. For instance, in UniAD (Hu et al., 2023) both metrics at k-th second are
measured as the error or collision rate at this certain timestep, while in ST-P3 (Hu et al.,
2022) and following works (Jiang et al., 2023; Mao et al., 2023a), these metrics at k-th second
is an average over k seconds. There are also differences in ground truth objects for collision
calculation in different papers. We detail the two different metric implementations as
follows.

The output trajectory τ is formatted as 6 waypoints in a 3-second horizon, i.e., τ =
[(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5), (x6, y6)]. For τ in each driving scenario, the L2
error is computed as:

l2 =
√
(τ − τ̂)2 =

[√
(xi − x̂i)2 + (yi − ŷi)2

]6

i=1
, (10)
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where l2 ∈ R6×1 and τ̂ denotes human driving trajectory. Then, the average L2 error
l2 ∈ R6×1 can be computed by averaging l2 for each sample in the test set.

In the UniAD metric (Hu et al., 2023), the L2 error at the k-th second (k = 1, 2, 3) is reported
as the error at this timestep:

Luniad
2,k = l2[2k]. (11)

The average L2 error is then computed by averaging Luniad
2,k of the 3 timesteps.

In the ST-P3 metric (Hu et al., 2022) and following works (Jiang et al., 2023; Mao et al., 2023a),
the L2 error at the k-th second is reported as the average error from 0 to k second:

Lstp3
2,k =

∑2k
t=1 l2[t]

2k
. (12)

The average L2 error is computed by averaging the Lstp3
2,k of the 3 timesteps again (average

over average in other words).

In terms of the collision, it is computed by counting the number of times a planned trajectory
collides with other objects in the ground truth occupancy map for all scenarios in the test
set. We denote C ∈ N6×1 as the total collision times at each timestep.

Similarly, UniAD reports the collision Cuniad
k at the k-th second (k = 1, 2, 3) as C[2k], while

ST-P3 reports Cstp3
k as the average from 0 to k second:

Cstp3
k =

∑2k
t=1 C[t]

2k
. (13)

In addition to the differences in calculation methods, there is also a difference in how
the ground truth occupancy maps are generated in the two metrics. Specifically, UniAD
only considers the vehicle category when generating ground truth occupancy, while ST-
P3 considers both the vehicle and pedestrian categories. This difference leads to varying
collision rates for identical planned trajectories when measured by these two metrics, yet it
does not impact the L2 error.

In this paper, we faithfully evaluated our approach and the baseline methods using the
officially implemented evaluation metrics in the two papers (Hu et al., 2023; 2022), ensuring
a completely fair comparison with other methods.

D.1.2 Closed-Loop Metrics

Within the CARLA simulator (Dosovitskiy et al., 2017), the metrics of route completion
and driving score are generally used to evaluate the planning performance of autonomous
driving systems.

Route completion is a straightforward metric, measuring the percentage of a predefined
route that the autonomous vehicle successfully completes before the simulation ends. This
metric is crucial for understanding the basic capability of an autonomous vehicle to navigate
from point A to point B.

The driving score is calculated by adjusting the route completion rate with a penalty factor
that considers various infractions, including collisions with pedestrians, other vehicles, and
stationary objects, deviations from the planned route, lane violations, ignoring red traffic
lights, and failing to stop at stop signs.

D.2 Implementation Details

We employ gpt-3.5-turbo-0613 as the foundation LLM in our Agent-Driver. We leverage the
same LLM for every task except motion planning, and we fine-tuned another LLM specially
for motion planning.
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ID Tool Common. Exp. CoT Task Self- L2 (m) ↓ Collision (%) ↓
Library Memory Memory Reason. Plan. Reflect. 1s 2s 3s Avg. 1s 2s 3s Avg.

1 ✗ ✓ ✓ ✓ ✓ ✗ 0.24 0.71 1.44 0.80 0.03 0.27 0.91 0.40
2 ✓ ✗ ✓ ✓ ✓ ✗ 0.24 0.69 1.42 0.79 0.03 0.23 0.83 0.37
3 ✓ ✓ ✗ ✓ ✓ ✗ 0.24 0.72 1.46 0.81 0.07 0.23 0.96 0.42
4 ✓ ✓ ✓ ✗ ✓ ✗ 0.24 0.71 1.45 0.80 0.03 0.23 0.88 0.38
5 ✓ ✓ ✓ ✓ ✗ ✗ 0.25 0.72 1.47 0.81 0.05 0.23 0.93 0.40

6 ✓ ✓ ✓ ✓ ✓ ✗ 0.24 0.70 1.42 0.79 0.03 0.20 0.81 0.35
7 ✓ ✓ ✓ ✓ ✓ ✓ 0.25 0.71 1.43 0.80 0.03 0.08 0.56 0.23

Table 2: Ablation of components in Agent-Driver. The removal of any component can
influence the planning efficacy of our system, indicating the importance of all components
in our system.

For tool use and memory search, the LLM is guided by system prompts without fine-tuning
or exemplar-based in-context learning. In chain-of-thought reasoning and task planning, the
LLM is instructed by two randomly selected exemplars derived from the training set. This
approach encourages the models to develop various insightful chain-of-thought processes
and detailed plans for tasks independently. Please note that we utilize the original pre-
trained LLM with different system prompts and user input for the above tasks. In motion
planning, we fine-tune an LLM with human driving trajectories for only one epoch.

D.3 Ablation Study

Table 2 shows the results of ablating different components in Agent-Driver. All variants
utilize 10% training data for instructing the LLMs. From ID 1 to ID 5, we ablate the main
components in Agent-Driver, respectively. We deactivate the self-reflection module and
directly evaluate the trajectories output from LLMs to better assess the contribution of
each other module. When the tool library is disabled, all perception results form the input
to Agent-Driver without selection, which yields ∼2 times more input tokens and harms
the system’s efficiency. The removal of the tool library also increases the collision rate,
indicating the effectiveness of this component. In addition, the collision rate gets worse
by removing the commonsense and experience memory, reasoning, and task planning
modules, demonstrating the necessity of these components. Besides, we further note that
self-reflection also greatly reduces the collision rate.

D.4 Impact of Ego-States on Open-Loop Motion Planning

Settings Avg. L2 (m) Avg. Col. (%)

Ego-only 0.93 0.32
Agent-Driver w/o ego 1.00 0.32

UniAD 1.03 0.31
Agent-Driver 0.80 0.23

Table 3: Impact of ego-states on Agent-Driver.

As pointed out by Zhai et al. (2023) and Li
et al. (2023), ego status information can pro-
vide a strong heuristic for open-loop mo-
tion planning. To investigate the impact
of ego states on Agent-Driver, we conduct
experiments of Agent-Driver using purely
ego-status and without ego-status. The re-
sults are shown in Table 3, where all set-
tings are trained with 10% data. We can see
that: (1) The ego-only baseline is worse than
Agent-Driver, which indicates Agent-Driver does not merely rely on ego-states but also
benefits from the proposed components, and (2) After dropping the ego-states, Agent-Driver
still works well and performs on-par with UniAD, which means Agent-Driver can still work
decently well without ego-states.

We further note that most prior works that Agent-Driver compared with in Table 2 of the
main text use ego-states for planning. Specifically, VAD explicitly inputs ego-states as side
information for the planner, and UniAD implicitly includes ego-states via its BEV module (Li
et al., 2023).

D.5 Compatibility with Different Neural Modules
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Neural Modules Avg. L2 (m) Avg. Col. (%)Detection Prediction Occupancy Mapping

VAD VAD ST-P3 ST-P3 0.73 0.24
VAD VAD UniAD UniAD 0.72 0.22

UniAD UniAD ST-P3 ST-P3 0.74 0.24
UniAD UniAD UniAD UniAD 0.74 0.21

Table 4: Compatibility to different perception
modules.

As shown in Table 4, Agent-Driver con-
stantly maintains a favorable performance
with combinations of variable neural mod-
ules. We argue that discrepancy in per-
ception and prediction performance can be
compensated by strong reasoning systems
and is no longer the bottleneck of our sys-
tem. Notably, unlike conventional frame-
works which need retraining upon any module change, attributed to the flexibility of
Agent-Driver, all neural modules in our system can be displaced in a plug-and-play manner,
indicating our system’s compatibility.

D.6 Language Justification on the BDD-X Dataset

Our method is compatible with diverse functional calls in the tool library. By incorporating
the state-of-the-art vision-language model (Jin et al., 2023) as a tool, our Agent-Driver
can provide language justification to actions based on visual inputs. We demonstrate this
capability on the BDD-X dataset, which is a commonly used language benchmark for
autonomous driving. Both quantitative results in Table 5 and qualitative results in Figure 1
have demonstrated the language justification ability of Agent-Driver.

Method Narration Reasoning

BLEU4 METEOR ROUGE-L CIDEr BLEU4 METEOR ROUGE-L CIDEr

Agent-Driver 34.55 30.58 62.75 246.79 11.65 15.36 32.00 103.16

Table 5: Quantitative performance of Agent-Driver on the BDD-X dataset.

Action description: the car is driving forward.
Action justification: because the path is clear.

Action description: the car is driving slowly down the road.
Action justification: because traffic ahead is moving slowly.

Action description: the car slows down.
Action justification: because the car in front of it has stopped.

22



Published as a conference paper at COLM 2024

Action description: the car is driving forward.
Action justification: because there are no other cars on the road.

Action description: the car is driving forward.
Action justification: because there are no other cars on the road.

Action description: the car is driving forward.
Action justification: because there is no traffic in that lane.

Action description: the car merges left.
Action justification: because the lane is clear.

Action description: the car is slowing down to a complete stop.
Action justification: because the traffic light at the intersection has turned red.

Figure 1: Visualization of Agent-Driver language justification capability on BDD-X.

E Qualitative Analysis

E.1 Qualitative Ablation

A qualitative visualization of ablating the system components in Agent-Driver is shown
in Figure 2. The result shows that when ablating the memory module of Agent-Driver,
the planned trajectory (in purple) has a larger discrepancy to the ground truth trajectory.
When deactivating the chain-of-thought reasoning and task-level planning, the planned
trajectory (in yellow) deviates more from the ground truth, suggesting that reasoning is
a critical component for accurate planning of the system. The qualitative ablation further
verifies the effectiveness of the proposed components in our Agent-Driver.
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E.2 Qualitative Results

Agent-Driver w/o CoT & task planning w/o Memory Ground Truth

Figure 2: Qualitative ablation of sys-
tem components.

Figure 12 provides more examples to show the inter-
pretablility of Agent-Driver. Figures 13, 14 and 15
visualize critical objects identified by Agent-Driver
and the planned driving trajectories, from which we
can see our system progressively identifies critical
objects via tool use and reasoning, and eventually
plans a safe trajectory for driving. Driving videos
are shown in Figures 16, 17, and 18. The qualitative
results verify the effectiveness and interpretability of
our Agent-Driver.

E.3 Failure Cases

We provide failure cases in Agent-Driver in Figure 3.
We observed that heading errors of large objects, e.g.,
buses, have a critical impact on motion planning, which indicates the importance of accurate
heading prediction in detection networks.

Failure Case 1:
Inaccurate heading estimations for large objects, such as 
buses, result in a more conservative turning trajectory.

Failure Case 2:
Inaccurate heading estimations for large objects, such as 
buses, result in different driving behaviors from deceleration 
to acceleration.

Inaccurate object heading 
estimation 

Inaccurate object 
heading estimation 

Figure 3: Failure cases in Agent-Driver.

F Limitations

Due to the limitations of the OpenAI APIs, we are unable to obtain the accurate inference
time of our Agent-Driver. Thus it remains uncertain whether our approach can meet the real-
time demands of commercial driving applications. However, we argue that recent advances
in accelerating LLM inference (Dao et al., 2022; Liu et al., 2023; Xiao et al., 2023) shed light
on a promising direction to enable LLMs for real-time applications. In the meantime, due to
hardware development, autonomous vehicles’ onboard computational power also evolves
rapidly. Given these two factors, we believe the inference restriction will be resolved in the
near future.
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Task Function Name Function Descriptions Parameters

Detection

get leading object detection

Get the detection of the leading object,
the function will return the leading
object id and its position and size.

If there is no leading object, return None.

Null

get surrounding object detections

Get the detections of the surrounding objects in a
20m*20m range, the function will return a list of

surrounding object ids and their positions and sizes.
If there is no surrounding object, return None.

Null

get front object detections

Get the detections of the objects in front of you
in a 20m*40m range, the function will return a list

of front object ids and their positions and sizes.
If there is no front object, return None.

Null

get object detections in range

Get the detections of the objects in a customized
range (x start, x end)*(y start, y end)m2,

the function will return a list
of object ids and their positions and sizes.

If there is no object, return None.

[“x start”,
“x end”,
“y start”,
“y end”]

get all object detections

Get the detections of all objects in the
whole scene, the function will return a list
of object ids and their positions and sizes.

Always avoid using this function
if there are other choices.

Null

Prediction

get leading object future trajectory

Get the predicted future trajectory of
the leading object, the function will return

a trajectory containing a series of waypoints.
If there is no leading vehicle, return None.

Null

get future trajectories for specific objects

Get the future trajectories of specific objects
(specified by a List of object ids), the function

will return trajectories for each object.
If there is no object, return None.

[“object ids”]

get future trajectories in range

Get the future trajectories where any waypoint
in this trajectory falls into a given range

(x start, x end)*(y start, y end)m2, the function will
return each trajectory that satisfies the condition.

If there is no trajectory satisfied, return None

[“x start”,
“x end”,
“y start”,
“y end”]

get future waypoint of
specific objects at timestep

Get the future waypoints of specific objects
at a specific timestep, the function will

return a list of waypoints. If there is no object
or the object does not have a waypoint

at the given timestep, return None.

[“object ids”,
“timestep”]

get all future trajectories

Get the predicted future trajectories of all
objects in the whole scene, the function

will return a list of object ids
and their future trajectories.

Always avoid using this function
if there are other choices.

Null

Table 6: Function definitions in the tool library.
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Task Function Name Function Descriptions Parameters

Map

get drivable at locations
Get the drivability at the locations

[(x1, y1), ..., (xn, yn)].
If the location is out of the map scope, return None.

[“locations”]

check drivable of planned trajectory Check the drivability at the planned trajectory. [“trajectory”]

get lane category at locations
Get the lane category at the locations

[(x1, y1), ..., (xn, yn)].
If the location is out of the map scope, return None.

[“locations”,
“ret prob”]

get distance to shoulder at locations
Get the distance to both sides of road shoulders

at the locations [(x1, y1), ..., (xn, yn)].
If the location is out of the map scope, return None.

[“locations”]

get current shoulder Get the distance to both sides of road shoulders
for the current ego-vehicle location. Null

get distance to lane divider at locations
Get the distance to both sides of road lane dividers

at the locations [(x1, y1), ..., (xn, yn)].
If the location is out of the map scope, return None.

[“locations”]

get current lane divider Get the distance to both sides of road lane
dividers for the current ego-vehicle location. Null

get nearest pedestrian crossing
Get the location of the nearest pedestrian

crossing to the ego-vehicle. If there
is no such pedestrian crossing, return None.

Null

Occupancy get occupancy at locations for timestep

Get the probability whether a list of locations
[(x1, y1), ..., (xn, yn)] is occupied at the timestep t.

If the location is out of the occupancy
prediction scope, return None.

[“locations”,
“timestep”]

check collision for planned trajectory
Check the probability of whether a

planned trajectory [(x1, y1), ..., (xn, yn)]
collides with other objects.

[“trajectory”]

Table 7: Function definitions in the tool library. Cont’d.
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**A Language Agent for Autonomous Driving**
Role: You are the brain of an autonomous vehicle (a.k.a. ego-vehicle). In this step, you need to extract necessary information 
from the driving scenario. The information you extracted must be useful to the next-step motion planning. 

Necessary information might include the following:
- Detections: The detected objects that you need to pay attention to.
- Predictions: The estimated future motions of the detected objects. 
- Maps: Map information includes traffic lanes and road boundaries.
- Occunpancy: Occupancy implies whether a location has been occupied by other objects.

Task
- You should think about what types of information (Detections, Predictions, Maps, Occupancy) you need to extract from the 
driving scenario.
- Detections and Predictions are quite important for motion planning. You should call at least one of them if necessary.
- Maps information are also important. You should pay more attention to road shoulder and lane divider information to your 
current ego-vehicle location.
- I will guide you through the thinking process step by step.

*****Context Information:*****
Current State:
 - Velocity (vx,vy): (-0.01,0.92)
 - Heading Angular Velocity (v_yaw): (0.00)
 - Acceleration (ax,ay): (-0.00,-0.50)
 - Can Bus: (-0.74,0.14)
 - Heading Speed: (0.95)
 - Steering: (-0.02)
Historical Trajectory (last 2 seconds): [(-0.07,-6.43), (-0.05,-4.34), (-0.02,-2.32), (-0.01,-0.91)]
Mission Goal: FORWARD

Do you need to perform detections in this driving scenario?
Please answer YES or NO.

YES

You can execute one of the following functions to get object detection results (don't execute functions that have been used 
before): 
- get_leading_object_detection() #Get the detection of the leading object, the function will return the leading object id and its 
position and size. If there is no leading object, return None 
- get_object_detections_in_range(x_start, x_end, y_start, y_end) #Get the detections of the objects in a given range (x_start, 
x_end)*(y_start, y_end)m^2, the function will return a list of object ids and their positions and sizes. If there is no object, 
return None 
- get_surrounding_object_detections() #Get the detections of the surrounding objects in a 20m*20m range, the function will 
return a list of surroundind object ids and their positions and sizes. If there is no surrounding object, return None 
- get_front_object_detections() #Get the detections of the objects in front of you in a 10m*20m range, the function will 
return a list of front object ids and their positions and sizes. If there is no front object, return None 
- get_all_object_detections() #Get the detections of all objects in the whole scene, the function will return a list of object ids 
and their positions and sizes. Always avoid using this function if there are other choices. 

{“name”: “get_front_object_detections”, “arguments”: “{}”}

Front object detections:
Front object detected, object type: car, object id: 2, position: (4.36, 9.56), size: (1.86, 4.72)
Front object detected, object type: car, object id: 3, position: (-3.70, 13.08), size: (2.01, 4.92)

YES

Do you need to perform future trajectory predictions for the detected objects?
Please answer YES or NO.

Figure 4: An example of the tool use process.
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You can execute one of the following functions to get object future trajectory predictions (don't execute functions that have 
been used before):
- get_leading_object_future_trajectory() #Get the predicted future trajectory of the leading object, the function will return a 
trajectory containing a series of waypoints. If there is no leading vehicle, return None
- get_future_trajectories_for_specific_objects(object_ids) #Get the future trajectories of specific objects (specified by a List of 
object ids), the function will return trajectories for each object. If there is no object, return None
- get_future_trajectories_in_range(x_start, x_end, y_start, y_end) #Get the future trajectories where any waypoint in this 
trajectory falls into a given range (x_start, x_end)*(y_start, y_end)m^2, the function will return each trajectory that satisfies 
the condition. If there is no trajectory satisfied, return None
- get_future_waypoint_of_specific_objects_at_timestep(object_ids, timestep) #Get the future waypoints of specific objects at a 
specific timestep, the function will return a list of waypoints. If there is no object or the object does not have a waypoint at 
the given timestep, return None
- get_all_future_trajectories() #Get the predicted future trajectories of all objects in the whole scene, the function will return 
a list of object ids and their future trajectories. Always avoid using this function if there are other choices.

{“name”: “get_future_trajectories_for_specific_objects”, “arguments”: “'object_ids': [2, 3]”}

Future trajectories for specific objects:
Object type: car, object id: 2, future waypoint coordinates in 3s: [(4.36, 9.56), (4.36, 9.56), (4.36, 9.57), (4.36, 9.57), (4.36, 
9.56), (4.36, 9.56)]
Object type: car, object id: 3, future waypoint coordinates in 3s: [(-2.66, 13.82), (-1.69, 14.79), (-0.99, 16.13), (-0.25, 17.73), 
(0.19, 19.42), (0.57, 21.35)]

Do you need to get occupancy information for this driving scenario?
Please answer YES or NO.

NO

Do you need to get map information for this driving scenario?
Please answer YES or NO.

YES

You can execute one of the following functions to get map information (don't execute functions that have been used before):
- get_drivable_at_locations(locations) #Get the drivability at the locations [(x_1, y_1), ..., (x_n, y_n)]. If the location is out of 
the map scope, return None
- get_lane_category_at_locations(locations, return_score) #Get the lane category at the locations [(x_1, y_1), ..., (x_n, y_n)]. If 
the location is out of the map scope, return None
- get_distance_to_shoulder_at_locations(locations) #Get the distance to both sides of road shoulders at the locations [(x_1, 
y_1), ..., (x_n, y_n)]. If the location is out of the map scope, return None
- get_current_shoulder() #Get the distance to both sides of road shoulders for the current ego-vehicle location.
- get_distance_to_lane_divider_at_locations(locations) #Get the distance to both sides of road lane_dividers at the locations 
[(x_1, y_1), ..., (x_n, y_n)]. If the location is out of the map scope, return None
- get_current_lane_divider() #Get the distance to both sides of road lane_dividers for the current ego-vehicle location
- get_nearest_pedestrian_crossing() #Get the location of the nearest pedestrian crossing to the ego-vehicle. If there is no 
such pedestrian crossing, return None

{“name”: “get_current_shoulder”, “arguments”: “{}”}

Distance to both sides of road shoulders of current ego-vehicle location:
Current ego-vehicle's distance to left shoulder is 7.5m and right shoulder is 4.0m

Figure 5: An example of the tool use process. Cont’d.
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**A Language Agent for Autonomous Driving**
Role: You are the brain of an autonomous vehicle (a.k.a. ego-vehicle). In this step, you need to retrieve the most similar past driving 
experience to help decision-making.

Task
- You will receive the current driving scenario.
- You will also receive several past driving experiences.
- You should decide ONLY ONE experience that is most similar to the current scenario based on the information provided.
- Please answer ONLY the index (e.g., 0, 1, 2) of the most similar experience.

**A Language Agent for Autonomous Driving**
Role: You are the brain of an autonomous vehicle (a.k.a. ego-vehicle). In this step, you need to retrieve the most similar past driving 
experience to help decision-making.

Task
- You will receive the current driving scenario.
- You will also receive several past driving experiences.
- You should decide ONLY ONE experience that is most similar to the current scenario based on the information provided.
- Please answer ONLY the index (e.g., 0, 1, 2) of the most similar experience.

## Current Scenario:
*****Environmental Information:*****
Current State:
 - Velocity (vx,vy): (-0.01,0.92)
 - Heading Angular Velocity (v_yaw): (0.00)
 - Acceleration (ax,ay): (-0.00,-0.50)
 - Can Bus: (-0.74,0.14)
 - Heading Speed: (0.95)
 - Steering: (-0.02)
Historical Trajectory (last 2 seconds): [(-0.07,-6.43), (-0.05,-4.34), (-0.02,-2.32), (-0.01,-0.91)]
Mission Goal: FORWARD

Front object detections:
Front object detected, object type: car, object id: 2, position: (4.36, 9.56), size: (1.86, 4.72)
Front object detected, object type: car, object id: 3, position: (-3.70, 13.08), size: (2.01, 4.92)

Future trajectories for specific objects:
Object type: car, object id: 2, future waypoint coordinates in 3s: [(4.36, 9.56), (4.36, 9.56), (4.36, 9.57), (4.36, 9.57), (4.36, 9.56), 
(4.36, 9.56)]
Object type: car, object id: 3, future waypoint coordinates in 3s: [(-2.66, 13.82), (-1.69, 14.79), (-0.99, 16.13), (-0.25, 17.73), (0.19, 
19.42), (0.57, 21.35)]

Distance to both sides of road shoulders of current ego-vehicle location:
Current ego-vehicle's distance to left shoulder is 7.5m and right shoulder is 4.0m

Found 3 relevant experiences:

## Past Driving Experience 1:
*****Past Environmental Information:*****
Current State:
 - Velocity (vx,vy): (0.00,1.07)
 - Heading Angular Velocity (v_yaw): (-0.00)
 - Acceleration (ax,ay): (-0.02,-0.43)
 - Can Bus: (-0.67,0.03)
 - Heading Speed: (1.00)
 - Steering: (0.13)
Historical Trajectory (last 2 seconds): [(-0.16,-6.66), (-0.08,-4.46), (-0.03,-2.55), (-0.00,-1.06)]
Mission Goal: FORWARD

Future trajectories for specific objects:
Object type: car, object id: 2, future waypoint coordinates in 3s: [(-1.13, -13.82), (-1.09, -12.18), (-1.05, -10.66), (-0.98, -9.22), (-0.98, 
-7.96), (-0.93, -6.74)]
Object type: car, object id: 3, future waypoint coordinates in 3s: [(-25.19, -17.79), (-25.19, -17.79), (-25.18, -17.78), (-25.18, -17.78), 
(-25.18, -17.78), (-25.17, -17.78)]

Figure 6: An example of the memory search process.
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## Past Driving Experience 2: 
*****Past Environmental Information:*****
Current State:
 - Velocity (vx,vy): (-0.01,0.97)
 - Heading Angular Velocity (v_yaw): (0.00)
 - Acceleration (ax,ay): (-0.01,-0.46)
 - Can Bus: (-0.68,0.11)
 - Heading Speed: (1.16)
 - Steering: (0.04)
Historical Trajectory (last 2 seconds): [(-0.06,-6.03), (-0.04,-4.10), (-0.02,-2.40), (-0.01,-0.97)]
Mission Goal: FORWARD

Front object detections:
Front object detected, object type: car, object id: 0, position: (-0.58, 9.54), size: (1.75, 3.99)
Front object detected, object type: car, object id: 2, position: (3.57, 7.27), size: (1.88, 4.49)
Front object detected, object type: truck, object id: 3, position: (-0.08, 19.97), size: (2.93, 9.04)
Future trajectories for specific objects:
Object type: car, object id: 2, future waypoint coordinates in 3s: [(3.59, 12.47), (3.61, 17.78), (3.68, 23.26), (3.70, 28.79), (3.66, 
34.46), (3.65, 40.07)]
Object type: truck, object id: 3, future waypoint coordinates in 3s: [(-0.08, 19.96), (-0.08, 19.93), (-0.09, 19.93), (-0.09, 19.92), (-0.08, 
19.92), (-0.09, 19.91)]

## Past Driving Experience 3:
*****Past Environmental Information:*****
Current State:
 - Velocity (vx,vy): (-0.01,1.06)
 - Heading Angular Velocity (v_yaw): (-0.00)
 - Acceleration (ax,ay): (0.00,-0.32)
 - Can Bus: (-0.77,0.04)
 - Heading Speed: (1.06)
 - Steering: (-0.01)
Historical Trajectory (last 2 seconds): [(-0.08,-6.01), (-0.05,-4.12), (-0.04,-2.43), (-0.02,-1.06)]
Mission Goal: FORWARD

Front object detections:
Front object detected, object type: car, object id: 1, position: (-3.08, 2.56), size: (1.88, 4.52)
Future trajectories for specific objects:
Object type: car, object id: 2, future waypoint coordinates in 3s: [(-18.54, -24.30), (-18.54, -24.30), (-18.54, -24.30), (-18.54, -24.30), 
(-18.54, -24.31), (-18.54, -24.31)]
Object type: car, object id: 3, future waypoint coordinates in 3s: [(-3.26, -31.78), (-3.43, -28.27), (-3.36, -25.04), (-3.45, -22.14), (-
3.46, -19.62), (-3.51, -17.45)]

Please return the index 1-3 of the most similar experience: 

2

*****Past Driving Experience for Reference:*****
Most similar driving experience from memory with confidence score: 0.75:
The planned trajectory in this experience for your reference:
[(0.01,0.98), (0.01,1.87), (0.02,2.40), (0.02,2.64), (0.02,2.76), (0.02,2.86)]

Figure 7: An example of the memory search process. Cont’d.

*****Common Sense:*****
- Avoid collision with other objects.
- Always drive on drivable regions.
- Avoid driving on occupied regions.
- Pay attention to your ego-states and historical trajectory when planning.
- Maintain a safe distance from the objects in front of you.

Figure 8: Retrieved commonsense memory.
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**A Language Agent for Autonomous Driving**
Role: You are the brain of an autonomous vehicle (a.k.a. ego-vehicle). In this step, you need to first determine notable objects
and identify their potential effects on your driving route, and then derive a high-level driving plan.

Context:
- Coordinates: X-axis is perpendicular, and Y-axis is parallel to the direction you're facing. You're at point (0,0). Units: meters.

Input
- You will receive your current ego-states.
- You will also receive current perception results.

Task
- You need to determine the notable objects based on perception results and ego-states. Notable objects are the objects that will 
have potential effects on your driving route. So you should always pay attention to the objects in front (with positive y) of you, 
and the objects that are close (within 1.5 meters) to you.
- You need to describe the potential effects of those notable objects on your driving route.
- You need to derive a high-level driving plan based on the former information and reasoning results. 
The driving plan should be a combination of a meta action from ["STOP", "MOVE FORWARD", "TURN LEFT", "CHANGE LANE TO 
LEFT", "TURN RIGHT", "CHANE LANE TO RIGHT"], and a speed description from ["A CONSTANT SPEED", "A DECELERATION", 
"A QUICK DECELERATION", "A DECELERATION TO ZERO", "AN ACCELERATION", "A QUICK ACCELERATION"] if the meta action 
is not "STOP".
- **Strictly follow the output format.**

Output:
*****Chain-of-Thoughts Reasoning:*****
- Notable Objects: 

Potential Effects:
- Notable Objects: 

Potential Effects:
*****Task Planning:*****
Behavior: , Speed: 
Driving plan:

Here are examples for your reference:

## Example 1
## Input:
*****Environmental Information:*****
Current State:
- Velocity (vx,vy): (-0.02,2.66)
- Heading Angular Velocity (v_yaw): (-0.01)
- Acceleration (ax,ay): (0.00,0.00)
- Can Bus: (-1.72,-0.95)
- Heading Speed: (2.83)
- Steering: (1.12)

Historical Trajectory (last 2 seconds): [(-1.16,-10.63), (-0.87,-7.97), (-0.58,-5.32), (-0.29,-2.66)]
Mission Goal: RIGHT

Front object detections:
Front object detected, object type: bicycle, object id: 0, position: (-1.02, 7.49), size: (0.49, 1.67)
Front object detected, object type: car, object id: 1, position: (8.71, 18.66), size: (1.92, 4.55)

Future trajectories for specific objects:
Object type: bicycle, object id: 0, future waypoint coordinates in 3s: [(-1.02, 7.51), (-1.02, 7.52), (-1.02, 7.54), (-1.03, 7.55), (-1.02, 
7.59), (-1.02, 7.61)]
Object type: car, object id: 1, future waypoint coordinates in 3s: [(8.71, 18.66), (8.70, 18.65), (8.69, 18.65), (8.69, 18.64), (8.69, 
18.63), (8.69, 18.65)]

Distance to both sides of road shoulders of current ego-vehicle location:
Current ego-vehicle's distance to left shoulder is 1.0m and right shoulder is 0.5m

## Expected Output:
*****Chain-of-Thoughts Reasoning:*****
- Notable Objects: bicycle at (-1.02,7.49), moving to (-1.02,7.51) at 0.5 second

Potential Effects: within the safe zone of the ego-vehicle at 0.5 second
*****Task Planning:*****
Behavior: TURN RIGHT, Speed: A CONSTANT SPEED 
Driving plan: TURN RIGHT WITH A CONSTANT SPEED

Figure 9: An example of chain-of-thought reasoning and task planning.
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*****Environmental Information:*****
Current State:
 - Velocity (vx,vy): (-0.01,0.92)
 - Heading Angular Velocity (v_yaw): (0.00)
 - Acceleration (ax,ay): (-0.00,-0.50)
 - Can Bus: (-0.74,0.14)
 - Heading Speed: (0.95)
 - Steering: (-0.02)
Historical Trajectory (last 2 seconds): [(-0.07,-6.43), (-0.05,-4.34), (-0.02,-2.32), (-0.01,-0.91)]
Mission Goal: FORWARD

Front object detections:
Front object detected, object type: car, object id: 2, position: (4.36, 9.56), size: (1.86, 4.72)
Front object detected, object type: car, object id: 3, position: (-3.70, 13.08), size: (2.01, 4.92)

Future trajectories for specific objects:
Object type: car, object id: 2, future waypoint coordinates in 3s: [(4.36, 9.56), (4.36, 9.56), (4.36, 9.57), (4.36, 9.57), (4.36, 9.56), 
(4.36, 9.56)]
Object type: car, object id: 3, future waypoint coordinates in 3s: [(-2.66, 13.82), (-1.69, 14.79), (-0.99, 16.13), (-0.25, 17.73), (0.19, 
19.42), (0.57, 21.35)]

Distance to both sides of road shoulders of selected locations:
Location (4.36, 9.56) distance to left shoulder is 16.5m and right shoulder is 0.5m
Location (-3.70, 13.08) distance to left shoulder is 13.0m and right shoulder is 8.5m

*****Chain of Thoughts Reasoning:*****
- Notable Objects: car at (4.36,9.56)
   Potential Effects: within the safe zone of the ego-vehicle at 0.5 second
 - Notable Objects: car at (-3.70,13.08)
   Potential Effects: within the safe zone of the ego-vehicle at 0.5 second
*****Task Planning:*****
Driving plan: MOVE FORWARD WITH A DECELERATION

## Example 2
## Input:
*****Environmental Information:*****
Current State:
 - Velocity (vx,vy): (-0.10,5.42)
 - Heading Angular Velocity (v_yaw): (-0.00)
 - Acceleration (ax,ay): (0.02,1.14)
 - Can Bus: (0.92,0.25)
 - Heading Speed: (4.53)
 - Steering: (0.03)
Historical Trajectory (last 2 seconds): [(-0.17,-17.86), (-0.11,-13.82), (-0.07,-9.70), (-0.04,-5.42)]
Mission Goal: FORWARD

Front object detections:
Front object detected, object type: pedestrian, object id: 4, position: (6.49, 16.88), size: (0.66, 0.72)

Future trajectories for specific objects:
Object type: pedestrian, object id: 4, future waypoint coordinates in 3s: [(6.46, 17.53), (6.44, 18.20), (6.42, 18.89), (6.38, 19.57), 
(6.37, 20.26), (6.34, 20.91)]

Distance to both sides of road shoulders of selected locations:
Location (6.49, 16.88) distance to left shoulder is 2.5m and distance to right shoulder is uncertain

## Expected Output:
*****Chain-of-Thoughts Reasoning:*****
 - Notable Objects: car at (2.44,44.97)
   Potential Effects: within the safe zone of the ego-vehicle at 2.5 second
*****Task Planning:*****
Behavior: MOVE FORWARD, Speed: A DECELERATION
Driving plan: MOVE FORWARD WITH A DECELERATION

Figure 10: An example of chain-of-thought reasoning and task planning. Cont’d.

32



Published as a conference paper at COLM 2024

**Autonomous Driving Planner**
Role: You're an autonomous vehicle's brain. Plan a 3-second safe trajectory to avoid obstacles.

Context:
- Coordinates: X-axis is perpendicular, and Y-axis is parallel to the direction you're facing. You're at point (0,0). Units: meters.
- Goal: Plan a 3-second route using 6 waypoints (0.5s intervals).

Inputs:
1. Ego States (important): Current stats (velocity, acceleration), past trajectory, goal direction.
2. Perception Results.
3. Past Experiences (important): Previous similar experiences with confidence scores and referenced planned trajectory.
4. Traffic Rules.
5. Reasoning (important): Notable objects affecting your plan and a top-level driving plan.

Task:
- Based on inputs, plan a safe, feasible 3-second trajectory of 6 waypoints.

Output:
Planned Trajectory:
[(x1,y1), (x2,y2), ... , (x6,y6)]

*****Environmental Information:*****
Current State:
 - Velocity (vx,vy): (-0.01,0.92)
 - Heading Angular Velocity (v_yaw): (0.00)
 - Acceleration (ax,ay): (-0.00,-0.50)
 - Can Bus: (-0.74,0.14)
 - Heading Speed: (0.95)
 - Steering: (-0.02)
Historical Trajectory (last 2 seconds): [(-0.07,-6.43), (-0.05,-4.34), (-0.02,-2.32), (-0.01,-0.91)]
Mission Goal: FORWARD

Front object detections:
Front object detected, object type: car, object id: 2, position: (4.36, 9.56), size: (1.86, 4.72)
Front object detected, object type: car, object id: 3, position: (-3.70, 13.08), size: (2.01, 4.92)

Future trajectories for specific objects:
Object type: car, object id: 2, future waypoint coordinates in 3s: [(4.36, 9.56), (4.36, 9.56), (4.36, 9.57), (4.36, 9.57), (4.36, 9.56), 
(4.36, 9.56)]
Object type: car, object id: 3, future waypoint coordinates in 3s: [(-2.66, 13.82), (-1.69, 14.79), (-0.99, 16.13), (-0.25, 17.73), (0.19, 
19.42), (0.57, 21.35)]

Distance to both sides of road shoulders of selected locations:
Location (4.36, 9.56) distance to left shoulder is 16.5m and right shoulder is 0.5m
Location (-3.70, 13.08) distance to left shoulder is 13.0m and right shoulder is 8.5m

*****Past Driving Experience for Reference:*****
Most similar driving experience from memory with confidence score: 0.75:
The planned trajectory in this experience for your reference:
[(0.01,0.98), (0.01,1.87), (0.02,2.40), (0.02,2.64), (0.02,2.76), (0.02,2.86)]

*****Common Sense:*****
- Avoid collision with other objects.
- Always drive on drivable regions.
- Avoid driving on occupied regions.
- Pay attention to your ego-states and historical trajectory when planning.
- Maintain a safe distance from the objects in front of you.

*****Chain of Thoughts Reasoning:*****
Thoughts:
 - Notable Objects: car at (4.36,9.56), moving to (4.36,9.57) at 0.5 second
   Potential Effects: within the safe zone of the ego-vehicle at 0.5 second
 - Notable Objects: car at (-3.70,13.08), moving to (0.57,21.35) at 2.5 second
   Potential Effects: within the safe zone of the ego-vehicle at 2.5 second
*****Task Planning:*****
Driving plan: MOVE FORWARD WITH A DECELERATION

Planned Trajectory:
[(0.01,0.77), (0.01,1.43), (0.02,1.92), (0.02,2.27), (0.02,2.47), (0.02,2.57)]

Figure 11: An example of motion planning.
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*****Environmental information:*****
Front object detections:
Front object detected, object type: car, object id: 1, position: (2.40, 10.22), size: (1.91, 4.66)
…
Front object detected, object type: car, object id: 8, position: (2.39, 10.21), size: (1.92, 4.67)
Future trajectories for specific objects:
Object type: car, object id: 1, future waypoint coordinates in 3s: [(2.44, 9.83),…]
…
Object type: car, object id: 8, future waypoint coordinates in 3s: [(2.43, 9.84),…]
Map information (road shoulders):
Current ego-vehicle's distance to left shoulder is 8.5m and right shoulder is 13.0m

*****Common sense:*****
- Avoid collision with other objects...
*****Past driving experience for reference:*****
Most similar driving experience from memory with similarity score: 0.75:
Scenario information: …
The planned trajectory in this scenario for your reference: [(0.00,2.15), …, (-0.11,12.99)]

*****Chain-of-thoughts reasoning:*****
- Notable Objects: car at (2.40,10.22), moving to (2.47,9.46) at 1.0 second
- Potential Effects: within the safe zone of the ego-vehicle at 1.0 second
…
*****Task planning:*****
Behavior: forward; Speed: acceleration; Driving plan: move forward with an acceleration
*****Motion planning:*****
Trajectory: [(-0.02,2.15), (-0.07,4.56), (-0.10,7.11), (-0.17,9.92), (-0.32,12.92), (-0.63,16.20)]
*****Self-reflection:*****
No collision. No change to the motion planning result.

*****Environmental information:*****
Surrounding object detections:
Surrounding object detected, object type: car, object id: 5, position: (-4.53, 3.85), size: (1.80, 4.37)
…
Future trajectories for specific objects:
Object type: car, object id: 5, future waypoint coordinates in 3s: [(-5.36, 6.26),…]
…
Map information (road shoulders):
Current ego-vehicle's distance to left shoulder is 5.0m and right shoulder is 1.0m

*****Common sense:*****
- Avoid collision with other objects...
*****Past driving experience for reference:*****
Most similar driving experience from memory with similarity score: 0.50:
Scenario information: …
The planned trajectory in this scenario for your reference:[(0.12,2.12), … , (4.79,13.52)]

*****Chain-of-thoughts reasoning:*****
- Notable objects: car at (-4.53,3.85)
- Potential effects: within the safe zone of the ego-vehicle at 0.5 second.
…
*****Task planning:*****
Behavior: turn right; Speed: constant; Driving plan: turn right with a constant speed.
*****Motion planning:*****
Trajectory: [(0.22,2.70), (0.65,5.15), (1.36,7.68), (2.44,10.22), (3.78,12.48), (5.04,14.15)] 
*****Self-reflection:*****
No collision. No change to the motion planning result.

*****Environmental information:*****
Leading object detections:
Leading object detected, object type: car, object id: 0, position: (0.17, 11.05), size: (1.82, 4.34)
…
Future trajectories for specific objects:
Object type: car, object id: 0, future waypoint coordinates in 3s: [(0.18, 12.21),…]
…
Map information (road shoulders):
Current ego-vehicle's distance to left shoulder is 1.0m and right shoulder is 4.0m

*****Common sense:*****
- Avoid collision with other objects...
*****Past driving experience for reference:*****
Most similar driving experience from memory with similarity score: 0.89:
Scenario information: …
The planned trajectory in this scenario for your reference: [(0.03,2.64), …, (0.01,10.13)]

*****Chain-of-thoughts reasoning:*****
- Notable Objects: car at (0.17,11.05)
- Potential Effects: within the safe zone of the ego-vehicle at 1.5 second
…
*****Task planning:*****
Behavior: forward; Speed: deceleration; Driving plan: move forward with a deceleration
*****Motion planning:*****
Trajectory: [(0.01,2.26), (0.02,4.22), (0.02,5.82), (0.01,7.14), (0.02,8.19), (0.02,8.92)]
*****Self-reflection:*****
No collision. No change to the motion planning result.

*****Environmental information:*****
Front object detections:
Front object detected, object type: car, object id: 0, position: (2.79, 6.20), size: (1.83, 4.37)
Future trajectories for specific objects:
Object type: car, object id: 0, future waypoint coordinates in 3s: [(2.73, 2.45),…]
Map information (road shoulders):
Current ego-vehicle's distance to left shoulder is 1.5m and right shoulder is 3.5m

*****Common sense:*****
- Avoid collision with other objects...
*****Past driving experience for reference:*****
Most similar driving experience from memory with similarity score: 0.79:
Scenario information: …
The planned trajectory in this scenario for your reference:[(0.04,3.99), … , (-0.04,25.64)]

*****Chain-of-thoughts reasoning:*****
- Notable objects: car at (2.79,6.20)
- Potential effects: within the safe zone of the ego-vehicle at 0.5 second.
…
*****Task planning:*****
Behavior: forward; Speed: constant; Driving plan: move forward with a constant speed.
*****Motion planning:*****
Trajectory: [(0.07,3.95), (0.22,9.04), (0.39,13.77), (0.61,18.50), (0.82,23.20), (0.93,27.92)] 
*****Self-reflection:*****
No collision. No change to the motion planning result.

Figure 12: Interpretability of Agent-Driver.
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Figure 13: Visualization of how Agent-Driver progressively identifies critical objects and
performs motion planning.
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Figure 14: Visualization of how Agent-Driver progressively identifies critical objects and
performs motion planning.
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Figure 15: Visualization of how Agent-Driver progressively identifies critical objects and
performs motion planning.
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Figure 16: Driving video of Agent-Driver.
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Figure 17: Driving video of Agent-Driver.
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Figure 18: Driving video of Agent-Driver.
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