
SplatSim: Zero-Shot Sim2Real Transfer of RGB
Manipulation Policies Using Gaussian Splatting

M. Nomaan Qureshi, Sparsh Garg, Francisco Yandun, David Held, George Kantor, Abhisesh Silwal
Robotics Institute, School of Computer Science

Carnegie Mellon University, United States
{mquresh2, sparshg, fyandun, dheld, gkantor, asilwal}@andrew.cmu.edu

Abstract: Sim2Real transfer, particularly for manipulation policies relying on
RGB images, remains a critical challenge in robotics due to the significant do-
main shift between synthetic and real-world visual data. In this paper, we propose
SplatSim, a novel framework that leverages Gaussian Splatting as the primary ren-
dering primitive to reduce the Sim2Real gap for RGB-based manipulation poli-
cies. By replacing traditional mesh representations with Gaussian Splats in sim-
ulators, SplatSim produces highly photorealistic synthetic data while maintaining
the scalability and cost-efficiency of simulation. We demonstrate the effectiveness
of our framework by training manipulation policies within SplatSim and deploy-
ing them in the real world in a zero-shot manner, achieving an average success rate
of 86.25%, compared to 97.5% for policies trained on the real-world data. Videos
can be found on our project page: https://splatsim.github.io

1 Introduction

In this paper, we propose a systematic and novel method to reduce the Sim2Real gap for RGB im-
ages, by leveraging Gaussian Splatting [1] as a photorealistic render, using existing simulators as the
physics backbone. We propose utilizing Gaussian Splatting [1] as the primary rendering primitive,
replacing traditional mesh-based representations in existing simulators, to significantly improve the
photo-realism of rendered scenes. By integrating these renderings of simulated demonstrations with
state-of-the-art behavior cloning techniques, we introduce a framework for zero-shot transfer of ma-
nipulation policies trained entirely on simulation data, to the real world. Our key contributions are
as follows:

• We propose a novel and scalable data generation framework, SplatSim for manipulation
tasks. SplatSim is focused predominantly on bridging the vision Sim2Real gap by lever-
aging photorealistic renderings generated through Gaussian Splatting, replacing traditional
mesh representation in the rendering pipeline of the simulator.

• We show how to leverage Robot Splat Models and Object Splat Models, along with the
simulator as a physics backend, to generate photorealistic trajectories of robot-object inter-
actions. Our method eliminates the need for the real-world data collection to learn these
interactions, and relies solely on an initial video of the static scene with the robot. We
further demonstrate how these renderings, when combined with simulated demonstrations,
can be utilized to generate high-quality synthetic datasets for behavior cloning methods.

• We demonstrate the effectiveness of our framework by deploying RGB policies, trained
entirely in simulation, to the real world in a zero-shot manner across four tasks, achieving
an average success rate of 86.25%, compared to 97.5% for policies trained on the real-world
data.
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2 Method

The key premise of our method is that if each rigid body in the Gaussian Splat representation of the
real-world scene can be accurately segmented, and its corresponding homogeneous transformation
relative to the simulator is identified, then it becomes feasible to render the rigid body in novel
poses. The rigid bodies can include links of the robot, links of the gripper, articulated objects, or
simple non-deformable objects. By applying this process to all rigid bodies interacting with the
robot in simulation, we can generate photorealistic renderings for an entire demonstration trajectory.
This approach is analogous to traditional rendering in simulators; however, instead of using mesh
primitives, we utilize Gaussian Splats as the underlying representation. This approach allows us to
be more effective at capturing the detailed visual fidelity of the real-world scenes.

2.1 Problem Statement

We define Sreal as the Gaussian Splat of a real-world scene, captured from multiple RGB view-
points, including the robot. We also define Sk

obj as the splat of the k-th object in the scene, captured
from multiple viewpoints. Our goal is to use Sreal for generating photorealistic renderings Isim

of a robot operating in any simulator (e.g., PyBullet). Then, we can leverage this representation to
collect demonstrations using the expert E for training RGB-based policies.

The expert E generates a trajectory τE consisting of state-action pairs {(s1, a1), . . . , (sT , aT )} for
a full episode. The state at each time step t is defined as st = (qt, x

1
t , . . . , x

n
t ), where qt ∈ Rm

denotes the robot’s joint angles and xk
t = (pkt , R

k
t ) represents the position pkt ∈ R3 and orientation

Rk
t ∈ SO(3) of the k-th object in the scene. The corresponding action at = (pet , R

e
t ) refers to the

end effector’s position pet ∈ R3 and orientation Re
t ∈ SO(3).

The renderings Isim, derived from these simulated states st, are used as inputs to train the policy
πI . The policy relies solely on real-world RGB images Ireal at test time.
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Figure 1: The robot is visualized in a static scene by first creating a Gaussian splat of the scene with the robot
in its home position. The robot’s point cloud is manually segmented and aligned with the canonical robot
frame using the ICP algorithm. Each robot link is then segmented, and forward kinematics transformations are
applied, enabling the rendering of the robot at arbitrary joint configurations.

2.2 Robot Splat Models

Our method for obtaining robot renderings at novel joint poses is summarized in Fig. 1. It follows a
three-step approach:

2.2.1 Alignment of Gaussian Splat Robot Frame to the Simulator Frame

In order to combine the Gaussian Splat representation Sreal with the simulator, we first manually
segment out the 3D Gaussians associated with the robot. The means of these 3D Gaussians form
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a point cloud which is aligned with the ground truth point cloud obtained from the simulator. To
achieve this, we use the Iterative Closest Point (ICP) algorithm, which produces the desired trans-
formation T

Fsplat

Frobot
.

2.2.2 Segmentation of the Robot Links

To associate the 3D Gaussians with their respective links in Sreal, we leverage the ground truth
bounding boxes of the robot’s links, provided by its CAD model. This method allows us to isolate
the 3D Gaussians corresponding to each link in the real-world scene, denoted as Sl

real, where l refers
to the l-th link of the robot.

2.2.3 Forward Kinematics Transformation

Once we have the 3D Gaussians for individual links and the frames aligned, we can use the robot’s
forward kinematics to get the robot pose at arbitrary joint angles qt ∈ st, given by the simulator. In
this work, we use the forward kinematics routine from PyBullet to get the Transformation T l

fk for
link l in the robot’s canonical frame Fsim. The transformation of the 3D Gaussians can be calculated
as :

T = (T
Fsplat

Frobot
)−1 · T l

fk · TFsplat

Frobot
(1)

where TFsplat

Frobot
is the transformation matrix to get the robot from splat frame to the simulation frame.

Once the transformation for each link is calculated, we transform the 3D Gaussians related to in-
dividual links of the robot. The robot at novel poses is then rendered by the standard Gaussian
Splatting rendering framework [1].

2.3 Rendering Simulated Trajectories using SplatSim

Now that we are able to render individual rigid bodies in the scene, we can use this to represent
any simulated trajectory τE with photorealistic accuracy. We use these state-based transformations
along with methods described in Sec. 2.2 to get the demonstration for our policy to learn from
τG = {(Isim1 , a1), (I

sim
2 , a2), . . . , (I

sim
T , aT )}. This data is used by policy to predict actions from

the synthetically generated images.

2.4 Policy Training and Deployment

For learning from the generated demonstrations τG in the simulator, we employ Diffusion Policy [2,
3], which is the state of the art for behavior cloning. Although our method significantly mitigates
the vision Sim2Real gap, discrepancies between the simulated and real-world environments remain.
For instance, simulated scenes lack shadows, and rigid body assumptions can lead to improper
rendering of flexible components such as robot cables. To address these issues, we incorporate
image augmentations similar to [4] during policy training, which includes adding gaussian noise,
random erasing and adjusting brightness and contrast of the image. These augmentations notably
enhance the robustness of the policy and improve its performance during real-world deployment.

3 Experiments

To evaluate the effectiveness of our framework in bridging the Sim2Real gap for RGB-based manip-
ulation tasks, we conducted extensive experiments across four real-world manipulation tasks. We
begin by detailing the data collection process in both the simulator and real-world environments.
We then compare the performance of policies trained on our synthetic data with Real2Real poli-
cies—those trained on real-world data and deployed in real-world environments. This comparison
demonstrates the high fidelity of our synthetic data, showing that policies trained within our frame-
work can be deployed to real-world tasks without fine-tuning on the real-world data. Additionally,
we assess Sim2Sim performance by training and evaluating policies entirely within the SplatSim
framework, allowing us to quantify the degradation in performance during Sim2Real transfer.
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3.1 Demonstrations in the Real World and Simulation

In the real world, demonstrations for each task were manually collected by a human expert. In
contrast, the simulator streamlines this process by employing privileged information-based motion
planners, which automatically generate data using privileged information, such as the position and
orientation of each rigid body in the scene. The simulator not only reduces effort by automating
resets between demonstrations when a human expert is involved but more importantly, it leverages
motion planners that eliminate the need for human intervention entirely. This enables the generation
of large-scale, high-quality demonstration datasets with minimal manual input. As a result, the
simulator drastically reduces the time and effort required for data collection. As shown in Table 1,
while real-world demonstration collection required about 20.5 hours, the same tasks were completed
in just 3 hours in the simulator, underscoring the efficiency and scalability of our approach.

3.2 Zero-Shot Policy Deployment Results

We evaluate the zero-shot deployment of our policies across four contact-rich real-world tasks, using
task success rate as the primary metric. As shown in Table 1, our method achieves an average success
rate of 86.25% for zero-shot Sim2Real transfer, compared to 97.5% for policies trained directly on
real-world data, highlighting the effectiveness of our approach. All experiments were conducted
using a UR5 robot equipped with a Robotiq 2F-85 gripper and 2 Intel Realsense D455 cameras [5]
with deployment on an NVIDIA RTX 3080Ti GPU for the Diffusion Policy [2].

Task Successful Trials Human Effort to Collect Data
(Out of 40 Trials) (hours)

Sim2Sim Real2Real Sim2Real (SplatSim) Simulator Real World
T-Push 100% 100% 90% 3.0 3.5

Pick-Up-Apple 100% 100% 95% 0.0∗ 3.5
Orange-On-Plate 97.5% 95% 90% 0.0∗ 6.0

Assembly 85% 90% 70% 0.0∗ 7.5
Total 95.62% 97.5% 86.25% 3.0 20.5

∗ Automated process
Table 1: Comparison of task success rates and data collection times across various manipulation tasks. Our
policies trained solely on synthetic data achieve an 86.25% zero-shot Sim2Real performance, comparable to
those trained on real-world data. By leveraging the automation capabilities of simulators, we significantly
reduce the human effort required for data generation.

4 Conclusion

In this work, we tackled the challenge of reducing the Sim2Real gap for RGB-based manipula-
tion policies by leveraging Gaussian Splatting as a photorealistic rendering technique, integrated
with existing simulators for physics-based interactions. Our framework enables zero-shot transfer
of RGB-based manipulation policies trained in simulation to real-world environments. While our
framework advances the current state-of-the-art, it is still limited to rigid body manipulation and
cannot handle complex objects such as cloth, liquids, or plants. We will also further improve our
system to train and deploy robots in highly complex and contact-rich tasks in the real world. Specif-
ically, agricultural tasks such as pruning and harvesting, which require data that is challenging to
obtain under field conditions.
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