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Abstract

With the advancement of large language mod-001
els (LLMs) and the expansion of their context002
windows, existing long-context benchmarks003
fall short in effectively evaluating the models’004
comprehension and reasoning abilities in ex-005
tended texts. Moreover, conventional bench-006
marks relying on F1 metrics often inaccurately007
score responses: they may undervalue correct008
answers that differ from the reference responses009
and overvalue incorrect ones that resemble the010
reference texts. In response to these limita-011
tions, we introduce Marathon, a novel evalua-012
tion benchmark that adopts a multiple-choice013
question format. It is specifically designed to014
overcome the constraints of previous bench-015
marks and provide a rapid, precise, and un-016
biased appraisal of the long-context compre-017
hension skills of large language models. We018
conducted comprehensive evaluations on the019
Marathon benchmark with a range of state-of-020
the-art LLMs and assessed the effectiveness021
of various optimization strategies tailored for022
long-context generation. We anticipate that the023
Marathon benchmark and its associated leader-024
board will enable a more precise and equitable025
evaluation of LLMs’ capabilities in understand-026
ing and reasoning over extended contexts.027

1 Introduction028

In the rapidly evolving landscape of artificial intel-029

ligence technologies, the emergence of large lan-030

guage models (LLMs), as exemplified by Chat-031

GPT (OpenAI, 2023b), showcases notable capa-032

bilities. The influence of these models extends033

beyond the well-established ChatGPT, gaining in-034

creasing prominence across diverse sectors. Ex-035

isting LLMs are typically built upon Transformer036

architectures, which demand memory and com-037

putational resources that grow quadratically with038

sequence length. Consequently, Transformer lan-039

guage models have historically been trained with040

relatively modest predetermined context windows.041

For instance, LLaMA (Touvron et al., 2023a) em- 042

ploys a context size of 2048 tokens, while Llama2 043

(Touvron et al., 2023b) utilizes a context size of 044

4096 tokens. However, the pre-defined size im- 045

poses constraints on LLMs in various applications, 046

such as summarizing extensive documents or ad- 047

dressing lengthy questions. 048

Significant research efforts have been devoted 049

to extending the context length of LLMs. Due 050

to the prohibitive expense of training LLMs with 051

extended context lengths from scratch, the pre- 052

dominant studies have endeavored to enhance the 053

capabilities of LLMs to comprehend long con- 054

texts through fine-tuning. These methods encom- 055

pass extending the context window (Chen et al., 056

2023b), incorporating recurrent memory (Bulatov 057

et al., 2024), employing sparse attention mecha- 058

nisms (Xiao et al., 2023a), and augmenting with 059

external memory (Wang et al., 2023). Concur- 060

rently, an increasing multitude of benchmarks have 061

been introduced to assess the long-context under- 062

standing capabilities of LLMs. LongBench (Bai 063

et al., 2023b) stands out as the first bilingual, 064

multi-task benchmark specifically designed for the 065

assessment of long-context understanding. This 066

dataset continues to depend on the F1 score, which 067

evaluates the responses of LLMs against a prede- 068

fined set of possible answers. LooGLE (Li et al., 069

2023b) encompasses intricate long dependency 070

tasks, including event timeline reordering, compre- 071

hension/reasoning, and computation. Nevertheless, 072

the diverse nature of model-generated content in- 073

troduces a challenge, as these predefined answers 074

may not encompass all valid responses, thereby di- 075

minishing the precision of assessing model perfor- 076

mance. There is a growing demand for high-quality 077

benchmarks characterized by significantly longer 078

text lengths and more challenging tasks, ensuring 079

comprehensive evaluations. 080

In this study, we introduce a novel benchmark 081

named Marathon, designed for long-context under- 082
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Figure 1: The overall accuracy of different models on Marathon. The x-axis represents the model, and the y-axis
represents the average accuracy across all tasks. The different colors represent different methods of optimization.

standing and reasoning. In particular, this bench-083

mark is constructed upon the foundations estab-084

lished by LooGLE (Li et al., 2023b) and Long-085

Bench (Bai et al., 2023b). The contextual lengths086

within this benchmark span from 2K to over 260K087

characters. For each extensive context provided,088

an associated question is paired with four metic-089

ulously crafted response options. These options090

have been carefully reviewed by humans and con-091

tain only one correct answer, with the remaining092

options designed to be highly misleading. This de-093

sign makes the Marathon benchmark a particularly094

challenging one. The task for the large language095

model is to discern the accurate response option096

based on the extensive context provided.097

The main contributions of this work are three-098

fold:099

• We introduce a novel multiple-choice long100

context benchmark that comprehensively eval-101

uates the long context understanding and rea-102

soning capabilities across 10 leading open-103

source large language models, as well as Chat-104

GPT and GPT-4, covering six diverse types of105

tasks.106

• We compare two prevalent methods for long107

context optimization (Prompt Compression108

and Retrieval Augmented Generation) along109

with two leading embedding models, assess-110

ing their impact on enhancing the long context111

reasoning abilities of large language models.112

• Our findings reveal a general tendency among113

current open-source large language models to114

generate lengthier responses, accompanied by115

a notable deficiency in following instructions 116

accurately. 117

2 Related Work 118

2.1 Prompt Compression 119

Although larger context windows enable large lan- 120

guage models to handle longer contextual informa- 121

tion, processing long-context information requires 122

a significant amount of computing resources and 123

places high demands on hardware. It also neces- 124

sitates longer computational time, even in the in- 125

ference stage. Therefore, some methods like LLM- 126

Lingua (Jiang et al., 2023c) and LongLLMLingua 127

(Jiang et al., 2023b) have been proposed to com- 128

press long contexts. 129

2.2 Retrieval Augmented Generation 130

Retrieval Augmented Generation (RAG) was origi- 131

nally proposed and applied to NLP tasks in (Lewis 132

et al., 2020), and it has now become a mainstream 133

method for improving the generation capability 134

of large language models. RAG can extract the 135

most relevant data from external knowledge bases 136

and hand it over to the large language model for 137

processing. This can alleviate the hallucination 138

problem of large language models and enable peo- 139

ple to trace the source of the content generated 140

by large language models, ensuring the reliability 141

of the generated content. Additionally, RAG can 142

also be used to extract information from long docu- 143

ments that is most relevant to the user’s query. This 144

ensures that key information required to provide 145

correct answers to questions is not lost while reduc- 146

ing the length of the context. Many projects such as 147
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Question
How many people were in Picardo's family when he
was twelve?

Long Context
Early life. Picardo was born in Jerez de la Frontera, in
the Province of Cádiz in Andalucía, Spain on 18 June
1919. His father was Alvaro Picardo de Celis ...

Options
A. Five C. Ten D. EightB. Nine

Question Answering

Question
How long did it take from threatening to cancel the
upcoming 2024 Summer Olympics to storming the
headquarters of the 2024 Summer Olympics in Paris?

Long Context
The issue of pension reforms has been dealt with by
various French governments over recent decades,
specifically to tackle budget shortfalls. France has

Options
A. 34 C. 51 D. 68B. 76

Computation

Question
Picardo dedicated much of his professional life to Paradores,
please order these projects by open day:
1.Parador de Arcos de la Frontera
2.Parador de Guadalupe
3.Parador de Carmona

Long Context
Early life. Picardo was born in Jerez de la Frontera, in the
Province of Cádiz in Andalucía, Spain on 18 June 1919.

Options
A. 3, 1, 2 C. 1, 2, 3 D. 1, 3, 2B. 2, 3, 1

Timeline Reorder

Question
Which paragraph the following summary corresponds to?
“During a race, the starter mistakenly waved the green flag too
early, causing a chain reaction accident involving 11 cars...”

Long Context
Paragraph 1: The story opens with an unknown narrator ...
Paragraph 2: Nas also attacks Jay-Z’s street cred, claiming …
Paragraph N: In addition to further occasional appearances ...

Options
A. Para. 8 C. Para. 6 D. Para. 1B. Para. 10

Passage Retrieval

Figure 2: Examples of test case in benchmark, the context is truncated for display purposes.

longchain (longchain, 2022) and LlamaIndex (Liu,148

2022) have achieved significant progress in com-149

bining RAG with large language models, greatly150

facilitating related research in this direction.151

2.3 Long Context Models152

The ability of large language models for handling153

long contexts has become increasingly important.154

ChatGPT (OpenAI, 2023a) supports a window size155

of 16k, while GPT-4 supports a window size of156

128k, and Claude-2.1 supports a window size of157

200k1. Many open-source large language models158

have started to expand the size of their context win-159

dow. Longchat (Li et al., 2023a) and MPT (Team,160

2023b) have achieved a window size of 16k, while161

Mistral (Jiang et al., 2023a) and Zephyr (Tunstall162

et al., 2023) have achieved a window size of 32k.163

By utilizing an adapted Rotary Embedding (Su164

et al., 2022) and sliding window (Beltagy et al.,165

2020) during fine-tuning, MistralLite, based on166

Mistral, has achieved a window size of 128k, en-167

abling large language models to handle even longer168

contextual information.169

2.4 Long Context Benchmarks170

There have been many recent benchmarks used171

to assess the long context processing ability of172

large language models, such as LooGLE (Li et al.,173

1https://www.anthropic.com/index/claude-2-1

2023b) and LongBench (Bai et al., 2023b). Liu 174

et al. (2023b) on the other hand, noticed that the 175

position of key information in long contexts greatly 176

affects the capability of large language models to 177

correctly understand and process text. Therefore, 178

they used the NaturalQA (Kwiatkowski et al., 2019) 179

dataset to construct a new benchmark to test the 180

impact of different positions of key information in 181

long context on the text processing capability of 182

large language models. 183

Although LooGLE (Li et al., 2023b) and Long- 184

Bench (Bai et al., 2023b) have constructed a rela- 185

tively comprehensive set of evaluation tasks, the 186

evaluation metrics used are still F1-score, Bleu or 187

Rouge, which cannot accurately evaluate the ability 188

of large language models to handle and understand 189

long contexts. 190

3 Marathon 191

Present benchmarks for evaluating large language 192

models primarily use a multiple-choice format, 193

highlighted by studies such as MMLU (Hendrycks 194

et al., 2021) and C-Eval (Huang et al., 2023). This 195

multiple-choice approach helps prevent situations 196

where large language models produce correct an- 197

swers but are scored low due to missing correspond- 198

ing elements in the reference answers, or when they 199

produce incorrect answers that are scored high be- 200

cause they resemble the reference answers closely. 201
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Figure 3: The distribution of context lengths for 6 tasks in the Marathon benchmark.

Therefore, influenced by LooGLE (Li et al., 2023b)202

and LongBench (Bai et al., 2023b), we developed a203

multiple-choice, long-context benchmark to more204

accurately evaluate the ability of large language205

models to understand extended contexts.206

3.1 Overview207

The Marathon benchmark includes six tasks: Com-208

prehension and Reasoning, Multiple Information209

Retrieval, Timeline Reorder, Computation, Passage210

Retrieval, and Short Dependency QA. These tasks211

are grouped into four categories based on the type212

of questions they involve: Question Answering,213

Timeline Reorder, Computation, and Passage Re-214

trieval. Table 1 provides the number of test samples215

for each task. Figure 2 presents example questions216

for each category.217

3.2 Construction218

All the test samples in the benchmark are in the219

form of multiple-choice questions, with each ques-220

tion containing one correct answer option and sev-221

eral distractor options. We use GPT-4 to generate222

the distractor options for each question. For each223

question, we divide the long context into multiple224

fragments of length 12,000 and randomly select225

one fragment. We require GPT-4 to generate three226

distractor options based on the given context frag-227

ment, question, and correct answer. The purpose of228

this approach is to avoid using excessively long con-229

text that exceeds GPT-4’s context window, which230

may affect the accuracy of the generated results. 231

By using shorter contexts, we can obtain distrac- 232

tor options that are more relevant to these shorter 233

contexts. 234

Finally, to ensure the effectiveness and accuracy 235

of these distractor options, we manually verify the 236

options of each test sample. 237

3.3 Question Answering 238

Comprehension and Reasoning, Multiple Informa- 239

tion Retrieval and Short Dependency QA are all 240

types of traditional question-answer formats. The 241

difference lies in the fact that Comprehension and 242

Reasoning, Multiple Information Retrieval are se- 243

lected from the Long Dependency QA dataset in 244

LooGLE (Li et al., 2023b), while Short Depen- 245

dency QA is selected from the Short Dependency 246

QA dataset in LooGLE (Li et al., 2023b). In the 247

question answering tasks, each question is accom- 248

panied by a corresponding long context, and the 249

large language model is required to infer the cor- 250

rect answer according to the long context. For the 251

Short Dependency QA task, the relevant content for 252

the correct answer is relatively concentrated within 253

the long context. For Comprehension and Reason- 254

ing and Multiple Information Retrieval tasks, the 255

content relevant to the correct answer is more scat- 256

tered throughout the long context. Therefore, the 257

large language model needs to possess strong long 258

context understanding capability in order to solve 259
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the question correctly.260

In the upper left of Figure 2, an example of a261

Question Answering task is provided. The question262

asks the large language model to answer a related263

question based on the content in the long context.264

3.4 Timeline Reorder265

Timeline Reorder task is a relatively novel ques-266

tion answering task. Unlike traditional question267

answering tasks, in the Timeline Reorder task, the268

question format requires large language models269

to sort a series of events described in a long con-270

text according to their chronological order. This271

task aims to examine the large language models’272

understanding of temporal relationships. Due to273

the dispersed distribution of events that need to be274

sorted by chronological order in the long context,275

large language models not only need to possess a276

correct understanding of temporal order but also277

require strong long context processing capabilities278

to answer correctly, which makes it a challenging279

task.280

In the upper right of Figure 2, an example of the281

Timeline Reorder task is provided. The question re-282

quires the large language model to sort three events283

mentioned in the long context according to their284

chronological order.285

3.5 Computation286

Computation task is also different from traditional287

question answering tasks. Its question format in-288

volves providing a question related to numerical289

computation and requires the large language model290

to perform numerical calculations based on relevant291

content in the long context. For example, it may292

require calculating the number of children a certain293

character has at a specific time point, considering294

that the long context describes the character’s life295

events, including the death of a child due to illness,296

which may affect the number of the character’s297

offspring at subsequent time points. Therefore, to298

answer this question correctly, the large language299

model not only needs to be able to perform ordinary300

numerical calculations but also needs to capture all301

the key information related to the question. Com-302

pared to traditional computation and question an-303

swering tasks, this task is more challenging and can304

better reflect the large language model’s capability305

to comprehend long context.306

In the bottom left of Figure 2, an example of307

a Computation task is provided. The question re-308

quires the large language model to complete a nu-309

Task No. Samples

Comprehension and Reasoning 357

Multiple Information Retreival 341

Timeline Reorder 152

Computation 97

Passage Retrieval 300

Short Dependency QA 283

Total 1530

Table 1: Statistics of Marathon.

merical calculation question based on the content 310

in the long context. 311

3.6 Passage Retrieval 312

Passage Retrieval task is one form of task in the 313

LongBench (Bai et al., 2023b). In order to enhance 314

the diversity of our benchmark tasks, we have sam- 315

pled 300 test data from the Passage Retrieval task 316

in LongBench (Bai et al., 2023b), and reformed 317

them into multiple-choice format using the method 318

mentioned above. We have incorporated this task 319

into our benchmark. The Passage Retrieval task 320

requires large language models to locate the para- 321

graph in a long context that corresponds to the 322

given description in the question. Since the test 323

data of the Passage Retrieval task is sampled from 324

LongBench (Bai et al., 2023b), there are some lim- 325

itations in terms of context length and timeliness. 326

However, it remains a highly valuable task format. 327

In future work, we will update its content to make 328

it more suitable for the current needs of evaluating 329

large language models. 330

A sample of the Passage Retrieval task is pro- 331

vided in the bottom right of Figure 2. The task 332

requires large language models to locate the para- 333

graph in a long context that corresponds to the 334

given description in the question. 335

4 Experiments 336

4.1 Setup 337

Models. In this analysis, we incorporated a di- 338

verse array of models, distinguished by their pa- 339

rameter sizes, which span from 7B to 70B, and 340

their context window capacities, extending from 341

8K to 200K. Additionally, the evaluation encom- 342

passed models constructed on a state-space archi- 343

tectural framework. The models scrutinized in this 344
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investigation comprises ChatGLM3-6B-32K (Zeng345

et al., 2022; Du et al., 2022), Mistral-7B-Instruct-346

v0.1 (Jiang et al., 2023a), Zephyr-7B-β (Tun-347

stall et al., 2023), StripedHyena-Nous-7B (Poli348

et al., 2023), Longchat-13B-16K (Li et al., 2023a),349

Qwen-14B-Chat (Bai et al., 2023a), Yi-34B (01.AI,350

2023), Alfred-40B-1023 (Hallström et al., 2023),351

StableBeluga-2-70B (Mahan et al., 2023), Tulu-352

2-DPO-70B (Ivison et al., 2023), ChatGPT-1106353

(OpenAI, 2023a), and GPT-4-1106-preview (Ope-354

nAI, 2023b).355

Methods. In this evaluation, we first assessed356

the inherent ability of various models to compre-357

hend long contexts. Then, we evaluated the current358

mainstream methods for handling long contexts:359

Compression and RAG. Specifically, for the com-360

pression method, we assessed LongLLMLingua361

(Jiang et al., 2023b), while for the RAG method,362

we evaluated two retrieval approaches, one based363

on OpenAI Embedding and the other on Jina Em-364

bedding (Günther et al., 2023).365

4.2 Implementation Details366

Prompt. We used the same prompt template to367

ask questions for all models, and required the an-368

swers to be returned in JSON format. The specific369

prompt format can be seen in Figure 5.370

LongLLMLingua. For LongLLMLingua, we set371

the compression rate to 0.5, the dynamic context372

compression ratio to 0.4, We also sort the com-373

pressed contexts based on their importance.374

Embedding RAG. For Embedding RAG, we uti-375

lize the ServiceContext and VectorStoreIndex of376

the Llama-Index (Liu, 2022). We employ various377

models as LLMs (Language Models), testing the378

OpenAI Embedding model and the Jina Embedding379

model as Embedding Models respectively. The de-380

fault parameter settings are retained, with a chunk381

size of 1024 and a top-k value of 2. As for Jina382

Embedding, we set the pooling method to "mean"383

to align with Jina’s encode implementation.384

Hardware. All experiments in this evaluation385

were conducted on a server with 4*A100 80GB.386

4.3 Results387

4.3.1 Main results388

The overall accuracy of various models on the389

Marathon benchmark is depicted in Figure 1. De-390

tailed performance metrics of these models, utiliz-391

ing distinct optimization techniques across a range392

of tasks, are presented in Table 2 within the ap- 393

pendix. To facilitate a more comprehensive com- 394

parative analysis of the outcomes, Figures 6, 7, 8, 9, 395

10, and 11 are provided in the appendix. The analy- 396

sis indicates that the OpenAI Embedding Retrieval 397

and Jina Embedding Retrieval models exhibit supe- 398

rior performance relative to the LongLLMLingua 399

compression. 400

Moreover, all examined models exhibit dimin- 401

ished accuracy on both the Timeline Reorder and 402

Computation tasks relative to their performance 403

on alternative tasks. The implementation of the 404

LongLLMLingua failed to yield any notable en- 405

hancements, and the advancements facilitated by 406

the RAG were similarly constrained. 407

4.3.2 Vanilla 408

Within the subset of Vanilla method, the Yi-34B 409

model, characterized by its 34 billion parameters, 410

attains the highest accuracy, registering at 55.91%. 411

This is closely followed by the ChatGLM3-6B- 412

32K, which, despite its more modest parameter 413

count of 6B, achieves an accuracy of 55.05%. Sub- 414

sequently, the Beluga-70B model, notable for its 415

context window limitation of 4K tokens, records 416

an accuracy of 49.51%. The average accuracy ob- 417

served across the remaining models does not ex- 418

hibit significant variance, with none surpassing the 419

40% threshold. 420

4.3.3 LongLLMLingua 421

In contrast to the Vanilla approach, the implemen- 422

tation of LongLLMLingua yielded marginal im- 423

provements in accuracy for certain models: Qwen 424

witnessed an enhancement of 4.85%, Alfred experi- 425

enced a 1.51% increase, Beluga saw a 3.08% uplift, 426

and Tulu2 benefited from an 8.64% augmentation. 427

Conversely, this methodology had a detrimental 428

effect on the performance of other models: Chat- 429

GLM3 encountered a 7.14% decrement in accuracy, 430

Mistral suffered a 2.8% reduction, Zephyr experi- 431

enced a significant 7.74% decrease, StripedHyena 432

and Longchat showed a marginal decline of 0.10% 433

and 0.26% respectively, and Yi’s accuracy dimin- 434

ished by 7.25%. 435

4.3.4 OpenAI Embedding RAG 436

When juxtaposed with the baseline Vanilla method- 437

ology, the incorporation of OpenAI Embedding 438

Retrieval notably enhances accuracy for several 439

models: Mistral’s accuracy improved by 10.37%, 440

Zephyr’s by 11.66%, StripedHyena’s by 16.26%, 441
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Figure 4: The instruction following capability of different models. The x-axis represents the model, and the y-axis
represents the instruction following capability. The different colors represent different methods of optimization.

Qwen’s by 14.19%, Yi’s by 7.65%, Alfred’s by442

14.05%, and Tulu2’s by an impressive 24.05%.443

Conversely, this approach has been observed to444

negatively impact the accuracy of certain models,445

with ChatGLM3 experiencing a 4.06% reduction,446

Longchat a 5.92% decrease, and Beluga a slight447

decline of 1.27%.448

4.3.5 Jina Embedding RAG449

Relative to the foundational Vanilla approach, the450

adoption of Jina Embedding Retrieval has led to451

accuracy enhancements across a majority of the452

evaluated models. Notably, Mistral’s accuracy453

experienced a 12.23% increase, Zephyr’s accu-454

racy rose by 15.82%,StripedHyena’s accuracy in-455

creased 17.37%, Longchat saw a 1.91% improve-456

ment, Qwen’s accuracy was augmented by 18.15%,457

Yi’s accuracy escalated by 7.9%, Alfred’s accuracy458

advanced by 13.93%, Beluga’s accuracy grew by459

6.21%, and Tulu2’s accuracy surged by 23.60%.460

4.4 Instruction Following Capability461

In our evaluation, numerous models exhibited lim-462

ited ability to follow instructions accurately. We463

explicitly requested responses in JSON format, ex-464

emplified by a provided sample. Nonetheless, mod-465

els occasionally responded in alternate formats or466

attempted JSON responses that were either incom-467

plete or incorrect. Our statistical analysis, summa-468

rized in Table 3, categorizes responses as "JSON"469

for correct JSON format, "JSON-like" for flawed470

attempts at JSON due to errors like truncation or471

formatting issues, and "Plain Text" for responses in472

other formats. For a clearer comparison of models’473

ability to follow instructions after applying various474

optimizations, we focused on the rate of correct475

JSON responses as a measure of this capability, as 476

depicted in Figure 4. 477

While Yi exhibited high accuracy in question 478

answering, its compliance with instructions was 479

notably lower, at 38.95%. In contrast, Beluga’s 480

adherence rate to instructions was even lower, at 481

22.48%, despite its capabilities. On the other hand, 482

Longchat, despite its modest accuracy in answering 483

questions, showcased a remarkable proficiency in 484

following instructions, achieving a 92.29% com- 485

pliance rate, closely trailing behind ChatGPT’s 486

99.61%. The three distinct optimization techniques 487

in our assessment demonstrated efficacy in dimin- 488

ishing the context length. However, it is noteworthy 489

that none of these strategies consistently enhance 490

the models’ ability to follow instructions. 491

5 Discussion 492

Tendency of Long Responses. During our anal- 493

ysis, we observed that open-source large language 494

models often generate lengthy responses, even with 495

clear instructions for concise JSON-formatted an- 496

swers. This tendency results in the generation of 497

extraneous content, necessitating post-processing 498

to isolate the needed information. Table 3 presents 499

statistics on the models’ output formats, highlight- 500

ing their instruction-following capabilities. This 501

issue likely stems from the models’ training on pre- 502

dominantly long responses, making it challenging 503

for them to comply with requests for brevity. 504

State Space Models. Recent studies, such as 505

Mamba (Gu and Dao, 2023), highlight the advan- 506

tages of state space models (SSMs) for long context 507

reasoning tasks. StripedHyena (Poli et al., 2023) 508

innovatively merges SSMs with transformer struc- 509

7



tures, indicating a new direction in large language510

models. Despite these advancements, our analy-511

sis reveals that StripedHyena underperforms in de-512

tailed long conext question answering compared to513

traditional transformers and does not reduce mem-514

ory usage effectively, even with advanced attention515

mechanisms like Flash Attention 2 (Dao, 2023).516

These findings suggest the need for further opti-517

mization in State Space Models.518

JSON Format. During the recent OpenAI Devel-519

oper Day2, significant advancements in the capabil-520

ities of GPT-4 (OpenAI, 2023b) were unveiled by521

OpenAI, notably the introduction of parallel func-522

tion invocation and the specification of response523

formats in JSON. The parallel function invocation524

allows for the concurrent execution of multiple util-525

ity functions by large language models, thereby fa-526

cilitating the efficient completion of complex user527

tasks. Moreover, the integration of JSON format528

for responses is instrumental in ensuring the seam-529

less transmission of parameters and retrieval of530

results during function invocation, which is critical531

for the interoperability and functionality of AGI532

systems.533

6 Future Work534

Document as Context. Following the enhance-535

ments introduced at OpenAI Developer Day, GPT-4536

(OpenAI, 2023b) has been equipped with a Knowl-537

edge Retrieval feature. This allows the model538

to utilize user-uploaded documents for answer-539

ing queries, marking a significant development in540

Retrieval-Augmented Generation (RAG) applica-541

tions. This trend suggests that future large language542

models will likely adopt similar functionalities,543

impacting the evaluation methodologies for long-544

context question answering. Instead of embedding545

lengthy contexts into prompts, future benchmarks546

should focus on the models’ ability to extract and547

utilize information from user-provided documents548

to respond to queries. This approach necessitates549

a reevaluation of current benchmarks to align with550

these emerging capabilities.551

Multi-modal Long Context. Models such as552

GPT4V (OpenAI, 2023c) and Gemini (Team,553

2023a) have exhibited robust capabilities in facil-554

itating interactions that span both visual and lin-555

guistic modalities. Likewise, open-source coun-556

terparts, including LLaVA (Liu et al., 2023a) and557

2https://devday.openai.com

MiniGPT-4 (Zhu et al., 2023), have demonstrated 558

commendable performance in assessments tailored 559

to multimodal contexts. The utility of such mod- 560

els extends to various real-world applications that 561

necessitate the processing of multimodal, exten- 562

sive contexts, exemplified by the comprehensive 563

analysis and synthesis of corporate annual reports. 564

These applications demand not only the capacity 565

of large language models to comprehend and infer 566

within long textual contexts but also necessitate 567

the integration of visual understanding abilities. 568

Presently, the open-source community is lack of 569

benchmarks specifically designed to evaluate the 570

proficiency of models in handling extended, multi- 571

modal contexts. Therefore, establishing a compre- 572

hensive benchmark for multimodal, long-context 573

capabilities is of significant importance. 574

Evolving Online Benchmarks. The rapid ad- 575

vancement of large language models calls for evolv- 576

ing evaluation methods and benchmarks. Tradi- 577

tional static benchmarks, often compromised over 578

time by data leakage and integration into train- 579

ing, become less effective for accurate assessments. 580

Moreover, the development of benchmarks by iso- 581

lated teams or researchers is not only inefficient 582

but also faces challenges in continuously updating 583

evaluation data. 584

The solution lies in dynamic, Online Bench- 585

marks, which would draw on the collective exper- 586

tise and resources of the open-source community 587

to ensure a constantly updated repository of new 588

tasks and evaluation methods. This model aims 589

to keep pace with the fast-evolving capabilities of 590

language models, offering a more effective and 591

scalable assessment framework. 592

7 Conclusion 593

In this paper, we compared 10 open-source large 594

language models, including variations in their pa- 595

rameter sizes and context windows, along with Ope- 596

nAI’s ChatGPT and GPT-4. We assessed two preva- 597

lent optimization techniques such as LongLLM- 598

Lingua, and RAG. The experimental results indi- 599

cate that RAG-based optimization enhances the 600

performance of large language models within long- 601

context scenarios for QA-type tasks. However, the 602

improvement is limited for tasks involving Time- 603

line Reorder and Computation. Despite high ac- 604

curacy in question-answering, these models show 605

limited ability in following instructions. 606
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Limitations607

Context Length Distribution. As depicted in608

Figure 3, the distribution of context lengths within609

the Marathon benchmark exhibits a lack of uni-610

formity. The test instances corresponding to the611

tasks of Comprehension and Reasoning, Multiple612

Information Retrieval, Computation, Short Depen-613

dency QA, and Timeline Reorder predominantly614

feature context lengths that are concentrated at, or615

below, 130K characters. Conversely, test instances616

with context lengths surpassing 200K characters617

are notably scarce.618

The test instances for the Passage Retrieval task619

derive from the LongBench (Bai et al., 2023b)620

dataset, which accounts for the markedly shorter621

context lengths in comparison to those associated622

with the remaining five tasks. This discrepancy un-623

derlies the superior performance metrics achieved624

by all models on the Passage Retrieval task. It is625

our intention to revise the test instances for Pas-626

sage Retrieval to ensure consistency in context627

lengths with the other tasks. Furthermore, our on-628

going efforts are directed towards augmenting the629

test instances for the remaining tasks, with the ob-630

jective of achieving a uniform distribution of con-631

text lengths ranging from 60K to 260K characters632

across all tasks.633

Evaluation. This paper presents a preliminary634

evaluation of optimization techniques for long con-635

texts, which is not all-encompassing. In terms636

of optimization strategies, our evaluation of the637

Retrieval-Augmented Generation (RAG) method638

was limited to the employment of the OpenAI and639

Jina Embedding systems, exemplifying leading640

commercial and open-source embedding models,641

respectively. However, constraints related to time642

and financial resources precluded the examination643

of several advanced embedding systems, such as644

Voyage (Voyage.AI, 2023), Cohere (Cohere.Team,645

2023), and BGE Embeddings (Xiao et al., 2023b).646

In the case of the Prompt Compression approach,647

aside from LongLLMLingua, there are other tech-648

niques like MemWalker (Chen et al., 2023a) that649

merit future exploration to fully assess the advan-650

tages and drawbacks of each embedding model and651

optimization method.652

Moreover, in scenarios involving long context,653

while model accuracy and adherence are crucial,654

the speed of inference and memory demand are also655

vital factors to consider. This area features a vari-656

ety of sophisticated optimization methods, includ- 657

ing H2O (Zhang et al., 2023) and StreamingLLM 658

(Xiao et al., 2023a). Subsequent research will focus 659

on evaluating the performance of these inference 660

optimization methods in scenarios with extensive 661

textual content, with an emphasis on their speed 662

of inference, memory consumption, QA precision, 663

and instruction following capability. 664

Ethical Considerations 665

Data Source and Use. The benchmark leverages 666

datasets that are publicly available and designated 667

for research purposes. We have ensured that the use 668

of these datasets adheres to their respective licenses 669

and terms of use, emphasizing that our utilization is 670

strictly confined to academic and research contexts. 671

Content Sensitivity and Bias. Our benchmark 672

has been meticulously curated to exclude any con- 673

tent that could be deemed sensitive, such as vio- 674

lence, discriminatory language, or adult material. 675

Transparency and Reproducibility. In the spirit 676

of fostering an open and fair research community, 677

we will make the questions, contexts, and options 678

of our benchmark’s test cases publicly available. 679

However, to maintain the integrity of the evalua- 680

tion process, the correct answers to the test cases 681

will not be disclosed. Instead, we will provide 682

an online evaluation platform where researchers 683

can submit their models’ responses for assessment. 684

This system is designed to ensure fairness and ob- 685

jectivity in the benchmarking process, allowing 686

for an equitable comparison of different models’ 687

capabilities. 688
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A Template and Prompt893

Figure 5 illustrates the prompt used in our model evaluation process. The system prompt is denoted in894

green, the provided long context in cyan, the question related to the long context in yellow, the quartet of895

options in blue, and the orange segment delineates the response format for the model, accompanied by an896

concrete example. The instructions and responses templates may vary across different models. To ensure897

consistency, we adjust the prompts during our evaluations to match the templates used during the models’898

training phases.

You are an expert at reading and analyzing lengthy texts for examinations. Your task is to carefully read the provided
text, understand its content and details, and accurately answer multiple-choice questions about the text. Keep in mind
that the correct answer must be based entirely on the content of the text, without including any external information
or personal opinions.
Context:
Olympics on the Whistler Sliding Centre in Whistler, British Columbia, Canada. Hours later, the International Luge
Federation concluded that the accident was caused by a steering error and not a track error; nevertheless, ...

Question:
Based on the description above, what is the name of son of lord krishna?
Options:
A. Jon Owen
B. Nodar Kumaritashvili
C. Ulrich Hahn
D. Paul Aste

Please answer this question with JSON format, for example {"option":"A"}.
Answer:

Figure 5: An example of test prompt, the context is truncated for display purposes.

899

B Detailed Evaluation Results900

Table 2 presents the detailed performance metrics of various models, utilizing distinct optimization901

techniques across a range of tasks. C&R refers to Comprehension and Reasoning task; MIR refers to902

Multiple Information Retrieval task; TR refers to Timeline Reorder task; Com. refers to Computation903

task; PR refers to Passage Retrieval task; SDQA refers to Short Dependency Question Answering task;904

Avg. denotes the average accuracy across all tasks. To provide a more intuitive comparison of the effects905

of different optimization approaches on the long-context comprehension and reasoning capabilities of906

various models across different tasks, we also illustrated Figures 6, 7, 8, 9, 10, and 11.907

C Detailed Instruction Following Capability908

As shown in Figure 5, we asked the models to produce results in JSON format to assess how well they909

follow instructions based on their output format. Table 3 summarizes the performance of 10 open-source910

large language models in this regard. "JSON" means the output was exactly in JSON format. "JSON-like"911

refers to outputs that tried to be in JSON format but included mistakes or extra text. "Plain Text" covers912

outputs in other formats. Since ChatGPT and GPT-4 can always gave results in JSON format, they’re not913

included in Table 3.914
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Model Para. CW C&R MIR TR Com. PR SDQA Avg.

GPT-4 - 128K 77.03% 69.21% 69.08% 60.82% 100.00% 95.41% 78.59%
ChatGPT - 16K 62.18% 51.32% 19.74% 34.02% 95.67% 81.27% 57.37%

Vanilla

Chatglm 6B 32K 55.46% 46.63% 30.26% 37.11% 81.33% 79.51% 55.05%
Mistral 7B 32K 46.22% 41.94% 28.95% 23.71% 49.67% 48.41% 39.81%
Zephyr 7B 32K 41.46% 37.83% 33.24% 21.65% 47.67% 47.00% 37.97%
StripedHyena 7B 18K 30.25% 29.91% 25.00% 21.65% 24.00% 43.11% 28.99%
Longchat 13B 16K 37.25% 34.60% 28.29% 27.84% 42.00% 45.23% 35.87%
Qwen 14B 8K 45.38% 39.00% 26.32% 23.71% 56.33% 44.88% 39.27%
Yi 34B 200K 59.66% 47.21% 37.50% 36.08% 90.00% 65.02% 55.91%
Alfred 40B 8K 40.90% 39.30% 26.32% 20.62% 49.00% 47.70% 37.31%
Beluga 70B 4K 55.74% 43.70% 36.84% 36.08% 65.33% 59.36% 49.51%
Tulu2 70B 8K 46.50% 35.48% 30.26% 22.68% 46.33% 46.29% 37.92%

LongLLMLingua Compression

Chatglm 6B 32K 47.06% 37.54% 25.66% 22.68% 98.33% 56.18% 47.91%
Mistral 7B 32K 40.06% 31.38% 23.03% 27.84% 57.00% 42.76% 37.01%
Zephyr 7B 32K 30.81% 26.39% 23.68% 18.56% 54.00% 27.92% 30.23%
StripedHyena 7B 18K 22.97% 20.23% 10.53% 15.46% 58.00% 41.34% 28.09%
Longchat 13B 16K 37.82% 28.74% 26.32% 20.62% 61.67% 38.52% 35.61%
Qwen 14B 8K 42.58% 36.66% 27.63% 26.80% 88.67% 42.40% 44.12%
Yi 34B 200K 49.58% 42.23% 30.26% 22.68% 90.33% 56.89% 48.66%
Alfred 40B 8K 38.94% 32.84% 26.32% 29.90% 59.00% 45.94% 38.82%
Beluga 70B 4K 50.42% 42.82% 36.84% 27.84% 94.00% 63.60% 52.59%
Tulu2 70B 8K 45.94% 35.19% 34.87% 12.37% 98.00% 53.00% 46.56%

OpenAI Embedding RAG

Chatglm3 6B 32K 56.58% 43.40% 28.95% 28.87% 81.33% 66.78% 50.99%
Mistral 7B 32K 51.54% 47.21% 27.63% 27.84% 79.00% 67.84% 50.18%
Zephyr 7B 32K 52.38% 43.99% 28.29% 24.74% 76.67% 71.73% 49.63%
StripedHyena 7B 18K 48.46% 40.18% 32.24% 25.77% 62.67% 62.19% 45.25%
Longchat 13B 16K 38.10% 25.81% 19.08% 12.37% 43.00% 41.34% 29.95%
Qwen 14B 8K 61.34% 46.33% 31.58% 18.56% 93.00% 69.96% 53.46%
Yi 34B 200K 66.39% 55.13% 38.82% 42.27% 95.00% 83.75% 63.56%
Alfred 40B 8K 52.38% 48.39% 25.00% 27.84% 87.33% 67.14% 51.35%
Beluga 70B 4K 61.90% 46.33% 3.28% 21.65% 81.00% 75.27% 48.24%
Tulu2 70B 8K 64.99% 53.37% 41.45% 34.02% 95.67% 82.33% 61.97%

Jina Embedding RAG

Chatglm 6B 32K 52.94% 44.57% 27.63% 23.71% 83.33% 71.38% 50.60%
Mistral 7B 32K 54.90% 43.99% 32.24% 25.75% 79.00% 76.33% 52.04%
Zephyr 7B 32K 52.66% 46.33% 30.92% 23.71% 91.00% 78.09% 53.79%
StripedHyena 7B 18K 45.10% 42.22% 30.92% 30.93% 64.67% 64.31% 46.36%
Longchat 13B 16K 42.58% 33.43% 22.37% 13.40% 57.67% 57.24% 37.78%
Qwen 14B 8K 60.50% 46.63% 44.08% 24.74% 94.33% 78.45% 58.12%
Yi 34B 200K 66.67% 54.25% 45.39% 38.14% 95.00% 83.39% 63.81%
Alfred 40B 8K 50.42% 44.28% 27.63% 25.77% 88.33% 71.02% 51.24%
Beluga 70B 4K 59.94% 49.85% 23.68% 27.84% 96.00% 77.03% 55.72%
Tulu2 70B 8K 64.99% 54.25% 38.82% 31.96% 95.00% 84.10% 61.52%

Table 2: The evaluation results of models on Marathon benchmark.
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Comprehension and Reasoning

Figure 6: The performance of models on comprehension and reasoning task.
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Multiple Information Retrieval

Figure 7: The performance of models on multiple information retrieval task.
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Figure 8: The performance of models on timeline reorder task.

14



Av
er

ag
e 

Ac
cu

ra
cy

0.0

16.0

32.0

48.0

64.0

80.0

ChatGML
Mistral

Zephyr

StripedHyena
Longchat

Qwen Yi
Alfred

Beluga Tulu2

Vanilla LongLLMLingua OpenAI Embedding RAG Jina Embedding RAG
GPT-4ChatGPT

Computation

Figure 9: The performance of models on computation task.
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Figure 10: The performance of models on passage retrieval task.
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Figure 11: The performance of models on short dependency question answering task.

15



Type Chatglm Mistral Zephyr StripedHyena Longchat Qwen Yi Alfred Beluga Tulu2

Vanilla

JSON 69.48% 77.22% 84.51% 38.43% 92.29% 62.29% 38.95% 13.27% 22.48% 30.72%
JSON-like 30.52% 21.18% 6.86% 28.95% 3.99% 0.72% 28.56% 81.96% 0.33% 46.47%
Plain Text 0.00% 6.60% 8.63% 32.61% 3.73% 36.99% 32.48% 4.77% 71.19% 22.81%

LongLLMLingua Compression

JSON 94.58% 68.10% 63.20% 50.39% 93.92% 90.92% 48.10% 13.66% 29.97% 35.45%
JSON-like 5.42% 22.68% 9.15% 12.94% 2.81% 0.06% 26.60% 85.95% 0.59% 43.46%
Plain Text 0.00% 9.22% 27.65% 36.67% 32.68% 9.02% 25.29% 0.39% 69.54% 19.08%

OpenAI Embedding RAG

JSON 52.88% 84.31% 21.83% 29.54% 31.11% 65.62% 67.71% 16.27% 6.27% 98.43%
JSON-like 42.42% 6.67% 69.87% 52.09% 23.73% 16.93% 32.16% 83.73% 0.00% 1.11%
Plain Text 4.71% 9.02% 8.30% 18.37% 45.16% 17.45% 0.13% 0.00% 93.73% 0.46%

Jina Embedding RAG

JSON 86.34% 83.14% 17.91% 24.77% 32.75% 63.33% 65.69% 0.00% 8.43% 97.19%
JSON-like 9.15% 6.21% 73.86% 56.80% 21.70% 17.91% 34.18% 100.00% 0.007% 2.16%
Plain Text 4.51% 10.65% 8.24% 18.43% 45.56% 18.76% 0.13% 0.00% 91.50% 0.65%

Table 3: The evaluation results of large language models on the Marathon benchmark for instruction following.
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