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Abstract

Contrastive learning on the image data becomes a representative method of self-
supervised learning to pre-train a neural encoder from data or model perspective(s).
However, the data-perspective method in the graph domain is less explored be-
cause graph data augmentation is not as mature as image data augmentation. In
this paper, we propose a transformation-based graph data augmentation, which is
named Graph Transformation Augmentation (GTA). GTA will preserve the infor-
mation of the graph spectrum instead of the subgraph information. GTA has two
types: Permutation Augmentation and Orthonormal Augmentation. Finally, we
experimentally validate the workability of GTA on self-supervised representation
learning, and GTA counter-intuitively preserves the graph semantics.

1 Introduction

Self-supervised learning [23] has gained intensive attention, as an alternative direction to supervised
learning due to the need for vast amounts of labeled data, which can be both time-consuming and
expensive to acquire. SSL sufficiently leverages the underlying structure and relationships within the
data to enable models to learn from data without explicit labels. Recent advances in SSL emerged in
self-supervised representation learning. Self-supervised representation learning has been explored in
Computer Vision, such as the variant of Autoencoder [10], and Contrastive Learning [3]. Contrastive
Learning is to push the views (vectorized representation) via the neural encoder from the same
sample closer and the views from different samples farther. Computer Vision has two types of data
augmentation, such as spatial transformation augmentation (cropping, resizing, rotation [8], and
cutout [6]), and appearance transformation augmentation (color distortion [12, 27], Gaussian blur, and
Sobel filtering). SimCLR [3] experimentally shows contrastive learning benefits from stronger data
augmentation (color distortion) than supervised learning. However, due to the complexity of graph
data, graph data augmentation for Contrastive Learning mainly includes node/edge dropping, feature
masking, and subgraph [34]. These types of graph data augmentation are similar to cropping, and the
augmentation is relatively weak such that the graph semantics can be intuitively preserved to a great
extent. Graph spectrum contains much structure information of the whole graph, so we transform the
whole graph preserving the graph spectrum to obtain the graph data augmentation. In this way, the
augmentation with sufficient information would be significantly strong because transformation should
make it different from the original graph. Based on the conclusion of SimCLR, Contrastive Learning
in the graph domain should benefit from this transformation-based graph augmentation. Therefore,
we propose two types of graph data augmentation similar to rotation and appearance transformation
respectively. Our contribution is in the following:
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• We propose a transformation-based graph data augmentation named Graph Transformation
Augmentation (GTA) preserving the graph spectrum. GTA transforms the original graph as a
whole and includes two types: Permutation Augmentation and Orthonormal Augmentation.

• We adjust the GNN-based encoder for GTA considering the measure domain on the feature
matrix. Precisely, after the node-level aggregation, the feature matrix is transformed back to
the original domain.

• We experimentally validate GTA on Contrastive Learning, and prove that GTA counter-
intuitively preserves graph semantics.

2 Preliminary

This paper considers the finite, unweighted and undirected graph: the number of nodes N < +∞,
and the adjacency matrix A is symmetric. A graph is denoted as G = {X,A}, where X ∈ RN×d is
the feature matrix, and A ∈ {0, 1}N×N is the adjacency matrix. In this graph, the feature of each
node is d-dimensional, and the feature of the nth node is xn = X[n, :]. Ai,j = 1 means the i-th node
and j-th node are connected, and Ai,j = 0 represents no connectivity. Since A is symmetric and its
entities are real, A has an orthonormal basis of eigenvectors with real eigenvalues [25].
Definition 1 (Graph Spectrum1). The set of graph eigenvalues of the adjacency matrix is called the
spectrum of the graph.

The graph spectrum does contain surprisingly much information about the graph. For example, the
examination of the eigenvalues and eigenvectors of their associated matrices (the adjacency matrix
and Laplace matrix) can reveal combinatorial properties of graphs, and the eigenvalues provide an
easy way to distinguish many pairs of non-isomorphic graphs, as the eigenvalues do not depend upon
the ordering of the vertices [26]. Precisely, although two graphs with the same spectrum can not be
isomorphic, two isomorphic graphs have the same spectrum. Therefore, spectrum-based machine
learning algorithms [4] gain attention due to mathematically provable high-performance.

Recently, Graph Neural Networks (GNNs) [15, 29, 32] have become the mainstream method to
analyze graph data due to their promising performance. The message-passing scheme [9] can summa-
rize existing GNNs. Firstly, they iteratively aggregate information from the node’s neighborhood
following the message-passing mechanism. Considering a K-layer GNN f(·), the propagation of the
kth layer is represented as:

a(k)
n = AGGREGATION(k)

(
{h(k−1)

n′ } : n′ ∈ N (n)
)
,h(k)

n = COMBINE(k)
(

h(k−1)
n , a(k)

n

)
, (1)

where h(k)
n is the embedding of the nth node of the graph at the kth layer with h(0)

n = xn, N (n) is
the set of the nth node’s neighborhood, and AGGREGATION(k) (·) and COMBINE(k) (·) are component
functions of the kth GNN layer. After K-layer propagation, the READOUT(·) function summarizes the
node-level representations and outputs the graph-level representation:

f(G) = READOUT({h(K)
n , n ∈ {1, 2, . . . , N}}). (2)

The main task of this paper is to validate our augmentation technique to pre-train the GNN-based
encoder via contrastive learning.

3 Related Works

Self-supervised Representation Learning is to represent data samples utilizing an embedding space
without supervision. One straightforward method is reconstruction-based using the variant of the
autoencoder [16, 22, 5, 10]. The other method is Contrastive Learning which brings similar samples
closer while pushing dissimilar ones farther away without supervision from data and/or model
perspective(s) [3, 34, 31]. In the graph domain, graph data augmentation plays an important role
in the data-perspective Contrastive Learning. The goal of graph data augmentation is to generate
augmented graph(s) that can enrich or enhance the preserved information from the given graph(s) [7].
Structure-oriented graph data augmentations are widely implemented in graph contrastive learning,

1In physics, the eigenvalues of the Laplacian matrix of a graph are sometimes known as the graph’s spectrum.
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including edge-dropping [28], node-dropping [36], graph-sampling [14, 37]. These methods will
use the substructure of the graph as the augmentation, which destroys the completeness of the graph
compared to the original. This completeness is vital for molecule data and less for social data.

4 Methodology

This section illustrates one graph augmentation technique first, and it is named Graph Transformation
Augmentation (GTA) by preserving the graph spectrum. We denote the augmented graph as Ĝ =

{X̂, Â}. Next, we initially adapt this technique to graph-level representation learning via contrastive
learning based on GraphCL [34].

4.1 Graph Transformation Augmentation

As Section 2 demonstrates, the graph spectrum implicitly contains much graph information. Therefore,
the augmented graph should preserve this important information, namely, the spectrum of the
augmented graph should be identical to the spectrum of the original. To preserve the spectrum of
the original graph, the original adjacency matrix will be transformed to its similar matrix as the
augmentation adjacency matrix based on Definition 2, namely Â = M−1AM . Concurrently, the
feature matrix should experience synchronous transformation. However, the shape of the feature
matrix is usually not identical to the adjacency matrix, so the similarity transformation cannot
straightforwardly be implemented on the feature matrix.
Definition 2 (Matrix Similarity [2]). In the linear algebra, two n× n matrices A and B are called
similar if there exists an invertible n× n matrix M such that

B = M−1AM, (3)

where A and B have the same eigenvalues and normally different eigenvectors.

The internal representation depends on the covariance matrix Σx = XXT = V ΛV T, where eigen-
values Λ decide the strength of mapping and eigenvectors V decide the transformation mode [21].
It is worthy to be observed that Σx and A are in identical shape, and Σx represents relations be-
tween nodes like adjacency matrix A. Therefore, Σx is chosen for transformation instead of X ,
in which the strength would be preserved but the transformation mode would be changed. At this
step, the augmented feature covariance matrix is Σ̂x = M−1ΣxM = X̂TX̂ , so this should be
further factorized for augmented feature X̂ . However, Σ̂x is factorizable as long as it is a symmetric
semi-positive definite matrix. As Theorem 1 demonstrates, the matrix M should be invertible such
that the augmented feature X̂ can be calculated. The proof of Theorem 1 is in Appendix A.2.1

Theorem 1. For any invertible matrix M ∈ RN×N , the generated covariance matrix Σ̂x of the
augmentation graph’s node features X̂ is a symmetric semi-positive definite matrix, such that Σ̂x can
be factorized as the augmentated graph’s node feature X̂ because of Σ̂x = X̂X̂T, where X̂ ∈ RN×d

and Σ̂x ∈ RN×N .

Now we identify M to satisfy the constraint on the adjacency matrix. As aforementioned, the graph
we consider is undirected, so the augmented graph should be undirected as well. Therefore, the
augmented adjacency matrix Â should be symmetric. Theorem 2 proves that the orthonormal matrix
M can make the augmented adjacency matrix symmetric. The proof of Theorem 2 is in Appendix
A.2.2. On this condition that M is an orthonormal matrix, we have Σ̂x = (MTX)(MTX)T = X̂X̂T.
We can obtain X̂ = MTX without factorization.
Theorem 2. For any orthonormal matrix M ∈ RN×N , the augmented graph Ĝ = {X̂, Â} is
an undirected graph as the same as the original graph G = {X,A}, where X, X̂ ∈ RN×d and
A, Â ∈ RN×N

Here, we have to claim M ∈ RN×N . If the Fourier matrix is implemented, the augmented feature
matrix will become MTX with complex values. To our best knowledge, current GNNs cannot handle
complex features, except for embedding the real and imaginary parts together as a feature vector.
Such embedding will double the feature dimension during contrastive learning, and the model cannot
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compute the representation with the original data as the input. Although the Fourier matrix will
transform the feature to the Fourier domain, which is a stable and decent transformation, due to the
capability of GNNs, we will not consider it. To summarize, we can use two types of the orthonormal
matrix M : permutation matrix and random orthonormal matrix in RN×N . After transformation using
the orthonormal matrix M , the augmented graph is Ĝ = {MTX,MTAM}
The example augmentation via two types of transformation matrices on one one-hot encoding CO2

molecule is visualized in Figure 1: the graph via the top transformation with one permutation matrix
is named Permutation Augmentation; the graph via the bottle transformation with one random
orthonormal matrix is named Orthonormal Augmentation. Since the random orthonormal matrix is
non-singular, the orthonormal augmentation is a complete graph as long as there is no isolated part
in the original graph. Therefore, we will regard the orthonormal augmentation as a fully connected
graph. Such fully-connected graph would require more GPU memory for training. Similar to
the rotation matrix to achieve image rotation [8] in the visual domain, the permutation matrix is
utilized to rotate the original graph. The orthonormal augmentation transforms the original graph
(feature and connection) into a random domain. From the result-oriented perspective, the orthonormal
augmentation is similar to appearance transformation [12, 27] in Computer Vision. Intuitively, the
orthonormal augmentation significantly differs from the original graph, and less graph semantics can
be preserved especially the connectivity. Given the original graph G = {X,A} and the orthonormal
augmentation Ĝ = { X̂, Â}, we can obtain a new adjacency matrix A′ = A⊙ Â as the adjacency
matrix, where ⊙ represents the Hadamard product. A′ is more similar to A compared to Â because
A′ and A represent the same connectivity except the weight and Â means full connectivities. We
call Ĝ′ = {X̂, A′} as Sparsized Orthonormal Augmentation (SOA). However, we can reconstruct G
from Ĝ using (computed) M instead of from G′. Therefore, our augmentation counter-intuitively
preserves the original graph semantics. Furthermore, edge-dropping and node-dropping methods
will destroy the graph’s completeness, especially in the molecule data. For instance, dropping one
connectivity or one atom usually means one different molecule or nothing. Our method transforms
the graph as a whole, such that this problem can be solved. Therefore, in this paper, we experiment
on the molecule dataset.
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Figure 1: The left graph represents a molecule CO2 using one-hot encoding as the atom feature; The
right-top graph is one augmentation graph via one permutation matrix: The right-bottom graph is one
augmentation graph via one random orthonormal matrix.

4.2 Contrastive Learning with Graph Transformation Augmentation

Our contrastive learning mainly follows the framework of GraphCL [34] to maximize the agreement
between the augmented views, generated by the GNN-based encoder with the augmented graphs as
the input. Our framework also mainly consists of four components:

(1) Graph Augmentation The given graph G will be transformed by the random permutation and
orthonormal matrix to obtain the permutation augmentation Ĝp and orthonormal augmentation Ĝo

respectively, as a positive pair.
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(2) GNN-based Encoder A GNN-based encoder fθ1(·) with learnable parameters θ1 ∈ Θ1 consists
of two parts: node-level AGGREGATION(·) and COMBINE(·), and READOUT(·) summarizing all the
node features as the vectorized graph-level representation (hi, hj). When we use one orthonormal
augmentation to compute its graph-level representation, after the node-level aggregation with feature
matrix Ar, we compute Ao = MAr as the input of the following READOUT(·), because the feature Ar

is in a random domain, and this matrix multiplication will transform the feature back to the original
domain (Backward Transformation (BT)). In the pre-train state, we use the adjacency matrix of Ĝp

as the edge weight, and for the downstream task, we use the 0 matrix as the edge weight matrix of the
original graph. In this way, the permutation augmentation’s representation differs from the original
graph’s when we use a permutation-invariant READOUT(·), and the unreal edge weight will not affect
the aggregation scheme using the real graph. Any GNN architecture considering edge weights and
features can implemented on contrastive learning with GTA.

(3) Projection Head A non-linear transformation gθ2(·) with the learnable parameter θ2 ∈ Θ2

projects the graph-level representation to another latent space to calculate the contrastive loss, as
advocated in GraphCL [34]. We apply a two-layer perceptron (MLP) to obtain zi, zj .

(4) Contrastive Loss Function The contrastive loss function is denoted as L, which is defined to
maximizing the consistency between positive pairs zi, zj and minimizing the consistency between
both and negative pairs. We use NT-Xent (the normalized temperature-scaled cross-entropy loss)
as the loss function. We re-annotate zi, zj as zn,i, zn,j to index the n-th graph in the dataset or
minibatch. So NT-Xent for the n-th graph is defined as:

ln = − log
exp(sim(zn,i, zn,j))/τ∑N

n′=1,n′ ̸=n exp(sim(zn,i, zn′,j))/τ
, (4)

where τ denotes the temperature parameter, sim(zn,i, zn,j) = zTn,izn,j/ ∥zn,i∥ ∥zn,j∥ denotes the
cosine similarity function, and the negative pairs are the other N − 1 augmented graphs. So, the
contrastive loss function is defined as:

L =

N∑
n=1

ln. (5)

This loss function will guide the representations of GTAs tending to invariance to (permutation)
transformation via the permutation matrix and the orthonormal matrix. Due to the strong randomness
of the orthonormal matrix, theoretically, the training should require a sufficiently large number of
epochs for transformation invariance. Minimizing this loss is equivalent to maximizing the mutual
information between h1 and h2 [34]. As the discussion in Section A.3, GTA will implicitly help the
GNN-based encoder achieve the InfoMax Principle [18, 17] through contrastive learning.

5 Experiments

This section will validate our method on molecule datasets using GINE to achieve node-level
aggregation. The datasets include NCI1, PROTEINS and MUTAG from TUDataset [19]. In the
experiment, the GNN-based encoder is trained without supervision, and evaluates the quality of the
encoder based on the performance on the downstream task following the setting in [34].

To test the workability of our augmentation technique, we chose GraphCL as the benchmark, because
it is a purely data-perspective method. In the combination of data-perspective and model-perspective
methods like [33], we hard to identify whether our augmentation technique works. For comparison,
we implement Graph Isomorphism Network (GIN) [32] as the backbone to achieve aggregation
procedure. However, the orthonormal permutation will generate a weighted graph. To incorporate the
edge weight eij on the edge connecting the ith and jth nodes in the aggregation procedure, we adapt
the edge version of GIN (GINE) [13] using a Multilayer Perceptron (MLP) to map eij to the same
dimension as the node feature. The operator is defined as:

h(k)
n = hΘ

(1 + ϵ) · h(k−1)
n +

∑
j∈N (n)

ReLU(h(k−1)
j +MLP (eij))

 , (6)

where we use Multilayer Perceptron (MLP) to represent hΘ(·).
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Table 1 compares our method with GraphCL: GINE defined as Equation 6 as the GNN-based encoder,
LSTM as the READOUT(·). On PROTEINS and MUTAG datasets, our method outperforms GraphCL,
but GraphCL performs better on NCI1 dataset. This is potentially because its feature dimension is
relatively high, and the edge weight should be mapped to the high dimension as the feature’s. Table
2a demonstrates backward transformation will benefit contrastive learning: better performance with
backward transformation on the downstream task on the NCI1 and PROTEINS datasets. Furthermore,
Figure 2 and Figure 3 in Appendix respectively visualize the pre-train curves with/without backward
transformation on PROTEINS. That pre-train curve with backward transformation decreases slightly
faster in the beginning stage and oscillates less in the end stage. Table 2b shows the decreasing
performance on the downstream task using SOA, so the orthonormal augmentation preserves more
meaningful information compared to SOA. Table 3 illustrates the performances of GTA with LSTM
(permutation-variant) and Mean Average (permutation-invariant) on NCI1 and PROTEINS datasets.
It is clear that the GNN-based encoder with Mean Average performs worse than LSTM on the
downstream task. Theoretically, GTA’s permutation augmentation will guide the GNN-based encoder
to be permutation-invariant during the pre-train. However, the permutation-invariant Mean Average
will significantly weaken the effect of permutation augmentation.

Table 1: Comparing classification accuracy on representation learning methods with GraphDCL.
Dataset GraphCL Ours Mean Diff. Highest Acc.
NCI1 77.87±0.41 75.56±0.10 -2.31 75.96

PROTEINS 74.39±0.45 75.27±0.04 0.88 75.65
MUTAG 86.80±1.34 87.05±0.17 0.25 87.81

Table 2: Comparing the effect of Backward Transformation and Sparsized Orthonormal Augmentation
on NCI1 and PROTEINS

(a) Comparing the effect of Backward Transforma-
tion on NCI1 and PROTEINS.

BT Dataset Accuracy
✓ NCI1 75.56±0.10
× NCI1 74.16±0.10
✓ PROTEINS 75.27±0.04
× PROTEINS 74.90±0.07

(b) Comparing the effect of Sparsized Orthonormal
Augmentation on NCI1 and PROTEINS.

SOA Dataset Accuracy
× NCI1 75.56±0.10
✓ NCI1 73.43±0.12
× PROTEINS 75.27±0.04
✓ PROTEINS 74.98±0.03

Table 3: Comparing the effect of LSTM and Mean Average on NCI1 and PROTEINS.
READOUT Dataset Accuracy

LSTM NCI1 75.56±0.10
Mean Average NCI1 70.35±0.05

LSTM PROTEINS 75.27±0.04
Mean Average PROTEINS 71.86±0.02

6 Conclusion

We propose a transformation-based graph augmentation, Graph Transformation Augmentation, for
graph contrastive learning. This method is experimentally validated. Although the improvement
on the downstream task is not significant, GINE does not process orthonormal augmentation well.
In the future, we will explore other more suitable GNN architecture especially Graph Transformer
[35]. Furthermore, the eigenvalues of the graph Laplacian are also informative for the original graph.
Therefore, the spectrum of graph Laplacian will be investigated. Finally, the contrastive loss in this
paper inheriting from GraphCL [34] and SimpleCLR [3] ensures that the representations of different
samples are distinct [23]. Recent X-sample contrastive loss [24], extending the self-similarity of the
sample to the similarity across samples, potentially benefits our methods.
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A Appendix

A.1 Related Works

Self-Supervised Representation Learning Self-supervised Representation Learning is to represent
data samples utilizing an embedding space without supervision. One straightforward method is
reconstruction-based using the variant of the autoencoder [16]. However, the reconstruction task
using the autoencoder lacks a real correct answer. The mask mechanism provides such an answer to the
reconstruction task leading to better performance on the downstream task [22, 5, 10]. Furthermore,
contrastive learning is proposed in Computer Vision [3]. It brings similar samples closer while
pushing dissimilar ones farther away without supervision from data and/or model perspective. In
the graph domain, GraphCL [34] is the representative of the data-perspective method using the data
augmentation for the positive/negative pairs. SimGrace [31] augments the model by introducing
Gaussian noise to obtain the pair for contrastive learning. The hybrid of two perspectives [33]
improves the performance compared to a single perspective.

Graph Data Augmentation The goal of graph data augmentation is to generate augmented graph(s)
that can enrich or enhance the preserved information from the given graph(s) [7]. This paper only
discusses the non-learnable augmentations. Structure-oriented graph data augmentations are widely
implemented in graph contrastive learning, including edge-dropping [28], node-dropping [36], graph-
sampling [14, 37]. These methods will use the substructure of the graph as the augmentation, which
destroys the completeness of the graph compared to the original. This completeness is vital for the
molecule data and less for the social network. For example, the lack of only one edge or node leads
to one different molecule the augmented graph represents.

A.2 Proof of Theorems

Since the definition of matrix similarity is derived from linear algebra, to inherit the property from
linear algebra, we change the notation of the graph: use the column space of the feature matrix as the
node feature. Specifically, a Graph is denoted as G = {X,A}, where X ∈ Rd×N and A ∈ RN×N .

A.2.1 Proof of Theorem 1

Proof of Theorem 1. Similar to Σx, Σ̂x is the covariance matrix of the augmentation graph’s nodes
X̂ , so M−1ΣxM should be symmetric semi-positive definite as well as Σx. Such that, Σ̂x can be
factorized as X̂TX̂ . Proving Σ̂x is a symmetric semi-positive definite matrix is equivalent to

∀x, xTΣ̂xx ≥ 0, (7)
where x is a N -dimensional column vector. Since Σx is symmetric semi-positive definite, Σx can be
decomposed through eigendecomposition as

Σx = QΛQ−1 = QΛQT, (8)
where Q is the eigenvector and orthonormal matrix (Q−1 = QT) and Λ is the eigenvalue and diagonal
matrix. Since Σx is a symmetric semi-positive definite matrix, all the diagonal values of Λ are
non-negative. So, we have the following equivalence relation:

∀x, xTΣ̂xx ≥ 0⇔ ∀x, (QT(M−1)Tx)TΛ(QTMx) ≥ 0, (9)
where⇔ represents the equivalence relation, and QT(M−1)Tx and QTMx are the N -dimensional
column vectors. Λ(QTMx) means the component (QTMx)i is non-negatively scaled by Λii.
(QT(M−1)Tx)TΛ(QTMx) ≥ 0 means after scale, the QT(M−1)Tx’s projection on Λ(QTMx) have
the same direction with Λ(QTMx). Since all Λii is non-negative, Λ(QTMx) never has the opposite
directional component with QTMx after scale, namely,

∀x, (QT(M−1)Tx)T(QTMx) ≥ 0↔ ∀x, (QT(M−1)Tx)TΛ(QTMx) ≥ 0. (10)

Therefore, ∀x, (QT(M−1)Tx)T(QTMx) ≥ 0 can guarantee ∀x, xTΣ̂xx ≥ 0. After computing
(QT(M−1)Tx)T(QTMx), we can have

∀x, (QT(M−1)Tx)T(QTMx) = ∥x∥2 , (11)

where ∥x∥2 represents the length of x in the Euclidean space. So, Inequation 7 holds as long as Σ̂x is
available, equivalently to M−1 is available.
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A.2.2 Proof of Theorem 2

Proof of Theorem 2. In this proof, the graph notation follows Proof of Theorem 1, and its result that
M is invertible. So the augmentation’s feature matrix is computed. In the following, we prove that
what the extra property of the matrix M guarantees the augmentation graph is undirected.

If the augmentation graph Ĝ = {X̂, Â} is undirected as the original graph G = {X,A}, then the
adjacency matrix Â is symmetric, namely ÂT = Â. Due to Â = M−1AM , we have the following
equation:

MTA(M−1)T = M−1AM (12)
We rewrite this equation as:

A = (MT)−1M−1AM((M−1)T)−1 = (M−1)TM−1AMMT (13)

Since M is invertible, (MMT)−1 exits, and we can rewrite this equation as:

A = (MMT)−1A(MMT). (14)

From Equation 14, A should equal to its new similar matrix (MMT)−1A(MMT) with the invertible
matrix MMT for symmetricity. Normally, A will not be identical to its similar matrix, except that
M is the diagonal matrix. In this case, we cannot give a property of M that guarantees MMT is
an arbitrary diagonal matrix. If we make this constraint stricter that MMT is a identity matrix I ,
namely MMT = I , a special diagonal matrix, then M is an orthonormal matrix (M−1 = MT),
which guarantee Equation (14) holds.

A.3 InfoMax Principle in Contrastive Learning with GTAs

As [34] unifies a broad family of contrastive learning methods on graph-structured data,L is equivalent
to the following dual representation of mutual information:

L = EPĜi

{
−EP(Ĝj |Ĝi)

T (f1(Ĝi), f2(Ĝj)) + log(EPĜj
eT (f1(Ĝi),f2(Ĝj)))

}
, (15)

where T (·, ·) is a learnable score function parameterized with the similarity function sim(·, ·), the
projection head gθ2(·), and temperature factor τ , and the mutual information between hi = fi(Ĝi)

and hi = fj(Ĝj). In the implementation, fθ1 = f1 = f2. Based on the property of the dual
representation of mutual information [1], Equation 15 can be rewritten as:

min
θ1∈Θ1,θ2∈Θ2

L = min
θ1∈Θ1

min
θ2∈Θ2

EPĜi

{
−EP(Ĝj |Ĝi)

T (f1(Ĝi), f2(Ĝj)) + log(EPĜj
eT (f1(Ĝi),f2(Ĝj)))

}
(16)

↔ max
θ1∈Θ1

I(hi, hj), (17)

When the parameters of the GNN-based encoder are considered, the functional space consists of
Θ = Θ1 ∪Θ2. So Equation 15 can be rewritten as:

min
θ∈Θ
L = min

θ∈Θ
EPĜi

{
−EP(Ĝj |Ĝi)

T ′(Ĝi, Ĝj) + log(EPĜj
eT

′(Ĝi,Ĝj))
}

(18)

↔ I(Ĝi; Ĝj)→ H(G), (19)

where T (·, ·) is a learnable score function parameterized with the similarity function sim(·, ·), the
projection head gθ2(·), temperature factor τ and the GNN-based encoder fθ1(·). Therefore, we will
have the following relation:

H(G)← I(Ĝi; Ĝj)↔ min
θ∈Θ
L ↔ max

θ1∈Θ1

I(hi;hj). (20)

This contrastive learning tends to achieve the transformation invariance, so we will have the following
equivalence:

max
θ1∈Θ1

I(h;hi)↔ max
θ1∈Θ1

I(h;hj)↔ max
θ∈Θ1

I(hi;hj), (21)

10



where h is the representation of the original graph, and these quantities will converge to H(G). It is
natural that G contains more information of G compared to hi, hj . Simultaneously, the learning will
enforce I(h;G) tends to H(G) with parameters θ1 ∈ Θ1, namely

min
θ∈Θ
L ↔ max

θ1∈Θ1

I(h;G). (22)

Our augmentation technique makes the contrastive learning not only maximize the mutual information
between representation vectors of two views but also implicitly achieves the InfoMax between the
input and the latent representation. This InfoMax will enforce the encoder to extract as much
information as possible in the input [18], and is widely implemented in self-supervised representation
learning with good performance [11, 1, 30, 20].
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Figure 2: Pre-train curve with backward transfor-
mation on PROTEINS
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Figure 3: Pre-train curve without backward trans-
formation on PROTEINS

A.4 Edge Attribute Augmentation

We also extend GTA on the edge attribute on MUTAG. Table 4 shows the improvement of GTA with
the edge attribute.

Table 4: Comparing GTA with/without the edge attribute on MATUG.
Consider Edge Attributes Accuracy

× 86.80±1.34
✓ 86.30±0.99
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