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igure 1: Illustration of VideoVLA. Given a language instruction and the current visual observation,
VideoVLA jointly predicts the appropriate sequence of next actions and generates video content that
illustrates how these actions will influence physical interactions in the environment. In addition to
delivering strong performance on in-domain tasks, VideoVLA demonstrates robust generalization to
novel objects and unseen skills. This capability stems from its use of pre-trained video generation
models—distinct from prior vision-language-action approaches (31141 [51 16} [7] that primarily rely
on pre-trained vision-language understanding models—as well as its dual-objective strategy.

Abstract

Generalization in robot manipulation is essential for deploying robots in open-world
environments and advancing toward artificial general intelligence. While recent
vision-language-action models leverage large pre-trained understanding models
for perception and instruction following, their ability to generalize to novel tasks,
objects, and settings remains limited. In this work, we present VideoVLA, a simple
approach that explores the potential of directly transforming large video generation
models into robotic VLA manipulators. Given a language instruction and an image,
VideoVLA predicts an action sequence as well as the future visual outcomes.
Built on a multi-modal Diffusion Transformer, VideoVLA jointly models video,
language, and action modalities, using pre-trained video generative models for joint
visual and action forecasting. Our experiments show that high-quality imagined
futures correlate with reliable action predictions and task success, highlighting
the importance of visual imagination in manipulation. VideoVLA demonstrates
strong generalization, including imitating other embodiments’ skills and handling
novel objects. This dual-prediction strategy—forecasting both actions and their
visual consequences—explores a paradigm shift in robot learning and unlocks
generalization capabilities in manipulation systems.
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1 Introduction

Generalization has long been a central goal in robot manipulation, representing a critical step toward
achieving artificial general intelligence. The aspiration is for robots not only to perform tasks
encountered during training but also to handle unseen tasks, manipulate novel objects, and operate
in unfamiliar environments. This capability is critical for deploying robots in open-world settings,
where unpredictability and variability are the norm rather than the exception. Recently, researchers
have begun investigating whether robotic systems exhibit an emergence point—where generalization
capabilities begin to surface—by scaling both the volume of training data and the size of model
parameters, analogous to the scaling laws observed in Large Language Models (LLMs) [8, 9]
This line of inquiry has led to the development of Vision-Language-Action (VLA) models [1,
314, [10]. Unlike conventional robot manipulation architectures [[11} [12]], VLA models typically
incorporate billions of parameters, perceive complex visual environments, follow natural language
instructions, and, crucially, leverage large pre-trained vision-language [13}[14}[15], vision [16} 17, 18],
or language 19|20} 21]] models. These pre-trained models serve two purposes: (1) reducing the need
for extensive task-specific robotic data, and (2) enabling the transfer of knowledge from general-
purpose models to robotic manipulation tasks. Existing works [2} 3} |4} [10} [22]] have demonstrated that
using pre-trained vision-language understanding models as the VLA model backbone and finetuning

them on robot action datasets can significantly reduce data requirements and achieve remarkable task
performance. However, despite these advances, true generalization—particularly to unseen tasks,
objects, or environments—remains limited and is yet to be fully realized.

Recently, large video generation models [23] 24}, 25, [26] have demonstrated remarkable generalization
capabilities when conditioned on novel textual or visual inputs. The generated videos exhibit excep-
tional outstanding physical plausibility [25} 26], which can be attributed to the models’ extensive
knowledge learned from massive real-world videos. Notably, the situation of video generators han-
dling novel text and novel image conditions shows a natural alignment with that of robot manipulators
dealing with unseen instructions and unseen observations. The understanding of physical dynamics
learned by video generators is also a fundamental capability required for any high-performing robotic
manipulator to reason about the physical consequences of their generated actions. Furthermore, video
generators can predict future world states by following given instructions, which inherently reflects a
planning capability that is also crucial for robotic manipulation models to anticipate and organize
their interactions with the physical environment. Motivated by these observations, we aim to explore
the following question: ""Can large video generators be seamlessly adapted into generalizable
robotic manipulators?''

To answer this question, this work studies constructing and fine-tuning VLA models based on large
video generation models. To bridge the gap between video generation and robotic manipulation, the
key lies in enabling video generation models to produce instruction-following actions that can be
executed by robots. Furthermore, to effectively transfer the strong generalization abilities of video
generation models in the video domain to the action domain, it is essential to ensure a consistency
between the actual execution of generated actions and the visual imagination represented in the
generated videos (see Figure|[T|for as illustration). This alignment allows the semantic and physical
coherence learned in video generation to be naturally extended to embodied robotic behaviors.

We propose a simple yet effective approach called VideoVLA, which transforms a Video Diffusion
Transformer [24] to a Video-Action Diffusion Transformer by adding actions as a new output modality
and jointly denoising video and action. The Diffusion Transformer (DiT) [27] architecture has
demonstrated remarkable superiority in both video generation [24} 28], 26] and action generation [4]}
10, [7] tasks, and in this work we unify them into a single, multi-modal DiT framework. In this
multi-modal DiT, the video and language are encoded using specific tokenizers—such as a causal
video VAE [24] and a T5 [29] text encoder—following standard practices in generative modeling.
We do not apply tokenization to the action modality and simply use the 7-D vector representation
encoding robot translation, rotation, and gripper state. The model operates by taking the language
tokens and the latent of the current visual observation as conditions; it then jointly predicts the future
actions and generates the corresponding future visual contents that would result from executing these
ions in the current environment, supervised by a DDPM Diffusion loss [30]].

Our experiments reveal a strong correlation between the predicted actions and the generated video
clips—when the imagined future (i.e., the generated videos) closely aligns with the actual outcome of
the environment, the corresponding predicted actions consistently yield a higher task success rate.
This observation suggests that the quality of visual imagination serves as an implicit indicator of



action reliability. In other words, when VideoVLA produces coherent and plausible future visual
predictions, it is more likely that the associated actions are accurate for task completion. This finding
underscores the importance of jointly predicting future visual dynamics alongside future actions.

One of the key advantages of VideoVLA lies in its generalization capability. Beyond performing in-
domain tasks and manipulating objects seen during training, it demonstrates promising generalization
in two challenging settings: (1) imitating skills from other embodiments, and (2) handling novel
objects that do not appear in the training set. This capability can be attributed to two factors: (1) the
use of pre-trained video generation models, which enable the system to interpret language instructions
and generate plausible imagined futures, and (2) VideoVLA’s dual-prediction strategy, which fosters a
strong correlation between predicted actions and their corresponding visual consequences. VideoVLA
explores a paradigm shift by pioneering the use of pre-trained video generation models for robot
manipulation, in contrast to the dominant reliance on pre-trained understanding models in prior VLA
works. The feasibility and potential of such a new paradigm are clearly demonstrated by this work.
As generative models continue to improve, we believe that robotic manipulation systems derived from
video generation models, like VideoVLA, will exhibit increasingly robust generalization, moving us
closer to the goal of artificial general intelligence.

2 Related Works

Vision-Language-Action Models. Recent advances in vision-language-action (VLA) models [1}
2,13, 14, [105 5, 16} [7] have enabled a new paradigm for language-guided robot manipulation—these
models interpret language instructions, perceive the current environment, and control the robot to
complete tasks in an end-to-end manner. This success is largely driven by the advancement of
vision [[16} 17, 18], language |19} 20, [21]], and vision-language [[13} 14, [15] foundation models. By
leveraging these pre-trained understanding-oriented models, VLA systems have achieved notable
improvements in task success rates and demonstrated a certain degree of generalization to novel
objects [3) 31] and unfamiliar environments [4, |6]. Another key driver in the advancement of
VLA models is the increasing availability of large-scale, diverse datasets. The RT series [32, 33]]
demonstrates that VLA models can effectively leverage large-scale datasets and deliver promising
results. To support continued progress, the Open X-Embodiment [2] dataset was released, aggregating
over 60 robot datasets—including Language Table [34]], Berkeley Bridge [35], and others—into
a unified benchmark for pre-training. VideoVLA builds upon the rapid progress in robot datasets
and pre-trained foundation models but departs from prior VLA approaches that rely primarily on
understanding-oriented models. Instead, VideoVLA leverages large-scale pre-trained video generation
models and introduces a dual-prediction strategy—jointly predicting future actions and corresponding
visual imaginations that depict the anticipated outcomes of those actions. Recent works, UVA [36]
and VPP [37], represents initial steps toward this paradigm. Compared to these efforts, VideoVLA
differs in four key aspects beyond architectural distinctions: (1) we fully exploit the capabilities of
large-scale pre-trained video generators; (2) our model demonstrates strong generalization to novel
objects and unseen skills; (3) we reveal a strong correlation between predicted actions and visual
imaginations; and (4) VideoVLA achieves competitive performance against recent state-of-the-art
VLA models such as 7y [10] and CogACT [4] in both simulated and real-world settings.

Video Generation Models. Video generation [38] 23| 24, [25] aims to synthesize realistic and
temporally coherent video sequences. This field has experienced rapid progress, largely fueled
by advances in image generation [39] and the development of diffusion models [27, 40]. Modern
video generation frameworks typically support multi-modal conditioning. For example, text-to-video
models [41} 142} [38] generate videos from natural language prompts, while image-to-video and pose-
to-video models animate static inputs using learned motion priors [43, 44]. Most state-of-the-art
video generation methods adopt a two-stage pipeline: first, a video VAE [24] [25] is trained to encode
each video into a sequence of latent representations; then, a diffusion transformer such as DiT [27]]
or MM-DiT [39] is trained with a diffusion loss to model the spatiotemporal distribution over these
video latents. Our model is built upon CogVideoX [24]—one of the most powerful video generation
models to date. To our knowledge, this is the first work that adapts a large-scale video generator to
the domain of robotic manipulation, demonstrating that such models can serve not only generative
purposes but also as effective tools for visual planning and action prediction.

Video Generation for Robot Manipulation. Using video generation models for robot manipulation
has been an active area of research in recent years. However, most existing approaches incorporate
video generation as a visual planning component within modular frameworks to assist with action
prediction. For instance, [45] 46, 47] extract actions from video predictions using inverse dynamics



models. [48] estimates end-effector actions by computing optical flow between frames and leveraging
depth maps. Approaches like [49, 50] extract a goal frame from the predicted video and use it as
the condition for action prediction. [51]] and [52]] focus on human hand-object interaction video
generation and design models for human-to-robot transfer. [S3] gathers future frame information
by querying features from video generation model and uses a diffusion head to generate action.
[54] and [6] generate video frames autoregressively and predict one frame at a time along with
an action. Different from these works, our method introduces a unified, end-to-end VLA model
directly adapted from a large pre-trained video generation model, which jointly predicts the video and
action modalities within a single large transformer architecture, and it leverages the generalization
capabilities learned from video generation pretraining on massive real-world videos.

3 Methodology

3.1 Problem Formulation

Given a text instruction 7 describing a task and the current visual observation O, the objective is to
jointly predict:

1. An action chunk A = {a; € R7}X | consisting of K actions to be executed, where each action a;
is a 7-D vector. The first three dimensions encode the wrist rotation, the next three dimensions
encode the wrist translation, and the final dimension indicates the gripper state—a binary value,
where 0 denotes a closed gripper and 1 denotes an open gripper.

2. Avideo clip F = {F,} é\f:l composed of N frames that depict the anticipated future visual content
resulting from executing .A. In our implementation, we do not predict the raw visual frames
directly; instead, we predict their latent representations, as detailed in Section[3.3]

After executing the predicted action chunk .4, a new observation is obtained, and the process is
repeated—that is, the model predicts the next action chunk based on the updated observation—until
the task is completed. Note that the frequencies of A and F may differ—each action a; in A can
correspond to multiple frames in F.

3.2 Overview

Figure [2] presents an overview of VideoVLA, which primarily consists of: (1) two encoders that
transform each input modality—the language instruction and the video clip—into tokens or latent
representations; and (2) a DiT backbone that, conditioned on the language tokens and the latent repre-
sentation of the current visual observation, jointly predicts future frame latents and the corresponding
action sequence necessary to accomplish the task.

3.3 Data Preprocessing

VideoVLA processes language and visual inputs in the latent space to improve computational
efficiency. To achieve this, it employs a text encoder and a video encoder, as shown in Figure [2[a).

Text Encoder. We adopt T5 [29] as our text encoder to convert each language instruction 7 into a
fixed-length token sequence of 226 tokens. The resulting encoded tokens are denoted as T’

N

Video Encoder. The video encoder aims to transform a video clip 7 = {F'; };_;, consisting of N

frames, into a sequence of video latents V = {V; € R"*® }7—1, where n is the number of video
latents after temporal downsampling, and (h, w) represents the spatial resolution of each latent V' ;.

We adopt the 3D-causal VAE encoder from CogVideoX [24] as our video encoder. Owing to its
causal design, the first video latent V1 in the generated sequence V = {V';}7_; encodes only the
first frame F'1, which corresponds to the current visual observation O. In other words, V' serves as
the latent representation of the current observation. During inference, we encode the current visual
observation O alone to obtain V';, whereas during training, the entire video clip F is input to the
encoder to obtain both the current observation latent V1 and the future frame latents {V';}7_,.

3.4 Unified Future Modeling

Given the current observation latent V' and the language instruction tokens 7', our goal is to train
VideoVLA to jointly predict an action chunk A = {a; € R7}X |, and the future frame latents
{V; }?:2. As illustrated in Figure b), we employ a DiT-style [27]] architecture, in which both the
conditioning inputs and the target variables are concatenated into a unified sequence. The network is
composed of a stack of self-attention blocks that model the interactions across modalities and time.
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Figure 2: Overview of VideoVLA. (a) The text encoder converts the language instruction into a
fixed-length token sequence, while the video encoder transforms a video clip into a sequence of frame
latents, where the first latent corresponds to the first frame (i.e., the current visual observation). (b)
VideoVLA adopts a Diffusion Transformer [27]] architecture that conditions on the encoded language
tokens and the first frame latent to jointly predict the next action chunk required to accomplish the
task, along with the future frame latents that represent the anticipated visual outcomes of executing
that action chunk. The video decoder, highlighted in pink, is optional and only used when visualizing
the imagined future frames.

Specifically, for each visual latent—whether it represents the current observation or future frames—we
flatten the spatial dimensions into a one-dimensional sequence using raster order. Let V1 denote
the flattened version of the current observation latent V1, and {V” j };‘:2 denote the flattened future
frame latents {V/; }?:2. We then construct a multimodal input sequence by concatenating T, V/4,
{V';}7_y, and A. To model {V’;}7_, and A, we adopt DDPM [30]. Following its noise scheduling
strategy, Gaussian noise is added to both {V’;}"_, and .A. Prior to inputting into the backbone,
all modalities are projected into a common embedding dimension. The model is trained to denoise
the noisy versions of {V’;}"_, and .A using DDPM’s diffusion loss. Following DiT [27], the noise
timestep embedding is incorporated via adaptive LayerNorm. The backbone is initialized using the
pre-trained CogVideoX [24] model.

4 Experiment

Dataset. We use the Open X-Embodiment (OXE) [2] dataset for pre-training, which contains
over 1 million real-world robotic trajectories collected from 60 datasets spanning 22 distinct robot
embodiments. Following prior works such as Octo [[1], OpenVLA [3], and CogACT [4], we adopt a
similar subset of OXE, comprising 22.5 million frames for pre-training. For real-world experiments,
we collect a dataset consisting of 5824 samples spanning three robotic manipulation tasks: “pick”,
“stack”, and “place”. The data is collected via teleoperation using a Realman robot equipped with a
7-DoF arm and a gripper.

Evaluation. We conduct two types of evaluation—in-domain and generalization—across both
simulation and real-world experiments. In-domain evaluation assesses scenarios where the skills (e.g.,
“put” and “stack”) and objects (e.g., “green block™) have been encountered by a specific embodiment
during pre-training or fine-tuning. Generalization evaluation, on the other hand, focuses on two
key capabilities: (1) executing previously learned skills on novel objects, and (2) transferring skills
learned by other embodiments—yet unseen by the target embodiment—into the target embodiment.

For simulation experiments, we train our model solely on the OXE dataset, which includes data from
the Google robot and WidowX robot, and evaluate on these two embodiments using the SIMPLER
environment [55]]. This simulation platform is designed to closely mirror real-world conditions,
effectively bridging the sim-to-real gap for both control and visual inputs [55)]. For real-world
experiments, we further fine-tune the pre-trained model using our collected dataset.

Each task is evaluated over multiple trials in both simulation and real-world settings. Detailed setups
are provided in the appendix. We report the average success rate across all trials for each experiment.



Table 1: In-domain evaluation of VideoVLA and prior VLA models using the WidowX robot and
Google robot within the SIMPLER [55] simulation environment. All models are trained on the
OXE [2] dataset. For 7y [[LO], we retain only the visual observations as input, consistent with all other
models in our comparison. The robot proprioception inputs are omitted because they are unavailable
for most embodiments in the OXE dataset. For the WidowX robot, the four evaluated tasks are: “put

spoon on towel”, “put carrot on plate”, “stack green block on yellow block”, “put eggplant in yellow
basket”. We highlight the best results in bold and the second-best results with underline.

| WidowX Robot (VM) | Google Robot (VM/VA) |
Method Put Put Stack Put Av Pick Up Move  Open/Close Open and Av é‘fﬁ)
Sp. Ca. Block Ep. & | Coke Can Near Drawer Place &

RT-1-X [2] 00 42 00 0.0/ 1.1 [56.7/49.0 31.7/32.3 59.7/29.4 222/11.1|42.7/30.5]|24.8
RT-2-X [2] - - - - |78.7/823 77.9/79.2 25.0/353 3.7/20.6 |46.3/54.4| -

Octo-Base [1] 15.8 125 00 41.7|175|17.0/06 42/3.1 227/1.1 0.0/0.0 | 11.0/1.2 | 9.9
Octo-Small 1] |41.7 82 0.0 56.7|26.7 -/- -/- -/- -/- -/- -
OpenVLA [3] 42 00 00 125] 4.2 |18.0/60.8 56.3/67.7 63.0/288 0.0/0.5 |34.3/39.4|26.0
Spatial VLA [56] [20.8 20.8 25.0 70.8|34.4|81.0/89.5 69.6/71.7 59.3/36.2 83/12.2 |54.6/52.4]|47.1

o (10 292 62.5 29.2 91.6|53.1|84.0/71.4 55.8/57.9 343/26.5 31.5/18.0|53.5/43.4|50.0
CogACT [4]  |71.7 50.8 15.0 67.5|51.3|91.3/89.6 85.0/80.8 71.8/283 52.7/47.1|75.2/61.4| 62.6
Ours |75.0 208 458 70.8|53.1|92.3/89.8 82.9/733 66.2/28.8 50.9/59.3|73.1/62.8]63.0

Table 2: Evaluation of generalization to novel objects using the Google robot under the SIMPLER
environment. The novel objects are selected from the YCB [57]] and GSO [58] datasets.

Method Green Carrot Egg- Wrench Straw- Plum Tennis Cleaner Toy  Flash-

Cube plant berry Ball Bottle Airplane light Avg

OpenVLA [3]] 120 24.0 120 0.0 00 40 00 4.0 4.0 40 | 64
Spatial VLA [56] | 76.0 520 84.0 32.0 600 56.0 32.0 56.0 32.0 28.0 | 50.8

7o [10] 48.0 60.0 440 16.0 120 440 240 16.0 0.0 24.0 |28.8
CogACT [4] 84.0 72.0 640 160 320 440 200 320 20.0 40.0 | 42.4
Ours | 96.0 84.0 88.0 40.0 72.0 80.0 68.0 44.0 28.0 52.0 | 65.2

Implementation Details. We utilize CogVideoX-5B [24] as our pre-trained backbone. By default,
each inference step predicts 13 future frame latents—corresponding to 49 video frames—and 6 action
steps. The model is trained for 100K iterations during pre-training and 15k iterations during fine-
tuning, using 32 AMD MI300X GPUs with a batch size of 256. We employ the AdamW optimizer
with a learning rate of 1e-5 and a weight decay of 1e-4. During inference, we use DDIM sampling
with 50 denoising steps. For simulation experiments, we predict 13 future video latents corresponding
to 49 frames, whereas for real-world experiments, we predict 4 future latents corresponding to 13
frames, for efficiency. In both settings, 6 future actions are predicted, but only the first 3 actions are
executed during deployment.

4.1 Simulation Experiments

We use the SIMPLER [55] environment for simulation-based evaluation.

In-Domain Evaluation. SIMPLER offers two evaluation protocols—Visual Matching (VM) and
Variant Aggregation (VA)—to assess the performance of models using the Google robot and WidowX
robot. Specifically, VM aims to closely replicate real-world tasks by minimizing discrepancies
between the simulated and real environments. VA builds on VM by introducing variations such as
changes in background, lighting, and table texture. For the Google robot, both evaluation settings
are available in SIMPLER, whereas for the WidowX robot, only the VM setting is provided. TablelT]
summarizes the performance of the Google and WidowX robots under the SIMPLER environment.
Our model, VideoVLA, achieves the highest average performance on the VM-WidowX-robot (averaged
over 4 tasks), the highest average performance on the VA-Google-robot (averaged over 4 tasks), the
second-highest average performance on the VM-Google-robot (averaged over 4 tasks), and the
highest overall average performance across all 12 tasks. These results highlight VideoVLA’s strong
capabilities in in-domain tasks.

Generalization to Novel Objects. Table |2 presents the evaluation of generalization capabilities to
novel objects. Specifically, we select objects from the YCB [57] and GSO [58]] datasets that do not



Table 3: Evaluation of generalization to new skills using the Google robot within the SIMPLER
environment. The new skills are transferred from the WidowX robot, as they are present in its
training data but absent from the Google robot’s training set. {L,R,U,B} denotes {Left, Right, Upper,
Bottom}.

Put Spoon Put Carrot Stack Green Block Take Out Flip  Pour Slide to

Method on Towel onPlate on Yellow Block of Apple Cup Coke Can {L.R,UB} Avg.
OpenVLA [3] 0.0 12.5 0.0 26.7 0.0 4.0 0.0 6.2
Spatial VLA [56] 6.3 31.3 0.0 31.3  20.0 400 4.0 18.9
mo [10] 18.8 18.8 0.0 66.7 80 12.0 4.0 18.3
CogACT [4] 20.8 41.7 5.0 43.8 4.0 20.0 8.0 204
Ours | 563 58.3 20.0 93.8 20.0 52.0 40.0 |48.6

Table 4: Real-world in-domain evaluation using the Realman robot. All models are pre-trained on
the OXE dataset and subsequently fine-tuned on our collected dataset. For the “Place” task, the
embodiment is required to first perform a “pick up” action followed by “placing” the object at the
specified location; therefore, we report the success rates for both stages separately.

Method | Pick Up | Stack | Place | Task (All)

|Banana Lemon Avocado Avg.|Cup Bowl Avg.|Pick Up Place Avg.| Avg.

OpenVLA [3] 12.5 0.0 12.5 83(125 00 63| 292 0.0 14.6 9.7
Spatial VLA [56] | 37.5 25.0 500 375|250 16.7 20.8| 20.8 0.0 104 229

mo [10] 62.5 62.5 75.0 66.7|583 50.0 542 | 458 16.7 313 50.7
CogACT [4] 75.0 62.5 87.5 75.0|833 458 64.6| 542 167 355 58.4
Ours | 625 75.0 75.0 708|750 583 66.7| 87.5 250 56.3| 64.6

appear in the Google robot’s training data and import them into the SIMPLER environment. We
evaluate the “Pick Up” skill using the Google robot on 10 novel objects: green cube, carrot, eggplant,
wrench, strawberry, plum, tennis ball, cleaner bottle, toy airplane, and flashlight. Our model achieves
the highest average success rate and outperforms prior models on eight out of the ten novel objects.

Generalization to New SKills. Table |3| presents the evaluation of skill generalization using the
Google robot in the SIMPLER environment. The model is trained on the OXE dataset, which includes
a diverse set of embodiments, each potentially associated with a distinct, non-overlapping set of skills.
Notably, the training data for the Google and WidowX robots constitute a significant portion of the
dataset, with the WidowX robot exhibiting a broader skill repertoire. To assess skill generalization, we
evaluate the model’s ability to transfer skills from the WidowX robot to the Google robot. Specifically,
all eight skills listed in Table [3]are present in the WidowX training data but absent from the Google
robot’s training set. Our model outperforms the second-best model, CogACT [4], by 28.2 points in
average success rate and achieves superior performance across all evaluated skills.

4.2 Real-World Experiments

For all experiments in this section, we fine-tune each pre-trained model—OpenVLA [3], Spa-
tialVLA [56l, CogACT [4]], ¢ [10], and our VideoVLA—on our collected dataset using the Realman
robot, which is equipped with a 7-DoF arm and a gripper.

In-Domain Evaluation. For real-world in-domain evaluation, we assess performance
on three tasks: (1) Pick up the [Object] and place it onto the [Color] plate, where
Object € {Banana,Lemon, Avocado}, and Color € {White, Blue, Yellow}; (2) Stack the
[Color] [Object] into the [Color] [Object], where Object € {Cup,Bowl} and Color €
{Pink, White, Blue, Yellow}; (3) Place the [Color] block onto the [Color] block, where Color €
{Red, Orange, Blue, Green, Yellow}. To increase task difficulty, we introduce novel distractor objects
into the scene. As summarized in Table @ VideoVLA achieves the highest average success rate
among all evaluated models, demonstrating strong in-domain performance in real-world settings
beyond simulation.

Generalization to Novel Objects. Table [5] presents our evaluation of real-world generalization
to novel objects. Using the Realman robot, we perform the task: “Pick up the [Novel Object]
and place it onto the [Color] plate”, where each Novel Object is chosen from a set of 12 objects



Table 5: Evaluation of real-world generalization to novel objects using the Realman robot. The task
is: “Pick up the [Novel 0Object] and place it onto the [Color] plate”. B-1: an upright black bottle.
B-2: a horizontally placed black bottle. B-3: an upright yellow bottle.

Blue Clear Toy Era- Screw- Man- Cab- Mou- Pea-

Method Ball Tape Duck ser driver go le se ch

)

en B-1 B-2 B-3|Avg.

OpenVLA [3] 500 00 83 250 0.0 00 00 00 83 83 0.0 83 16.7| 9.6

Spatial VLA [56] | 58.3 0.0 83 333 0.0 00 00 00 167 83 83 250 25.0|14.1
mo [10] 667 00 00 167 333 00 250 0.0 83 16.7 41.7 50.0 25.0|21.8
CogACT [4] 91.7 00 167 583 500 83 167 00 00 83 83 583 333|269
Ours |833 75.0 75.0 58.3 583 41.7 417 333 25.0 16.7 41.7 66.7 41.7]50.6

Table 6: Evaluating real-world cross-embodiment skill transfer: our Realman robot performs novel
skills learned only by the WidowX robot, using familiar objects.

Method \ Move Block Move Fruit Grab Fruit Topple Bottle Take Out Block Wipe Table \ Avg.
OpenVLA [3] 18.8 12.5 18.8 0.0 0.0 0.0 8.3
Spatial VLA [56] 18.8 25.0 313 6.3 0.0 0.0 135
mo [10] 43.8 313 62.5 12.5 12.5 8.3 28.5
CogACT [4] 56.3 50.0 68.8 18.8 0.0 16.7 35.1
Ours | 81.3 68.8 75.0 43.8 37.5 417 | 58.0

Table 7: Ablation study on backbone choice. The eval- T,ple 8: Ablation study on the number of
uation is conducted in the SIMPLER (Visual Match- predicted future frames. The evaluation is
ing) environment using the Google robot. * denotes .gnducted in the SIMPLER (Visual Match-
models trained from scratch. ing) environment using the Google robot.

Pick Up Move Open/Close Pick Up Move Open/Close
Coke Can Near Drawer Coke Can Near Drawer

Backbone ‘

AVE.  4Frames

CogVideoX-5B* [24]| 18.6  10.8 9.2 12.6 25 900 792 03.0 |774
CogVideoX-5B [24] | 923 829 662 (804 49 923 829 662 [804

not seen during training, as listed in Table [5] and Color € {White, Blue, Yellow}. Although all
evaluated models exhibit some degree of real-world generalization to novel objects, their performance
varies significantly. For instance, OpenVLA [3]] and Spatial VLA [56] achieve a 0% success rate on
nearly half of the novel objects. In contrast, our VideoVLA successfully handles all 12 novel objects,
with success rates ranging from 16.7% to 83.3%.

Generalization to New SKkills. In this experiment, we train our model and all baseline models on a
combined dataset consisting of the WidowX Robot set (derived from the OXE dataset [2]) and our
own collected dataset. As a result, our model is exposed to two distinct embodiments during training:
the WidowX robot and our Realman robot. These embodiments possess partially non-overlapping
skill sets. To evaluate skill transfer, we focus on skills that are observed by the WidowX robot during
training but never demonstrated by the Realman robot. We then assess whether the Realman robot
can successfully perform these unseen skills. The set of non-overlapping skills includes: “Move”,
“Grab”, “Topple”, “Take Out”, and “Wipe”. The objects to be manipulated have been seen by the
Realman robot during training; only the skills themselves are novel to the embodiment. As shown
in Table[6] VideoVLA achieves the highest success rates across all evaluated skills. Notably, even
for skills such as “Topple” and “Wipe”, which differ substantially from those encountered during
training, VideoVLA is still able to complete them to a certain extent.

4.3 Ablation Study

Backbone. Table[/|presents the results of two comparisons: (1) VideoVLA equipped with different
pre-trained backbones, including CogVideoX-5B [24] and OpenSora-1.1 [23]]; and (2) VideoVLA
initialized with the pre-trained CogVideoX-5B versus VideoVLA trained from scratch. The results
highlight a strong correlation between the quality of generated videos and task manipulation success
rate: (1) using a higher-quality video generator, such as CogVideoX-5B, significantly improves task



Table 9: Ablation study on the dual-prediction strategy. In-domain evaluation is conducted in the
SIMPLER (Visual Matching) environment using the Google robot. Generalization tests follow the
settings of Tables[?]and [3]

In-domain Generalization
Method Pick up Coke Can Move Near Open/Close Drawer Avg. Novel Objects New Skills
Default 92.3 82.9 66.2 80.4 65.2 48.6
No video loss 35.6 29.1 16.2 27.0 12.7 4.4
Action only 333 25.8 17.6 25.5 11.3 2.1

Table 10: Success rates for visual imagination and actual execution under generalization settings.
Visual imagination outputs are evaluated by human judges to determine success or failure.

Metric Novel Objects New Skills
Visual Imagination Success Rate 84.0 63.4
Actual Execution Success Rate 65.2 48.6

performance; and (2) training from scratch without pre-training on large-scale general video data
results in a dramatically lower success rate.

Time Horizon. Table[§] presents an ablation study on how the number of predicted future frames
affects robot manipulation performance. We evaluate three settings: predicting 49, 25, and 13 future
frames, which correspond to 13, 7, and 4 video latents, respectively, given a video VAE encoder
with a downsampling rate of 4. As the number of predicted future frames increases, the overall
performance improves consistently. This suggests that having a longer temporal horizon allows the
model to better anticipate the consequences of its actions, leading to more accurate execution.

Dual-Prediction Strategy. Table [|presents an ablation study on our video-action-dual-prediction
strategy. Three variants are compared against each other: (i) Default, which jointly predicts future
videos and actions with denoising losses on both modalities; (ii) No video loss, which retains joint
modeling but applies the denoising loss only to actions; and (iii) Action only, which predicts future
actions without predicting future videos, using an action denoising loss. Both No video loss and
Action only show a substantial performance decline across all tasks, underscoring the importance of
the dual prediction for achieving robust task execution and strong generalization.

4.4 Imagination-Execution Correlation Analysis

We further analyze the correlation between the predicted visual imaginations and the actual execution
outcomes. For each task, we record the video frames where the predicted actions are executed,
resulting in a sequence of M execution frames denoted as {F;} . Correspondingly, we generate
M related imagination frames { F'.}} | by feeding the predicted video latents into the VAE decoder,
as illustrated in Figure 2]

Motion Similarity. To assess the motion similarity between these two videos, we proceed as follows:
For each video, we extract keypoints using SIFT [59] on the first frame, and then apply SAM [60] to
segment the foreground (i.e., objects and the robot embodiment), retaining only keypoints within the
foreground regions. Next, we use the SAM-PT [61] point tracking method to track these keypoints
across frames. As a result, we obtain two sets of point trajectories: {p; }le from the actual

execution and {p/; }lel from the visual imagination, where each p; and p’; represents a trajectory of
a foreground keypoint. We then apply the Hungarian matching algorithm to identify correspondences
between trajectories in the two sets. For each matched pair, we compute the normalized cosine
similarity between the trajectory vectors. Finally, we report the mean of all pairwise similarities
as the overall metric for robot motion similarity between the predicted visual imaginations and the
actual executions. The results in Figure [3] show that a higher robot motion similarity between the
visual imaginations and the actual executions corresponds to a higher task success rate. This indicates
that (1) there is a strong correlation between the predicted visual imaginations and actual executions,
and (2) predicting accurate future visual outcomes facilitates successful robotic manipulation.

Task Performance Comparison. We also compare the quality of visual imagination and actual
execution results in the generalization settings in Table Since visual imaginations are video



Successful Successful

Execution Execution
Failed Failed
Execution Execution
0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Motion Similarity(Imagination, Execution) Motion Similarity(Imagination, Execution)
(a) Google robot. (b) WidowX robot.

Figure 3: Each sub-figure illustrates the relationship between robot motion similarity—comparing
visual imaginations with actual executions—and task success. Each point represents either a success-
ful or failed execution. A higher robot motion similarity corresponds to an increased likelihood of
successful execution. The plots show aggregated statistics across tasks in the SIMPLER environment
using (a) the Google robot and (b) the WidowX robot.

“Put the lemon on the white plate.” “Put the white cup into the blue cup.”

Actual Executions Actual Executions

Figure 4: Visualization of VideoVLA’s predicted visual imaginations and corresponding real-world
executions during task completion, demonstrating a strong correlation between imagined and actual
outcomes. Additional visualizations are provided in the appendix.

outputs which cannot be automatically evaluated for success, we conduct human evaluation and
deem an imagined trajectory successful if it (i) follows the instruction semantically and (ii) exhibits
no salient geometric distortions or violations of physical plausibility. We observe that most visual
imaginations yield reasonable outcomes, attaining 84.0% success on novel objects and 63.4% on
new skills. As expected, actual execution achieves lower success (65.2% and 48.6%, respectively),
reflecting the added difficulty of precise physical grounding, actuation noise, and perception errors in
real environments. Additionally, we provide two qualitative visualizations in Figure [d]

5 Conclusion

In this paper, we present VideoVLA, a vision-language-action framework that leverages large pre-
trained video generators—unlike prior approaches that rely primarily on large perception or vision-
language models. VideoVLA jointly predicts future actions to be executed and generates visual
imaginations depicting the anticipated outcomes of those actions. Experimental results reveal a
strong correlation between imagined futures and actual execution: high-quality visual predictions are
consistently associated with reliable action plans and task success. VideoVLA not only demonstrates
strong performance on tasks involving seen objects and previously learned skills, but also exhibits
remarkable generalization to novel objects and cross-embodiment skill transfer in both simulated and
real-world environments. These capabilities stem from the power of large-scale pre-trained video
generation and our dual-prediction strategy. Our findings highlight the potential of generative video
models as a scalable foundation for general-purpose robot manipulation.
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If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical assumptions or formal proofs.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions

of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Implementation details are provided in the main paper.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental

material?
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Answer: [Yes]
Justification: We provide the code and plan to release it as open source.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please refer to Section [l
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We evaluate our approach in both simulation and real-world settings to ensure
reliable and faithful assessment.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please refer to Section 4]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research presented in this paper fully conforms to the NeurIPS Code of
Ethics in all respects.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: This discussion is included in the appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Not applicable.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited the relevant papers accordingly.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We perform real-world experiments using our own collected dataset, with
detailed information provided in the paper.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Not applicable.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Not applicable.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Generative LLMs are not used in this work.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Evaluation Details

We report the number of trials for each experiment in both simulation and real-world evaluations. For
each model, including our VideoVLA and the baselines, we strictly follow a consistent evaluation
protocol.

Simulation Experiments. Table|11|lists the number of trials for each experiment conducted in the
SIMPLER environment [55], including Google robot experiments in SIMPLER Visual Matching
(VM) and Variant Aggregation (VA), WidowX robot experiments in SIMPLER Visual Matching
(VM), and generalization experiments with the Google robot.

Real-World Experiments. Table [12] presents the number of trials conducted for each real-world
experiment.

Table 11: The number of trials for each simulation experiment.

Setting | Task | # Trials
Pick Up Coke Can 300
Move Near 240
Google Robot (SIMPLER-VM) Open/Close Drawer 216
Open Top Drawer and Place Apple 108
Pick Up Coke Can 825
Move Near 600
Google Robot (SIMPLER-VA) Open/Close Drawer 378
Open Top Drawer and Place Apple 189
Put Spoon on Towel 24
. Put Carrot on Plate 24
WidowX Robot (SIMPLER-VM) Stack Green Block on Yellow Block 24
Put Eggplant in Yellow Baske 24
Google Robot (SIMPLER) | Each Novel Object | 25
Google Robot (SIMPLER) | Each New Skill | 20

Table 12: The number of trials for each real-world experiment.

Task | # Trials
Pick Up 24
Stack 48
Place 24
Each Novel Object | 12
Each New Skill | 16

B More Analysis

Causal masking vs. bidirectional attention. To further examine whether a causal masking strategy
offers advantages over our default bidirectional approach, we conduct an ablation in which a causal
mask is applied: action tokens can attend to video tokens, but video tokens cannot attend to action
tokens. As reported in Table[I3] we observe a consistent drop in success rate with causal masking
relative to the default bidirectional model. These results indicate that allowing video tokens to access
action tokens helps the model better capture how specific actions drive physical changes in the visual
scene. Furthermore, bidirectional interaction between action and vision enhances coherence and
alignment—allowing actions to more effectively guide video prediction, while video prediction, in
turn, supports more accurate action prediction.
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Table 13: Ablation study on causal masking strategy. The evaluation is conducted in the SIMPLER
(Visual Matching) environment using the Google robot.

Method | Pick up Coke Can Move Near  Open/Close Drawer | Average
Default 92.3 82.9 66.2 80.4
Causal mask 89.3 76.2 61.1 75.5

Table 14: Ablation study on diffusion schedules. The evaluation is conducted in the SIMPLER
(Visual Matching) environment using the Google robot.

e Pick Up Move Open/Close
Diffusion Schedule Coke Can  Near Drawer Avg
Sync-training, Sync-inference (Default) 92.3 82.9 66.2 80.4
Async-training, Sync-inference 87.3 74.1 60.2 73.8
Async-training, Async-inference 84.7 70.8 57.4 71.0

Asynchronous noising and inference. By default, our model applies a synchronous diffusion
schedule to both vision and action tokens during training and inference, which means that these two
modalities share the same diffusion timestep and strategy. To further examine the impact of alternative
schedules on model behavior, we evaluate two variants that decouple the action and video noising
schedules during training: (i) asynchronous training, synchronous inference, which uses different
noising schedules in training but jointly denoises actions and video at test time; and (ii) asynchronous
training, asynchronous inference, which at test time first denoises video latents (stage-1) and then
conditions on the denoised video to generate actions (stage-2). As demonstrated in Table [I4] both
variants exhibit inferior performance compared to the default joint (synchronous) strategy across
all tasks, with average scores of 73.8% and 71.0% versus 80.4%, reflecting drops of 6.6 and 9.4
percentage points, respectively. We hypothesize that the degradation arises because actions and video
are temporally aligned modalities; joint training and denoising allow cross-modal information to be
exchanged at every step, yielding complementary supervision.

C More Visualizations

Figures[5|and [6]show visualizations of VideoVLA'’s predicted visual imaginations alongside the corre-
sponding executions during task completion, for real-world and simulation experiments, respectively.

D Limitations and Broader Impacts

One key limitation of this work is its inference speed. For real-world deployment, VideoVLA predicts
4 future latents (corresponding to 13 video frames) and 6 future actions (of which the first 3 are
executed), using DDIM denoising with 10 denoising steps. This process takes approximately 1.1
seconds on a single H100 GPU, resulting in an effective control frequency of around 3 Hz. This
limitation primarily stems from the reliance on a large pre-trained video generator—CogVideoX-5B
in our case. Nonetheless, our work demonstrates the feasibility of leveraging large-scale pre-trained
generation models, rather than the commonly used pre-trained perception and understanding models,
to enable end-to-end vision-language-action (VLA) robotic manipulation. Future directions for
improving VideoVLA’s inference speed include pre-training a robot-oriented video generator with a
smaller model size than general-purpose generators, adopting one-step denoising techniques such
as the ShortCut model [62], and applying model distillation. We leave inference acceleration as an
important avenue for future exploration.
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Figure 5: Visualizations of VideoVLA’s predicted visual imaginations and the corresponding execu-
tions during task completion in real-world experiments.
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Figure 6: Visualizations of VideoVLA’s predicted visual imaginations and the corresponding execu-
tions during task completion in simulation experiments.
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