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ABSTRACT

Autoregressive (AR) models, long dominant in language generation, are increas-
ingly applied to image synthesis but are often considered less competitive than
Diffusion-based models. A primary limitation is the substantial number of image
tokens required for AR models, which constrains both training and inference ef-
ficiency, as well as image resolution. To address this, we present Token-Shuffle,
a novel yet simple method that reduces the number of image tokens in Trans-
former. Our key insight is the dimensional redundancy of visual vocabularies in
Multimodal Large Language Models (MLLMs). Leveraging this, we consider two
key operations: token-shuffle, which merges spatially local tokens along channel
dimension to decrease the token number, and token-unshuffle, which untangles
the inferred tokens after Transformer blocks to restore the spatial arrangement for
output. Jointly training with textual prompts, our strategy requires no additional
pretrained text-encoder and enables MLLMs to support extremely high-resolution
image synthesis in a unified next-token prediction way while maintaining effi-
cient training and inference. For the first time, we push the boundary of AR
text-to-image generation to a resolution of 2048 x 2048 with gratifying generation
performance. In GenAl-benchmark, our 2.7B model achieves 0.77 overall score on
hard prompts, outperforming AR models LlamaGen by 0.18 and diffusion models
LDM by 0.15. Exhaustive large-scale human evaluations also demonstrate our
prominent image generation ability in terms of text-alignment, visual flaw, and
visual appearance. We hope that Token-Shuffle can serve as a foundational design
for efficient high-resolution image generation within MLLM:s.

10241024

1024x1024 1024x1024 1024x1024

Figure 1: High-resolution (from 1k to 2k images) images generated by our 2.7B AR model with
Token-Shuffle (By default, we set shuffle window size = 2).
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1 INTRODUCTION

Within the framework of autoregressive Transformers, large language models (LLMs) ( ,

;a; , ) have recently achieved remarkable success in natural language processing

by predicting the next token in a sequence. Building on these advances recent efforts have aimed

to expand LLMs with image generation capabilities( , ; ,
), leading to the development of multimodal large language models (MLLMs).

Two pr1mary strategies are explored for image generation in MLLMS: continuous visual tokens (
s ) and discrete visual tokens ( , s
) each with un1que pros and cons. Recent studies ( , ) highlight that contrnuous
tokens deliver superior image quality and require fewer tokens, offering notable computational
efficiency. In contrast, discrete tokens generally produce lower visual quality and require a quadratic
increase in token count with respect to image resolution. However, discrete tokens are more compati-
ble with LLMs considering implementation and engineering. Continuous tokens, on the other hand,
necessitate extensive modifications to the LLM pipeline, including additional loss functions (e.g.,
regression ( , ) or diffusion loss ( , )), adjustments to causal masking (
; , ), and significant engineering efforts (e.g., model and loss parallelism).
Bes1des no strong evidence shows that continuous pipeline would have less impact to text generation
in MLLMs. Consequently, large-scale, real-world MLLM applications like EMU3 ( ,
) and Chameleon ( , ) predominantly adopt the discrete visual tokens in practice.

Without altering the standard casual Transformers, discrete visual token MLLMs have explored
applying the "next-token prediction” paradigm to image generation. Examples include LlamaGen (

s ), Chameleon ( R ), and EMU3 ( R ), which utilize vector
quantization image tokenizers ( ; , ) to transform images
into discrete tokens, allowing autoregressive Transformers to generate 1mages in a process similar to
language generation. Although these MLLMSs demonstrate impressive image generation capabilities,
they face substantial limitations in terms of achievable resolution and the associated number of visual
tokens. Unlike language, which typically requires a few dozen to a few hundred tokens, images
demand far more (e.g., 4k visual tokens to generate a 1024 x 1024 resolution image). Due to the
quadratic computational complexity of Transformers, this huge token number requirement makes
both training and inference prohibitively costly. As a result, most MLLMs are limited to generatlng
low- or medium-resolution images ( ,

), which restricts their ability to fully leverage the beneﬁts of hlgh resolut1on 1mages such as
enhanced detail preservation and fidelity. In contrast, high-resolution i 1mage generation has advanced
51gn1ﬁcantly within the domain of diffusion models ( ,

s ). While tentative efforts have been made towards efﬁment LLMs that
support long-context generation, these typically involve architectural modifications (
, ), and overlook off-the-shelf LLMs.
Consequently, developrng effectlve methods to scale image generation resolution with discrete visual
tokens in MLLMs remains a key area of research.

To deal with this issue, we first look into the detail implementation of integrating visual tokens to LLM
vocabulary. As outlined above, the common practice is to concatenate the visual tokenizer codebook
with the original LLM vocabulary to form a new multimodal vocabulary. While straightforward,
this approach overlooks the intrinsic differences in dimension. For instance, in typical VQGAN

implementations, the codebook vector dimension is relatively low, e.g., 256 ( s ).
This low dimensionality is proven to be sufficient to distinguish vectors and has been shown to
enhance both codebook usage and reconstruction quality ( ; ).

However, d1rectly appending the visual tokenizer codebook to the LLM Vocabulary results ina
dramatic increase in vector dimension, reaching values like 3072 or 4096, or even higher. This drastic
increase inevitably introduces ineffective dimension redundancy for the added visual vocabulary, as
we empirically demonstrated in Fig. 3.

Inspired by this, we introduce Token-Shuffle, a pair of plug-and-play operations designed for MLLMs
that significantly reduces the number of visual tokens for computation, enhancing both efficiency and
high-resolution image synthesis. Our method draw inspiration from the widely-used pixel-shuffle (

, ) technique in super-resolution, fusing visual tokens along channel by leveraging the visual
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vocabulary dimensional redundancy. Rather than learning and generating each visual token individu-
ally, we process and generate a set of tokens within a local windows sequentially, as illustrated in Fig. 2.
This approach results in a drastic

reduction in the number of visual 5 VQ-GAN (&)
tokens for computation (e.g., sav- Gir‘::a‘:d ‘ Decoder
ing ~ 75% tokens when shuffle . L
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the 2.7B Llama model, we
achieve a VQAScore of 0.77
on the GenAl-bench ( ,

), clearly outperforming
related autoregressive models
and even surpassing strong diffusion models, thereby setting a new state-of-the-art result. Besides,
large-scale human evaluation also demonstrate the effectiveness of our proposed methods. The
effectiveness and efficiency of Token-Shuffle demonstrate the substantial potential of our method,
empowering MLLMs with the capability for high-resolution, high-fidelity image generation and
paving the way for surpassing diffusion-based approaches.

Figure 2: Token-Shuffle Pipeline: a plug-and-play operation
pair for reducing visual token number in MLLMs, comprising a
token-shuffle operation to merge spatially local visual tokens and
a token-unshuffle operation to disentangle inferred visual tokens.

2 RELATED WORK

Text-to-Image Generation aims to synthe51ze images based on class or textual prompts Recently,
diffusion-based models ( s s
; , ) have delivered i 1mpresswe results Latent diffusion models (LDM) (
, ) innovatively shifted diffusion from pixel space to the latent space of powerful pretrained
autoencoders, and introduced textual guidance. Other technlques such as classifier-free guidance (

s ), Flow Matching ( , s ), and v-prediction (

, ), have also contributed to better i 1mage generation quality. Inspired by the success
of Transformers in various tasks, recent approaches have explored Transformer designs for improved
scalability, as demonstrated in models like DiT ( , ) and U-ViT ( , ).
Moreover, work such as Imagen ( , ) has demonstrated the effectiveness of leveraging
large language models (LLMs) for image synthesis. In our work, we take a different approach by
directly exploring image synthesis using LLMs in an autoregressive manner.

AutoRegressive Models for Image Synthesis have garnered significant attention recently. Unlike the
dominant diffusion models, AR models offer the potential for a unified and general multimodal system.
One of the recent works is LlamaGen ( , ), which employs a pure Llama (

s ) architecture to generate images via next-token prediction. In contrast, the concurrent
work VAR ( s ) considers next-scale prediction. Meanwhile, Open-MAGVIT?2 (

, ) highlights the benefits of a visual tokenizer with an extensive vocabulary. In a different
approach, MAR ( s ) eliminates the need for discrete visual tokens and instead uses a
lightweight diffusion block to decode continuous latent features. However, above approaches either
focus on class-conditioned synthesis within predefined categories or rely on additional pretrained
and frozen text encoders for text-conditioned synthesis. A unified autoregressive MLLM for text-
conditioned image generation remains underexplored, and this is the focus of our work.
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Multimodal Large Language Models are designed to understand and generate across various
modalities ( s ). Given the successes with LLMs ( ),
it is natural to extend LLMs into the multimodal domain. In such models dlfferent modahtles are
encoded via specific tokenizers, fused, and jointly learned with other modalities. Conceptually, recent
advances in multimodal models generally fall into two approaches: one use continuous tokens for
non-text modalities, and the other is based on discrete token representations for all modalities. For
approaches of continuous tokens, they incorporate continuous features like VAE or CLIP features of
visual data into LLMs. These methods often result in better generation quality compared to discrete
token-based models. As a result, numerous models have emerged, including EMU ( s ),
EMU?2 ( , ), SEED-X ( , ), and FLUID ( , ), etc. On the
other hand, one of the leading models in the discrete token representation category is CM3Leon (

s ). Similar models, such as Chameleon ( R ), EMU3 ( s ) and
Lumina-mGPT ( s ), have also shown promising results. In our work, we consider
discrete tokens for MLLM image generation and target efficient high-resolution image generation.

3 TOKEN-SHUFFLE

We propose Token-Shuffle, a straightforward yet powerful method for reducing the number of visual
tokens in causal Transformers, enabling efficient and high-quality high-resolution image synthesis.

3.1 PRELIMINARY

Large Language Model Architecture Our approach utilizes a decoder-only autoregressive Trans-
former model, specifically LLaMA ( s ), as the foundational model. Our model
predicts the conditional probability of the ¢-th token P (z¢|x1, 22, -+, x1_1 ) through an autoregressive
next-token prediction process, and only require the standard cross-entropy loss for training.

Image Synthesis in LLMs To enable LLMs perform image synthesis, we incorporate discrete visual
tokens into the model’s vocabulary. We utilize the pretrained VQGAN model from LlamaGen,
which down-samples the input resolution by a factor of 16. The VQGAN codebook contains 16,384
vocabularies, which are concatenated with LLaMA’s original vocabulary. Additionally, special tokens
<|start_of_image|>and <|end_of_image|> are introduced to encapsulate the sequence
of visual tokens. During training, all tokens (including visual and textual) contribute to the loss.

3.2 LIMITATIONS FOR IMAGE SYNTHESIS

While various models have demonstrated the ability of image synthesis in MLLMs by inferring
discrete visual tokens ( R ), an inevitable issue is
the prohibitive number of visual tokens for high- resolutlon images. As aforementioned, to generate
a 1024 x 1024 resolution image, it requires total 4k visual tokens if a down-sample 16 tokenizer is
employed. Compared to language corpus, such number of visual tokens makes the training to be
extremely slow and the inference to be prohibitively 1nefﬁ01ent This will also largely restrict the
generated image quality and aesthetic ( , , ). Moreover, if we
increase the resolution to 2048 x 2048, corresponding Wlll significantly increase to 16k, which is
impractical for both effective training and efficient inference in the context of next-foken-prediction.

In principle, increasing the number of visual tokens can yield more detailed, aesthetically pleasing
images with higher resolution. However, this also introduces a prohibitive computational and
inference burden. Previous approaches have always faced the trade-off: either enduring significantly
increased training and inference costs, or scarifying image resolution and quality. Addressing this
dilemma is of particular interest in the field.

3.3 VISUAL DIMENSIONAL REDUNDANCY

We contend that the common approach of directly incorporating discrete visual tokens into the
vocabulary of LLMs introduces inherent dimensional redundancy. To investigate this, we conduct a
simple study using a 2.7B Llama-based MLLM with a dimension of 3072. For visual vocabularies,
we introduce two linear layers to linearly reduce and expand the embeddm% dimension. This
configuration ensures that the rank of the visual vocabulary is constrained to < 0 , where r is the
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Figure 3: Illustration of visual vocabulary dimensional redundancy. Left: Two MLPs reduce
visual token rank by a factor of r. Right: Pre-training loss (log-scaled perplexity) for different r
values, showing substantial dimension reduction with minimal performance impact.

compression factor. We train models with Varying values of r on a licensed Shutterstock dataset
for 55k iterations for demonstration. Fig. 3 shows that there is considerable redundancy in visual
vocabularies, and we can compress the dimension by up to a factor of 8 without significantly impacting
generation quality. A slight increase in loss is observed when larger compression factors are used.

3.4 TOKEN-SHUFFLE OPERATIONS
. . . 5 Token number (k) 20 Token number (k) ¢ 400
Motivated by our analysis of di- FLOPs (T) FLOPs (T)
mensional redundancy in visual vo- :

cabularies, we introduce Token-
Shuffle—plug-and-play operations
that reduce visual token counts in
Transformer to improve computa-
tional efficiency and enable high-

resolution image generation. o B e o e

Rather than reducing dimensional (a) Resolution 1024x1024 (b) Resolution 2048x2048
redundancy of visual vocabulary, we Figure 4: quen-Shufﬂe can enhancg efﬁciepcy quadrat-
leverage this redundancy to reduce the ica!ly. For 1nsFance, with a shufﬂe vymdow size 5 = 2, we
number of visual tokens for greater ef- achieve approximately a 4x reduction in both training FLOPs

ficiency. Specifically, we shuffle spa- and token number.

tially local visual tokens into a single token, then feed these fused visual tokens along with textual
tokens into Transformer. A shared MLP layer is employed to compress visual token dimension,
ensuring the fused token has same dimension as original. Assuming a local shuffle window size of s,
our method reduces the token number by a factor of s2, significantly alleviating the computational
burden on the Transformer architecture. To recover the original visual tokens, we further introduce a
token-unshuffle operation that disentangles the fused tokens back into their local visual tokens, with
additional MLP layer to restore the original dimensionality. We also introduce residual MLP blocks
in both operations. The entire Token-Shuffle pipeline is illustrated in Fig. 2 for clarity. In essence, we
do not reduce the number of tokens during inference or training but instead reduce the token count
during Transformer computation. Fig. 4 illustrates the efficiency of our proposed method. Moreover,
rather than strictly adhering to the next-token-prediction paradigm, our approach predicts the next
fused token, allowing us to output a set of local visual tokens in a single step, which significantly
improves the efficiency and makes the high-resolution image generation feasible for AR models. See
supplementary for analysis on causal attention.
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3.5 TOKEN-SHUFFLE IMPLEMENTATION DETAILS

For Transformer input, we first compress the visual vocabulary dimension by a factor of s via an
MLP layer that maps the dimension from d to S%, where d represents the Transformer dimension.
Next, local s x s Visual tokens are shuffled into a single token, reducing the total number of tokens
per image from n to % while preserving the overall dimensionality. To enhance visual feature fusion,
we add n MLP blocks For Transformer output, we employ Token-Unshuffle. Here, MLP blocks



Under review as a conference paper at ICLR 2026

Baseline
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Inference step (index of next token) return cfg_list

Figure 5: Comparison of different CFG schedulers with a monotonic increase in CFG scale from 1
to 7.5. Right: CFG-scheduler improves both visual aesthetics and text alignment, compared to the
baseline of a consistent CFG value of 7.5 across all visual tokens.

map features into a new space, and an unshuffle operation expands each output visual token back
to s x s tokens. Another MLP layer then restores the dimension from S% to d, with additional MLP
blocks used to refine feature extraction. Consistently, both Token-Shuffle and Token-Unshuffle utilize
n MLP layers for simplicity, where each MLP block consists of two linear projections with GELU
activation. Further design choices for Token-Shuffle are explored in Sec 4.4.1.

3.6 CFG SCHEDULER FOR AR IMAGE GENERATION

Following common practice (Sun et al., 2024a; Wang et al., 2024b), we incorporate classifier-
free guidance (CFG) (Ho & Salimans, 2022) during both training and inference, a technique
widely used in the Diffusion community. During training, we randomly drop 10% of prompts,
making the unconditional input format <|begin_of_sentence|><|begin_of_image|>
<|lend_of_image|><|end_of_sentence|>. In inference, we adjust the logits of each visual
token as I = lyncond + @(lcond — luncond) sequentially, where « is a hyperparameter that controls the
text-image alignment.

However, AR-based models differ fundamentally from diffusion-based models, and we argue that the
vanilla CFG implementation may not be optimal for AR models. For unconditional input, generated
image tokens are consistently conditioned on two system tokens, < |begin_of_sentence|> and
<|begin_of_image|>. Thatis, the first unconditional logits always remain consistent, and applying
the first fixed logits to conditional input logits may introduce unpredictable artifacts. These small
errors accumulate auto-regressively from the first to the last token, potentially resulting in degraded
image quality. Inspired by recent work (Wang et al., 2024a), we further introduce a new inference
CFG-scheduler to improve image generation quality. Our motivation is to minimize, or even eliminate,
the influence of unconditional logits on early visual tokens to prevent artifacts. The cumulative impact
of CFG from the first to last token would be enough to enhance both image quality and adherence to
conditions. We explored several CFG-scheduler strategies, with results presented in Fig. 5 (zoom
in for better visualization). Suggested by visual quality and human evaluation, we consider the
half-linear scheduler for better generation by default.

4 EXPERIMENTS

4.1 TRAINING DETAILS

We conduct all experiments using the 2.7B Llama model, which has a dimension of 3072 and consists
of 20 autoregressive Transformer blocks. The models are trained on licensed dataset following
Emu (Dai et al., 2023). For training high-resolution images at 2048 x 2048, we exclude images with
a resolution smaller than 1024 x 1024. Our model is initialized with the text pretrained 2.7B Llama
checkpoint and begins training with a learning rate of 2¢e~*. All image captions are rewritten by
Llama3 (Dubey et al., 2024) to generate long prompts with details, which is demonstrated to be
helpful for better generation (Sun et al., 2024a).

We pre-train the models in three stages, from low-resolution to high-resolution image generation.
First, we train the models using an image resolution of 512 x 512 without employing the Token-Shuffle
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"Basic'' prompts "Hard" prompts
Model Type . .
w Attribute  Scene % Overall Count Differ Compare & Overall
Spatial ~ Action  Part Negate  Universal

SDXL-v2.1 Diff. 0.80 0.79 0.76 0.77 080 0.78 0.68 0.70 0.68 0.54 0.64 0.62
SD-XL Turbo Diff. 0.85 0.85 0.80 0.82 089 0.84 0.72 0.74 0.70 0.52 0.65 0.65
DeepFloyd-IF Diff. 0.83 0.85 0.81 082 089 0.84 0.74 0.74 0.71 0.53 0.68 0.66
Midjourney v6 Diff. 0.88 0.87 0.87 0.87 091 0.87 0.78 0.78 0.79 0.50 0.76 0.69
DALL-E 3 Diff. 0.91 0.90 0.92 0.89 091 0.90 0.82 0.78 0.82 0.48 0.80 0.70
LlamaGen AR 0.75 0.75 0.74 076 0.75 0.74 0.63 0.68 0.69 0.48 0.63 0.59
Lumina-mGPT-7B AR 0.84 0.85 0.82 0.84 093 0.83 0.75 0.69 0.73 0.47 0.69 0.63
EMU3 AR 0.78 0.81 0.77 0.78  0.87 0.78 0.69 0.62 0.70 0.45 0.69 0.60
SEED-X AR+Diff. 0.86 0.88 0.85 0.85 090 0.86 0.79 0.77 0.77 0.56 0.73 0.70
Token-Shuffle AR 0.78 0.77 0.80 0.76 083 0.78 0.76 0.74 0.74 0.58 0.64 0.67
Token-Shufflet AR 0.88 0.88 0.88 0.87 091 0.88 0.81 0.82 0.81 0.68 0.78 0.77

Table 1: VQAScore evaluation of image generation on GenAI-Bench. "7" indicates that images
are generated by Llama3-rewritten prompts to match the caption length in the training data.

Ours wins ~ Tie = Ours loses Ours wins ~ Tie = Ours loses Ours wins ~ Tie ® Ours loses
Al 4345 4573 1082 i 43.83 48.39 .78 Alext 52.18 1025 37.57
Visual Visual Visual
Flaw 51.8 2315 | 2224 sl 33.97 2676 39.28 isualg g9 83.11 797
Pt 51.99 144 3397 Al 448 1594 | 3928 Al 3036 53.89 15.75
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%

(a) Compare LlamaGen (AR) (b) Compare Lumina-mGPT (AR)  (c) Compare LDM (Diffusion)

Figure 6: Human evaluation comparing Token-Shuffle with LlamaGen ( , )(AR-
based model without text), Lumina-mGPT ( , ) (AR-based model with text) and
LDM ( , ) (Diffusion-based model) on text alignment, visual flaws, and visual
appearance.

operation, as the number of visual tokens is not substantial at this stage. In this stage, we train on
approximately 50 Billion tokens, using a sequence length of 4k, a global batch size of 512, and a total
of 211k steps. Next, we scale the image resolution up to 1024 x 1024 and introduce the Token-Shuffle
operation to reduce the number of visual tokens for improved computational efficiency. In this stage,
we scale up to 2 TB training tokens. Finally, we further scale up to 2048 x 2048 using the previously
trained checkpoint on around 300 Billion tokens with an initial learning rate of 4¢~°. Unlike training
on lower resolutions, we observe that handling higher resolutions (e.g., 2048 x 2048) always results
in unstable training, with the loss and gradient value increasing unexpectedly. To address this, we
incorporate z-loss ( , ), which stabilizes training for very-high-resolution image generation.
Details are provided in supplementary Sec. B. We fine-tune all models at different stages with a
learning rate of 4¢~® on 1,500 selected high-aesthetic quality images for presentation. By default, we
present visualizations and evaluations based on the fine-tuned results at a resolution of 1024 x 1024
and token-shuffle window size of 2, unless otherwise specified.

4.2 QUANTITATIVE EVALUATION

‘While FID ( , ) or CLIPScore ( , ) are commonly used for image
generation evaluation for class-conditioned synthesis, it is well-known that these metrics are not
reasonable for textual guided generation, as demonstrated in various related works ( ,
, ). In our work, we consider VQAScore ( , ) as our auto-
evaluatlon metric, which fine-tuned a visual-question-answering (VQA) model to produce an text-
image alignment score. We tested all models on the suggested challenging GenAI-Bench prompts
set ( , ). Since our training captions are long captions similar to LlamaGen (
, ), we report results based on Llama3-rewritten prompts for caption length consistency.
Additionally, we include results from the original prompts for reference. Besides, we report additional
evaluation results on GenEval benchmark in the supplementary Table 2.

The results in Tab. 1 highlight the strong performance of our Token-Shuffle. Compared with other
autoregressive models, our method outperforms LlamaGen by an overall score of 0.14 on "basic"
prompts and 0.18 on "hard" prompts. Against strong diffusion-based baselines, our method surpasses
DALL-E 3 by 0.07 in overall score on "hard" prompts.
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Figure 7: Effectiveness comparison of various implementations and alternatives. Our implementation
shows reasonable alignment with the Token-Shuffle concept, as indicated by training perplexity.

4.3 HUMAN EVALUATION

We recognize that while automated evaluation metrics provide unbiased assessments, they may not
always fully capture human preferences, as suggested by recent studies (Dai et al., 2023; Kirstain
et al., 2023; Podell et al., 2023). To this end, we also conducted large-scale human evaluations on
the GenAl-bench prompts set, comparing our model with LlamaGen (Sun et al., 2024a), Lumina-
mGPT (Liu et al.,, 2024), and with LDM (Rombach et al., 2022), as representative methods for AR
model, MLLM, and Diffusion, respectively. For human evaluation, we focus on three key metrics:
text alignment, assessing the accuracy with which images reflect textual prompts; visual flaws,
checking for logical consistency to avoid issues such as incomplete bodies or extra limbs; and visual
appearance, which evaluates the aesthetic quality of the images.

Fig. 6 presents the results, where our model consistently outperforms AR-based model LlamaGen and
Lumina-mGPT across all evaluation aspects. This suggests that Token-Shuffle effectively preserves
aesthetic details and closely adheres to textual guidance with adequate training, even when token
count is largely reduced for efficiency. In comparison with LDM, we demonstrate that AR-based
MLLMs can achieve comparable or superior generation results (in terms of both visual appearance
and text alignment) relative to Diffusion models. However, we observe that Token-Shuffle performs
slightly worse than LDM in terms of visual flaws, consistent with observations in Fluid (Fan et al.,
2024), highlighting an interesting area for further exploration.

4.4  ABLATION STUDY

4.4.1 DESIGN CHOICE OF TOKEN-SHUFFLE

We acknowledge that similar implementations  Token-Shuffle Size =1  Token-Shuffle Size=2 Token-Shuffle Size = 4
of Token-Shuffle or alternative methodologies
may also be effective. Here, we explore and eval-
uate several variations: (1) More MLP blocks.
We use n = 2 MLP blocks by default. To assess
the impact of more MLP blocks, we also experi-
ment with configurations of n =4 and n = 6. (2) = e veactibios
Shuffle or Drop. To determine the importance : h f e with el e and
of each token within local windows, we com-
pare the standard Token-Shuffle operation with
a variation in which all tokens in a local window
are dropped except the last one. (3) Additional
Positional Embedding. We do not include addi- 2 h
tional positional embeddings in the default setup - REls Sl & st
as MLP layers are position-aware (and RoPE el 4wl Jvith wildflowers, transitioning into_ rocky
is within AR model). To evaluate the poten- ’

tial benefits of additional positional embeddings, Figure 8: Visual comparison of different Token-
we introduce learnable embeddings at the local ~ Shuffle window sizes. We tested each prompt
(shared and within shuffle-window) and global  with fixed random seeds and reported the VQAS-

ranges, respectively. (4) Re-sampler and Sim-  core (Lin et al., 2024) in the bottom-right corner.
ple version. We further explore re-sampler (Ge

et al., 2024) to fuse and decouple tokens, replac-
ing Token-Shuffle design. In addition, we follow the common practice for high-resolution image
understanding in Vision-Language Models, that directly concatenate local visual features and use
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MLP to match dimension. For outputs, we first use MLP to expand the dimension and then decouple
the tokens. We term this option as simple version. Notice that all the operations in simple version are
linear.

For a fair comparison, we standardize all training configurations across these experiments. All models
are trained for 60k iterations on 32 GPUs with a learning rate of 2 x 10~%, a sequence length of 4096,
and a batch size of 4. We conduct experiments at a resolution of 512 x 512, using a Token-Shuffle
window size of 2 for all model variants. This setup allows us to directly compare training loss to
evaluate the effectiveness of each design choice.

As shown in Fig. 7, the training loss (log-scaled perplexity, which is commonly used evaluation for
pretraining stage) suggests that our default configuration is a reasonable choice for implementing
Token-Shuffle. In Fig. 7a, we observe that adding more MLP blocks in the Token-Shuffle operations
(for both input and output) does not lead to noticeable improvements. Additionally, Fig. 7b illustrates
that retaining all visual tokens is crucial. Our experiments further reveal that additional positional
embeddings do not enhance Token-Shuffle, likely because MLP layers are inherently position-aware
and RoPE is already employed to model relative positional information among fused visual tokens. We
also observe that the Re-sampler performs worse than our Token-Shuffle as demonstrated in Fig. 7d;
this may be due to our Re-sampler’s design, which is forced for local fusion and disentanglement,
differing from the original Re-sampler in SEED-X and related works. Meanwhile, the simplified
version of our method performs the worst, even though it introduces more parameters, possibly due
to the linear projection and overly simplified output design — an area for further investigation.

4.4.2 COMPARISON OF DIFFERENT SHUFFLE SIZES

Our Token-shuffle enjoys flexible settings of Token- 8
Shuffle window size, like 1, 2, 4, and even larger, resulting
different levels of token compression and efficiency boosts.
However, we acknowledge that larger Token-Shuffle win- 7
dow size will certainly decrease the generation quality due
to significantly reduced computations. Note that a shuffle
window size of 1 implies that no Token-Shuffle is applied, 6
though additional MLP layers are still introduced. As ex-
pected, increasing the shuffle window size leads to higher
training loss and a corresponding reduction in generation 5
quality. This is a logical and anticipated phenomenon, 100 10k~ 20k 30k

as a single fused token represents an increasingly larger Training iterations

number of visual tokens and significant computational re- o ) )
duction for Transformer. Exploring methods to minimize Figure 9: Training perplexity for differ-
this quality and training loss gap remains an important ©nt shuffle window sizes.

area of interest. Fig. 8 illustrates the differences in generated images across various shuffle sizes,
with each image labeled with its VQAscore ( , ). When the shuffle size is small, such as
1 or 2, the generated images exhibit excellent quality. With larger shuffle sizes, while high-fidelity
images are still achievable, a slight blurring effect is noticed. Extended training could potentially
help mitigate this issue.

A shuffle widnow size
reduces visual tokens to

of the original.

5 CONCLUSION

In this work, we introduce Token-Shuffle for efficient and scalable image generation in MLLMs.
Unlike prior methods that rely on high downsampling ratios or reduced visual token inputs, we
shuffle spatially local visual tokens for input and unshuffle the fused tokens back for output. Token-
Shuffle is a lightweight, plug-and-play design for MLLMs that adheres to the next-token prediction
paradigm while enabling batch generation of tokens within a local window. Our Token-Shuffle
significantly reduces computational cost and accelerates inference. Leveraging these advantages,
for the first time, we push the boundaries of autoregressive text-to-image generation to a resolution
of 2048 x 2048, achieving high efficiency in training and inference at low cost while maintaining
promising generation quality. As a tentative exploration, we anticipate further advancements toward
scalable image generation for autoregressive models.
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A APPENDIX

This supplementary material provides more implementation details, ablation studies, visualization
results, discussions and limitations. We provide detailed implementations in Sec. B to provide more
insights. We also present more studies and visualization results in Sec. C. Finally, we discuss the
limitations and further work of Token-Shuffle in Sec. D.

B IMPLEMENTAL DETAILS

Instability in training 2048 resolution Training at resolutions of 512 x 512 or 1024 x 1024 is
notably stable, with the loss consistently decreasing throughout the process. However, training at
very high resolutions, such as 2048 x 2048, often becomes unstable, as evidenced by a significant
increase in training loss after several thousand iterations, as illustrated in Fig. 10.
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Figure 10: We plot the and gradient norm (right) when training with a resolution of

2048 x 2048. Training shows instability after approximately 20K iterations.

To investigate the cause of unstable training, we analyze the training process in detail. Initially, we
hypothesize that the instability arises from using a large learning rate, a common factor in such issues.
To test this, we reduce the learning rate from le™ to 5e~> and le~®, decreasing it by factors of 2
and 10, respectively. However, the training instability persists, suggesting that the learning rate is
not the root cause. Next, inspired by EMU3 ( s ), we consider that high-resolution
images might cause visual tokens to dominate the training process. To address this, we apply a loss
weight of 0.5 or 0.2 to the visual tokens. Unfortunately, this adjustment also fails to stabilize the
training. We then investigate whether the logit shift issue, which has been observed to cause unstable
training in larger models such as Chameleon ( . ) and Lumina-mGPT ( R ),
could also occur in our 2.7B model. Notably, this phenomenon is typically associated with models
containing 7B parameters or more. To tackle this, we consider two solutions: (1) incorporating
QK-Norm into each attention layer, and (2) adding z-loss ( , ) to the training objective.
Empirically, we find that while QK-Norm partially alleviates the issue, the instability eventually
recurs as training progresses. In contrast, z-loss effectively prevents instability throughout training.
Thus, we combine both QK-Norm and z-loss to stabilize the training at 2048 x 2048 resolution, and
set the z-loss weight to 1e~°. Retrospectively, we emphasize that z-loss not only helps large models
as indicated in Chameleon and Lumina-mGPT, but also helps very high-resolution image generation
for discrete image generation pipeline.

Inference Implementation We consider both textual tokens and visual tokens for loss backpropa-
gation, which has been empirically proven to be beneficial for text faithfulness. This approach trains
both text and images, aligning with the philosophy of MLLMs, with the key difference being that we
only use text-image paired datasets. However, during inference, the model (as with all autoregressive
models) may (1) continue generating text instead of an image, or (2) produce mixed text-image
tokens, resulting in incomplete images.
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To address these issues, we first introduce a special token, < | start_of_image | >, appended to
the end of prompt tokens. This ensures that the model always generates an image after the prompt.
Without this token, the model may generate additional text as a supplement to simple prompts before
concluding with an image, as shown in Fig. 11.

For mixed text-image tokens, we observe that during the early stages of training, the model is more
prone to generating such outputs. However, as training progresses, the model consistently generates
visual tokens up to the <|end_of_image | > token, resulting in complete images. In rare cases
where this behavior does not occur, we enforce structural generation by restricting tokens following
<|start_of_image | > to be sampled only from the visual vocabulary, ensuring the generation of
complete images.

® ®

A small brown bird with a

® ®

A mouthwatering platter of Middle Eastern mezze

distinctive red crest stands next to a
patch of tall, wispy grasses that
stretch up to twice its height.

aphoto of a

Two dogs, a fluffy white Samoyed and a sleek
black Labrador,

8

8

8

, featuring a crispy chicken quesadilla, a side of pita bread,
and a refreshing salsa. The platter is accompanied by three
small bowls of dipping sauces: a red one with a spicy kick, a
white one with a tangy flavor, and a green one with a creamy

The bird's posture suggests it may
be preening itself or simply taking a
break from flying. The background
is blurred, but it appears to be a

temple near the sea in Greece

standing side by side on a dirt path in a wooded
area. The Samoyed, with its distinctive white fur
and black nose, is positioned on the left, while the
Labrador, with its shiny black coat and brown

lush green field or meadow. eyes, stands on the right. Both dogs are gazing
directly at the camera, their attention focused on
the photographer. The background features a
wooded area with trees and grass, evoking a sense
of a peaceful and serene environment.

while a small bowl of green sauce with a sprinkle of red
pepper flakes adds a pop of color to the top right corner. The

entire arrangement is set against a dark grey background,
evoking the ambiance of a professional food photo shoot.

I
I
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texture. A stack of pita bread sits to the left of the platter, :
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Figure 11: Without explicitly appending <|start_of_image|> token, our model naturally
generates text based on input and seamlessly transitions to an image, consistently and automatically
concluding in line with training data format.

C MORE STUDIES

C.1 GENEVAL EVALUATION RESULTS

Besides VQAScore results reported in Table 1, we also conduct addtional auto-evaluation, GenEval,
and report the detailed evaluation results in Table 2. All inference configurations are same and we
consider the rewritten prompt by default. Experimental results indicates that besides high-resolution,
our Token-Shuffle, a pure AR-model, is able to present promising generation quality.

Ours wins ~ Both good ~ Bothbad m Ours losses
08 ] DaLLE3 | 1822% 20.03% 1soz  [NSEEGN
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Figure 12: CFG scale vs. VQAScore.

Figure 13: Human evaluation of text alignment,
comparing Token-Shuffle with various AR-based
and diffusion-based models. Results may vary
slightly from Fig. 6 due to the generated images
are assessed by different vendors.
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Method Type #Params Single Obj. Two Obj. Counting Colors Position Color Attri. Overall 1
LDM (Rombach et al., 2022) Diff. 1.4B 0.92 0.29 0.23 0.70 0.02 0.05 0.37
SDv1.5 (Rombach et al., 2022) Diff. 0.9B 0.97 0.38 0.35 0.76 0.04 0.06 0.43
PixArt-alpha (Chen et al., 2024) Diff. 0.6B 0.98 0.50 0.44 0.80 0.08 0.07 0.48
SDv2.1 (Rombach et al., 2022) Diff. 0.9B 0.98 0.51 0.44 0.85 0.07 0.17 0.50
DALL-E 2 (Ramesh et al., 2022) Diff. 6.5B 0.94 0.66 0.49 0.77 0.10 0.19 0.52
SDXL (Podell et al., 2023) Diff. 2.6B 0.98 0.74 0.39 0.85 0.15 0.23 0.55
SD3 (Esser et al., 2024) Diff. 2B 0.98 0.74 0.63 0.67 0.34 0.36 0.62
Show-o (Xie et al., 2024b) AR.+Diff. 1.3B 0.95 0.52 0.49 0.82 0.11 0.28 0.53
SEED-X (Ge et al., 2024) AR .+Diff. 17B 0.97 0.58 0.26 0.80 0.19 0.14 0.49
Transfusion (/Imu et al., 2024) AR.+Diff. 7.3B - - - - - - 0.63
LlamaGen (Sun et al., 2024a) AR. 0.8B 0.71 0.34 0.21 0.58 0.07 0.04 0.32
Chameleon (Team, ’()’4) AR. 7B - - - - - - 0.39
EMU3 (Wang et al., 2024b) AR. 8B - - - - - - 0.66
EMU3-DPO (Wang et al., 2024b) AR. 8B - - - - - - 0.64
Emu3-Gen (W: mu et al., 2024b) AR. 8B 0.98 0.71 0.34 0.81 0.17 0.21 0.54
Janus (Wu et al., 2024) AR. 1.3B 0.97 0.68 0.30 0.84 0.46 0.42 0.61
Token-Shuffle AR. 2.7B 0.96 0.81 0.37 0.78 0.40 0.39 0.62

Table 2: Evaluation on the GenEval (Ghosh et al., 2024) benchmark. Similar to ours results, EMU3
and EMU3-DPO also consider prompt rewriting, and results of EMU3-Gen are from Janus (Wu
et al.,, 2024). These results indicates our Token-Shuffle can also present promising generation quality
besides high-resolution.

cfg=3.0 cfg=4.0

Asilver spoon lies to the left of a golden fork on a wooden table.

Figure 14: Examples of generated images under different CFG scales.

C.2 CHOICE OF CFG SCALES

Conceptually, CFG enhances generation quality by balancing prompt fidelity with visual coherence.
However, determining the optimal CFG scale is empirical and model-dependent (Girdhar et al., 2023;
Sun et al.,, 2024a; Li et al., 2024b; Peebles & Xie, 2023; Tian et al., 2024). We systematically evaluate
different CFG scales, ranging from 1.0 to 11.0, with VQAScore results presented in Fig.12 and
illustrative examples shown in Fig.14. It is worth noting that no CFG schedulers were introduced in
this study.

While a higher CFG scale generally leads to improved VQAScore, as demonstrated in Fig.12, we
observe that it may also result in a slight deterioration of visual appearance, as illustrated in Fig.14.
Taking into account both the qualitative and quantitative findings presented, we consider that a CFG
value of 7.5 strikes the optimal balance between performance and visual quality.
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Ours wins ~ Tie = Ours loses

Text

Alignment 2543 53.51 21.06

D8+Token-Shuffle

Visual

Flaw |03 76.05 16.92

Visual

Apperance 64.45 7.41 28.14

Dl6

0% 20% 40% 60% 80% 100%

An ice castle standing A

) gﬁ)blin_lmdin%_shiny A tailless, not black, A grand  fountain
proudly in the midst of  trinkets in a hidden, catis sitting. surrounded by historic
a blizzard. mystical market. buildings in”a town

square.

Figure 16: Visual examples comparing Token-Shuffle Figure 17: Human e\{aluation.of Token-
(compress ratio 8x with Token-Shuffle window size of Shuffle (compress ratio 8x with Token-

2) and high compress VQGAN (compress ratio 16x).  Shuffle window size of 2) and high com-
press VQGAN (compress ratio 16x).

C.3 TEXT ALIGNMENT

We observe that our model delivers superior text-alignment performance, as demonstrated in the
human evaluation results in Fig.6. To further substantiate this, we provide a detailed comparison,
evaluating our method against additional models, with the corresponding human evaluation results
presented in Fig.13. Our images are generated using a half-linear CFG scheduler with a scale of 7.5
and a fixed random seed.

Clearly, Token-Shuffle significantly outperforms all other methods by a considerable margin, except
for DALL-E 3, which also trains and infers on long prompts. This experiment highlights the
effectiveness of using long and detailed captions to improve text-to-image (T2I) text-faithfulness.

C.4 CAUSAL ATTENTION MASK

Token-Shuffle adheres to the standard next-
token prediction mechanism without alter-
ing the original causal mask used in LLMs.
However, instead of predicting the next sin-
gle token, it predicts a fused token, which
is then disentangled into spatially local to-
kens. In this approach, the fused token re-
tains the same causal mask as the LLM, but
the disentangled tokens introduce a mod-
ified causal mask that allows mutual in-
teractions within the spatial local window.
Fig. 15 compares the attention maps of bi-
directional, causal, and Token-Shuffle implementations.

Bi-directional Causal Token-Shuffle

Figure 15: Attention maps of three implementations:
bi-directional, causal, and Token-Shuffle. Illustrated
with a feature map size of 4 x4 (16 tokens) and a shuffle
window size of 2 for Token-Shuffle.

While the bi-directional implementation facilitates global token interactions and the causal imple-
mentation enforces strict sequential constraints, Token-Shuffle strikes a balance by enabling local
mutual interactions among tokens. This design is anticipated to improve visual generation quality,
particularly in capturing finer local details, compared to the traditional causal design. Please note that
this is achieved without altering the causal masking for both training and inference.

C.5 HIGH-COMPRESS VQGAN OR TOKEN-SHUFFLE

Token-Shuffle incorporates additional lightweight layers into Transformers to reduce the number
of tokens, enabling efficient processing and high-resolution image generation. In contrast, some
concurrent efforts in the diffusion model field, such as SANA ( s ), adopt a high-
compression VAE image tokenizer strategy (e.g., using a down-sampling ratio of 32x rather than
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""Basic'' prompts ""Hard'' prompts
Model Relation Logical
Attribute Scene Overall Count Differ Compare "= = Overall
Spatial  Action Part Negate  Universal
D16 0.80 0.82 0.79 0.79  0.86 0.80 0.72 0.71 0.73 0.65 0.75 0.71
D8+TS 0.82 0.85 0.82 0.82 084 0.82 0.77 0.77 0.77 0.66 0.74 0.72

Table 4: VQAScore evaluation of image generation on GenAI-Bench. "D16" indicates directly
using a high-compress VQGAN with a down-sampling ratio of 16x. "D8+TS" indicates using a
low-compress VQGAN with a down-sampling ratio of 8x and Token-Shuffle window size of 2.

the more common 16x or 8x). Here, we empirically explore and compare these two strategies
(High-Compression Image Tokenizer vs. Token-Shuffle) and then discuss their potential limitations.

For the comparison, we utilize two VQGAN mod-

els with different compression ratios: 16x and 8x. Ratio _ Tokens Codebook PSNR _SSIM__CLIP

The 16x VQGAN model is taken from the previous Low ) | 4096 8192 2710 078 098

LlamaGen T2I checkpoint, while the 8x VQGAN is  High(16x) | 1024 16384  22.89 0.64  0.96

derived from our internal checkpoint. We first bench-

mark both models on the MSCOCO-val dataset ( Table 3: Reconstruction results of VQGAN
, ), which consists of 5K images. The im- models with different compress ratios. The

ages are resized and center-cropped to a resolution  results are achieved on MSCOCO-val set with

of 512 x 512. The performance comparison of the aresolution of 512.

VQGAN models is summarized in Tab.3.

Clearly, a higher compression ratio significantly degrades reconstruction performance, which can
negatively impact generation quality. Building on this observation, we investigate the generation
quality of the two strategies using the aforementioned high- and low-compression VQGAN models.
For this study, we generate 512 x 512 resolution images, employing the 8x compression ratio VQGAN
with Token-Shuffle (shuffle window size of 2) to represent our Token-Shuffle strategy, and the 16x
compression ratio VQGAN to represent the high-compression image tokenizer approach. This setup
ensures equivalent training and inference computational costs (excluding the negligible additional
parameters and FLOPs introduced by Token-Shuffle). All images are generated using the same
settings, including identical CFG values, temperature, CFG scheduler, efc. We evaluate and compare
the two strategies on GenAl-Bench, reporting VQAScore and human evaluation results in Tab. 4 and
Fig. 17, respectively.

Both auto-evaluation and human evaluation results unequivocally demonstrate that Token-Shuffle
consistently outperforms its high-compression VQGAN counterpart. For illustration, we also provide
visual examples in Fig. 16. However, we admit that this comparison is not entirely fair for the
following reasons: (1) The image tokenizers were not trained under identical conditions, and it
is challenging to obtain fairly trained VQGAN models with different down-sampling ratios. (2)
During the course of our project, the dataset underwent slight and progressive changes—some images
were added, while others were filtered out due to privacy concerns—affecting both pre-training
and fine-tuning stages. Despite these factors, we believe they do not impact the validity of our
conclusions.

In general, a higher-compression VQGAN offers the simplest implementation for supporting efficient
and high-resolution image generation; however, it compromises generation performance, as shown in
Tab.3, Tab.16, Fig.17, and examples in Fig.16. In contrast, Token-Shuffle, inspired by dimensional
redundancy, introduces a pair of plug-and-play token operations that not only achieve superior
generation performance and present better details but also provide dynamic settings for different
shuffle window sizes, enabling adjustable compression results—a flexibility not available with
high-compression VQGAN.

C.6 MORE VISUAL EXAMPLES

We present additional visual examples in Fig.18 and Fig.19 to showcase the quality of 1024 x 1024
generated images. Further examples of 2048 x 2048 images are provided in Fig. 20. To our best
knowledge, this is the first time AR-based models can generate such a high-resolution image efficiently
and effectively. All images were generated with a shuffle window size of 2, half-linear CFG-scheduler
with a scale of 7.5, as stated previously.
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a photo of a bench

a green vase

a photo of three fire hydrants a photo of four bas ; S a dining table and a bear  a photo of a scissors and a bird

Figure 18: 1024 x 1024 resolution images generated by Token-Shuffle with a shuffle window size of

2. We show generated images focusing on position, color, counting, and combination. The prompts
are from GenEval (Ghosh et al., 2024) prompts.
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A bowl of beef Pho teacup

A Christmas tree \nh lights and teddy bear a mouse sitting next to a computer mouse
Figure 19: 1024 x 1024 resolution images generated by Token-Shuffle with a shuffle window size of
2. We show two images of same prompt with different random seeds, focusing on complex scenarios
or hard prompts. The prompts are from our internal evaluation prompts.
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A majestic bald eagle 1s sitting at the top of a C A sleek black cat with a dashing grey streak on its forehea

A medieval town with market square A narrow alleyway illuminated by strings of fairy lights, with their soft
glow casting a warm ambiance.

Figure 20: 2048 x 2048 resolution images generated by Token-Shuffle with a shuffle window size
of 2. Images are resized for visualization. Please zoom in to see the details in top row and the overall
soft holistic beauty in bottom row.
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D DISCUSSIONS

D.1 VISUAL FLAWS OF AR-BASED MODELS

As discussed in Fluid (Fan et al,
2024), AR-based models often pro-
duce images with visual flaws (see the
human evaluation comparison with
LDM in Fig.6 (c)). This issue stems
not from the information loss in VQ-
GAN but from the limited global in-
teraction inherent to causal masking
and the next-token prediction frame-
work. Although Token-Shuffle intro-
duces local mutual interactions, it still

struggles with this fundamental limi- 1), 5. Examples of generated images with visual flaws

tation. .Flg.S ShO,W S examples of gen- and structural errors, marked with red circle (zoom in to see
erated images with such visual flaws. details)

Exploring approaches that maintain

the next-token prediction framework

while enabling global interactions remains an important direction for future research, with RAR (Yu
et al., 2024) offering a promising starting point.

D.2 LIMITATIONS

We introduce Token-Shuffle, targeting efficient high-resolution image generation with AR models
with high quality. However, there are still interesting directions worth exploring. Firstly, we would like
to see the scaling ability of Token-Shuffle in large LLMs, i.e., 7B and 30B models. We demonstrate
that our 2.7B model is able to provide promising performance, outperforming 7B Lumina-mGPT,
and can generate higher resolution. We expect better results when increasing the model size. Another
interesting direction is to support flexible resolutions, aspect ratios like EMU3 (Wang et al., 2024b).

Use of AI Assistance. We employed ChatGPT exclusively to refine the wording of our presentation.
The paper’s contents, including motivation, experiments, presentation, and all others, were produced
and checked by the authors. We did not use ChatGPT to generate text, code, or data for the manuscript,
and no sensitive or proprietary information was provided to the model.
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